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ABSTRACT

Accurate crowd simulation is crucial for public safety management, emergency
evacuation planning, and intelligent transportation systems. However, existing
methods, which typically model crowds as a collection of independent individual
trajectories, are limited in their ability to capture macroscopic physical laws. This
microscopic approach often leads to error accumulation and compromises simu-
lation stability. Furthermore, deep learning-driven methods tend to suffer from
low inference efficiency and high computational overhead, making them imprac-
tical for large-scale, efficient simulations. To address these challenges, we pro-
pose the Spatio-Temporal Decoupled Differential Equation Network (STDDN), a
novel framework that guides microscopic trajectory prediction with macroscopic
physics. We innovatively introduce the continuity equation from fluid dynamics
as a strong physical constraint. A Neural Ordinary Differential Equation (Neu-
ral ODE) is employed to model the macroscopic density evolution driven by in-
dividual movements, thereby physically regularizing the microscopic trajectory
prediction model. We design a density-velocity coupled dynamic graph learning
module to formulate the derivative of the density field within the Neural ODE,
effectively mitigating error accumulation. We also propose a differentiable den-
sity mapping module to eliminate discontinuous gradients caused by discretization
and introduce a cross-grid detection module to accurately model the impact of in-
dividual cross-grid movements on local density changes. The proposed STDDN
method has demonstrated significantly superior simulation performance compared
to state-of-the-art methods on long-term tasks across four real-world datasets, as
well as a major reduction in inference latency.

1 INTRODUCTION

Crowd simulation (Karamouzas & Overmars, 2011; Feng et al., 2016; Mathew et al., 2019; Yang
et al., 2020; Rasouli, 2021) has become a cornerstone technology in domains such as public safety
management and intelligent transportation systems. It holds both significant research value and
practical importance for real-world problems, such as crowd evacuation in densely populated areas
and passenger flow organization in transportation hubs. Accurate simulation of crowd dynamics not
only aids in optimizing spatial design and management strategies but also offers critical decision
support for emergency responses to unforeseen events (Yang et al., 2020).

Existing mainstream approaches to crowd simulation generally fall into three categories: physics-
based methods, data-driven deep learning approaches, and physics-guided deep learning methods
(Rasouli, 2021; Zhang et al., 2022; Shi et al., 2023; Chen et al., 2024; Zhou et al., 2024). Physics-
based methods simulate local behaviors like avoidance and following by characterizing physical
interactions among individuals (Helbing & Molnar, 1995; Sarmady et al., 2010). These methods are
grounded in solid theoretical foundations and offer strong physical interpretability. However, they
are typically built upon simplified linear mechanics assumptions, making it difficult to capture the
nonlinear and stochastic characteristics inherent in crowd behaviors. As a result, their performance
drops significantly in high-density or highly interactive environments.

With the advancement of deep learning, data-driven methods (e.g., recurrent neural networks (Chen
et al., 2018), graph neural networks (Xu et al., 2022), and diffusion models (Ho et al., 2020)) have
achieved remarkable progress in trajectory prediction by learning motion patterns from large-scale
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trajectory datasets. For example, STGCNN (Mohamed et al., 2020) learns trajectory evolution from
historical data, while MID (Gu et al., 2022) uses a diffusion mechanism to estimate the probability
distribution of future trajectories. However, the absence of physical constraints in these methods
often leads to unrealistic behaviors that violate fundamental physical laws, such as unnatural crowd
congestion or collisions that ignore avoidance principles.

To bridge the gap between physical consistency and expressive modeling capacity, physics-guided
deep learning approaches have emerged. These methods aim to integrate physical models into neu-
ral network architectures or training processes as inductive biases (e.g., PCS (Zhang et al., 2022),
SPDiff (Chen et al., 2024)). While improving physical consistency, most focus on microscopic in-
teractions and struggle to capture macroscopic density evolution, leading to error accumulation and
suboptimal results. Additionally, SPDiff’s diffusion-based paradigm suffers from slow inference
and high computational cost, limiting its scalability.

Based on these insights, we propose a novel Spatio-Temporal Decoupled Differential Equation Net-
work (STDDN) for crowd simulation. By incorporating the continuity equation from fluid dynamics
as a structural constraint, STDDN guides the trajectory prediction process from a global perspec-
tive of density evolution. In contrast to existing physics-guided methods that primarily rely on
individual-level modeling, STDDN treats the crowd as a continuous medium and reformulates tra-
jectory evolution as a transport process in the density field. It uses neural networks to learn the
coupling between the density and velocity fields, enabling macroscopic modeling of collective dy-
namics. Meanwhile, STDDN retains the strong representation capability of data-driven methods,
enhancing both physical consistency and global interpretability while supporting end-to-end train-
ing. Experiments on multiple benchmark datasets demonstrate that the proposed method achieves
higher prediction accuracy and greater inference efficiency in long-term simulation tasks, showing
strong generalization ability and engineering applicability.

Key contributions of this paper include:

• A unified macro-micro coupled modeling framework. We incorporate the continuity equa-
tion as a differentiable physical constraint, achieving a tight, end-to-end integration of dif-
ferential equations with deep neural networks for the task of crowd trajectory prediction.
This design significantly enhances the physical consistency and global stability of the sim-
ulation.

• Physically interpretable design of a dynamic graph network. A cross-timestep dynamic
graph neural network is constructed by using current velocity as incoming edges and fu-
ture velocity as outgoing edges, enabling explicit modeling of density flux over time and
improving the interpretability of the simulation process.

• Two differentiable structures for enhanced physical consistency. We propose a differen-
tiable density mapping module based on radial basis functions and a continuous cross-grid
detection module. These designs mitigate gradient discontinuities caused by the discretiza-
tion process and ensure both mass conservation and smooth backpropagation.

• Superior accuracy and efficiency. Experimental results on four real-world datasets demon-
strate that STDDN outperforms existing state-of-the-art methods in long-term crowd sim-
ulation accuracy, while also achieving a substantial increase in inference speed.

2 RELATED WORK

Crowd simulation. As discussed in the previous section, there are three main approaches in crowd
simulation research: physics-based methods, data-driven deep learning methods, and physics-guided
deep learning approaches. Physics-based methods were among the earliest frameworks studied (Di-
etrich & Köster, 2014; Helbing & Molnar, 1995; Pelechano et al., 2007; Corbetta & Toschi, 2023).
For example, Social Force Model (SFM) (Helbing & Molnar, 1995) pioneered dynamic modeling
of sparse crowds by formulating a resultant force system between pedestrians, the environment, and
their goals. However, its underlying linear force assumptions exhibit clear limitations in high-density
scenarios. To account for speed differences among pedestrians, a fine-grid cellular automaton model
(Sarmady et al., 2010) was proposed to enable more realistic crowd simulations. With advancements
in data acquisition and modeling techniques, data-driven deep learning methods have gained wide
adoption. PECNet employs a Conditional Variational Autoencoder (CVAE) (Ivanovic & Pavone,
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2019) to generate multiple possible trajectories and samples a plausible endpoint based on observed
data. STGCNN (Mohamed et al., 2020) leverages graph neural networks to model interactions with
surrounding pedestrians at each time step. MID (Gu et al., 2022) directly models the distribution
of future trajectories using a diffusion model and designs a Transformer-based architecture to cap-
ture temporal dependencies in historical data. Although these methods achieve good performance
in trajectory prediction, their lack of physical constraints limits generalization under extreme or un-
foreseen scenarios, often resulting in physically implausible behaviors. In recent years, researchers
have begun exploring physics-guided deep learning methods for crowd simulation (Kochkov et al.,
2021). PCS (Zhang et al., 2022) incorporates the SFM as a prior and jointly trains two branches:
one data-driven and one physics-based, through an interaction mechanism to enable information
sharing. NSP (Yue et al., 2022) explicitly embeds physical parameters into the neural network to
enhance interpretability. SPDiff (Chen et al., 2024) integrates the SFM with a diffusion model,
building a physics-aware denoising network that has shown strong performance in crowd simulation
tasks. However, since the SFM focuses solely on individual-level microscopic interactions, these
methods suffer from error accumulation over time, especially in iterative simulations. Additionally,
because crowd simulation often relies on autoregressive prediction combined with diffusion-based
generation, inference becomes computationally intensive. To address these limitations, we propose
a novel framework that integrates macroscopic physical laws, enabling simulation to be completed
in a single forward pass. This significantly improves both efficiency and stability.

Physics informed models. Recent years have witnessed growing research efforts in incorporating
physical principles into neural networks for spatiotemporal prediction tasks (Kochkov et al., 2021;
Karniadakis et al., 2021; Fang et al., 2021; Luo et al., 2023; Chen et al., 2023; Zou & Guo, 2024).
STDEN (Ji et al., 2022) pioneered a traffic flow prediction framework based on continuity equations,
bridging the gap between data-driven and physics-based paradigms by embedding traffic dynamics
into deep neural networks. ST-PEF (Ji et al., 2020) introduced a novel interpretable spatiotempo-
ral deep learning model that simulates traffic flow physics through latent Spatiotemporal Potential
Energy Fields (ST-PEFs), by analogy to fluid flow under gravitational forces.. Building upon this,
ST-PEF+ (Wang et al., 2022) incorporated field theory of human mobility to explain urban traffic
mechanisms and embedded this theory into data-driven deep learning models. AirPhyNet (Hettige
et al., 2024) formalized the physics of particle motion (diffusion and convection) as differential
equation networks, integrating physical knowledge into neural architectures via graph structures.
Air-DualODE (Tian et al., 2024) further unified data-driven spatiotemporal prediction with physics-
informed learning through an aligned fusion framework, achieving state-of-the-art performance in
air quality forecasting. Inspired by these advances, we integrate continuity equations with crowd
simulation by employing graph structures to connect historical trajectories with future predictions.
This approach effectively decouples the spatial and temporal dimensions of trajectory forecasting,
addressing key challenges in the field.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

We consider a group of M pedestrians moving in an environment with S static obstacles. At each
time step t, the state of the crowd is denoted as Qt = {pt, vt, at, d, ht, E}, where pt, vt, and
at ∈ RM×2 represent the positions, velocities, and accelerations of all pedestrians, respectively;
d ∈ RM×2 denotes their destinations; ht = (pt−h:t, vt−h:t, at−h:t) represents the recent motion
history over a window of h frames; and E ∈ RS×2 contains the positions of static obstacles in the
environment. Crowd simulation is formulated as a spatiotemporal prediction problem, where the
goal is to model the future evolution of individual trajectories over time and space. The model fθ
initializes from the initial state and generates the next moment’s state by entering the current state,
i.e.,

Qt+1 = fθ(Q
t, E) (1)

which is continuously iterated until all individuals in the crowd reach their respective destinations,
completing the simulation process. To ensure physical consistency, we predict acceleration at+1 at
each time step, and update the position and velocity using the standard integration rules: vt+1 =
vt + at ·∆t and pt+1 = pt + vt ·∆t. The Appendix A.1 provides the domains and descriptions of
all symbols used in the paper.
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3.2 CONTINUITY EQUATION

The continuity equation (Lienhard & Lienhard, 2008; Grady et al., 2010) is one of the fundamental
conservation equations in fluid mechanics, describing the conservation of mass during flow. Its
differential form is expressed as:

∂ρ

∂t
+∇ · (ρv) = 0 (2)

where ρ represents the fluid’s density field, denoting the mass density at spatial position (x, y) and
time t; v represents the fluid’s velocity field at spatial position (x, y) and time t; ∇ · (ρv) denotes
the divergence of the mass flux ρv. In spatiotemporal modeling, the continuity equation naturally
enables a decoupling of time and space: the temporal evolution is governed by the time derivative
of density, while the spatial transport is guided by the velocity field.

4 METHOD

4.1 THE MODEL FRAMEWORK

We propose the Spatio-Temporal Decoupled Differential Network (STDDN), a physically consis-
tent framework designed to unify the modeling of the coupling between microscopic motion and
macroscopic evolution. The core idea of STDDN is to leverage the continuity equation (Eq. 2)
from fluid dynamics as a strong physical prior. To this end, we employ a Neural ODE to model the
evolution of the macroscopic density field driven by individual movements. To compute the time
derivative required for this evolution, we innovatively embed a microscopic trajectory prediction
network within it, whose predictions drive the dynamic changes in the density field. This design
enables macroscopic physical laws to impose physical regularization on the microscopic trajectory
prediction in an end-to-end manner, thereby significantly enhancing the simulation’s stability and
physical consistency. The overall framework is illustrated in Figure 1.

Figure 1: Overview of the STDDN framework, consisting of a microscopic trajectory prediction
network (bottom left), a neural ODE-based macroscopic density evolution module (top left), and
the DVCG module (right), which connects microscopic trajectories with macroscopic density and
velocity fields. The DVCG module includes three components—DDM, CGD, and NE—combined
in a dynamic Graph Neural Network (GNN) to model density evolution. These components build the
inflow term Gin(Φ, t, ρt) and outflow term Gout(Φ, t, ρt), which are combined via Eq.4 to form
the derivatives of the density field. Colored arrows show velocity vectors at different time steps.

We design a Density–Velocity Coupled Graph Learning (DVCG) module as the core evolution func-
tion of the neural ODE. This module takes as input the density and velocity fields at adjacent time
frames, and uses a dynamic graph neural network to predict the temporal rate of change of the
density field, thereby driving its continuous evolution over time. Specifically, the DVCG module
consists of three key submodules: a Differentiable Density Mapping (DDM) module, a Continuous
Grid Detection (CGD) module, and a Grid Node Embedding (NE) mechanism. These components
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jointly estimate the temporal density derivatives while maintaining physical consistency and smooth
gradient flow during training.

Furthermore, STDDN enables joint training by allowing macroscopic density predictions to guide
and refine the microscopic trajectory prediction module. During the inference stage, the model
utilizes the trained single-step trajectory prediction network to perform autoregressive inference ac-
cording to Eq. 1, generating future trajectories step by step, thus enabling high-precision simulation
of crowd dynamics. It is important to note that during inference, we only require the trained model
fθ and do not rely on the ODE part.

4.2 DENSITY–VELOCITY COUPLED GRAPH LEARNING MODULE

Inspired by Chapman (2015), we discretize the spatial region into regular grids and use them to
construct a graph structure. Leveraging the trajectory information of individual pedestrians, we
propose an innovative density–velocity coupled dynamic graph learning module (DVCG), designed
to efficiently compute the temporal derivative of the macroscopic density field. Specifically, the
velocities of all individuals at the current time step form the set of incoming edges for the graph
nodes, while the predicted velocities at the next time step constitute the outgoing edges. The flux at
each grid node is determined jointly by the pedestrian velocities and the current node density. This
design transforms the trajectory prediction task into a spatiotemporal density transport optimization
problem, offering stronger physical interpretability. In a discrete local spatiotemporal field, the
density evolution ρ of a spatial grid node i and its connected nodes j and k which are linked by the
velocity vectors vji and vik, at time t can be expressed as:

∂ρi
dt

=
∑

{∀j|j→i}

(mtwji∥vt
ji∥ρtj + bji)−

∑
{∀k|i→k}

(mt+1wik∥vt+1
ik (vt

ik; θ)∥ρt+1
i (vt

ik; θ) + bik)

(3)

The above flux operations can be compactly represented in matrix form as:
∂ρ

dt
= FG(Φ, t, ρ

t) = Gin(Φ, t, ρ
t)−Gout(Φ, t, ρ

t)

Gin(Φ, t, ρ
t) = ρt(mt ⊙At ⊙W ⊙ ∥Vt∥+At ⊙B)

Gout(Φ, t, ρ
t) = ρt+1(Vt; θ)⊙ (1(mt ⊙At+1 ⊙W ⊙ ∥Vt+1(Vt; θ)∥+At+1 ⊙B)T )

(4)

Here, FG denotes the time derivative of the density ρ. Φ represents all learnable parameters, includ-
ing the weight matrix W, the bias matrix B, and θ. The terms vt+1(vt; θ) and ρt+1(ρt; θ) refer to
the predicted velocity and density at the next time step, respectively, as generated by a neural net-
work fθ. The operator ⊙ denotes element-wise (Hadamard) multiplication. The cross-grid masks
mt and mt+1 are provided by the CGD module. The matrices At and At+1 represent the dynamic
connectivity matrices at time t and t + 1, respectively, and the terms wji and wik are the learnable
parameters in W, while bji and bik are the learnable parameters in B. Theoretically, fθ can be any
existing microscopic prediction model. However, to ensure a fair comparison, we adopt the same
network architecture for fθ as in Chen et al. (2024). (More details about the neural network are
provided in the Appendix A.2.) Since individual velocities vary over time, the constructed graph ex-
hibits dynamic evolution characteristics. Starting from the initial density ρ0, we use an ODE solver
to compute the future density sequence over the τ time steps, denoted as ρ1:τ :

ρ1:τ = ODESolver(ρ0,FG ,Φ, [0 : τ ]) (5)

More details about the ODE solver are provided in the Appendix A.3.

4.3 DIFFERENTIABLE DENSITY MAPPING MODULE

The Differentiable Density Mapping (DDM) module maps continuous individual positions onto a
discrete spatial grid to produce density values. Traditional hard assignment methods cause discon-
tinuous gradients at grid boundaries, hindering model optimization. To address this, we adopt a
probability-based soft assignment strategy. Specifically, we first compute the coordinates of each
grid center ci, forming the matrix D = [c0, c1, · · · , cN−1] ∈ R1×N . For any predicted position pt,
we calculate its squared Euclidean distances to all grid centers:

d(pt) = [∥pt − c0∥2, ∥pt − c1∥2, · · · , ∥pt − cN−1∥2].
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These distances are then converted into a probability distribution using a temperature-controlled
softmax function:

qi(p
t) =

exp(−β · |pt − ci|2)∑N−1
j=0 exp(−β · |pt − cj |2)

(6)

where β is a temperature parameter that controls the smoothness of the distribution.

Finally, by summing the position distributions of all K individuals, we obtain a continuous and
differentiable density representation:

ρt =

K∑
i=1

qi(p
t) (7)

4.4 CONTINUOUS CROSS-GRID DETECTION MODULE

In crowd movement simulation, net flux arises only from trajectories crossing grid boundaries. Tra-
ditional discrete methods for statistical detection cause gradient discontinuities, hindering end-to-
end training. To address this, we first obtain a continuous spatial distribution via a differentiable
position-to-grid probability mapping, then quantify the extent of grid crossing by computing the
Jensen-Shannon divergence between probability distributions at consecutive time steps:

J (q(pt)|q(pt+1)) =
1

2

[
KL(q(pt),M) +KL(q(pt+1),M)

]
(8)

where KL denotes the Kullback-Leibler divergence, and M = (q(pt) + q(pt+1))/2 represents the
mean distribution. The divergence values are then transformed into differentiable cross-grid masks
using a temperature-controlled sigmoid activation function:

m = σ(α(J − τ)) ∈ [0.01, 0.99] (9)

where σ(·) is sigmoid activation, α is a scaling factor and τ is a threshold parameter. This formula-
tion maintains gradient continuity while preserving physical constraints.

4.5 NODE EMBEDDING

The granularity of grid partitioning affects how strongly the continuity equation constrains trajectory
prediction: finer grids capture more detailed cross-cell movements but incur significant memory
overhead, as traditional weight matrices scale with O(N2). To address this, we propose a lightweight
node embedding representation. Each grid node is associated with learnable embedding and bias
vectors: w = [w0, w1, · · · , wN−1]

T ∈ RN×d, b = [b0, b1, · · · , bN−1]
T ∈ RN×d. The weight and

bias matrices are then dynamically constructed via outer products: W = wwT , B = bbT . This
design reduces the storage complexity to O(N ·d), significantly improving memory efficiency while
preserving modeling capacity.

4.6 TRAINING

By coupling the trajectory prediction network with the differential equation, the training objective
jointly supervises both velocity and density through a combined loss function:

ljoint = lNN + lODE = λ1∥v − vθ∥+ λ2∥ρ− ρθ∥ (10)

where λ1 and λ2 are balancing coefficients that control the relative importance of velocity prediction
accuracy and density evolution consistency, respectively. The full training procedure is provided as
pseudocode in the Appendix A.4.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our framework on four open-source trajectory datasets: GC (Zhang et al.,
2022), UCY (Lerner et al., 2007), and ETH (Pellegrini et al., 2009), which includes two sub-scenes
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(ETH and HOTEL). These datasets span diverse scene types, spatial scales, time durations, and
pedestrian densities, providing a comprehensive benchmark for assessing the simulation capabilities
of our framework. Following the approach of SPDiff (Chen et al., 2024), we select dense and long-
duration segments for GC and UCY (300s and 216s respectively), focusing on regions with over 200
pedestrians per minute. For ETH and HOTEL, following the approach of STGCNN (Mohamed et al.,
2020) we adopt the original training/test splits. Further preprocessing details, including coordinate
transformation and temporal interpolation, are provided in the Appendix A.5.

Baselines. We divide the baseline methods into physics-based, data-driven, and physics-guided
methods. Within the physics-based methods, we choose the widely used Social Force Model (SFM)
(Helbing & Molnar, 1995) and Cellular Automaton (CA) (Sarmady et al., 2010) for comparison.
Within the data-driven methods, we select three representative approaches recently published, in-
cluding STGCNN (Mohamed et al., 2020) which utilizes graph convolutional neural networks to
compute a spatiotemporal embedding, PECNet (Mangalam et al., 2020) which uses VAE to sam-
ple multi-modal endpoints and MID (Gu et al., 2022) which is based on the diffusion framework
to model indeterminacy. For physics-guided methods, we select PCS (Zhang et al., 2022), whose
backbone is graph networks, NSP (Yue et al., 2022), based on sequence prediction models combined
with CVAE, SPDiff (Chen et al., 2024) which employs a diffusion based model for next time step
prediction model.

Metrics. We employ four evaluation metrics to comprehensively assess the model’s performance
and inference efficiency. For trajectory accuracy, Mean Absolute Error (MAE) and Optimal Trans-
port (OT) (Villani, 2021) distance are used to measure point-to-point error and trajectory shape
similarity (Sanchez-Gonzalez et al., 2020; Gretton et al., 2012), respectively. These are widely used
statistical metrics in physical process modeling. For inference efficiency, we adopt number of pa-
rameters (#Pars) and single-frame inference latency (Latency, measured in ms). Detailed definitions
and implementation specifics are provided in the Appendix A.6, along with comparative results for
additional metrics in the Appendix A.7.

5.2 OVERALL PERFORMANCE

To substantiate the effectiveness of our proposed framework, experiments were executed across four
large-scale crowd simulation datasets, followed by a systematic comparison against existing crowd
simulation methods. The empirical findings (presented in Table 1 and Table 2, more results can
be found in the Appendix A.7) unequivocally demonstrate STDDN’s substantial advantages over
the second-best method, SPDiff, across all evaluation settings. Specifically: for the GC dataset,
inference duration was reduced by 50%, concurrently yielding MAE and OT metric enhancements
of 2.6% and 2.46%; on the UCY dataset, inference time saw a 90% reduction, with MAE and OT
metrics boosting by an impressive 5.39% and 10.01%; on the ETH dataset, inference time decreased
by 50%, alongside accuracy gains of 6.0% and 19.81%; and for the HOTEL dataset, inference time
experienced a 75% reduction, while MAE and OT metrics consistently improved by 12.66% and
12.21%. Specifically, our observations are as follows: Firstly, in comparing pure data-driven meth-
ods with purely physical model approaches, STDDN achieves a superior balance within the network
by more effectively integrating the two paradigms. It not only assimilates the objective laws in-
herent in physical models but also captures general pedestrian movement regularities. Secondly,
while both SPDiff and MID utilize diffusion models to condition future trajectories on historical
data, STDDN attains superior performance merely by constraining its model parameters via the
continuity equation. Furthermore, single-frame simulation with diffusion models necessitates mul-
tiple forward passes, whereas STDDN requires only a single pass, leading to significantly reduced
inference time and a considerable efficiency advantage over diffusion models. Lastly, despite the
significant variations in pedestrian speeds observed in the ETH and HOTEL datasets, our method
consistently achieved better performance, thereby further validating the efficacy of the continuity
equation constraint. Visualization of generated trajectories are provided in the Appendix A.8.

5.3 ACCUMULATED ERROR ANALYSIS OF THE SIMULATION

To further investigate the error accumulation behavior of our method in long-term prediction, we
analyze the temporal evolution of MAE and OT metrics on the GC and UCY datasets, and compare

7
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Table 1: Overall performance comparison on GC and UCY datasets. The bold and underlined font
show the best and the second best result respectively. Performance averaged over 5 runs.

Model
GC UCY

MAE↓ OT↓ #Pars↓ Latency↓ MAE↓ OT↓ #Pars↓ Latency↓
CA 2.7080 5.4990 - - 8.3360 79.4200 - -

SFM 1.2590 2.1140 - - 2.5390 6.5710 - -
STGCNN 8.1608 15.8372 7.56K 8.0539 7.5121 18.7721 7.56K 8.0539
PECNet 2.0669 4.3054 2.10M 51.3781 3.7694 16.1412 1.23M 49.5681

MID 8.4257 35.1797 3.52M 245.7762 8.2915 47.8711 2.47M 276.8964
PCS 1.0320 1.5963 0.97M 30.4784 2.3134 6.2336 0.62M 21.2818
NSP 0.9884 1.4893 1.93M 60.7866 2.4006 6.3795 2.14M 31.3471

SPDiff 0.9116 1.3925 0.14M 206.9909 1.8760 4.0564 0.22M 471.0496
Ours 0.8875 1.3582 0.17M 86.8537 1.7747 3.6503 0.07M 44.6565

Table 2: Overall performance comparison on ETH and HOTEL datasets. The bold and underlined
font show the best and the second best result respectively. Performance averaged over 5 runs.

Model
ETH HOTEL

MAE↓ OT↓ #Pars↓ Latency↓ MAE↓ OT↓ #Pars↓ Latency↓
CA 0.7211 2.5318 - - 0.5328 0.3102 - -

SFM 0.6933 1.1903 - - 0.4977 0.2371 - -
STGCNN 3.8711 15.3766 7.56K 8.0539 5.6711 7.3851 7.56K 8.0539
PECNet 0.6533 0.9712 2.10M 48.3381 0.4592 0.2380 1.93M 31.8613

MID 4.1823 16.8301 3.79M 73.6639 4.3867 23.7882 2.86M 60.6521
PCS 0.6573 1.0121 0.62M 33.2728 0.4278 0.2068 0.88M 13.5936
NSP 0.6343 0.9372 1.57M 40.4512 0.3972 0.1984 1.86M 21.3488

SPDiff 0.5527 0.8706 0.18M 81.4144 0.3380 0.1646 0.16M 68.5705
Ours 0.5185 0.6918 0.20M 30.5723 0.2952 0.1445 0.05M 17.4986

the results with two crowd simulation baselines: SPDiff and PCS. As shown in Figure 2, both our
method and SPDiff exhibit a ”rise-then-fall” trend over time. However, our method consistently
achieves the lowest overall error, indicating that it is the least affected by error accumulation during
long-term prediction. This performance advantage is primarily attributed to the incorporation of
macroscopic physical constraints into our model, which guide it toward globally optimal solutions
and effectively suppress error propagation over time. To more comprehensively evaluate our model’s
long-term density prediction capability, we provide additional analysis of time-accumulated density
prediction errors in the supplementary materials.accumulation of density prediction errors in the
Appendix A.9.

5.4 ABLATION STUDY

Figure 4: Ablation study on different parts of
model design.

GC UCY

MAE OT MAE OT

w/o ODE 1.3784 2.4956 2.4867 6.0586
w/o Cross-net 0.9784 1.4732 1.8926 4.9532
w/o NN loss 1.2387 2.3466 1.9327 4.2514

Ours 0.8875 1.3582 1.7747 3.6503

To further investigate the performance contri-
butions of key designs in STDDN, we con-
ducted an ablation study on the GC and UCY
datasets. We examined three key compo-
nents: w/o ODE, where the model is trained
using purely autoregressive methods without
the ODE constraint; w/o Cross-net, where the
continuous cross-grid detection module is re-
moved—since our method is flux-based, this
weakens the continuity equation constraint; and
w/o NN loss, where trajectory autoregressive
training is removed, and the model is trained

8
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Figure 2: Accumulate error of the simulation,
using MAE and OT as metrics.

Figure 3: Sensitivity analysis on the GC dataset
for grid size, ODE time steps τ , loss balancing
coefficients (λ1 and λ2), and node embedding
dimension, using MAE as the evaluation met-
ric.

solely via the density-based neural ODE. The
experimental results are shown in Table 4.

From the results, we observe: First, the w/o ODE setting shows that introducing the continuity
equation constraint significantly boosts trajectory prediction performance, confirming that purely
autoregressive models suffer from error accumulation in pedestrian flow simulation. Second, re-
moving Cross-net leads to a notable drop in performance, underscoring the importance of accurate
flux computation and validating the role of the continuity constraint. Lastly, w/o NN loss results in-
dicate that physics-only models struggle to capture complex pedestrian patterns, affirming the value
of combining physics-based constraints with data-driven learning.

5.5 SENSITIVITY STUDY

We conducted a sensitivity analysis on the key hyperparameters of our framework, including grid
size, ODE time steps τ , loss balancing coefficients λ1 and λ2, and node embedding dimensions.
The MAE results of GC dataset are shown in Figure 3 (More results of sensitivity analysis on dif-
ferent datasets can be found in the Appendix A.10.). The results show that variations in grid size,
ODE time steps, and embedding dimensions all have a certain impact on the final prediction per-
formance, which further demonstrates the effectiveness of the continuity equation as a physical
constraint within the model. Additionally, while different values of the loss balancing coefficients
lead to varying results, setting the two terms with comparable weights enables a better trade-off
between data-driven learning and physical modeling, thereby achieving improved predictive accu-
racy and highlighting the value of incorporating physical constraints into autoregressive prediction
models.

6 CONCLUSION

This paper proposes STDDN, a novel crowd simulation framework that integrates macroscopic phys-
ical constraints with deep learning. By leveraging the continuity equation, STDDN systematically
models the coupled evolution of crowd density and velocity fields, effectively mitigating error ac-
cumulation and instability commonly seen in microscopic approaches. Through the design of dif-
ferentiable density mapping module, continuous cross-grid detection module, and grid node em-
bedding mechanism, STDDN enables high-precision, end-to-end simulation. Experimental results
demonstrate that our method significantly outperforms existing mainstream methods on long-term
trajectory simulation tasks across multiple real-world datasets, achieving not only superior perfor-
mance but also a substantial reduction in inference time. This method offers a physics-consistent
and interpretable deep learning paradigm for crowd modeling, showing strong potential for practical
applications.

9
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A APPENDIX

A.1 NOTATIONS

An overview of the notations used in this paper, along with their domains and descriptions, is pro-
vided in Table 3.

Table 3: List of major symbols and descriptions.

Sym. Domain Descriptions

K R Number of pedestrian
N R Number of nodes
ρt RN Density of nodes at time t
mt Rk cross-grid masks of K pedestrianat time t
A {0, 1}N×N Dynamic adjacency matrix
W RN×N Learnable weight matrix
B RN×N Learnable bias matrix
v RN×N×2 Velocity tensor matrix

∥v∥ RN×N Velocity magnitude matrix
Gin R1×N The inflow vector of all nodes
Gout R1×N The outflow vector of all nodes
1 {1}1×N All-ones row vector

A.2 NEXT TIMEFRAME TRAJECTORY PREDICTION MODEL

To ensure the fairness of experimental comparisons, we adopt the same denoising network archi-
tecture as used in the sub-optimal baseline SPDiff, with all diffusion step embeddings fixed to 0.
The overall network architecture, as illustrated in the Figure 5, consists of three key representation
learning components: encoding of historical trajectories, modeling of interactions with surrounding
pedestrians, and attraction modeling toward the destination.

The network employs the Equivariant Graph Convolution Layer (EGCL) module for message pass-
ing. Its computation logic is as follows: At the l layer, the node embedding hl , position embedding
pl, velocity embedding vl , and acceleration embedding al are used as inputs to compute the updated
embeddings hl+1, pl+1, vl+1, and al+1 . The update process consists of the following steps:

mij = ϕe(h
l
j , h

l
j , ∥pli − plj∥2), (11)

al+1
i = ϕa(h

l
j)yk,i +

∑
j∈N(i)

1

dij
(pli − plj)ϕp(mij), (12)
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vl+1
i = vli + al+1

i , pl+1
i = pli + vl+1

i , (13)

mi =
∑

j∈N(i)

mij , h
l+1
i = ϕh(h

l
l,mi) (14)

Figure 5: The detailed of next trajectory prediction model.

A.3 ODESOLVER

In our experiments, we adopt the Euler method as the numerical solver for ODEs. The crowd trajec-
tory and density data are sampled from fixed-frame-rate videos, resulting in discretized time steps
with consistent intervals. The single-step update mechanism of the Euler method allows precise
alignment with each frame’s timestamp, eliminating the need for multiple sub-steps within a sin-
gle time interval and avoiding inconsistencies with the actual temporal resolution. Since the Euler
method requires only one forward computation per frame, it offers low computational complexity
and minimal memory overhead, making it well-suited for long-duration, multi-scene, and large-
scale crowd simulation tasks. Moreover, neural ODEs are easily implemented using the torchdiffeq
package.

A.4 TRAINING ALGORITHM PSEUDOCODE

We provide the pseudocode for the training algorithm, as shown in Algorithm 1.

A.5 DATASET DETAILS

To evaluate the effectiveness of our proposed model, we conduct experiments on three real-world
pedestrian trajectory datasets constructed from surveillance video recordings. These datasets differ
in scene complexity, crowd density, and temporal resolution. The key statistics are summarized in
Table 4. Detailed descriptions are as follows:

GC. The GC dataset contains 12680 annotated trajectories within an image coordinate system cov-
ering approximately 30×35 meters. We select a 300-second subset within a 20×20 meter area that
includes rich pedestrian interactions. The original sampling rate is 1.25 Hz (∆t = 0.8s). To en-
hance temporal resolution and reduce interpolation error, we apply cubic interpolation using SciPy,
resulting in a new timestep of 0.08 s. The coordinates are converted from image space to world
coordinates using a provided mapping.
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Algorithm 1 Train

1: Trajectory prediction model fθ
2: while not converged do
3: Draw (p0:τ , v0:τ , a0:τ ) from dataset
4: Compute initial crowd density ρ0 by Eq.(6) and Eq.(7)
5: for t ∈ [0 : τ ] do
6: Predict next trajectory pt+1 by fθ
7: Execute continuous cross-grid detection module by Eq.(8) and Eq.(9)
8: Compute density net flux by Eq.(4)
9: Execute the single-step ODE solver in Eq.(5)

10: end for
11: Compute joint loss ljoint by Eq.(10)
12: end while

Table 4: The basic statistics of the datasets.

Statistics GC UCY ETH HOTEL

Average duration of a trajectory(s) 11.02 13.25 6.10 6.72
Average pedestrian per minute (min−1) 203 132 49 35

Pedestrian density (m−2) 0.094 0.058 0.016 0.012
Average speed (m · s−1) 1.155 1.072 2.293 1.038

Std of the average speed (m · s−1) 0.565 0.646 0.807 0.695
simulate time steps 725 651 5776 9006

UCY. The original UCY dataset includes three sub-scenes: ZARA-01, ZARA-02, and UCY. We use
the UCY scene, which contains 528 pedestrians over 216 seconds and covers a 23×25 meter area.
Trajectories are converted to world coordinates and interpolated three times to reduce the timestep
from 0.4 s to 0.08 s, improving temporal continuity and simulation accuracy.

ETH. The ETH dataset contains two sub-scenes: ETH and HOTEL. The ETH scene spans 464
seconds with 360 pedestrians in an 80×20 meter space, while the HOTEL scene spans 692 seconds
with 389 pedestrians over 50×30 meters. We follow the original train/test splits provided in prior
work. Both scenes undergo coordinate transformation and cubic interpolation to unify the timestep
to 0.08 s, consistent with the GC and UCY datasets.

We divide each dataset into training and testing sets based on time. For the GC dataset, the training-
to-testing ratio is set to 4:1, while for the UCY dataset, it is 3:1. For ETH and HOTEL, the original
training and validation sets are merged into a single training set, and evaluation is performed on the
original test set.

A.6 METRICS

MAE: The MAE measures the average magnitude of errors between predicted and true positions,
and is defined as:

MAE =
1

N

N∑
i=1

∥p− p̂∥ (15)

where N is the total number of prediction instances, p denotes the predicted position, p̂ is the corre-
sponding ground-truth position, and ∥ · ∥ denotes the matrix norm.

OT: It quantifies the transportation cost between two distributions P and Q, which can be interpreted
as the distance between the predicted and ground-truth trajectory distributions:

OT (P∥Q) = infπ

∫
X×Y

π(x, y)c(x, y)dxdy,

s.t.

∫
Y

π(x, y)dy = P (x),

∫
X

π(x, y)dx = Q(y)

(16)
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where π(x, y) is the transportation plan approximated from P (x) and Q(y) using the Sinkhorn
algorithm, and c(x, y) = ∥x − y∥22 . The domain X = Y corresponds to the simulation duration,
while P and Q denote the predicted and ground-truth trajectory distributions.

MMD: It measures the difference between two distributions by comparing the mean embeddings in a
reproducing kernel Hilbert space (RKHS). It is often used to assess the similarity between predicted
and real trajectory distributions:

MMD2(P∥Q) = ∥Ex∼P [ϕ(x)]− Ey∼Q[ϕ(y)]∥2 (17)

where P and Q represent the predicted and ground-truth trajectory distributions, and ϕ(·) denotes
the mapping to the high-dimensional feature space induced by a kernel. In this work, we use the
Gaussian kernel to compute the empirical MMD.

DTW: It measures the similarity between two trajectory sequences by aligning them non-linearly
along the time axis, allowing for time warping. It is defined as:

DTW (X,Y ) = min
w∈W

∑
(i,j)∈w

∥xi − yj∥ (18)

where X = (x1, ..., xn) and Y = (y1, ..., ym) are two trajectory sequences, W is the set of all
possible alignment paths, and ∥ · ∥ denotes the Euclidean distance. DTW enables alignment of
trajectories with varying speeds, thus better capturing their shape similarity.

#Pars: This metric measures the total number of learnable parameters (weights and biases) in the
model, directly reflecting the model’s static size and storage complexity. A lower parameter count
indicates a more lightweight model, making it easier to deploy. The unit is typically in thousands
(K) or millions (M).

Latency: This metric measures the actual time required for the model to complete a single-frame
prediction on a specific hardware platform. It is a hardware-dependent metric that directly reflects
the real running speed of the model. All latency tests in this paper were conducted on an NVIDIA
RTX 4090, with the unit in milliseconds (ms).

GFLOPs: This metric measures the theoretical total number of floating-point operations required
for the model to generate the next frame from its current state. It is a hardware-independent metric
that fairly reflects the complexity of the model’s algorithm itself.

FPS: This metric measures the number of simulation frames (Frames Per Second) that the model can
generate per second in continuous autoregressive mode. It directly evaluates the model’s throughput
and performance in real-world applications, serving as the gold standard for assessing whether the
simulation system can meet real-time requirements.

A.7 ADDITIONAL EXPERIMENTAL RESULTS

To further supplement the evaluation results presented in the main paper and provide a more compre-
hensive performance analysis of our proposed method, this section presents a detailed comparison
of trajectory shape similarity and model efficiency across four public datasets: GC, UCY, ETH, and
HOTEL.

We first report on two key trajectory quality metrics: Maximum Mean Discrepancy (MMD) and
Dynamic Time Warping (DTW). MMD is employed to assess the macroscopic distributional consis-
tency between the predicted and ground-truth trajectories, while DTW excels at measuring the mi-
croscopic shape similarity between two trajectories and is robust to non-linear temporal variations.
These two metrics serve as a powerful complement to the distance-based MAE and OT metrics in
the main text, offering a more holistic view of the prediction fidelity. Subsequently, we conduct an
in-depth comparison from the perspective of model efficiency, reporting two core metrics: the num-
ber of floating-point operations for a single forward pass (GFLOPs) and the continuous simulation
frame rate (FPS). As a hardware-agnostic metric, GFLOPs reflects the theoretical computational
complexity of the model’s algorithm itself. In contrast, FPS directly measures the model’s practical
throughput and real-time performance on specific hardware.

As shown in Table 5 and Table 6, our method not only performs exceptionally on the trajectory
quality metrics but also demonstrates a commanding advantage in runtime efficiency. These results
further validate the superiority of our approach and its significant potential for practical applications.
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Table 5: Additional performance comparison on GC and UCY datasets. The bold and underlined
font show the best and the second best result respectively. Performance averaged over 5 runs.

Model
GC UCY

MMD↓ DTW↓ GFLOPs↓ FPS↑ MMD↓ DTW↓ GFLOPs↓ FPS↑
CA 0.0620 - - - 2.0220 - - -

SFM 0.0150 - - - 0.1209 - - -
STGCNN 0.5296 5.1438 0.0002 124.163 0.5149 5.1695 0.0002 124.163
PECNet 0.0397 0.7431 3.4704 18.9913 0.1504 2.0986 2.7134 19.0032

MID 0.3737 4.2773 0.4537 3.7826 0.4384 4.7109 0.3871 4.7312
PCS 0.0126 0.4378 0.8242 32.8106 0.1070 0.9887 0.2442 46.9936
NSP 0.0106 0.3329 0.2176 17.3792 0.1199 0.9965 0.2121 32.8713

SPDiff 0.0092 0.3332 0.1522 4.8315 0.0671 0.7541 0.1261 2.1247
Ours 0.0083 0.3441 0.1994 22.1406 0.0627 0.6905 0.0472 28.3033

Table 6: Additional performance comparison on ETH and HOTEL datasets. The bold and underlined
font show the best and the second best result respectively. Performance averaged over 5 runs.

Model
ETH HOTEL

MMD↓ DTW↓ GFLOPs↓ FPS↑ MMD↓ DTW↓ GFLOPs↓ FPS↑
CA 0.4329 - - - 0.3548 - - -

SFM 0.3788 - - - 0.2301 - - -
STGCNN 3.9678 1.5622 0.0002 124.163 0.7418 3.7811 0.0002 124.163
PECNet 0.3573 0.3571 3.4704 19.9936 0.2219 0.2415 3.1927 30.3817

MID 3.7518 1.9512 0.5618 11.7528 0.6957 3.4641 0.4914 17.3411
PCS 0.3577 0.3101 0.3378 30.0575 0.1902 0.2201 0.2098 76.8331
NSP 0.3365 0.2843 0.2863 18.3782 0.1766 0.1883 0.1452 43.1812

SPDiff 0.2221 0.2275 0.1753 12.2830 0.1090 0.1444 0.0586 14.5837
Ours 0.1672 0.2221 0.2250 32.7108 0.1113 0.1464 0.0186 57.1481

A.8 CASE STUDY

To provide an intuitive demonstration of our method’s performance and to complement the quanti-
tative comparisons, we visualized trajectory prediction results of our proposed method and physics-
guided crowd simulation methods on four datasets, as shown in Figures 6, 7, 8 and 9. It can be
observed that all methods fit the ground-truth trajectories well in the short term. However, for
longer-term predictions, other methods tend to deviate from the true paths, while STDDN remains
the closest to the ground truth. Moreover, in the leftmost example, it can be seen that part of PCS’s
predicted trajectory overlaps with obstacles, which is clearly an unreasonable prediction.

A.9 ACCUMULATED DENSITY PREDICTION ERROR ANALYSIS

To comprehensively evaluate the density prediction performance of the proposed method over long
time frames, we analyzed the trend of the average absolute error (MAE) between predicted and true
densities over time on the GC and UCY datasets. We compared the results with two representative
methods in crowd simulation, PCS and SPDiff. The experimental results are shown in Figure 10
and Figure 11. From Figure 10 and 11, it can be seen that our proposed method consistently main-
tains the lowest overall density prediction error. In contrast, while the SPDiff method is capable of
predicting density to some extent, its performance does not significantly outperform other methods.
Our method, however, takes the density prediction problem into full consideration and effectively
embeds physical laws into the prediction model. Therefore, even without achieving the highest pre-
cision in density prediction, our method significantly improves the effectiveness of long-duration
crowd simulation.
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Figure 6: Predicted trajectories on the GC Dataset. Observed trajectories are shown in , ground
truth in , STDDN in , SPDiff in , NSP in , and PCS in .

Figure 7: Predicted trajectories on the UCY Dataset. Observed trajectories are shown in ,
ground truth in , STDDN in , SPDiff in , NSP in , and PCS in .

A.10 SENSITIVITY STUDY

We conducted a sensitivity analysis of the key hyperparameters in the framework across multiple
datasets, including grid size, ODE time steps (τ ), balance coefficients of the loss function, and node
embedding dimensions. Figure 12, 13, 14 shows the specific performance of the model in terms
of MAE on the UCY, ETH, and HOTEL datasets. By examining Figure 12, 13, and 14, it can be
observed that the grid size affects the simulation performance to some extent in all three datasets.
Only by selecting an appropriate grid size can the simulation performance of the microscopic net-
work reach its optimal level. Specifically, the grid size influences the pedestrian flow rate, and an
appropriate grid size optimizes the constraint effect of the continuity equation; the ODE step size
affects the degree of overfitting in the network during simulation extrapolation, and an optimal step
size ensures the best performance in long-term simulations; the balance coefficient in the loss func-
tion determines the performance balance between the microscopic trajectory prediction network and
the macroscopic density prediction, and a reasonable balance can achieve the best microscopic pre-
diction performance; the grid node embedding dimension affects the number of parameters in the
neural ODE, and too many parameters can lead to overfitting, thus limiting the constraint effect of
the continuity equation on the trajectory prediction network.

A.11 LIMITATIONS

Despite the promising results achieved in this study, several limitations remain, which also point to
promising directions for future research. First, in terms of spatial modeling, future work could ex-
plore more flexible representations, such as implicit function modeling based on continuous spatial
coordinates, or multi-scale graph structures to alleviate the computational overhead and expressive
limitations introduced by grid discretization. Such approaches may better capture complex spatial
dependencies that extend beyond grid partitions. Second, regarding the use of the continuity equa-
tion as a strong physical constraint—which, while enhancing consistency and stability, may over-
ride certain latent motion patterns—future research could investigate soft-constraint mechanisms
or adaptive strategies that balance data-driven and physics-driven modeling. This would preserve
physical consistency while improving the model’s ability to capture hidden dynamics in the data.

In addition, enhancing computational efficiency in large-scale scenarios is another important direc-
tion, for instance through sparsification techniques, model compression, or parallel acceleration, to
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Figure 8: Predicted trajectories on the ETH Dataset. Observed trajectories are shown in , ground
truth in , STDDN in , SPDiff in , NSP in , and PCS in .

Figure 9: Predicted trajectories on the HOTEL Dataset. Observed trajectories are shown in ,
ground truth in , STDDN in , SPDiff in , NSP in , and PCS in .

further facilitate the practical deployment of the proposed framework in crowd simulation, emer-
gency evacuation, and intelligent transportation applications.

A.12 USAGE OF LLMS

All aspects of this work, including the conceptualization, methodology, experiments, and analysis,
were independently carried out by the author. The final manuscript was refined with the assistance
of a large language model for language polishing to improve clarity and coherence. However, the
intellectual content and scientific contributions remain solely the work of the author.
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Figure 10: Accumulated density prediction error comparison on the GC dataset.

Figure 11: Accumulated density prediction error comparison on the UCY dataset.
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Figure 12: Sensitivity analysis on the UCY dataset for grid size, ODE time steps τ , loss balancing
coefficients (λ1 and λ2), and node embedding dimension, using MAE as the evaluation metric.

Figure 13: Sensitivity analysis on the ETH dataset for grid size, ODE time steps τ , loss balancing
coefficients (λ1 and λ2), and node embedding dimension, using MAE as the evaluation metric.
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Figure 14: Sensitivity analysis on the HOTEL dataset for grid size, ODE time steps τ , loss balancing
coefficients (λ1 and λ2), and node embedding dimension, using MAE as the evaluation metric.
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