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Abstract

This paper presents a novel problem, interactive anomaly detection (AD) for articu-
lated objects, and introduces a tailored solution that detects functional anomalies
by integrating vision, interaction, and anticipation. Unlike traditional AD methods
that rely on passive visual observations, our approach actively manipulates objects
to reveal anomalies that would otherwise remain hidden. Our method learns to
generate a sequence of actions to interact exclusively with normal objects and
to anticipate the resulting normal motion. During inference, the model applies
predicted actions to the object and compares the observed motion with the antici-
pated motion to detect anomalies. Additionally, we introduce a new benchmark,
PartNet-IAD, for interactive AD, which includes articulated objects with realistic
functional anomalies. Experiments show strong generalization to detect anomalies
in both seen and unseen object categories.

1 Introduction

Humans possess a remarkable ability to interact effortlessly with a wide range of objects in everyday
life. This capability stems from our intuitive understanding of how objects function–we assess their
potential uses, apply appropriate forces, and anticipate the outcomes of our actions. Importantly, we
adjust our behavior when the actual response of an object deviates from our expectations. These
discrepancies often serve as key feedback signals, especially when an object fails to operate as
intended–what we refer to as functional anomalies. This work aims to develop a perception system
that mirrors this human capability by detecting functional anomalies in articulated objects through a
combination of vision, physical interaction, and motion anticipation.

Detecting functional anomalies in articulated objects is essential for quality inspection in manufactur-
ing (e.g., drawers, washing machines, laptops) and for robotic manipulation tasks. Unlike standard
anomaly detection (AD) benchmarks that focus on identifying visually apparent defects from static
observations [2, 46, 15, 5, 8, 3], many functional anomalies in articulated objects are not visually
observable and only become evident during physical interaction. As such, detecting these anomalies
requires an active approach–manipulating objects, anticipating their normal behavior, and identifying
deviations from expected motion (see Fig. 1).

This paper presents a novel perspective on AD by proposing an interactive AD framework that
addresses two central challenges: (1) learning how to interact with objects to reveal hidden anomalies,
and (2) anticipating their normal motion response during interaction. Unlike the prior work [28, 13,
40] which focuses on interaction with articulated objects without modeling expected outcome, our
approach predicts anomalies by comparing observed object motion after manipulation with the motion
expected under normal conditions. Given an RGBD image or partial point cloud and an atomic action
(e.g., pushing or pulling), our model predicts: (i) the 3D segmentation and motion of the target part,
and (ii) a motion confidence score, and an interaction end state indicating whether the part has reached
an interaction end state (e.g., a door fully opened). Importantly, the model is trained exclusively on
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Figure 1: In the proposed interactive anomaly detection setting, the algorithm learns to manipulate
articulated objects without any anomalies through generating a sequence of actions while predicting
their normal motion. During testing, the algorithm first generates a sequence of actions along with
their anticipated normal motion without any interaction (bottom). Then the agent (e.g., a robotic arm)
executes the generated actions on the object resulting in the observed motion (top). By comparing the
anticipated and observed motions, the algorithm can detect potential functional anomalies.

interactions with normal objects, ensuring that its predicted motion aligns with normal behavior. At
inference time, the model generates a predicted motion trajectory by sequentially applying learned
atomic actions without physical interaction. The same action sequence is executed on the actual
object by an agent (e.g., a robotic arm), and the observed trajectory is recorded. Comparing the
anticipated and observed motions enables AD based on motion discrepancies.

To support this task, we introduce PartNet-IAD, a new benchmark for interactive AD. Built upon the
PartNet-Mobility dataset [39], we inject realistic functional anomalies into articulated objects and
simulate interaction environments where a robotic arm can push and pull object parts. Results show
that our method generalizes well to unseen objects and categories, effectively detecting functional
anomalies through interaction.

In summary, our contributions are: (1) we formulate the novel task of detecting functional anomalies
through interaction with 3D articulated objects; (2) we propose a novel model that learns to manipulate
objects and detect anomalies by comparing expected and observed motion; (3) we introduce PartNet-
IAD, the first benchmark for interactive AD, enabling evaluation of AD in articulated objects.

2 Related Work

AD benchmarks. Previous AD benchmarks focus on detecting anomalies from passive observations,
such as images [2, 46, 44, 15, 5], videos [8, 32, 42], or point clouds [4, 23, 3]. These approaches
make predictions based on single observations captured by cameras and do not actively interact with
the object or iteratively update their understanding of the object through a feedback mechanism.
While such approaches are effective for rigid objects, they are often insufficient for articulated objects,
where passive observation alone may not reliably reveal anomalies. To address this limitation, we
propose a learnable framework in which an agent actively interacts with articulated objects to uncover
motion anomalies that may not be apparent otherwise. A previous work [14], FixIT, proposes a
solution to diagnose and fix malfunctioning articulated objects, however, without learning to actively
interact with the object, and instead assumes that interaction videos are directly available as input. In
contrast, our framework simultaneously learns to interact and discover anomalies.

Interactive perception for articulated objects. Early research in object manipulation has primarily
focused on learning task-specific action primitives, such as manipulating doors and drawers [21, 20].
These approaches often rely on hand-tuned actions to generate informative motion for downstream
perception tasks [18, 34]. However, these methods typically assume prior knowledge of the object’s
structure, which is used to design heuristic rules. Additionally, action primitives tailored for one
task (e.g., opening doors) may lack the generality needed for other tasks or objects (e.g., pushing
buttons). Recent studies have highlighted the effectiveness of exploiting interactions in simulated
environments for learning perception models [41, 30, 27, 28, 13, 36, 29, 40], demonstrating promising
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generalization to real-world scenarios [16, 6, 31]. Among these studies, Where2Act [28] presents a
learnable framework to estimate dense action affordance maps on articulated objects from a single
RGB image or point cloud, while UMPnet [40] extends this method to handle long-horizon action
trajectories for goal-conditioned manipulation tasks. AtP [13] proposes an iterative method for
interacting with articulated objects to discover and segment their components. In contrast, our work
focuses on discovering motion anomalies by learning to interact with articulated objects. Unlike
previous methods [28, 40, 13] that predict only action parameters, our framework jointly predicts both
the action and anticipated motion, enabling anomaly detection through comparison with observed
motion. Our framework enhances robustness through confidence-based motion estimation and
supports long-term, temporally consistent action exploration.

Rigid motion analysis. The pivotal component of our framework is a learnable motion prior that
estimates normal motion behavior at any instance. Several prior works [11, 1, 24] have presented
learning-based rigid motion estimation from point cloud scenes. For articulated objects, however,
research on motion estimation has been limited. Recent works estimate object articulation and
predict motion flow and segmentation masks from a pair of point cloud frames [33, 43] or multi-view
images [25, 10]. In contrast, our formulation of the motion prior is action-conditioned, estimating the
rigid motion of articulated object parts for any arbitrary action parameters. Recently, DragAPart [22]
proposed a diffusion-based generation pipeline that predicts deformation for a given drag force using
images as input. Unlike this approach, our motion prior operates on unstructured 3D point clouds.

3 Method

3.1 Problem Formulation and Overview

Given an observation of a 3D object with articulated parts (e.g., cupboard with a drawer and door),
our goal is to classify whether each movable part r exhibits a functional anomaly (1 if anomalous, 0
otherwise). Since such anomalies are often not detectable through passive observations alone, we
allow a robot agent to interact with the object over a limited number of timesteps Tmax. At each
timestep t, the robot executes an action at, parameterized by its end-effector’s position pt ∈ R3

and movement direction ut ∈ R3. The scene is captured as a point cloud Qt at timestep t with Q0

denoting the initial observation prior to any interaction.

An overview of our method is shown in Fig. 2. The process begins with the agent observing the initial
state of the object Q0 and planning a sequence of atomic actions (e.g., push, pull). These actions
are simulated to anticipate the resulting object motions. At each timestep t, the agent predicts an
action at and the corresponding motion Mt for a manipulated part r. Note that we omit the part
index in both a and M for brevity. The agent initializes its internal object state as S0 = Q0 and
updates this state St over time by applying the predicted motion Mt to the relevant part, producing
a simulated future state St+1 without physical interaction. This simulation process iterates over T
steps, forming a sequence of atomic action-conditioned motion priors (see Sec. 3.2). Because isolated
atomic actions may not sufficiently capture the full range of part motions or cover all parts, we
incorporate a long-term normal motion estimation strategy. This ensures comprehensive exploration
of the action space with temporal consistency and robustness to noise (see Sec. 3.3). The result is a
sequence of predicted action-motion pairs {(at,Mt)}T−1

t=0 for each part.

The agent then executes the same actions on the real object and collects the resulting observations
{Qt}Tt=1, from which the actual motions are computed {M̂t}T−1

t=0 . A part is classified as anoma-
lous if the observed motion sequence deviates from the predicted one by more than a threshold ϵ
(see Sec. 3.4).

3.2 Atomic Action-Conditioned Motion Prior

Given an internal 3D object state S and an action a, we learn a function Ψ that predicts the expected
normal rigid motion in 3D Ma, a confidence score ca ∈ (0, 1) for the predicted motion, interaction
end-state indicator ea ∈ (0, 1) (e.g., the fully open/closed door) and a binary mask mp ∈ {0, 1}N
indicating points that move coherently with the interaction point p (see Fig. 2(a)). Formally:

(Ma, ca, ea,mp) = Ψ(S,a). (1)
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Figure 2: Overview of our approach. (a) We first train an action-conditioned motion prior on a set of
articulated objects without anomalies (Sec. 3.2). At testing time, given the input RGBD image, we (b)
exploit the learned prior to infer action-motion pairs, while predicting the normal motion (Sec. 3.3).
At the same time, (c) an agent interacts with the object based on our inferred actions to obtain the
observed motion, which is compared against the anticipated motion to reveal anomalies (Sec. 3.4).

The subscripts a and p indicate the conditioning on action and end-effector’s position respectively.
We omit timestep t since predictions are atomic–made per single timestep. The predicted motion Ma

is a rigid transformation Ta ∈ SE(3), comprising a rotation matrix Ra ∈ SO(3) and a translation
vector ta ∈ R3. We implement Ψ as a deep neural network comprising a backbone feature encoder
and two decoders for motion estimation and segmentation respectively.

Backbone feature encoder. The initial point cloud observation S0 is derived from the RGBD
image Q0 ∈ RH×W . For each point, the RGB values and surface normals (estimated via KD-tree
search [40]) are concatenated, resulting in an input feature set of size N × 6 where N = H ×W .
All the predicted S and observed states Q are represented in this format. A Point Transformer3
(PTv3) [37] processes the point cloud, extracting per-point features F ∈ RN×d, where d denotes the
feature dimension.

Motion estimation head. Estimating rigid motion in the camera frame is ambiguous because
the transformation matrix depends on the object’s position in the scene, in other words, it is not
translation-invariant. Following [1], we instead estimate rigid motion in a local coordinate frame
centered at the action position p, with axes aligned to the global frame. To this end, we concatenate
the local feature Fp for p with u, and process it through an MLP mapping network to produce a
11-dimensional vector which is further processed by using Gram-Schmidt process [45] to obtain a
local 6D rotation RL

a and 3D translation vector tLa respectively relative to u. For optimizing the
motion estimation, we use the following loss function:

ℓM (a) = ℓgeo(R
L
a , R̄

L
a ) + λL2ℓL2(t

L
a , t̄

L
a ), (2)

where ℓgeo computes the geodesic distance [45] in the rotational space and ℓL2 is the L2 distance.
R̄L

a and t̄La are the groundtruth parameters of RL
a and tLa respectively. λL2 is a loss constant. The

local rigid matrix is simply transformed into the global coordinate frame as follows:

Ra = RL
a , ta = (I −RL

a )p+ tLa . (3)

The end-state ea is supervised using a binary cross-entropy loss denoted as ℓe(a) = ℓbc(ea, ēa),
where ēa is the groundtruth for the end state.

Segmentation head. Here our goal is to predict what points in S will move together with the
point p when force is applied on it. We use a binary classification head which takes in the local
feature Fp after getting replicated N times along the sample dimension and concatenated with the
point cloud representation F along the feature dimension, to provide global context. The resulting
N × 2d dimensional feature is processed through an MLP mapping network to predict the mask
m ∈ {0, 1}N×1. For optimizing the segmentation head, we use a binary cross-entropy loss ℓbce for
each point p as follows:

ℓm(p) = ℓbce(mp, m̄p), (4)
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Figure 3: Anticipated trajectory visualization: for each timestep t, we show the movability map along
with selected action, and predicted next state. The trajectory is shown for a single point. Movability
scores are averaged over 250 sampled action directions and visualized using RGB mapping.

where m̄p ∈ {0, 1}N is the groundtruth mask.

Finally, the total loss function is a weighted sum of the motion and segmentation losses:

ℓm(p) + λM ℓM (a) + λeℓe(a), (5)

where λM and λe are loss constants.

Regressing rigid motion parameters is challenging, particularly under occlusion, where some action-
induced motions are harder to predict. To address this, we use the predicted confidence score ca to
modulate the loss function in Eq. (5), following [19]:

ℓm(p) + ca(λM ℓM (a) + λeℓe(a))− λclog(ca), (6)

where λc is a loss weight. When ca is predicted to be low for a given action, the corresponding loss is
down-weighted. The last logarithmic term is a regularizer and encourages the model to avoid setting
low confidence for all samples trivially. We train the model end-to-end on normal objects using the
total loss in Eq. (6), enabling it to learn normal motion patterns for arbitrary actions.

3.3 Long-term Normal Motion Anticipation

We describe how the normal motion predictions for individual atomic actions are utilized to estimate
the normal trajectory over multiple timesteps (see Fig. 2(b)). Analyzing anomalies over multiple
timesteps is crucial, as revealing anomalies typically requires manipulating each part over its full
action space (e.g., verifying whether a drawer fully opens without detaching beyond its intended
range) and assessing all object parts. To facilitate this, we introduce a part memory to track examined
parts and propose a two-stage filtering strategy to select informative actions likely to induce motion
in the part.

Part history. For each object, we use two memory masks, B and B+, each consisting of N binary
elements. B records previously examined parts, where elements corresponding to the previously
manipulated parts are set to 1, while B+ tracks the part currently being manipulated. Following
interaction, the memory is updated as B ← B ∨ B+. Since the mask of the next part is initially
unknown, we initialize it as B+ ← 1− B, where 1 is N -dimensional vector with all elements set to
1, ensuring already examined parts are excluded. After the first timestep, B+ is updated based on
segmentation head predictions.

Action candidate selection. Directly regressing actions is challenging, so we propose a robust
strategy to select informative actions. At each time step, we define the action space for an articulated
part r as A(r) = {p1, . . . ,pNr} × {u1, . . . ,uNu}, where {pi} denotes Nr points sampled from the
mask B+ on the part r, and {uj} are Nu directions uniformly sampled in the SO(3) space. We begin
by estimating the ‘normal’ motion Maij

for each pair aij = {pi,uj} using Eq. (1).

Given the inherent noise in motion prediction, we implement a two-stage filtering process. First,
actions with low confidence scores (<10%) are discarded to eliminate unreliable predictions. Next,
we apply a density-based outlier removal strategy by extracting and normalizing the rotation and
translation axes from the predicted rigid motion matrices. These unit vectors are then clustered using
DBSCAN [12], grouping similar rotations (and translations) while identifying sparse or inconsistent
vectors as outliers. For revolute joints, this approach yields two clusters (forward and backward
rotations), effectively filtering out noisy predictions.
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To ensure motion consistency with the previous timestep, we leverage the clustering results to exclude
actions that would induce the opposite motion, refining the action space to Â(r). Subsequently,
an action is selected based on a movability score Ω(a), which is derived from the predicted rigid
transformation matrix Ta and defined as:

Ω(a) = ∥I− Ta∥F , (7)

where ∥·∥F denotes the Frobenius norm, and I is the 4× 4 identity matrix. Using Ω(a), we define a
normalized score Ω̂(a) as:

Ω̂(a) =
exp (Ω(a)/λT )∑

(a)∈Â(r) exp (Ω(a)/λT )
, (8)

where λT is a temperature parameter. We use Ω̂(a) as a probability distribution to sample action
a(r) = (p(r),u(r)) from Â(r). We use the predicted motion M

(r)
a to derive the next state St+1,

and iterate the above process again. The interaction terminates based on the end-state token et or
when Tmax is reached. We concatenate the predicted motion over all timesteps to obtain the discrete
‘normal’ trajectory and denote it as ζ

(r)
1:T . Fig. 3 shows an example of the anticipated trajectory

starting from an initial observation.

3.4 Measuring Observed Trajectory Error

The agent sequentially executes {at}T−1
t=0 , originally computed for the normal motion anticipation,

for each part, generating the actual observation {Qt}Tt=1. The kinematic change between Qt and
Qt+1 is estimated as rigid transformations denoted as M̂t (see Fig. 2(c)). To compute M̂t, we omit
the depth channels of Qt and Qt+1, retaining only their RGB values, and apply an optical flow
method [35] to predict 2D motion flow. Given that the camera remains fixed during interactions, we
backproject the 2D motion flow into 3D using depth information to obtain 3D motion flow vectors.
We compute both forward and backward flows and derive their respective transformation matrices
using the Kabsch algorithm [17]. To enhance robustness, we iteratively refine the set of flow vectors
using RANSAC while enforcing bidirectional flow consistency. This process yields a reliable set of
3D motion vectors for the observed flow. The transformations M̂t are accumulated over all timesteps
for part r and the observed trajectory ζ̂

(r)
1:T is computed.

Finally, the anomaly label yr for part r is assigned by comparing the expected and observed motion
trajectory using the Hausdorff distance DH [7]:

yr =

{
1 if ∆r > ϵ,

0 otherwise,
where ∆r = DH(ζ

(r)
1:T , ζ̂

(r)
1:T ). (9)

We choose the Hausdorff distance for its sensitivity to the worst-case deviation which is beneficial for
identifying anomalies effectively. Importantly, our model is not trained explicitly trained to optimize
the prediction rule in Eq. (9).

4 Experiment

4.1 Interactive AD Benchmark

We introduce a new benchmark for interactive AD: the PartNet-IAD dataset. To construct the
dataset, we use objects from the PartNet-Mobility dataset [38] as normal instances, and modify their
physical and kinematic structures to generate anomalous articulations, which are used exclusively for
evaluation. More details about dataset statistics, anomaly generation process, and anomaly types are
provided in the supplementary. We focus on two evaluation settings: i) evaluate our model on the test
set of the training categories to measure its generalization ability to unseen objects within the same
categories, and ii) evaluate on the test set of the testing categories to measure the generalization ability
to unseen object categories. For training the normal motion anticipation module, we use a mutually
exclusive set of 402 normal objects (from the train set of the training categories of PartNet-Mobility).
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Table 1: PartNet-IAD benchmark. AUROC (%) of our framework compared against baselines.
Unseen objects in training categories Testing categories

Average Average

A: No-interaction + Cls 60.3 61.7 58.5 64.0 58.9 60.3 63.5 57.1 60.1 64.0 65.3 61.3 51.7 56.1 52.0 56.7 58.3 56.0 56.2 58.0 59.1 51.3 55.5
B: Random-interaction + Cls 64.1 63.4 63.6 67.1 65.3 63.4 63.1 58.0 61.1 64.6 63.2 63.3 53.6 55.7 52.8 57.8 59.1 56.2 55.6 59.0 61.8 50.1 56.1
C: Where2Act + Cls 70.5 61.5 67.1 70.1 72.0 66.1 69.1 62.9 63.4 63.6 64.0 66.2 58.8 60.5 61.4 61.8 61.0 63.3 62.7 64.3 70.8 55.3 62.0
D: Where2Act + Heuristics 79.4 63.2 76.5 72.8 80.7 75.6 77.7 66.2 73.3 70.3 78.1 73.9 66.7 76.3 71.4 73.7 70.6 76.2 73.9 70.6 63.8 59.5 70.1
E: Where2Act + MotionPrior 87.5 72.2 80.5 82.7 84.1 81.2 86.7 73.9 85.8 70.1 84.4 80.9 74.5 83.5 80.3 81.7 75.0 81.5 79.0 84.6 70.0 63.8 77.3

Our Method 91.3 75.3 88.9 85.3 92.6 87.5 89.8 77.8 85.0 82.8 90.2 86.1 78.9 91.6 83.2 84.4 83.1 88.4 89.1 87.4 80.6 71.9 83.9

4.2 Implementation Details

Environment and action setting. We create interactive simulated environments by using Pybullet [9].
For the agent, we use a suction-based flying gripper [40] as the robot actuator. The flying gripper can
be initialized at any position and orientation, with the gripper either closed or open. The object is
observed using an RGBD camera with known intrinsics, positioned 5 units away from the object and
facing its center. The camera is placed on the upper hemisphere with a random azimuth [120◦, 270◦)
and altitude [25◦, 40◦], primarily capturing the front view of the object in the canonical frame of the
original PartNet-Mobility objects. To execute an action, the agent first moves its end-effector to the
sampled 3D position, aligning its orientation perpendicular to the object surface. In practice, the
closest point on the surface is used to place the end-effector. The agent then moves the end-effector
0.18 meters along the action direction. The suction behavior is implemented as a force constraint
between the suction cup and the selected 3D position on the object, as described in [40].

Collecting interaction data for training. To create a large set of action-motion interaction pairs, we
randomly select an articulated part for each normal object and initialize its pose with a 50% chance at
its rest state (e.g., fully closed drawer) or a random pose (e.g., a half-opened drawer). We then sample
a 3D position on the part’s surface and an action direction uniformly from a spherical distribution.
The robot arm executes the action, and we record the resulting motion as a rigid transformation matrix
along with its segmentation mask. Additionally, an end-state token is stored if the action leads to an
end state (fully closed or fully open). For non-movable parts, we record interaction data for 5% of
points on these parts, storing their resulting motion as an identity matrix. The offline dataset consists
of 145M interaction pairs, generated over 3-4 days on a single 64-core CPU machine by parallelizing
the simulation across multiple CPU cores, to kickstart the training. To complement the offline dataset,
online data sampling [28] (see supplementary) is introduced after the 10th epoch, with each batch
consisting of 70% offline data and 30% online data, focusing on interactions more likely to induce
motion.

Inference details. During inference, we use the current memory mask B+ to sample Np = 1000
points for the starting interaction of each part and Np = 250 points after the first timestep once
the part is identified. We sample Nu = 128 action direction to form the total action space. The
temperature λT is set to 0.3 in Eq. (8). Tmax is set to 15.

4.3 Baselines and Results

Since we are the first to propose and formalize this task, no prior work exists for direct comparison.
To evaluate our method and establish benchmarks for the proposed task, as shown in Tab. 1, we
compare against five alternative approaches (A-E) specifically designed for the task:

A: No-interaction + Classifier takes an initial observation frame as input and performs anomaly
classification without any interaction.

B: Random-interaction + Classifier selects random action positions and directions (uniformly sampled
from the action space) at each timestep for interaction using the simulator, followed by frame-by-
frame anomaly classification on the observed frames. We perform same number of steps (15) as ours
and if a single frame during the interaction is flagged as anomaly by the classifier we consider the
articulation as anomaly.

C: Where2Act + Classifier employs a learned action prediction model (e.g., Where2Act [28]) to
predict the action parameters and pass them to the simulator to obtain the observed frames, replacing
the random action sampling.
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Predicted trajectory Observed trajectory

Figure 4: Qualitative results of interactive AD: Each block shows (left to right) the input RGBD,
estimated movability map, and predicted vs. observed final trajectories. Top two rows are from
training categories; the bottom row is from testing categories. Our model correctly detects anomalies
in all cases. Color coding is shown above; full interaction videos are in the supplementary material.

D: Where2Act + Heuristics includes a separate model that is trained to infer the joint type and joint
axis for each moving part. We then use Where2Act agent to predict action and the simulator executes
the action. We then detect anomalies by comparing the observed motion axis with the predicted ones.

E: Where2Act + MotionPrior employs the Where2Act agent to predict the action and utilizes our
action-conditioned motion prior to estimate normal motion, obtaining anticipated trajectories for the
agent’s actions, which are compared with the observed trajectories to detect anomalies.

Table 2: We evaluate our method using quantitative
metrics for motion estimation (MSE and mIoU)
and interaction performance (action success rate
[ASR] and part success rate [PSR]). The evalua-
tion is conducted on normal objects from the test
categories.

Method MSE ↓ mIoU ↑ ASR(%) ↑ PSR (%) ↑
w/o noise filtering 0.08 0.65 96.78 92.85

w/ noise filtering 0.05 0.72 98.35 94.12

For A-C, we implement a frame-by-frame
anomaly classifier using a Point Transformer-
based model. They take a single point cloud
frame as input and predict an anomaly label.
The classifier is trained using normal frames and
augmented pseudo-anomaly frames, generated
online via random deformations or transforma-
tions. For D, we use a Point Transformer for
part segmentation, followed by a pooling opera-
tion over each segmented part to obtain the joint
axis vector and joint type (revolute or prismatic).
This model is trained on the normal objects from the training categories. For fair comparison, we
train Where2Act using a suction-based gripper. Anomaly classification performance is evaluated
using the area under the ROC curve (AUROC), computed per part and averaged across all test objects.
Qualitative results of our framework are shown in Fig. 4.

Random-interaction + Cls
Where2Act + Cls

Where2Act + MotionPrior
Where2Act + Heuristics 

Ours

Interaction steps

AU
RO

C

Figure 5: Interaction steps vs. AUROC. The
results are evaluated on the testing categories.

Importance of interactive part analysis. We
first validate our claim that reliable functional
anomaly detection requires agent interaction.
Baseline A, lacking interaction, misses anoma-
lies not visible in the input frame. Baseline B, re-
lying on random interactions, is ineffective since
most actions either cause no motion or fail to re-
veal anomalies. In contrast, our method, which
uses a learned agent for meaningful interactions,
achieves significantly better performance.

Importance of our action-dependent frame-
work. Baselines B and C are action-
independent—they do not consider which spe-
cific action caused the irregular motion, often missing anomalies like a drawer failing to close.
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Figure 6: Real-world visualization of the motion prior network on the AKB-48 [26] dataset.
We used our trained motion prior model in PartNet-Mobility to estimate normal motion for the
real-world scanned objects from the AKB-48 dataset. For each row, we show the input point cloud,
the movability score map, and four sampled action-motion pairs, respectively. The sampling of
action-motion pair is performed based on the normalized scores. Red arrows indicate the input
actions, and the anticipated motions are shown in cyan.

Baseline C misses action-conditioned temporal cues due to frame-wise classification, while Baseline
D predicts joint axes but ignores the magnitude of action-induced motion. In contrast, our final model
conditions anomaly prediction on the executed action, resulting in significantly higher performance.

Importance of our joint action-motion representation. In Baseline E, we naively apply our motion
anticipation module to Where2Act-predicted actions, yielding modest gains by estimating normal
motion for comparison with the observed motion. However, it struggles with multi-step interactions.
Without motion history, it often results in back-and-forth movements without progressing to new
states. In contrast, our method uses predicted joint motion matrices to guide actions consistently in
one direction—either fully closing or fully opening—enabling more reliable trajectory comparisons.

Interaction efficiency. Next we evaluate by plotting AUROC against interaction steps in Fig. 5. Our
method continues improving with more interactions, while other baselines plateau after 2-3 steps.
This highlights our pipeline’s ability to perform meaningful interactions and effectively reveal hidden
anomalies.

Methodological differences with Where2Act [28]. While Where2Act tackles a different problem,
we highlight the key differences between our method and its architecture below: 1) Where2Act
focuses on predicting which actions are likely to move an articulated part, but it does not model how
the part moves. In contrast, our method estimates the rigid motion flow that fully characterizes the
part’s kinematic response to the action. This is crucial for our task, as it provides the anticipated
motion necessary for comparison with the observed one. 2) Our formulation enables long-horizon,
temporally consistent action exploration, which Where2Act lacks. 3) By explicitly estimating motion,
our method can filter out noisy actions by identifying inconsistencies in predicted motions. 4) Our
model leverages rich supervisory signals from simulation during training, including motion mask
and rigid motion matrix tied to each input action, whereas Where2Act uses only discrete supervision
(motion vs. no motion). This allows to capture the continuous range of articulation dynamics more
accurately.

Additional metrics for motion estimation and interaction results. Table 2 reports additional
quantitative metrics to assess two components of our framework. For the motion prior network, we
evaluate motion prediction error (MSE) and part segmentation accuracy (mIoU). For interaction
performance, we report action success rate (ASR) and part success rate (PSR). ASR measures the
proportion of actions that successfully move a part–defined as achieving a displacement greater
than 0.01 unit-length or 0.5 relative to its total motion range at any timestep. PSR indicates the
percentage of parts that reach a fully open or closed state over multiple interaction steps. All
evaluations are conducted on normal objects from the testing categories. We compare two variants of
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our framework: one with and one without the noise filtering module. Results demonstrate that noise
filtering significantly improves motion estimation and boosts interaction success rates.

Real-world visualization of the motion prior network. To evaluate the generalization ability of
the learned motion prior, we use real-world articulated objects from the AKB-48 dataset [26]. The
textures of the shapes in this dataset are scanned from real-world objects. Fig. 6 visualizes our normal
motion estimation model (pretrained on the PartNet-Mobility dataset) applied to three categories
from AKB-48: Bucket, Box, and Trashcan. As shown, our model performs favorably even on shapes
with significant geometric differences and realistic textures, without any finetuning. For more results
please refer to the supplementary.

4.4 Limitations and Failure Cases

Prediction: Anomaly GT: NormalPrediction: Anomaly GT: Normal

Figure 7: Failure cases. We show the input RGBD,
anticipated motion and the observed motion. The
applied action in first timestep is shown in red
arrow. We use the same color coding as in Fig. 4

We assume articulated parts undergo rigid trans-
formations, meaning each part moves indepen-
dently without affecting others. While this holds
for most real-world objects, it does not apply to
multi-link rigid systems or soft-body deforma-
tions. Our framework is generalizable to various
joint types but the PartNet-IAD dataset is limited
to 1-DoF prismatic and revolute joints. Addi-
tionally, it does not handle articulation requiring
composite actions, such as locking a door (e.g.,
turning a key and pushing a latch). Our method uses a suction-based end-effector for robust grasping
across diverse objects, aligning with real-world robotics. However, it is unsuitable for tasks needing
precise grasping, handling small objects, or gripping uneven surfaces. While our model generalizes
across categories – e.g., learning to open a safe from experience with microwaves due to similar
revolute joints – it cannot handle entirely novel articulations (e.g., different joint types). Finally, al-
though our method is designed with real-world generalization in mind, our experiments are primarily
conducted in simulation without using a real robot.

Fig. 7 highlights two failure cases due to ambiguity in their joint type and motion direction respectively.
The left one is a false positive where the model misinterprets normal motion by assuming a revolute
joint. In the right one, the door is designed to be pushed to open, while our model infers the wrong
opening direction (i.e., pulling out) for this ambiguous case, leading to inaccurate action and motion
predictions.

5 Conclusion and Future Work

In this work, we introduced a novel problem, interactive AD for detecting functional anomalies in
articulated objects through learned agent interactions. Unlike existing techniques that either lack
interaction or rely on random actions, our approach actively explores the object’s motion space to
uncover hidden anomalies. By integrating a learned motion anticipation and action selection, our
method achieves significantly higher performance across multiple evaluation metrics. Our findings
demonstrate the importance of intelligent interaction in anomaly detection, paving the way for more
advanced robotic perception systems capable of understanding complex articulated structures.

Broader Impacts. This work enables robotic agents to actively detect functional anomalies in
articulated objects, with potential benefits in quality control, assistive robotics, and autonomous
inspection. Those may include furniture (e.g. for cabinets) and consumer electronics (e.g. for laptops)
industry for quality control and durability testing. It may also be used in product development and
prototyping to identify design flaws and improve functionality, and, as well as, in service industry
for inspecting and repairing articulated objects, and warranty assessments. While this technology
advances safe and intelligent interaction, unintended damage from probing actions or generalization
issues in real-world settings may pose safety and reliability concerns.

Acknowledgments. The project was funded by Toyota Motor Europe. HB was supported by the
EPSRC Visual AI grant EP/T028572/1.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Unlike traditional anomaly detection methods that rely on passive visual
observations, our proposed anomaly detection task requires agent interaction to detect
functional anomalies that would otherwise remain hidden. Experiments shown in Table 1
of our proposed PartNet-IAD benchmark demonstrate strong generalization in detecting
anomalies across both seen and unseen object categories.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in Section 4.4.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

14



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper introduces a new benchmark and a new model. The dataset is derived
from existing public articulated shape dataset and the generation procedure is explained
in detail in the main text and supplementary material. Similarly, we provide the required
details to construct, train, and test the models.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will release the dataset and model, the source code that is used to generate
the data and to train the models upon publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide these details under Section 4.2, Appendix A.1 and Appendix A.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We discussed the statistical significance of the experiments in Appendix A.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided detailed computing resources for training in Appendix A.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: There are no human subjects or participants in this research and there are no
data-related concerns either.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have included a paragraph in Section 5 to discuss both positive and negative
potential impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the existing assets are properly cited and their licenses are explicitly
mentioned in Appendix A.1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our new assets including the network training and testing codes, and the new
dataset will be released under the Attribution-NonCommercial-ShareAlike 4.0 International
license upon publication.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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