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Abstract

We present the OMG-CMDP! algorithm for regret minimization in adversar-
ial Contextual MDPs. The algorithm operates under the minimal assump-
tions of realizable function class and access to online least squares and log
loss regression oracles. Our algorithm is efficient (assuming efficient online
regression oracles), simple and robust to approximation errors. It enjoys an
Õ(H2.5

√
T |S||A|(RTH(O) +H log(δ−1))) regret guarantee, with T being the

number of episodes, S the state space, A the action space, H the horizon and
RTH(O) = RTH(OF

sq) +RTH(OP
log) is the sum of the square and log-loss re-

gression oracles’ regret, used to approximate the context-dependent rewards and
dynamics, respectively. To the best of our knowledge, our algorithm is the first
efficient rate optimal regret minimization algorithm for adversarial CMDPs that
operates under the minimal standard assumption of online function approximation.

1 Introduction

Reinforcement Learning (RL) is a framework for sequential decision making in unknown environ-
ments. A Markov Decision Process (MDP) is the mathematical model behind RL environments. In
the classical episodic RL setting, in each episode an agent repeatedly interacts with the MDP for
H steps, observing the current state and then choosing an action. Subsequently, the agent receives
a reward and the process transitions to the next state. The agent’s goal is to choose actions as
to maximize the cumulative return. This model characterizes many applications including online
advertising, robotics, games and healthcare, and has been extensively studied over the past three
decades (see e.g., Sutton and Barto, 2018, Mannor et al., 2022).

However, the classical MDP model cannot efficiently capture the influence of additional side in-
formation on the environment. Consider, for example, a medical trial that tests the effect of a new
medication for a disease. The reaction of a patient to the treatment, which is modeled by the en-
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vironment, is deeply influenced by the patient’s medical history, which includes age, weight and
background diseases she or he might have. We refer to such external information, which is unaffected
by the agent’s decisions, i.e., treatment choice, as the patient’s context. A standard MDP can encode
the context as part of the state. However, as no two patients are identical, this can significantly
increase the size of the state space, and hence the complexity of learning and even the complexity of
representing a single policy. Instead, Contextual MDPs (CMDPs), keep the state space small and
treat the context as side information, revealed to the agent at the start of each episode. Additionally,
there is an unknown mapping from each context to an MDP, thus an optimal policy maps each context
to an optimal policy of the related MDP.

As previously alluded to, the context space is often prohibitively large, prompting the use of function
approximation. This has previously been studied in the context of Contextual Multi Armed Bandits
(CMAB; Foster and Rakhlin, 2020, Simchi-Levi and Xu, 2021), and more recently in CMDPs (Foster
et al. [2021b], Levy and Mansour [2022b]). Concretely, realizable function approximation implies
that the agent is provided with a function class of mappings from contexts to MDPs, and the goal
is to obtain learning guarantees in terms of the class’ complexity rather than the size of the context
space. Realizability further implies that the true mapping resides in the class.

In recent years, CMDPs have gained much interest. There are two major lines of works. The
distinctive feature between these two lines is whether the context is stochastic or adversarially chosen.
Hallak et al. [2015] were the first to study CMDPs assuming an adversarial context. Modi and
Tewari [2020] considered adversarial contexts and a Generalized Linear Model as a function class and
gave a

√
T regret guarantee. Foster et al. [2021b] consider general function classes as part of their

Estimation to Decision (E2D) framework. They assume an access to an online estimation oracle that
finds the best fit over the function class given past contexts and observations. (A detailed discussion
and comparison with this work appears in the sequel.) For stochastic CMDPs, Levy and Mansour
[2022b] presented sublinear regret under the minimum reachability assumption, using access to offline
least squares regression oracles. They also showed an Ω(

√
TH|S||A| log(|G|/|S|)/ log(|A|)) regret

lower bound where |G| is the size of the function class used to approximate the rewards. Later, Levy
et al. [2022] showed regret of Õ(

√
T ) assuming an access to offline regression oracles without the

reachability assumption. Clearly, adversarial CMDPs generalize stochastic CMDPs and require the
use of online function approximation.

Contributions. We study regret in adversarial CMDPs under a natural online function approximation
setting. We present the OMG-CMDP! algorithm, and prove that its regret is, with probability at least

1− δ, bounded as H2.5

√
T |S||A|

(
RTH(OF

sq) +RTH(OP
log) +H log 1

δ

)
(up to poly-logarithmic

factors of T, |S|, |A|, H) where S is the state space, A the action space, H the horizon and P and F
are function classes used to approximate the context dependent rewards and dynamics, respectively.
We assume access to online log loss and least squares regression oracles for the dynamics and
rewards approximation, and RTH(OP

log), RTH(OF
sq) denote their regret guarantees, respectively.

Our algorithm performs only 2T oracle calls and its running time is in poly(|S|, |A|, H, T ) assuming
an efficient online regression oracles. The main advantage of our technique is its simplicity. We
present an intuitive algorithm which operates under the standard online function approximation
assumptions. In addition, at each round, our played policy can be approximated efficiently using
standard convex optimization algorithms.

Comparison with Foster et al. [2021b]. This work is most related to ours. They obtained√
T RT (Oest) regret by applying their Estimation to Decision (E2D) meta algorithm to adver-

sarial CMDPs, where Oest is an online estimation oracle that operates over a class of CMDPs. Their
work, being very general, leaves their oracle implementation non-concrete and generic, consequently
giving rise to relatively complex algorithmic machinery. Specifically, at each round t their algorithm
outputs a distribution pt over context-dependent policies using an Inverse Gap Weighting (IGW)
technique. To make this computationally tractable, they compute an approximate Policy Cover (PC)
that serves as pt’s support, and analyze the delicate interplay between the approximation error and
the IGW technique. In contrast, we use a standard online function approximation oracles for both the
dynamics and rewards given related function classes, providing a clear model-based representation
of the learned CMDP. Our approach yields a natural and intuitive algorithm, only requiring an
approximate solution of a convex optimization problem. Thus, it can be implemented efficiently.
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Additional Related Literature. Sample complexity bounds for Contextual Decision Processes
(CDPs) have been studied under various assumptions. Jiang et al. [2017] present OLIVE, a sample
efficient algorithm for learning Contextual Decision Processes (CDP) under the low Bellman rank
assumption and later Sun et al. [2019] show PAC bounds for model based learning of CDPs using the
Witness Rank. Modi et al. [2018] present generalization bounds for learning smooth CMDPs and
finite contextual linear combinations of MDPs. We, in contrast, consider the regret of adversarial
CMDPs.

Levy and Mansour [2022a] studied the sample complexity of learning stochastic CMDPs using a
standard ERM oracle, and provided the first general and efficient reduction from Stochastic CMDPs
to offline supervised learning.

CMDPs naturally extend the well-studied CMAB model. CMABs augment the Multi-Arm Bandit
(MAB) model with a context that determines the rewards Lattimore and Szepesvári [2020], Slivkins
[2019]. Langford and Zhang [2007], Agarwal et al. [2014] use an optimization oracle, and give an
optimal regret bound that depends on the size of the policy class they compete against. Foster et al.
[2021a] present instance-dependent regret bounds for stochastic CMAB assuming access to a function
class F for the rewards approximation. Regression based approaches appear in Agarwal et al. [2012],
Foster and Rakhlin [2020], Foster et al. [2018], Foster and Krishnamurthy [2021], Simchi-Levi and
Xu [2021], Xu and Zeevi [2020] for both stochastic and adversarial CMABs. Foster and Rakhlin
[2020] assume access to an online least-squares regression oracle, and prove an optimal regret bound
for adversarial CMABs using the IGW technique.

2 Preliminaries: Episodic Markov Decision Process (MDP)

A (tabular) MDP is defined by a tuple (S,A, P, r, s0, H), where S and A are finite state and action
spaces respectively; s0 ∈ S is the unique start state; H ∈ N is the horizon; P : S ×A× S → [0, 1]
is the dynamics which defines the probability of transitioning to state s′ given that we start at
state s and play action a; and r(s, a) is the expected reward of performing action a at state s. An
episode is a sequence of H interactions where at step h, if the environment is at state sh and the
agent plays action ah then the environment transitions to state sh+1 ∼ P (· | sh, ah) and the agent
receives reward R(sh, ah) ∈ [0, 1], sampled independently from a distribution Dsh,ah

that satisfies
r(sh, ah) = EDsh,ah

[R(sh, ah)].

A stochastic and non-stationary policy π = (πh : S → ∆(A))h∈[H] defines for each time step
h ∈ [H] a mapping from states to a distribution over actions. Given a policy π and MDP M =
(S,A, P, r, s0, H), the h ∈ [H − 1] stage value function of a state s ∈ Sh is defined as

V π
M,h(s) = Eπ,M

[
H−1∑
k=h

r(sk, ak)

∣∣∣∣∣ sh = s

]
.

For brevity, when h = 0 we denote V π
M,0(s0) := V π

M (s0), which is the expected cumulative reward
under policy π and its measure of performance. Let π⋆

M ∈ argmaxπ{V π
M (s0)} denote an optimal

policy for MDP M .

Furthermore, we consider the notation of occupancy measures (see, e.g., Zimin and Neu, 2013). Let
qh(s, a | π, P ) denote the probability of reaching state s ∈ S and performing action a ∈ A at time
h ∈ [H] of an episode generated using policy π and dynamics P . Let µ(P ) ⊆ [0, 1]H×S×A denote
the set of all occupancy measures defined by the dynamics P and any stochastic policy π. µ(P ) is
defined as follows. Each q ∈ µ(P ) satisfies the following three requirements altogether.

(i) q ∈ [0, 1]H×S×A and ∀h ∈ [H], qh ∈ ∆(S ×A);
(ii) For all s ∈ S,

∑
a∈A q0(s, a) = I[s = s0]; and

(iii) For all h ∈ [H − 1] and s ∈ S,
∑

a∈A qh+1(s, a) =
∑

(s′,a′)∈S×A P (s | s′, a′)qh(s′, a′).

πq is the policy associated with occupancy measure q ∈ µ(P ) and is defined as follows for all
h ∈ [H] and state-action pair (s, a) ∈ S × A, πq

h(a|s) = qh(s,a)∑
a′∈A qh(s,a′) . If

∑
a′∈A qh(s, a

′) = 0

then πq
h(a|s) := 1/|A|. In addition, note that µ(P ) is a convex set. See, e.g., Rosenberg and Mansour

[2019] for more details.
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3 Problem Setup: Adversarial Contextual MDP

Following the notations of Levy and Mansour [2022b], a CMDP is defined by a tuple (C, S,A,M)
where C is the context space, S the state space and A the action space. The mapping M maps a
context c ∈ C to an MDP M(c) = (S,A, P c

⋆ , r
c
⋆, s0, H), where rc⋆(s, a) = E[Rc

⋆(s, a) | c, s, a],
Rc

⋆(s, a) ∼ Dc,s,a. We assume that Rc
⋆(s, a) ∈ [0, 1].

For mathematical convenience, we assume the contexts space C is finite but potentially very large
and we do not want to depend on its size (in both our regret bound and computation run-time). Our
results are naturally extended to infinite contexts space.

We consider an adversarial CMDP where in each episode the context can be chosen in a completely
arbitrary manner, possibly by an adversary.

A stochastic and non-stationary context-dependent policy π = (πc)c∈C maps a context c ∈ C to a
policy πc = (πc

h : S → ∆(A))h∈[H].

Interaction protocol. The interaction between the agent and the environment is defined as follows.
In each episode t = 1, 2, ..., T :

(i) An adversary chooses a context ct ∈ C;
(ii) The agent chooses a policy πct

t ;
(iii) The agent observes a trajectory generated by playing πct

t in M(ct), denoted as σt =
(ct, s

t
0, a

t
0, r

t
0, . . . , s

t
H−1, a

t
H−1, r

t
H−1, s

t
H).

Our goal is to minimize the regret, defined as RT :=
∑T

t=1 V
π
ct
⋆

M(ct)
(s0)− V

π
ct
t

M(ct)
(s0), where π⋆ is

an optimal context-dependent policy.

3.1 Assumptions

In this setting, without further assumptions, the regret may scale linearly in TH . We overcome
this limitation by imposing the following minimal online function approximation assumptions,
which extend similar notions in the CMAB literature (see, e.g., Agarwal et al., 2012, Foster et al.,
2018, Foster and Rakhlin, 2020, Foster and Krishnamurthy, 2021) to CMDPs. We assume access
to realizable function classes F and P that serve to approximate the context-dependent rewards
and dynamics respectively. Realizability means that the true rewards and dynamics belong to the
appropriate function class, and access is via online regression oracles (more details later).

Online regression oracle. We consider a standard online regression oracle with respect to a given
loss function ℓ. The oracle implements real-valued online regression where the examples are chosen
from some subspace Z , with respect to a loss function ℓ and has a regret guarantee relative to the
function class F . We consider the following online scenario. For every round t = 1, ..., T : (1)
An adversary (possibly adaptive) chooses input zt ∈ Z . (2) The oracle observes zt and returns a
prediction ŷt ∈ [0, 1]. (3) The adversary chooses an outcome yt ∈ [0, 1]. We follow Foster and
Rakhlin [2020] and model the online oracle as a sequence of mappings Ot

ℓ : Z × (Z,R)t−1 →
[0, 1], where ŷt = Ot

ℓ(zt; (z1, y1), ..., (zt−1, yt−1)). Each oracle implementation induces a mapping
f̂t(z) = Oℓ(z; (z1, y1), . . . , (zt−1, yt−1)) which is the prediction for the input z at round t. (See
Section 2.1 in Foster and Rakhlin, 2020). The oracles’ regret guarantees with respect to the function
class F is

∑T
t=1 ℓ(ŷt, yt) − inff∈F

∑T
t=1 ℓ(f(zt), yt) ≤ RT (OF

ℓ ). In the following, we consider
the online regression oracle with respect to the square loss i.e., ℓsq(ŷ, y) = (ŷ − y)2 for the rewards
approximation, and the log loss i.e., ℓlog(ŷ, y) = log(y/ŷ) for the dynamics approximation. For
finite function classes F and P , it is known that the regret of these oracles is logarithmic in the
function class size (see, e.g., [Cesa-Bianchi and Lugosi, 2006, Foster and Rakhlin, 2020, Foster
et al., 2021b]). Meaning, RT (OF

sq) = O(log(|F|)) and RT (OP
log) = O(log(|P|)).1 The above

optimization problems can always be solved by iterating over the function class. But, since we
consider strongly convex loss functions, there are function classes where these optimization problems
can be solved efficiently. An obvious example is the class of linear functions.

1We remark that in the case that F or P are non-convex, some implementations of the oracles might return a
function in the convex hull of F and P , respectively. Such an implementation is, for instance, Vovk’s aggregation
algorithm [Cesa-Bianchi and Lugosi, 2006].
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Reward function approximation. We assume that the learner has access to a class of reward
functions F ⊆ C × S × A → [0, 1], each function f ∈ F maps context c ∈ C, state s ∈ S and an
action a ∈ A to a (approximate) reward r ∈ [0, 1]. We use F to approximate the context-dependent
rewards function of any state s ∈ S and action a ∈ A using an online least-squares regression (OLSR)
oracle under the following realizability assumption.

Assumption 1. There exists a function f⋆ ∈ F such that for all t and (s, a) ∈ S ×A, f⋆(ct, s, a) =
rct⋆ (s, a).

Assumption 2 (Square Loss Oracle Regret). The oracle OF
sq guarantees that for every sequence of

trajectories {σt}Tt=1, regret is bounded as

T∑
t=1

H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− rth)

2 − inf
f∈F

T∑
t=1

H−1∑
h=0

(f(ct, s
t
h, a

t
h)− rth)

2 ≤ RTH(OF
sq).

Dynamics function approximation. For the unknown context-dependent dynamics case, our
algorithm gets as input a function class P ⊆ S ×A× S × C → [0, 1], where every function P ∈ P
satisfies

∑
s′∈S P (s′ | s, a, c) = 1 for all c ∈ C and (s, a) ∈ S × A. We use P to approximate the

context-dependent dynamics using an online log-loss regression (OLLR) oracle under the following
realizability assumption. For any P ∈ P we denote P c(s′ | s, a) := P (s′ | s, a, c).

Assumption 3 (Dynamics Realizability). There exists a function P ∈ P such that for all t, and
every (s, a, s′) ∈ S ×A× S, P (s′ | s, a, ct) = P ct

⋆ (s′ | s, a).

Assumption 4 (Log Loss Oracle Regret). Given a function class P of context-dependent tran-
sition probabilities function, the oracle OP

log guarantees that for every sequence of trajectories

{(ct; st0, at0, rt0, . . . , stH)}Tt=1, regret is bounded as

T∑
t=1

H−1∑
h=0

log
1

P̂ ct
t (sth+1 | sth, ath)

− inf
P∈P

T∑
t=1

H−1∑
h=0

log
1

P ct(sth+1 | sth, ath)
≤ RTH(OP

log).

Notations. For an event E we denote by I[E] the indicator function which returns 1 if E holds and 0
otherwise. We denote expectation by E[·]. We also use the following abbreviations for the oracles
regrets. We denote Rlog := RTH(OP

log) and Rsq := RTH(OF
sq). Note that our oracles are called T

times, each time we feed them with H examples. For that reason their regret bounds depend on TH .
This in contrast to previous works in which the oracle gets only one example in each call. When
using the notation Õ(·) we omit poly-logarithmic factors of |S|, |A|, H, T . For a vector x ∈ Rd we
denote by ∥x∥1 :=

∑d
i=1 |xi| the ℓ1 norm of x.

4 Algorithm and Main Result

We present the Occupancy Measures approximated reGularization algorithm for regret minimization
in adversarial CMDP (OMG-CMDP!; Algorithm 1). At each round t = 1, 2, . . . , T , we first
approximate the rewards and dynamics, using the online oracles, based on the observed trajectories
up to round t− 1. We denote by f̂t the approximated rewards function, and by P̂t the approximated
dynamics at round t. After observing the current context ct, we solve the optimization problem
in Equation (1) over the set of occupancy measures defined by P̂ ct

t . For the optimal solution q̂t, we
derive the appropriate policy πct

t and run it to generate a trajectory. We use the observed trajectory to
update the oracles.

Note that, for the objective in Equation (1) to be finite, we implicitly assume that for any round
t ≥ 1 there exists q ∈ µ(P̂ ct

t ) such that q > 0 (entry-wise). This can always be achieved by mixing
the oracle output with a uniform distribution where the weight of the uniform distribution can be
arbitrarily small, thus has a negligible effect on the regret. Alternatively, we can exclude (h, s, a)

tuples that are unreachable under P̂ ct
t from the sum in the log barrier regularization, and define

πct
t,h(a | s) = 1/|A| for these tuples. This would not change the analysis, but adds technical notations

that reduce the clarity of the proofs, thus omitted.
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Algorithm 1 Occupancy Measures approximated reGularization for adversarial CMDP (OMG-
CMDP!)

1: inputs:
• MDP parameters: H , S, A, s0.
• Function classes F for rewards approximation and P for dynamics approximation.
• Confidence parameter δ ∈ (0, 1) and tuning parameter γ.
• OLSR oracle OF

sq and OLLR oracle OP
log.

2: for round t = 1, . . . , T do
3: approximate rewards f̂t = OF

sq and dynamics P̂t = OP
log.

4: observe context ct ∈ C.
5: solve

q̂t = argmax
q∈µ(P̂

ct
t )

∑
(h,s,a)∈
[H]×S×A

qh(s, a) · f̂t(ct, s, a) +
1

γ

∑
(h,s,a)∈
[H]×S×A

log(qh(s, a)). (1)

6: derive policy as follows, for all h ∈ [H] and (s, a) ∈ S ×A: πct
t,h(a | s) = q̂th(s,a)∑

a′∈A q̂th(s,a
′)
.

7: play πct
t and observe a trajectory σt = (ct; s

t
0, a

t
0, r

t
0, . . . , s

t
H).

8: update OF
sq using {((ct, sth, ath), rth)}

H−1
h=0 ; update OP

log using {(ct, sth, ath, sth+1)}
H−1
h=0 .

9: end for

A key step in our algorithm is reflected in the optimization problem (Equation (1)). We solve the
maximization problem over the set of occupancy measures of the approximated dynamics P̂ ct

t . We
remark that the maximization problem in Equation (1) is a strictly concave maximization problem
over the set of occupancy measures of P̂ ct

t . Hence it has a single global maximum that can be
approximated efficiently.

We point out that usually in regret-minimization RL literature one optimizes over the empirical
dynamics with additional bonuses to the rewards that promote exploration (optimism). The magnitude
of the bonuses is derived directly from the size of the confidence intervals over the dynamics and
rewards approximation. In our case, however, the contexts are adversarially chosen hence it is
impossible to define such confidence intervals. Nevertheless, the use of log-barrier regularization
provides the necessary trade-off between exploration and exploitation, in a manner resembling
optimistic approaches, thus replacing the need for the aforementioned bonuses. The application of
log-barrier regularization differentiates us from previous works in contextual RL literature.

Our main result is the regret guarantee of Algorithm 1, stated in the following theorem.

Theorem 5 (Regret Bound). Let δ ∈ (0, 1). For γ =
√

|S||A|T
31H3(2Rsq+Rlog+18H log(2H/δ))

, with
probability at least 1− δ it holds that the regret RT (OMG-CMDP!) is bounded by

RT (OMG-CMDP!) ≤ Õ

(
H2.5

√
T |S||A| (Rsq +Rlog +H log δ−1)

)
.

For finite function classes F and P the following corollary is immediately implied by Theorem 5.

Corollary 6. Let F and P be finite function classes for the rewards and dynamics approximation,
respectively. Let δ ∈ (0, 1). There exist oracle implementations such that for an appropriate choice
of γ, with probability at least 1− δ, the regret RT (OMG-CMDP!) is bounded by

RT (OMG-CMDP!) ≤ Õ
(
H2.5

√
T |S||A| (log |F|+ log |P|+H log δ−1)

)
.
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5 Analysis

Our regret analysis consists of two main conceptual steps. The first step is to derive concentration
bounds on our oracles’ regret (Section 5.1). Next, note that the regret can be decomposed as follows,

RT =

T∑
t=1

V π
ct
⋆

M(ct)
(s0)− V π

ct
⋆

M̂t(ct)
(s0) (2)

+

T∑
t=1

V π
ct
⋆

M̂t(ct)
(s0)−V

π
ct
t

M̂t(ct)
(s0) (3)

+

T∑
t=1

V
π
ct
t

M̂t(ct)
(s0)−V

π
ct
t

M(ct)
(s0), (4)

where Equation (2) is the cumulative difference between the value of the true optimal policy π⋆ on the
true and approximated MDPs of the context ct at round t. Equation (3) is the cumulative difference
between the value of π⋆ and πt on the approximated model at round t, for the context ct. Equation (4)
is the cumulative difference between the value of the selected policy πt on the approximated and true
MDPs at round t for the context ct. In Section 5.2 we upper bound the three value-difference sums
in terms of the oracles’ expected regret. By applying concentration bounds (Lemmas 8 and 9), we
bound the oracles’ expected regret by the empirical one, thus bounding the regret of our algorithm
with high probability.

Throughout the analysis we consider the cumulative error caused by the dynamics approximation in
terms of the Squared Hellinger distance between the true and approximated dynamics.

Definition 7 (Squared Hellinger Distance). For any two distributions P, Q over a discrete support

X we define the Squared Hellinger Distance as D2
H(P,Q) :=

∑
x∈X

(√
P(x)−

√
Q(x)

)2
.

A useful property of the squared Hellinger distance is that for any two distributions P and Q it holds
that

∥P−Q∥21 ≤ 4D2
H(P,Q). (5)

We bound the cumulative value differences (Equations (2) to (4)) using the following quantities:

(1) The cumulative expected least-squares loss over each round t, i.e.,

ET (ℓsq) :=
T∑

t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

(
f̂t(ct, sh, ah)− f⋆(ct, sh, ah)

)2 ∣∣∣∣s0
]
.

(2) The cumulative expected squared Hellinger distance over each round t, i.e.,

ET (D2
H) :=

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣ s0
]
.

5.1 Oracle Concentration Bounds

The following lemma bounds the expected regret of the online least squares regression oracle by its
realized regret. See Appendix A.1 for full proofs.

Lemma 8 (Concentration of OLSR regret). Under Assumptions 1 and 2, for any δ ∈ (0, 1), with
probability at least 1− δ/2 it holds that ET (ℓsq) ≤ 2Rsq + 16H log(2/δ).

We analyze the expected regret of the log loss regression oracle in terms of the Hellinger distance.
The following lemma is an immediate implication of Lemma A.14 in Foster et al. [2021b].

Lemma 9 (Concentration of LLR regret w.r.t Hellinger distance). Under Assumptions 3 and 4,
for any δ ∈ (0, 1), with probability at least 1− δ/2 it holds that ET (D2

H) ≤ Rlog + 2H log(2H/δ).
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5.2 Value-Difference Bounds

In this subsection we bound the three value difference sums (Equations (2) to (4)). For that purpose,
we represent the value function in terms of the occupancy measures [Zimin and Neu, 2013]. Recall
that occupancy measures are defined as follows. For any non-contextual policy π and dynamics P , let
qh(s, a | π, P ) denote the probability of reaching state s ∈ S and performing action a ∈ A at time
h ∈ [H] of an episode generated using policy π and dynamics P . Thus, the value function of any
policy π with respect to the MDP (S,A, P, r, s0, H) can be presented using the occupancy measures
as follows.

V π
M (s0) =

H−1∑
h=0

∑
s∈S

∑
a∈A

qh(s, a | π, P ) · r(s, a). (6)

In the analysis, we use the following notations, to denote a specific occupancy measure of interest.
For all (s, a, h) ∈ S × A × [H] we denote: (i) q̂th(s, a) := qh(s, a | πct

t , P̂ ct
t ); (ii) qth(s, a) :=

qh(s, a | πct
t , P ct

⋆ ); (iii) q̂t,⋆h (s, a) := qh(s, a | πct
⋆ , P̂ ct

t ).

We now have all the required tools to state our cumulative value difference bounds. We first bound
the value difference caused by the CMDP approximation error, for the true optimal context-dependent
policy π⋆.

Lemma 10 (The cost of approximation for π⋆). The following holds for any choice of γ̂ > 0.

T∑
t=1

V π
ct
⋆

M(ct)
(s0)− V π

ct
⋆

M̂t(ct)
(s0) ≤

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

γ̂q̂th(s, a)
+ 2γ̂ET (ℓsq) + 29γ̂H4ET (D2

H).

Proof sketch. Fix t ∈ [T ] and apply the value difference lemma (Lemma 23 in the Appendix) to
obtain

V π
ct
⋆

M(ct)
(s0)− V π

ct
⋆

M̂t(ct)
(s0) ≤

∑
h,s,a

q̂t,⋆h (s, a) · (f⋆(ct, s, a)− f̂t(ct, s, a))

+H
∑
h,s,a

q̂t,⋆h (s, a) · ∥P ct
⋆ (·|s, a)− P̂ ct

t (·|s, a)∥1.

We then multiply each term in both sums by
√

γ̂q̂th(s,a)

γ̂q̂th(s,a)
and apply the arithmetic-geometric means

(AM-GM) inequality to change the occupancy measure form q̂t,⋆ to q̂t and add a dependency in γ̂.
We obtain that the previous is upper bounded by∑

h,s,a

q̂t,⋆h (s, a)

γ̂q̂th(s, a)
+

γ̂

2

∑
h,s,a

q̂th(s, a) · (f⋆(ct, s, a)− f̂t(ct, s, a))
2

+
γ̂H2

2

∑
h,s,a

q̂th(s, a) · ∥P ct
⋆ (·|s, a)− P̂ ct

t (·|s, a)∥21.

Lastly we apply Equation (5) to bound the squared ℓ1 norm with the squared Hellinger distance, and
then the occupancy measure change (Corollary 22 in the Appendix) to replace q̂t with qt. We obtain

that the latter is bounded by
∑

h,s,a
q̂t,⋆h (s,a)

γ̂q̂th(s,a)
+ 2γ̂ET (ℓsq) + 29γ̂H4ET (D2

H).

The lemma follows by summing over each t ∈ [T ]. For more details see Lemma 26 and Corollary 27
in the Appendix. ■

Next, we bound the cumulative value difference between π⋆ and πt on the approximated model.

Lemma 11 (Suboptimality of π⋆ in M̂t). It holds that

T∑
t=1

V π
ct
⋆

M̂t(ct)
(s0)− V

π
ct
t

M̂t(ct)
(s0) ≤

TH|S||A|
γ

−
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

γq̂th(s, a)
.

Proof. For every round t ∈ [T ], consider the gradient of the concave objective function in Equation (1)
and denote it by ∇L̂t(q; ct). Then, for all h, s, a, (∇L̂t(q; ct)))h,s,a = f̂t(ct, s, a) +

1
γqh(s,a)

.
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Let π⋆ = (πc
⋆)c∈C denote an optimal context-dependent policy for the true CMDP. For every round

t, the occupancy measure q̂t,⋆h (s, a) := qh(s, a|πct
⋆ , P̂ ct

t ) is a feasible solution for the maximization
problem in Equation (1), since q̂t,⋆ ∈ µ(P̂ ct

t ). Since q̂t is the optimal solution, by first order
optimality conditions for concave functions [Boyd, Boyd, and Vandenberghe, 2004] it holds that∑

h,s,a

q̂t,⋆h (s, a) ·
(
f̂t(ct, s, a) +

1

γq̂th(s, a)

)
−
∑
h,s,a

q̂th(s, a) ·
(
f̂t(ct, s, a) +

1

γq̂th(s, a)

)
≤ 0,

which implies that
H−1∑
h=0

∑
s∈S

∑
a∈A

(q̂t,⋆h (s, a)− q̂th(s, a)) · f̂t(ct, s, a) ≤
H|S||A|

γ
−

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

γq̂th(s, a)
. (7)

By the value representation using occupancy measures (Equation (6)), for every round t ∈ [T ],

V π
ct
⋆

M̂t(ct)
(s0)− V

π
ct
t

M̂t(ct)
(s0) =

H−1∑
h=0

∑
s∈S

∑
a∈A

(q̂t,⋆h (s, a)− q̂th(s, a)) · f̂t(ct, s, a). (8)

Hence, the lemma follows by combining Equations (7) and (8) and summing over each t ∈ [T ]. ■

Note that for the choice in γ̂ = γ for Lemma 10, the term
∑T

t=1

∑H−1
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s,a)

γ̂q̂th(s,a)
is

canceled with the second term in RHS of Lemma 11.

Lastly, we bound the value difference caused by the approximation, for the selected policy πt.

Lemma 12 (The cost of approximation for πt). The following holds for any p1, p2 > 0.
T∑

t=1

V
π
ct
t

M̂t(ct)
(s0)− V

π
ct
t

M(ct)
(s0) ≤

TH

2p1
+

p1
2
ET (ℓsq) +

TH

2p2
+ 2p2ET (D2

H).

To prove the lemma, we use the value difference lemma and AM-GM with the parameters p1, p2
similarly to showm for Lemma 10.

Proof sketch of Theorem 5. We obtain Theorem 5 by combining the results of Lemmas 10 to 12
and applying our concentration bounds stated in Lemmas 8 and 9, that yeilds the stated bound for an
appropriate parameters choice. For detailed proof see Appendix A.2.3 ■

6 Approximated Solution

The objective of the optimization problem in Equation (1) is a sum of a self-concordant barrier
function (the log function) and a linear function. Hence, the optimal solution for the problem
can be approximated efficiently using interior-point convex optimization algorithms such as New-
ton’s Method. These algorithms return an ϵ-approximated solution and have a running time of
O(poly(d) log ϵ−1), where d = H|S||A| is the dimension of the problem [Nesterov and Nemirovskii,
1994].

Suppose that in each round t we derive the policy πct
t using, instead of the optimal solution, an

occupancy measure q̂t that yields an ϵ-approximation to the objective of the optimization problem
in Equation (1). The following analysis shows that for ϵ = 1

16γT , we obtain a similar regret
guarantee. In addition, by our choice of γ, the running time complexity of the optimization algorithm
is poly(|S|, |A|, H, log(T )). We start by bounding the difference between the optimal and the
approximated iterates. (See proof in Lemma 33 in the Appendix.)

Lemma 13 (Iterates’ difference). For every round t let L̂t(q; ct) denote the objective of the opti-
mization problem in Equation (1). Let q̃ ∈ argmaxq∈µ(P̂

ct
t ) L̂t(q; ct). Let q ∈ µ(P̂ ct

t ) and suppose

that L̂t(q̃; ct)− L̂t(q; ct) ≤ ϵ. Then,
∑

s∈S

∑
a∈A

∑H−1
h=0

(
qh(s,a)
q̃h(s,a)

− 1
)2

≤ 4ϵγ.

Using Lemma 13, we modify the bound of Lemma 11 and obtain the following corollary.
(See Lemma 34 in the Appendix for full proof.)
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Corollary 14. For every round t ∈ [T ] and a context ct ∈ C, let q̃t be the optimal solution to the
maximization problem in Equation (1). Suppose that q̂th ∈ µ(P̂ ct

t ) satisfies L̂t(q̃
t; ct)−L̂t(q̂

t; ct) ≤ ϵ,
and ϵγ ≤ 1/16. Then,

T∑
t=1

V π
ct
⋆

M̂t(ct)
(s0)− V

π
ct
t

M̂t(ct)
(s0) ≤

H|S||A|T
γ

−
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

2γ · q̂th(s, a)
+ 2T

√
ϵγH.

By replacing Lemma 11 with Corollary 14 we similarly derive the following regret bound. See Ap-
pendix B for full proofs.

Theorem 15 (Regret bound). For any δ ∈ (0, 1), let γ =
√

|S||A|T
62H3(2Rsq+Rlog+18H log(2H/δ))

.

Suppose that at each round t we have an ϵ-approximation to the optimal solution of Equation (1) for
ϵ = 1

16γT . Then, with probability at least 1− δ, the regret is bounded as

RT (Approx OMG-CMDP!) ≤ Õ

(
H2.5

√
T |S||A| (Rsq +Rlog +H log δ−1)

)
.

7 Discussion

In this paper we provide the first efficient reduction from Adversarial CMDPs to online regression.
The novelty of our approach is the use of concave optimization with log-barrier regularization over
occupancy measures. This technique might prove useful in other settings of function approximation
with a small underlying state space, e.g., block or rich observation MDPs. We note that there is an
H2 gap between our regret upper bound and the lower bound of Levy and Mansour, 2022b. We leave
closing this gap as an open problem for future research.
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A Proofs

In the following analysis, we represent the value function in terms of the occupancy measures. (See
e.g., Puterman [2014], Zimin and Neu [2013]). The occupancy measures are defined as follows. For
any non-contextual policy π and dynamics P , let qh(s, a|π, P ) denote the probability of reaching
state s ∈ S and performing action a ∈ A at time h ∈ [H] of an episode generated using policy π and
dynamics P . Thus, the value function of any policy π with respect to the MDP (S,A, P, r, s0, H)
can be presented as follows.

V π
M (s0) =

H−1∑
h=0

∑
s∈S

∑
a∈A

qh(s, a|π, P ) · r(s, a). (9)

Throughout the analysis we consider the cumulative error caused by the dynamics approximation in
terms of the Squared Hellinger distance between the true and approximated dynamics.

Definition (Squared Hellinger Distance, Definition 7). For any two distributions P, Q over a
discrete support X we define the Squared Hellinger Distance as

D2
H(P,Q) :=

∑
x∈X

(√
P(x)−

√
Q(x)

)2
.

A useful property of the squared Hellinger distance is that for any two distributions P and Q it holds
that ∥P−Q∥21 ≤ 4D2

H(P,Q).

Notations. In the analysis, we use the following notations, to denote the following occupancy
measures. For all (s, a, h) ∈ S ×A× [H] we denote

• q̂th(s, a) := qh(s, a|πct
t , P̂ ct

t ),
• qth(s, a) := qh(s, a|πct

t , P ct
⋆ ),

• q̂t,⋆h (s, a) := qh(s, a|πct
⋆ , P̂ ct

t ).

A.1 Oracle Concentration Bounds

The following states our concentration bounds, in terms of our regression oracles regret.

A.1.1 Least Squares Regression Oracle for Rewards Approximation

In the following, we use Freedman’s concentration inequality.

Lemma 16 (Freedman’s inequality (see e.g., Agarwal et al., 2014, Cohen et al., 2021)). Let
{Zt}t≥1 be a real-valued martingale difference sequence adapted to a filtration {Ft}t≥0 and let
Et[·] := E[·|Ft]. If |Zt| ≤ R almost surely, then for any T ∈ N and η ∈ (0, 1/R) it holds with
probability at least 1− δ that,

T∑
t=1

Zt ≤ η

T∑
t=1

Et−1[Z
2
t ] +

log(1/δ)

η
.

Lemma (concentration of LSR regret, restatement of Lemma 8). Under Assumption 1 and As-
sumption 2, for any δ ∈ (0, 1), the following holds with probability at least 1− δ.

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

(
f̂t(ct, sh, ah)− f⋆(ct, sh, ah)

)2 ∣∣∣∣∣s0
]
≤ 2 · RTH(OF

sq) + 16H log(1/δ).

Proof. Let us define a filtration Ft−1 = (σ1, . . . , σt−1, ct). Then,

Zt =E

[
H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− rth)

2 − (f⋆(ct, s
t
h, a

t
h)− rth)

2
∣∣∣Ft−1

]

−
H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− rth)

2 − (f⋆(ct, s
t
h, a

t
h)− rth)

2

13



defines a martingale difference sequence for that filtration. We first prove the following auxiliary
claim, that extends Lemma 4 of Foster and Rakhlin [2020] from adversarial CMAB to adversarial
CMDP.

Claim 17. The followings hold for all t ∈ [T ].

1. |Zt| ≤ 2H .

2. E
[∑H−1

h=0 (f̂t(ct, s
t
h, a

t
h)− rth)

2 − (f⋆(ct, s
t
h, a

t
h)− rth)

2|Ft−1

]
=

E
[∑H−1

h=0 (f̂t(ct, s
t
h, a

t
h)− f⋆(ct, s

t
h, a

t
h))

2
∣∣∣Ft−1

]
=∑H−1

h=0

∑
s∈S

∑
a∈A qth(s, a) ·

(
f̂t(ct, s, a)− f⋆(ct, s, a)

)2
.

3. E[Z2
t |Ft−1] ≤ 4H · E

[∑H−1
h=0 (f̂t(ct, s

t
h, a

t
h)− f⋆(ct, s

t
h, a

t
h))

2
∣∣∣Ft−1

]
.

Proof. The first property is immediate. For the second property, we have

E

[
H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− rth)

2 − (f⋆(ct, s
t
h, a

t
h)− rth)

2|Ft−1

]

=E

[
H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− f⋆(ct, s

t
h, a

t
h))(f̂t(ct, s

t
h, a

t
h) + f⋆(ct, s

t
h, a

t
h)− 2rth)|Ft−1

]

=E

[
H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− f⋆(ct, s

t
h, a

t
h))(f̂t(ct, s

t
h, a

t
h) + f⋆(ct, s

t
h, a

t
h)− 2E[rth|ct, sth, ath])|Ft−1

]

=E

[
H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− f⋆(ct, s

t
h, a

t
h))(f̂t(ct, s

t
h, a

t
h) + f⋆(ct, s

t
h, a

t
h)− 2f⋆(ct, s

t
h, a

t
h))|Ft−1

]

=E

[
H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− f⋆(ct, s

t
h, a

t
h))

2|Ft−1

]
,

where in the second and third equalities we used that E[rth|ct, sth, ath] = f⋆(ct, s
t
h, a

t
h) and that

f̂t(ct, s
t
h, a

t
h) and rth are independent given sth, a

t
h and the filtration Ft−1.

For the third property, consider the following derivation.
E[Z2

t |Ft−1]

=E

(H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− rth)

2 − (f⋆(ct, s
t
h, a

t
h)− rth)

2

)2 ∣∣∣∣∣Ft−1


− E2

[
H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− rth)

2 − (f⋆(ct, s
t
h, a

t
h)− rth)

2

∣∣∣∣∣Ft−1

]

≤E

(H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− rth)

2 − (f⋆(ct, s
t
h, a

t
h)− rth)

2

)2 ∣∣∣∣∣Ft−1


≤H · E

[
H−1∑
h=0

(
(f̂t(ct, s

t
h, a

t
h)− rth)

2 − (f⋆(ct, s
t
h, a

t
h)− rth)

2
)2 ∣∣∣∣∣Ft−1

]

=H · E

[
H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− f⋆(ct, s

t
h, a

t
h))

2(f̂t(ct, s
t
h, a

t
h) + f⋆(ct, s

t
h, a

t
h)− 2rth)

2

∣∣∣∣∣Ft−1

]

≤4H · E

[
H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− f⋆(ct, s

t
h, a

t
h))

2

∣∣∣∣∣Ft−1

]
.

■
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We now back to the proof of the lemma. By Lemma 16 and Claim 17, for η ∈ (0, 1/2H) with
probability at least 1− δ it holds that

T∑
t=1

E

[
H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− rth)

2 − (f⋆(ct, s
t
h, a

t
h)− rth)

2
∣∣∣Ft−1

]

−
H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− rth)

2 − (f⋆(ct, s
t
h, a

t
h)− rth)

2

=

T∑
t=1

Zt

≤η

T∑
t=1

Et−1[Z
2
t ] +

log(1/δ)

η
(By Lemma 16)

≤η · 4H ·
T∑

t=1

E

[
h−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− f⋆(ct, s

t
h, a

t
h))

2
∣∣∣Ft−1

]
+

log(1/δ)

η
. (By Claim 17)

The latter implies that

(1− η · 4 ·H) ·
T∑

t=1

E

[
H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− f⋆(ct, s

t
h, a

t
h))

2
∣∣∣Ft−1

]

≤
T∑

t=1

H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− rth)

2 − (f⋆(ct, s
t
h, a

t
h)− rth)

2 +
log(1/δ)

η
.

For η = 1
8H ∈ (0, 1/2H) we obtain

1

2
·

T∑
t=1

E

[
H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− f⋆(ct, s

t
h, a

t
h))

2
∣∣∣Ft−1

]

≤
T∑

t=1

H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− rth)

2 − (f⋆(ct, s
t
h, a

t
h)− rth)

2 + 8H log(1/δ).

Thus, when combine the above with part 2 of Claim 17 we obtain,
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a) ·
(
f̂t(ct, s, a)− f⋆(ct, s, a)

)2
≤ 2 ·

T∑
t=1

H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− rth)

2 − (f⋆(ct, s
t
h, a

t
h)− rth)

2 + 16H log(1/δ).

(10)

By the oracle guarantees (Assumption 2),
T∑

t=1

H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− rth)

2 − (f⋆(ct, s
t
h, a

t
h)− rth)

2

≤
T∑

t=1

H−1∑
h=0

(f̂t(ct, s
t
h, a

t
h)− rth)

2 − inf
f∈F

T∑
t=1

H−1∑
h=0

(f(ct, s
t
h, a

t
h)− rth)

2

≤ RTH(OF
sq).

(11)

By combining Equations (10) and (11) we obtain the lemma as,
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a) ·
(
f̂t(ct, s, a)− f⋆(ct, s, a)

)2
≤ 2 · RTH(OF

sq) + 16H log(1/δ),

which using the fact that qth(s, a) := qh(s, a|πct
t , P ct

⋆ ) implies
T∑

t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

(
f̂t(ct, sh, ah)− f⋆(ct, sh, ah)

)2 ∣∣∣∣∣s0
]
≤ 2 · RTH(OF

sq) + 16H log(1/δ).

■

15



A.1.2 Log-Loss Regression Oracle for Dynamics Approximation

To bound the oracle regret, we use the following lemma.

Lemma 18 (Lemma A.14 in Foster et al., 2021b). Consider a sequence of {0, 1}-valued random
variables (It)t≤T where It is F (t−1)-measurable. For any δ ∈ (0, 1) we have that with probability at
least 1− δ,

T∑
t=1

Et−1

[
D2

H(ĝ(t)(x(t)), g
(t)
⋆ (x(t)))

]
It ≤

T∑
t=1

(
log(t)(ĝ(t))− log(t)(g

(t)
⋆ )
)
It + 2 log(1/δ).

Lemma (concentration of LLR regret w.r.t Hellinger distance, restatement of Lemma 9). Un-
der Assumption 3 and Assumption 4, for any δ ∈ (0, 1), with probability at least 1 − δ it holds
that

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]
≤ RTH(OP

log) + 2H log(H/δ).

Proof. Recall qth(s, a) := qh(s, a|πct
t , P ct

⋆ ).

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]

=

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a) ·D2
H(P ct

⋆ (·|s, a), P̂ ct
t (·|s, a))

=

H−1∑
h=0

T∑
t=1

∑
s∈S

∑
a∈A

qth(s, a) ·D2
H(P ct

⋆ (·|s, a), P̂ ct
t (·|s, a))

=︸︷︷︸
(i)

H−1∑
h=0

T∑
t=1

E
[
D2

H(P ct
⋆ (·|sh, ah), P̂ ct

t (·|sh, ah))
∣∣∣Ht−1, ct

]

≤
T∑

t=1

H−1∑
h=0

log

(
1

P̂ ct(sth+1|sth, ath)

)
−

T∑
t=1

H−1∑
h=0

log

(
1

P ct
⋆ (sth+1|sth, ath)

)
+ 2H log(H/δ)

(By Lemma 18, holds w.p. at least 1− δ)

≤
T∑

t=1

H−1∑
h=0

log

(
1

P̂ ct(sth+1|sth, ath)

)
− inf

P∈P

{
T∑

t=1

H−1∑
h=0

log

(
1

P ct(sth+1|sth, ath)

)}
+ 2H log(H/δ)

(By realizability)

≤ RTH(OP
log) + 2H log(H/δ).

The filtration used in (i) is over the history up to time t, Ht−1 = (σ1, . . . , σt−1) and the context in
time t, ct. ■

A.2 Regret Analysis

Recall the Helligner distance given in Definition 7. The following change of measure result is due to
Foster et al. [2021b].

Lemma 19 (Lemma A.11 in Foster et al., 2021b). Let P and Q be two probability measures on
(X ,F). For all h : X → R with 0 ≤ h(X) ≤ R almost surely under P and Q, we have

|EP[h(X)]− EQ[h(X)]| ≤
√
2R(EP[h(X)] + EQ[h(X)]) ·D2

H(P,Q).

In particular,

EP[h(X)] ≤ 3EQ[h(X)] + 4RD2
H(P,Q).

Next, we need the following refinement of the previous result.
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Corollary 20. For any β ≥ 1,

EP[h(X)] ≤ (1 + 1/β)EQ[h(X)] + 3βRD2
H(P,Q).

Proof. Let η ∈ (0, 1). Consider the following derivation.

EP[h(X)]− EQ[h(X)] ≤
√

2R(EP[h(X)] + EQ[h(X)]) ·D2
H(P,Q)

≤ η(EP[h(X)] + EQ[h(X)]) +
R

2η
D2

H(P,Q).

The above implies

EP[h(X)] ≤ 1 + η

1− η
EQ[h(X)] +

R

2η(1− η)
D2

H(P,Q)

=

(
1 +

1

β

)
EQ[h(X)] +

1

2
R
(2β + 1)2

2β
D2

H(P,Q)

(Plug η = 1
2β+1 for all β ∈ (0,∞).)

≤
(
1 +

1

β

)
EQ[h(X)] + 3RβD2

H(P,Q). (For any β ≥ 1)

■

In the following regret analysis, we use the value change of measure with respect to the Hellinger
distance, introduced by Levy et al. [2022].

Lemma 21 (Lemma 4.1 in Levy et al., 2022). Let r : S×A → [0, 1] be a bounded expected rewards
function. Let P⋆ and P̂ denote two dynamics and consider the MDPs M = (S,A, P⋆, r, s0, H) and
M̂ = (S,A, P̂ , r, s0, H). Then, for any policy π we have

V π
M̂
(s) ≤ 3V π

M (s) + 9H2 E
P⋆,π

[
H−1∑
h=0

D2
H(P̂ (·|sh, ah), P⋆(·|sh, ah))

∣∣∣∣∣s0 = s

]
.

The proof of the lemma is cited below for completeness.

Proof. We first prove by backwards induction that for all h ∈ [H − 1] the following holds.

V π
M̂,h

(s) ≤
(
1 +

1

H

)H−h
[
V π
M,h(s) + E

P⋆,π

[
H−1∑
h′=h

3H2D2
H(P̂ (·|sh′ , ah′), P⋆(·|sh′ , ah′))

∣∣∣∣∣sh = s

]]
.

The base case, h = H − 1 is immediate since V π
M̂,h

(s) = V π
M,h(s). Now, we assume that the above

holds for h+ 1 and prove that it holds for h. To see this, we have that

V π
M̂,h

(s) = E
a∼π(·|s)

[
r(s, a) + Es′∼P̂ (·|s,a)

[
V π
M̂,h+1

(s′)
]]

(By Bellman’s equations)

≤ E
a∼π(·|s)

[
r(s, a) +

(
1 +

1

H

)
Es′∼P⋆(·|s,a)

[
V π
M̂,h+1

(s′)
]
+ 3H2D2

H(P̂ (·|s, a), P⋆(·|s, a))
]

(Corollary 20)

≤ E
a∼π(·|s)

[
r(s, a) + 3H2D2

H(P̂ (·|s, a), P⋆(·|s, a))
]

(Induction hypothesis)

+ E
a∼π(·|s)

[(
1 +

1

H

)H−h

E
s′∼P⋆(·|s,a)

[
V π
M,h+1(s

′)
]]

+ E
a∼π(·|s)

[(
1 +

1

H

)H−h

E
s′∼P⋆(·|s,a)

[
E

[
H−1∑

h′=h+1

3H2D2
H(P̂ (·|sh′ , ah′), P⋆(·|sh′ , ah′))

∣∣∣∣∣sh+1 = s′

]]]

≤
(
1 +

1

H

)H−h

E
a∼π(·|s)

[
r(s, a) + E

s′∼P⋆(·|s,a)

[
V π
M,h+1(s

′)
]]

(r,D2
H ≥ 0)
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+

(
1 +

1

H

)H−h

E
P⋆,π

[
H−1∑
h′=h

3H2D2
H(P̂ (·|sh′ , ah′), P⋆(·|sh′ , ah′))

∣∣∣∣∣sh = s

]

=

(
1 +

1

H

)H−h
[
V π
M,h(s) + E

P⋆,π

[
H−1∑
h′=h

3H2D2
H(P̂ (·|sh′ , ah′), P⋆(·|sh′ , ah′))

∣∣∣∣∣sh = s

]]
,

(By Bellman’s equations)

as desired. Plugging in h = 0 and using that
(
1 + 1

H

)H ≤ 3 concludes the proof. ■

This change of measure lemma upper bounds the value difference caused by the use of an approxi-
mated dynamics, instead of the true one, in terms of the expected Hellinger distance across a trajectory.
This bound might seem very loose as a value difference bound, however, when the rewards are very
small, it yields a significantly tighter then the standard bounds. In Lemmas 24 and 25 we apply
the value change of measure lemma where the rewards function are the squared loss of the rewards
approximation, and the squared L1 loss of the dynamics approximation. As these rewards are very
small, Lemma 21 implies that those expected approximation errors with respect to the approximated
dynamics P̂ are at most a small constant multiple of these expected errors where the expectation is
with respect to the true dynamics P⋆. Thus, the lemma helps us to translated the expected errors from
the approximated measures to the true measures.

The following is an immediate corollary of Lemma 21 and Equation (9), which we will use in our
analysis.

Corollary 22 (Occupancy measures change). For any (non-contextual) policy π, two dynamics P
and P̂ , and rewards function r that is bounded in [0, 1] it holds that

H−1∑
h=0

∑
s∈Sh

∑
a∈A

qh(s, a|π, P̂ ) · r(s, a) ≤3

H−1∑
h=0

∑
s∈Sh

∑
a∈A

qh(s, a|π, P ) · r(s, a)

+ 9H2
H−1∑
h=0

∑
s∈Sh

∑
a∈A

qh(s, a|π, P ) ·D2
H(P (·|s, a), P̂ (·|s, a)).

In addition, we use the following version on the Value Difference Lemma introduced by Efroni et al.
[2020].

Lemma 23 (Value-difference, Corollary 1; Efroni et al., 2020). Let M , M ′ be any H-finite horizon
MDPs. Then, for any two policies π, π′ the following holds

V π,M
0 (s)− V π′,M ′

0 (s) =

H−1∑
h=0

E[⟨Qπ,M
h (sh, ·), πh(·|sh)− π′

h(·|sh)⟩|s0 = s, π′,M ′]

+

H−1∑
h=0

E[rh(sh, ah)− r′h(sh, ah) + (ph(·|sh, ah)− p′h(·|sh, ah))V
π,M
h+1 |sh = s, π′,M ′].

We are now have all the required tolls for the regret analysis.

A.2.1 Probability Measure Transitions

In the following, we present probability transition measures when applies to the cumulative approxi-
mation error for both the rewards and dynamics.
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Lemma 24 (probabilities transition for rewards). The following holds.
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂th(s, a) · (f̂t(ct, s, a)−f⋆(ct, s, a))
2

≤3

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

(f̂t(ct, sh, ah)− f⋆(ct, sh, ah))
2
∣∣∣s0]

+ 9H2
T∑

t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]
.

Proof. For any context c ∈ C and function f̂t ∈ F we have that r̃c(s, a) := (f̂t(c, s, a)−f⋆(c, s, a))
2

is bounded in [0, 1]. Recall q̂th(s, a) = qh(s, a|πct
t , P̂ ct

t ) and qth(s, a) := qh(s, a|πct
t , P ct

⋆ ). Hence,
by Corollary 22, the following holds.
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂th(s, a) · (f̂t(ct, s, a)−f⋆(ct, s, a))
2 ≤ 3

T∑
t=1

H−1∑
h=0

∑
s∈Sh

∑
a∈A

qth(s, a)(f̂t(ct, s, a)− f⋆(ct, s, a))
2

+ 9H2
T∑

t=1

H−1∑
h=0

∑
s∈Sh

∑
a∈A

qth(s, a) ·D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah)).

Thus, the lemma follows. ■

Lemma 25 (probability transition for dynamics). The following holds.
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂th(s, a)·

(∑
s′∈S

∣∣∣P̂ ct
t (s′|s, a)− P ct

⋆ (s′|s, a)
∣∣∣)2

≤48H2
T∑

t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]
.

where q̂th(s, a) := qh(s, a|πct
t , P̂ ct

t ) and qth(s, a) := qh(s, a|πct
t , P ct

⋆ ).

Proof. For any context c ∈ C and context-dependent dynamics P̂t ∈ P we have that

r̃c(s, a) :=

(∑
s′∈S

∣∣∣P̂ c
t (s

′|s, a)− P c
⋆ (s

′|s, a)
∣∣∣)2

is bounded in [0, 4]. Hence, by Corollary 22, the following holds.
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂th(s, a) ·

(∑
s′∈S

∣∣∣P̂ ct
t (s′|s, a)− P ct

⋆ (s′|s, a)
∣∣∣)2

≤3

T∑
t=1

H−1∑
h=0

∑
s∈Sh

∑
a∈A

qth(s, a)

(∑
s′∈S

∣∣∣P̂ ct
t (s′|s, a)− P ct

⋆ (s′|s, a)
∣∣∣)2

+ 36H2
T∑

t=1

H−1∑
h=0

∑
s∈Sh

∑
a∈A

qth(s, a) ·D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

≤12

T∑
t=1

H−1∑
h=0

∑
s∈Sh

∑
a∈A

qth(s, a)D
2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah)) (∥ · ∥21 ≤ 4D2

H )

+ 36H2
T∑

t=1

H−1∑
h=0

∑
s∈Sh

∑
a∈A

qth(s, a) ·D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

≤48H2
T∑

t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]
.

Thus, the lemma follows. ■
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A.2.2 Value Difference Bounds

In the following we derive three value difference bounds, which will be used to bound the regret.

Lemma 26. The following holds for any γ̂ > 0.
T∑

t=1

V π
ct
⋆

M(ct)
(s0)− V π

ct
⋆

M̂t(ct)
(s0) ≤

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

γ̂ · q̂th(s, a)

+
γ̂

2

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂th(s, a) ·
(
f̂t(ct, s, a)− f⋆(ct, s, a)

)2
+

γ̂ ·H2

2

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂th(s, a) ·

(∑
s′∈S

∣∣∣P̂ ct
t (s′|s, a)− P ct

⋆ (s′|s, a)
∣∣∣)2

,

where q̂th(s, a) := qh(s, a|πct
t , P̂ ct

t ) and q̂t,⋆h (s, a) := qh(s, a|πct
⋆ , P̂ ct

t ) is the occupancy measure
defined by an optimal context-dependent policy of the true CMDP π⋆ = (πc

⋆)c∈C . In addition,
M̂t(c) := (S,A, P̂ c

t , f̂t(c; ·, ·), s0, H).

Proof. Consider the following derivation.
T∑

t=1

V π
ct
⋆

M(ct)
(s0)− V π

ct
⋆

M̂t(ct)
(s0)

=

T∑
t=1

E
π
ct
⋆ ,P̂

ct
t

[
H−1∑
h=0

((
f̂t(ct, sh, ah)− f⋆(ct, sh, ah)

)
(Value Difference, Lemma 23)

+
∑
s′∈S

(
P̂ ct
t (s′|sth, ath)− P ct

⋆ (s′|sth, ath)
)
· V π

ct
⋆

M(ct),h+1(s
′)

)∣∣∣∣∣s0
]

=

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)
(
f⋆(ct, s, a)− f̂t(ct, s, a)

)

+

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)
∑
s′∈S

(
P ct
⋆ (s′|s, a)− P̂ ct

t (s′|s, a)
)
V π

ct
⋆

M(ct),h+1(s
′)

≤
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)
(
f⋆(ct, s, a)− f̂t(ct, s, a)

)

+H ·
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)
∑
s′∈S

∣∣∣P ct
⋆ (s′|s, a)− P̂ ct

t (s′|s, a)
∣∣∣

=

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a) ·

√
γ̂ · q̂th(s, a)
γ̂ · q̂th(s, a)

(
f⋆(ct, s, a)− f̂t(ct, s, a)

)

+H ·
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a) ·

√
γ̂ · q̂th(s, a)
γ̂ · q̂th(s, a)

∑
s′∈S

∣∣∣P ct
⋆ (s′|s, a)− P̂ ct

t (s′|s, a)
∣∣∣

=

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

√
q̂t,⋆h (s, a)

γ̂ · q̂th(s, a)
·
√

q̂t,⋆h (s, a) · γ̂ · q̂th(s, a)
(
f⋆(ct, s, a)− f̂t(ct, s, a)

)

+

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

√
q̂t,⋆h (s, a)

γ̂ · q̂th(s, a)
·
√

q̂t,⋆h (s, a) · γ̂ · q̂th(s, a) ·H ·

(∑
s′∈S

∣∣∣P ct
⋆ (s′|s, a)− P̂ ct

t (s′|s, a)
∣∣∣)

≤1

2

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

(
q̂t,⋆h (s, a)

γ̂ · q̂th(s, a)
+ q̂t,⋆h (s, a) · γ̂ · q̂th(s, a) ·

(
f̂t(ct, s, a)− f⋆(ct, s, a)

)2)
(Since for all a, b ∈ R, ab ≤ 1

2 (a
2 + b2) by AM-GM)
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+
1

2

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

 q̂t,⋆h (s, a)

γ̂ · q̂th(s, a)
+ q̂t,⋆h (s, a) · γ̂ · q̂th(s, a) ·H2 ·

(∑
s′∈S

∣∣∣P ct
⋆ (s′|s, a)− P̂ ct

t (s′|s, a)
∣∣∣)2


≤
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

γ̂ · q̂th(s, a)

+
γ̂

2

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂th(s, a) ·
(
f̂t(ct, s, a)− f⋆(ct, s, a)

)2
+

γ̂ ·H2

2

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂th(s, a) ·

(∑
s′∈S

∣∣∣P̂ ct
t (s′|s, a)− P ct

⋆ (s′|s, a)
∣∣∣)2

,

as stated. ■

Corollary 27 (restatement of Lemma 10). The following holds for any γ̂ > 0.

T∑
t=1

V π
ct
⋆

M(ct)
(s0)− V π

ct
⋆

M̂t(ct)
(s0) ≤

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

γ̂ · q̂th(s, a)

+ 2γ̂

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

(f̂t(ct, sh, ah)− f⋆(ct, sh, ah))
2
∣∣∣s0]

+ 29γ̂H4
T∑

t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]
.

Proof. Recall that q̂th(s, a) := qh(s, a|πct
t , P̂ ct

t ) and q̂t,⋆h (s, a) := qh(s, a|πct
⋆ , P̂ ct

t ). Consider the
following derivation.

T∑
t=1

V π
ct
⋆

M(ct)
(s0)− V π

ct
⋆

M̂t(ct)
(s0)

≤
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

γ̂ · q̂th(s, a)
(By Lemma 26)

+
γ̂

2

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂th(s, a) ·
(
f̂t(ct, s, a)− f⋆(ct, s, a)

)2
+

γ̂ ·H2

2

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂th(s, a) ·

(∑
s′∈S

∣∣∣P̂ ct
t (s′|s, a)− P ct

⋆ (s′|s, a)
∣∣∣)2

≤
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

γ̂ · q̂th(s, a)

+
3

2
γ̂

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

(f̂t(ct, sh, ah)− f⋆(ct, sh, ah))
2
∣∣∣s0] (By Lemma 24)

+
9

2
γ̂H2

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]

+
48

2
γ̂H4

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]

(By Lemma 25)

≤
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

γ̂ · q̂th(s, a)
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+ 2γ̂

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

(f̂t(ct, sh, ah)− f⋆(ct, sh, ah))
2
∣∣∣s0]

+ 29γ̂H4
T∑

t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]
.

■

Lemma 28 (restatement of Lemma 11 ). For every round t ∈ [T ] and a context ct ∈ C, the optimal
solution q̂t for the maximization problem in Equation (1) satisfies the following,

V π
ct
⋆

M̂t(ct)
(s0)− V

π
ct
t

M̂t(ct)
(s0) ≤

H|S||A|
γ

−
H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

γ · q̂th(s, a)
,

where q̂th(s, a) := qh(s, a|πct
t , P̂ ct

t ) and q̂t,⋆h (s, a) := qh(s, a|πct
⋆ , P̂ ct

t ) is the occupancy measure
defined by an optimal context-dependent policy of the true CMDP π⋆ = (πc

⋆)c∈C , recalling M̂t(c) :=

(S,A, P̂ c
t , f̂t(c; ·, ·), s0, H).

Proof. For every round t ∈ [T ] let L̂t(q; ct) denote the objective of the maximization problem
in Equation (1) in round t, i.e.,

L̂t(q; ct) =

H−1∑
h=0

∑
s∈S

∑
a∈A

qh(s, a) · f̂t(ct, s, a) +
1

γ

H−1∑
h=0

∑
s∈S

∑
a∈A

log(qh(s, a)).

Thus the gradient of it, for each entry (h, s, a) ∈ [H]× S ×A, is defined as

∇(L̂t(q; ct))h,s,a = f̂t(ct, s, a) +
1

γ · qh(s, a)
.

Let π⋆ = (πc
⋆)c∈C denote an optimal context-dependent policy for the true CMDP. For every round t,

the occupancy measures q̂t,⋆h (s, a) := qh(s, a|πct
⋆ , P̂ ct

t ) is a feasible solution (since q̂t,⋆ ∈ µ(P̂ ct
t )).

Since q̂t is the optimal solution, by first-order optimality conditions it holds that

∇L̂t(q̂
t; ct) · (q̂t,⋆ − q̂t) ≤ 0.

Hence,

H−1∑
h=0

∑
s∈S

∑
a∈A

(
f̂t(ct, s, a) +

1

γ · q̂th(s, a)

)(
q̂t,⋆h (s, a)− q̂th(s, a)

)
≤ 0.

which implies that,

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a) ·
(
f̂t(ct, s, a) +

1

γ · q̂th(s, a)

)
−

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂th(s, a) · f̂t(ct, s, a)−
H|S||A|

γ
≤ 0

that also implies

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a) · f̂t(ct, s, a)−
H−1∑
h=0

∑
s∈S

∑
a∈A

q̂th(s, a) · f̂t(ct, s, a) ≤
H|S||A|

γ
−

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

γ · q̂th(s, a)
.

By definition we have for every round t,

V π
ct
⋆

M̂t(ct)
(s0)−V

π
ct
t

M̂t(ct)
(s0) =

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)·f̂t(ct, s, a)−
H−1∑
h=0

∑
s∈S

∑
a∈A

q̂th(s, a)·f̂t(ct, s, a),

hence the lemma follows.

■
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Lemma 29. The following holds.
T∑

t=1

V
π
ct
t

M̂t(ct)
(s0)− V

π
ct
t

M(ct)
(s0) ≤

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a) · (f̂t(ct, s, a)− f⋆(ct, s, a))

+H

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a) ·
∑
s′∈S

∣∣∣P̂ ct
t (s′|s, a)− P ct

⋆ (s′|s, a)
∣∣∣ ,

where qth(s, a) := qh(s, a|πct
t , P ct

⋆ ).

Proof. By the Value Difference Lemma, (Lemma 23), the following holds.
T∑

t=1

V
π
ct
t

M̂t(ct)
(s0)− V

π
ct
t

M(ct)
(s0)

=

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

(
f̂t(ct, sh, ah)− f⋆(ct, sh, ah)

)
+
∑
s′∈S

(
P̂ ct
t (s′|sth, ath)− P ct

⋆ (s′|sth, ath)
)
· V π

ct
t

M̂t(ct),h+1
(s′)
∣∣∣s0]

=

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a) · (f̂t(ct, s, a)− f⋆(ct, s, a))

+

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a) ·
∑
s′∈S

(P̂ ct
t (s′|s, a)− P ct

⋆ (s′|s, a)) · V π
ct
t

M̂t(ct),h+1
(s′)

≤
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a) · (f̂t(ct, s, a)− f⋆(ct, s, a))

+H

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a) ·
∑
s′∈S

∣∣∣P̂ ct
t (s′|s, a)− P ct

⋆ (s′|s, a)
∣∣∣ ,

as stated. ■

Lemma 30. The following holds for any parameter p1 > 0.
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a)(f̂t(ct, s, a)−f⋆(ct, s, a)) ≤
TH

2p1

+
p1
2

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

(
f̂t(ct, sh, ah)− f⋆(ct, sh, ah)

)2 ∣∣∣∣∣s0
]
.

Proof. Consider the following derivation, where qth(s, a) := qh(s, a|πct
t , P ct

⋆ ).
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a)
(
f̂t(ct, s, a)− f⋆(ct, s, a)

)

=

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

√
qth(s, a)

p1
·
√
p1 · qth(s, a)

(
f̂t(ct, s, a)− f⋆(ct, s, a)

)

≤1

2

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

(
qth(s, a)

p1
+ p1 · qth(s, a)

(
f̂t(ct, s, a)− f⋆(ct, s, a)

)2)
(Since for all a, b ∈ R, ab ≤ 1

2 (a
2 + b2) by AM-GM)

=
1

2p1

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a)︸ ︷︷ ︸
≤H

+
p1
2

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a)
(
f̂t(ct, s, a)− f⋆(ct, s, a)

)2

≤TH

2p1
+

p1
2

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a)
(
f̂t(ct, s, a)− f⋆(ct, s, a)

)2

23



=
TH

2p1
+

p1
2

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

(
f̂t(ct, sh, ah)− f⋆(ct, sh, ah)

)2 ∣∣∣∣∣s0
]
.

■

Lemma 31. The following holds for any parameter p2 > 0.

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a)
∑
s′∈S

|P̂ ct
t (s′|s, a)−P ct

⋆ (s′|s, a)| ≤ TH

2p2

+ 2p2

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]
.

Proof. Recall qth(s, a) := qh(s, a|πct
t , P ct

⋆ ) and consider the following derivation.

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a)
∑
s′∈S

∣∣∣P̂ ct
t (s′|s, a)− P ct

⋆ (s′|s, a)
∣∣∣

=

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

√
qth(s, a)

p2
·
√
p2 · qth(s, a)

(∑
s′∈S

∣∣∣P̂ ct
t (s′|s, a)− P ct

⋆ (s′|s, a)
∣∣∣)

≤1

2

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a)

p2
+ p2 · qth(s, a)

(∑
s′∈S

∣∣∣P̂ ct
t (s′|s, a)− P ct

⋆ (s′|s, a)
∣∣∣)2


(Since for all a, b ∈ R, ab ≤ 1
2 (a

2 + b2) by AM-GM)

=
1

2p2

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a)︸ ︷︷ ︸
≤H

+
p2
2

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a)

(∑
s′∈S

∣∣∣P̂ ct
t (s′|s, a)− P ct

⋆ (s′|s, a)
∣∣∣)2

≤TH

2p2
+

p2
2

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a)

(∑
s′∈S

∣∣∣P̂ ct
t (s′|s, a)− P ct

⋆ (s′|s, a)
∣∣∣)2

≤TH

2p2
+ 2p2

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a) ·D2
H(P̂ ct

t (·|s, a), P ct
⋆ (·|s, a)) (∥ · ∥21 ≤ 4D2

H )

=
TH

2p2
+ 2p2

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]
.

■

Corollary 32 (restatement of Lemma 12). The following holds for any two parameters p1, p2 > 0.

T∑
t=1

V
π
ct
t

M̂t(ct)
(s0)− V

π
ct
t

M(ct)
(s0) ≤

TH

2p1
+

p1
2

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

(
f̂t(ct, sh, ah)− f⋆(ct, sh, ah)

)2 ∣∣∣∣∣s0
]

+
TH

2p2
+ 2p2

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]
.

Proof. Consider the following derivation.

T∑
t=1

V
π
ct
t

M̂t(ct)
(s0)− V

π
ct
t

M(ct)
(s0)

≤
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a) · (f̂t(ct, s, a)− f⋆(ct, s, a)) (By Lemma 29)
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+H

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

qth(s, a) ·
∑
s′∈S

∣∣∣P̂ ct
t (s′|s, a)− P ct

⋆ (s′|s, a)
∣∣∣

≤TH

2p1
+

p1
2

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

(
f̂t(ct, sh, ah)− f⋆(ct, sh, ah)

)2 ∣∣∣∣∣s0
]

(By Lemma 30)

+
TH

2p2
+ 2p2

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]
. (By Lemma 31)

■

A.2.3 Regret Bound

The following theorem states our main result, which is a regret bound for Algorithm 1.

Theorem (restatement of Theorem 5). For any δ ∈ (0, 1), let γ =√
|S||A|T

31H3(2RTH(OF
sq)+RTH(OP

log)+18H log(2H/δ))
. Then, with probability at least 1 − δ it holds

that

RT (OMG-CMDP!) ≤ Õ

(
H2.5

√
T |S||A|

(
RTH(OF

sq) +RTH(OP
log) +H log δ−1

))
.

Proof. By Lemma 8, with probability at least 1− δ/2, it holds that
T∑

t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

(
f̂t(ct, sh, ah)− f⋆(ct, sh, ah)

)2 ∣∣∣∣∣s0
]
≤ 2RTH(OF

sq) + 16H log(2/δ).

By Lemma 9, with probability at least 1− δ/2, it holds that
T∑

t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]
≤ RTH(OP

log) + 2H log(2H/δ).

We prove a regret bound under those two good events.

RT (OMG-CMDP!)

=

T∑
t=1

V π
ct
⋆

M(ct)
(s0)− V

π
ct
t

M(ct)
(s0)

=

T∑
t=1

V π
ct
⋆

M(ct)
(s0)− V π

ct
⋆

M̂t(ct)
(s0) +

T∑
t=1

V π
ct
⋆

M̂t(ct)
(s0)− V

π
ct
t

M̂t(ct)
(s0) +

T∑
t=1

V
π
ct
t

M̂t(ct)
(s0)− V

π
ct
t

M(ct)
(s0)

≤
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

γ · q̂th(s, a)
(By Corollary 27, for γ̂ = γ.)

+ 2γ

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

(f̂t(ct, sh, ah)− f⋆(ct, sh, ah))
2
∣∣∣s0]

+ 29γH4
T∑

t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]

+
H|S||A|T

γ
−

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

γ · q̂th(s, a)
(By Lemma 28, applied for each t ∈ [T ])

+
TH

2p1
(By Corollary 32)

+
p1
2

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

(
f̂t(ct, sh, ah)− f⋆(ct, sh, ah)

)2 ∣∣∣∣∣s0
]
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+
TH

2p2
+ 2p2

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]

≤2γ
(
2 · RTH(OF

sq) + 16H log(2/δ)
)

(By the good events)

+ 29γH4
(
RTH(OP

log) + 2H log(2H/δ)
)

+
H|S||A|T

γ

+
TH

2p1
+

p1
2

(
2 · RTH(OF

sq) + 16H log(2/δ)
)

+
TH

2p2
+ 2p2

(
RTH(OP

log) + 2H log(2H/δ)
)

≤γ · 31H4
(
2 · RTH(OF

sq) +RTH(OP
log) + 18H log(2H/δ)

)
+

H|S||A|T
γ

+
TH

2p1
+

p1
2

(
2 · RTH(OF

sq) + 16H log(2/δ)
)

+
TH

2p2
+ 2p2

(
RTH(OP

log) + 2H log(2H/δ)
)

=2H2.5

√
31T |S||A|

(
2 · RTH(OF

sq) +RTH(OP
log) + 18H log(2H/δ)

)
(For γ =

√
|S||A|T

31H3(2·RTH(OF
sq)+RTH(OP

log)+18H log(2H/δ))
)

+
√
TH

(
2 · RTH(OF

sq) + 16H log(2/δ)
)

(For p1 =
√

TH
2RTH(OF

sq)+16H log(2/δ)
)

+ 2

√
TH

(
RTH(OP

log) + 2H log(2H/δ)
)

(For p2 =
√

TH

4(RTH(OP
log)+2H log(2H/δ))

)

=Õ

(
H2.5

√
T |S||A|

(
RTH(OF

sq) +RTH(OP
log) +H log δ−1

))
.

Since the good events hold with probability at least 1− δ, so is the regret bound above. ■

B Approximated Solution

The objective of optimization problem in Equation (1) is defined as a sum of a self-concordant
barrier function (the log function) and a linear function. Hence, the optimal solution for the prob-
lem can be approximated efficiently using interior-point convex optimization algorithms such as
Newton’s Method. These algorithms return an ϵ-approximated solution and has running time of
O(poly(d) log ϵ−1), where d is the dimension of the problem [Nesterov and Nemirovskii, 1994].

Suppose that in each round t we derive the policy πct
t using, instead of the optimal solution, an

occupancy measure q̂t that yields an ϵ-approximation to the objective of the optimization problem in
Equation (1). The following analysis shows that for ϵ = 1

16γT , we obtain a similar regret guarantee.
In addition, by our choice of γ, the running time complexity of the optimization algorithm is
poly(|S|, |A|, H, log(T )).

B.1 Regret Analysis

The following lemma bounds the difference between the optimal and the approximated iterates.

Lemma 33 (iterates difference, restatement of Lemma 13). For every round t ∈ [T ] let

L̂t(q; ct) =

H−1∑
h=0

∑
s∈S

∑
a∈A

qh(s, a) · f̂t(ct, s, a) +
1

γ

H−1∑
h=0

∑
s∈S

∑
a∈A

log(qh(s, a)).
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denote the objective of the optimization problem in Equation (1). Let q̃ ∈ argmaxq∈µ(P̂
ct
t ) L̂t(q; ct).

Let q ∈ µ(P̂ ct
t ) and suppose that L̂t(q̃; ct)− L̂t(q; ct) ≤ ϵ. Then,∑

s∈S

∑
a∈A

H−1∑
h=0

(
qh(s, a)

q̃h(s, a)
− 1

)2

≤ 4ϵγ.

Proof. Recall the Bregman divergence with respect to a θ-self-concordant barrier R as follows:

BR(y||x) = R(y)−R(x)−∇R(x) · (y − x).

We have the following lower bound on the Bregman divergence, where ∥x− y∥2x = (x −
y)⊤∇2R(x)(x− y).

BR(y||x) ≥ ρ (∥y − x∥x) for ρ(z) = z − log(1 + z).

We have that ρ(z) ≥ z2/4 for all z ∈ [0, 1], and ∥y − x∥x ≤ 1. Thus,

BR(y||x) ≥ ρ (∥y − x∥x) ≥
1

4
∥y − x∥2x.

Let R(q) := − 1
γ

∑H−1
h=0

∑
s∈S

∑
a∈A log(qh(s, a)).

Recall that adding a linear function to the barrier function does not change the Bregman divergence.
Since L̂ is a result of adding a linear function to R we get that

BR(q||q̃) = B−L̂(q||q̃) = −L̂t(q; ct) + L̂t(q̃; ct) +∇L̂t(q̃; ct) · (q − q̃) ≤ ϵ+∇L̂t(q̃; ct) · (q − q̃) ≤ ϵ,

where the last step is by the first order optimality condition.
Furthermore, the Hessian is a diagonal matrix ∇2R, where ∇2R(q)(s,a,h),(s,a,h) =

1
γq2h(s,a)

. With
us have that

∥q − q̃∥2∇2R(q̃) =
∑
s∈S

∑
a∈A

H−1∑
h=0

(qh(s, a)− q̃h(s, a))
2

γq̃2h(s, a)
=

1

γ

∑
s∈S

∑
a∈A

H−1∑
h=0

(
qh(s, a)

q̃h(s, a)
− 1

)2

.

we obtain that ∑
s∈S

∑
a∈A

H−1∑
h=0

(
qh(s, a)

q̃h(s, a)
− 1

)2

≤ 4ϵγ. ■

We use the above result to derive a bound on the value difference between π⋆ and πt on the approxi-
mated model.

Lemma 34 (restatement of Corollary 14). For every round t ∈ [T ] and a context ct ∈ C, let q̃t be
the optimal solution to the maximization problem in Equation (1). Suppose that q̂th ∈ µ(P̂ ct

t ) satisfies
L̂t(q̂

t; ct)− L̂t(q̃
t; ct) ≤ ϵ, and ϵγ ≤ 1/16. Then we have that

V π
ct
⋆

M̂t(ct)
(s0)− V

π
ct
t

M̂t(ct)
(s0) ≤

H|S||A|
γ

−
H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

2γ · q̂th(s, a)
+ 2
√

ϵγH,

where q̂th(s, a) := qh(s, a|πct
t , P̂ ct

t ), and q̂t,⋆h (s, a) := qh(s, a|πct
⋆ , P̂ ct

t ), M̂t(c) :=

(S,A, P̂ c
t , f̂t(c, ·, ·), s0, H) is the estimated CMDP at round t, πct

t is the policy induced by q̂t, and
π⋆ = (πc

⋆)c∈C is the optimal context-dependent policy of the true CMDP.

Proof. For every round t ∈ [T ] let L̂t(q; ct) denote the objective of the maximization problem
in Equation (1) in round t, i.e.,

L̂t(q; ct) =

H−1∑
h=0

∑
s∈S

∑
a∈A

qh(s, a) · f̂t(ct, s, a) +
1

γ

H−1∑
h=0

∑
s∈S

∑
a∈A

log(qh(s, a)).

Thus, the gradient in each entry (h, s, a) ∈ [H]× S ×A is

(∇L̂t(q; ct))h,s,a = f̂t(ct, s, a) +
1

γ · qh(s, a)
.
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Let π⋆ = (πc
⋆)c∈C denote an optimal context-dependent policy for the true CMDP. For every round t,

the occupancy measures q̂t,⋆h (s, a) := qh(s, a|πct
⋆ , P̂ ct

t ) is a feasible solution (since q̂t,⋆ ∈ µ(P̂ ct
t )).

Since q̃t is the optimal solution, the following holds by first order optimality conditions.
H−1∑
h=0

∑
s∈S

∑
a∈A

(
f̂t(ct, s, a) +

1

γ · q̃th(s, a)

)(
q̂t,⋆h (s, a)− q̃th(s, a)

)
≤ 0.

Thus,
H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a) ·
(
f̂t(ct, s, a) +

1

γ · q̃th(s, a)

)
−

H−1∑
h=0

∑
s∈S

∑
a∈A

q̃th(s, a) · f̂t(ct, s, a)−
H|S||A|

γ
≤ 0

which implies that
H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a) · f̂t(ct, s, a)−
H−1∑
h=0

∑
s∈S

∑
a∈A

q̃th(s, a) · f̂t(ct, s, a) ≤
H|S||A|

γ
−

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

γ · q̃th(s, a)
.

By definition we have for every round t,

V π
ct
⋆

M̂t(ct)
(s0)− V

π̃
ct
t

M̂t(ct)
(s0) =

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a) · f̂t(ct, s, a)−
H−1∑
h=0

∑
s∈S

∑
a∈A

q̃th(s, a) · f̂t(ct, s, a)

≤H|S||A|
γ

−
H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

γ · q̃th(s, a)

≤H|S||A|
γ

− (1− 2
√
ϵγ)

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

γ · q̂th(s, a)
(By Lemma 33)

≤H|S||A|
γ

− 1

2γ

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

q̂th(s, a)
. (For 2

√
ϵγ ≤ 1

2 )

In addition we have that

V
π̃
ct
t

M̂t(ct)
(s0)− V

π
ct
t

M̂t(ct)
(s0) =

H−1∑
h=0

∑
s∈S

∑
a∈A

(q̃th(s, a)− q̂th(s, a)) · f̂t(ct, s, a)

≤

√√√√H−1∑
h=0

∑
s∈S

∑
a∈A

(q̃th(s, a)− q̂th(s, a))
2

(q̃th(s, a))
2

√√√√H−1∑
h=0

∑
s∈S

∑
a∈A

q̃th(s, a)
2f̂t(ct, s, a)2

(By Cauchy–Schwarz inequality)

≤ 2
√
ϵγ

√√√√H−1∑
h=0

∑
s∈S

∑
a∈A

q̃th(s, a)
2f̂t(ct, s, a)2 (Lemma 33)

≤ 2
√
ϵγ

√√√√H−1∑
h=0

∑
s∈S

∑
a∈A

q̃th(s, a)f̂t(ct, s, a)
2 (q̃2 ≤ q̃)

≤ 2
√

ϵγH.

Combining both bounds concludes the proof.

■

We are now ready to derive our regret bound, by combining the above lemma with our previous value
bounds. The proof is almost identical to the proof of Theorem 5.

Theorem (restatement of Theorem 15). For any δ ∈ (0, 1) let γ =√
|S||A|T

62H3(2RTH(OF
sq)+RTH(OP

log)+18H log(2H/δ))
. In addition, suppose that at each round t we
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have an ϵ-approximation to the optimal solution of Equation (1) for ϵ = 1
16γT . Then, with probability

at least 1− δ,

RT (Approximated OMG-CMDP!) ≤ Õ

(
H2.5

√
T |S||A|

(
RTH(OF

sq) +RTH(OP
log) +H log(δ−1)

))
.

Proof. By Lemma 8, with probability at least 1− δ/2, it holds that

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

(
f̂t(ct, sh, ah)− f⋆(ct, sh, ah)

)2 ∣∣∣∣∣s0
]
≤ 2RTH(OF

sq) + 16H log(2/δ).

By Lemma 9, with probability at least 1− δ/2, it holds that

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]
≤ RTH(OP

log) + 2H log(2H/δ).

We prove a regret bound under those two good events.

RT (Approximated OMG-CMDP!)

=

T∑
t=1

V π
ct
⋆

M(ct)
(s0)− V

π
ct
t

M(ct)
(s0)

=

T∑
t=1

V π
ct
⋆

M(ct)
(s0)− V π

ct
⋆

M̂t(ct)
(s0) +

T∑
t=1

V π
ct
⋆

M̂t(ct)
(s0)− V

π
ct
t

M̂t(ct)
(s0) +

T∑
t=1

V
π
ct
t

M̂t(ct)
(s0)− V

π
ct
t

M(ct)
(s0)

≤
T∑

t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

2γ · q̂th(s, a)
(By Corollary 27, for γ̂ = 2γ.)

+ 4γ

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

(f̂t(ct, sh, ah)− f⋆(ct, sh, ah))
2
∣∣∣s0]

+ 58γH4
T∑

t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]

+
TH|S||A|

γ
−

T∑
t=1

H−1∑
h=0

∑
s∈S

∑
a∈A

q̂t,⋆h (s, a)

2γ · q̂th(s, a)
+ 2T

√
ϵγH (By Lemma 34)

+
TH

2p1
(By Corollary 32)

+
p1
2

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

(
f̂t(ct, sh, ah)− f⋆(ct, sh, ah)

)2 ∣∣∣∣∣s0
]

+
TH

2p2
+ 2p2

T∑
t=1

E
π
ct
t ,P

ct
⋆

[
H−1∑
h=0

D2
H(P ct

⋆ (·|sh, ah), P̂ ct
t (·|sh, ah))

∣∣∣∣∣s0
]

≤4γ
(
2 · RTH(OF

sq) + 16H log(2/δ)
)

(By the good events)

+ 58γH4
(
RTH(OP

log) + 2H log(2H/δ)
)

+
H|S||A|T

γ
+ 2T

√
ϵγH

+
TH

2p1
+

p1
2

(
2 · RTH(OF

sq) + 16H log(2/δ)
)

+
TH

2p2
+ 2p2

(
RTH(OP

log) + 2H log(2H/δ)
)

≤γ · 62H4
(
2 · RTH(OF

sq) +RTH(OP
log) + 18H log(2H/δ)

)
+

H|S||A|T
γ
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+ 2T
√
ϵγH

+
TH

2p1
+

p1
2

(
2 · RTH(OF

sq) + 16H log(2/δ)
)

+
TH

2p2
+ 2p2

(
RTH(OP

log) + 2H log(2H/δ)
)

=2H2.5

√
62T |S||A|

(
2 · RTH(OF

sq) +RTH(OP
log) + 18H log(2H/δ)

)
(For γ =

√
|S||A|T

62H3(2·RTH(OF
sq)+RTH(OP

log)+18H log(2H/δ))
)

+ 2T 1.25ϵ0.5

 |S||A|

62H
(
2 · RTH(OF

sq) +RTH(OP
log) + 18H log(2H/δ)

)
1/4

+
√

TH
(
2 · RTH(OF

sq) + 16H log(2/δ)
)

(For p1 =
√

TH
2·RTH(OF

sq)+16H log(2/δ)
)

+ 2

√
TH

(
RTH(OP

log) + 2H log(2H/δ)
)

(For p2 =
√

TH

4(RTH(OP
log)+2H log(2H/δ))

)

=Õ

(
H2.5

√
T |S||A|

(
RTH(OF

sq) +RTH(OP
log) +H log δ−1

))
. (For ϵ = 1

16γT )

Since the good events hold with probability at least 1− δ, so is the regret bound above. ■
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