
Identifying & Interactively Refining Ambiguous
User Goals for Data Visualization Code Generation

Anonymous ACL submission

Abstract

Establishing shared goals is a fundamental step001
in human-AI communication. However, am-002
biguities can lead to outputs that seem correct003
but fail to reflect the speaker’s intent. In this004
paper, we explore this issue with a focus on005
the data visualization domain, where ambigui-006
ties in natural language impact the generation007
of code that visualizes data. The availability008
of multiple views on the contextual (e.g. the009
intended plot and the code rendering the plot)010
allows for a unique and comprehensive analysis011
of diverse ambiguity types. We develop a taxon-012
omy of types of ambiguity that arise in this task013
and propose metrics to quantify them. Using014
Matplotlib problems from the DS-1000 dataset,015
we demonstrate that our ambiguity metrics bet-016
ter correlate with human annotations than un-017
certainty baselines. Our work also explores018
how multi-turn dialogue can reduce ambiguity,019
and therefore, improve code accuracy by better020
matching user goals. We evaluate three prag-021
matic models to inform our dialogue strategies:022
Gricean Cooperativity, Discourse Representa-023
tion Theory, and Questions under Discussion.024
A simulated user study reveals how pragmatic025
dialogues reduce ambiguity and enhance code026
accuracy, highlighting the value of multi-turn027
exchanges in code generation.028

1 Introduction029

In human-human interactions, ambiguity resolution030

has been explored through various well-established031

frameworks in linguistic pragmatics, such as Ra-032

tional Speech Act (RSA)(Frank and Goodman,033

2012), Discourse Representation Theory (DRT)034

(Lascarides and Asher, 2007; Kamp et al., 2010),035

and Questions Under Discussion (QUD) (Roberts,036

2012). Further, as Clark (1996) argues, success-037

ful interactions depend on establishing common038

ground by iterative alignment of assumptions and039

resolving ambiguities on the way to common040

Figure 1: This figure summarizes the contributions of
this paper. We formalize and identify ambiguity in
data visualization code, then use pragmatics-inspired
dialogue strategies to interactively resolve ambiguities
in user intents. To this end, we present a multimodal
taxonomy of ambiguity categories, and new metrics
informed by this taxonomy.

ground. On the other hand, human-AI collabo- 041

ration still often fails to provide a human-like pair- 042

programming experience (Williams, 2001; Sarkar 043

et al., 2022), and we claim that a key challenge 044

here is ambiguity resolution—as users’ natural lan- 045

guage descriptions of intent often map to multi- 046

ple valid code implementations, requiring iterative 047

clarifications. In this paper, we propose identify- 048

ing (§3) and then resolving ambiguities (§4) in a 049

dyadic setting of human-LLM interactions using 050

pragmatics-inspired, persona-based prompting. 051

To achieve this goal, we frame the natural lan- 052

guage to code problem as a two-player cooperative 053

dialogue. A director (typically the user) specifies 054

their intent in natural language and a coder (typi- 055

cally an automated coding assistant) generates code 056

with the functionality the director had in mind. A 057

goal for this pair-programming setting is to have a 058

1

coder agent that can interact with the director agent059

to resolve ambiguity and generate code. While, in060

principle, the coder’s uncertainty in this task can061

come from many sources, focus is typically placed062

on the inherent model limitations of the coder agent063

caused by insufficient knowledge or training. In064

contrast, this work focuses on the uncertainty of the065

coder about the user’s goals—i.e., the ambiguity066

of director’s requests. We focus on how the di-067

rector can resolve the coder’s uncertainty through068

clear communication about intended goals, and069

how coders can clarify goals through conversation.070

Based on our definition of ambiguity, we hy-071

pothesize that ambiguity reduction should lead to072

improved code accuracy. To study this, we propose073

a taxonomy that more precisely codifies what is074

meant by ambiguity. Our taxonomy includes cate-075

gories of ambiguity, and examples specific to the076

plotting domain — where the presence of multi-077

modal contexts allows us to explore more diverse078

sources of natural language ambiguity (e.g.. We079

propose a number of metrics based on our taxon-080

omy that allow us to dynamically (and automati-081

cally) quantify natural language ambiguity in text-082

to-code problems. We use our definition of am-083

biguity to study how multi-step communication084

with the director can serve to reduce ambiguity.085

Guided by theories of pragmatics we simulate di-086

alogue between two machine agents. This shows087

how (pragmatic) dialogues can help coders resolve088

ambiguity, and ultimately, improve task success.089

The contributions of this paper are as follows:090

1. We propose a taxonomy to codify ambiguity091

in multimodal text-to-code problems;092

2. We propose a number of potential metrics to093

measure these defined notions of ambiguity,094

and empirically test which best represents dif-095

ferent aspects of ambiguity;096

3. We propose strategies, inspired by theories097

of discourse, for incorporating dialogue in a098

coding agent to reduce ambiguity and increase099

task success.100

From our analyses, we find that our metrics can101

predict ambiguity categories, and pragmatic dia-102

logue increases task success (measured by correct-103

ness of the generated code) while targeting the104

identified ambiguities. We make our code, and105

annotations publicly available for the camera-ready106

version of this paper.107

2 Related Work 108

Code Generation Large language models of 109

code have shown strong performance on natural 110

language to code generation (Chen et al., 2021; 111

Rozière et al., 2024; Lozhkov et al., 2024, inter 112

alia). However, work investigating how users in- 113

teract with code generation models has found that 114

impressive benchmark performance does not al- 115

ways translate to improved task outcomes for users 116

(Sarkar et al., 2022; Vaithilingam et al., 2022; Ma 117

et al., 2023; Mozannar et al., 2024; Nguyen et al., 118

2024). Some of this gap can be attributed to the 119

ambiguity inherent to human interactions with code 120

models: Sarkar et al. (2022) observe that user ut- 121

terances are often underspecified and ambiguous, 122

forcing users to repeatedly refine their prompts and 123

adapt their thought processes to match the LLM. 124

Likewise, Mozannar et al. (2024) observe that users 125

often provide fuzzy instructions, motivating a clari- 126

fication feature. Underspecified instructions are 127

also present in real-world software engineering 128

benchmarks such as SWE-bench (Jimenez et al., 129

2024), as found during the construction of SWE- 130

bench Verified.1 131

Recent work has studied ambiguity resolution 132

for code LLMs via clarification questions. Mu 133

et al. (2024) introduce ClarifyGPT, a pipeline for 134

code generation with selective clarification. Li et al. 135

(2023) studies clarification for open-domain code 136

generation in a scaffolded setting. Also, uncer- 137

tainty estimation and explainability literature have 138

been instrumental for quantifying ambiguity in the 139

works by Liu et al. (2024) and Lin et al. (2024). 140

Further, explorations of ambiguity in SQL genera- 141

tion (Bhaskar et al., 2023; Wang et al., 2023) and 142

the role of ambiguity in requirements engineering 143

(Kamsties, 2005; Bano) have been recently studied. 144

Ambiguity in NLP Tasks Ambiguity has been 145

studied across a wide array of NLP tasks, including 146

coreference resolution (Poesio and Artstein, 2005), 147

(visual) question answering (Min et al., 2020; Kim 148

et al., 2023; Papakostas and Papadopoulou, 2023; 149

Park et al., 2024) and machine translation (Iyer 150

et al., 2023; Schouten et al., 2023; Niwa and Iso, 151

2024; Madureira et al., 2024). Current language 152

models generally struggle when applied directly to 153

tasks with ambiguity (Liu et al., 2023; Zhang et al., 154

2024; Wildenburg et al., 2024); by default, they do 155

1https://openai.com/index/
introducing-swe-bench-verified/

2

https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/introducing-swe-bench-verified/

not recognize ambiguity in instructions, nor do they156

seek clarification or engage in proactive dialogue to157

resolve ambiguity (Deng et al., 2023). However, re-158

cent sampling-based methods have shown promise159

in detecting ambiguity (Kadavath et al., 2022; Kuhn160

et al., 2023b; Cole et al., 2023; Lin et al., 2024),161

while prompting and self-improvement methods162

have proven effective for clarifying ambiguity with163

LLMs (Krasheninnikov et al., 2022; Kuhn et al.,164

2023a; Andukuri et al., 2024).165

Pragmatics One approach to resolving ambigu-166

ity is to assume the speaker is a rational agent play-167

ing a cooperative game (Grice, 1975) where they168

are choosing an utterance that gives the code gen-169

eration model the best chance of recovering the170

program they have in mind. This form of inference171

has been formalized in the Rational Speech Acts172

(RSA) framework (Frank and Goodman, 2012).173

RSA has been productively applied to program-174

ming tasks where a user specifies their intent using175

examples (Pu et al., 2020, 2023; Vaduguru et al.,176

2024). Similar approaches to disambiguation also177

been applied to code generation from natural lan-178

guage using large language models (Zhang et al.,179

2023). Other pragmatic theories of discourse work180

include RSA for referential communication in a181

game of color (Monroe et al., 2017; McMahan and182

Stone, 2020), question under discussion (Ko et al.,183

2023), and discourse theories as applied to dialogue184

settings (Asher et al., 2016; Chi and Rudnicky,185

2022; Atwell et al., 2021, 2024, 2022). The frame-186

works we use to implement our dialogue agents are187

inspired by these in this work.188

3 Defining and Identifying Ambiguity189

We define ambiguity to arrive at a taxonomy that190

helps us identify it automatically.191

Director-Coder Setting Initially, we formalize192

the setting described in § 1. The director has a193

target intent I – a random variable representing the194

goal image (or corresponding code)2 – which the195

director communicates through a natural language196

utterance U(I). The utterance U is also a random197

variable. The coder interprets this utterance to198

directly generate code (and corresponding image)199

Î ∼ C(U), where C(U) is a code distribution con-200

ditional to the utterance U . We assume there is201

some evaluation method that produces a random er-202

2We do not differentiate between these, since each code
corresponds to an image.

ror E(I,C(U)) to quantify goal fulfillment in this 203

context. For example, in later experiments, we use 204

k repeated samples Î ∼ C(U) and check the accu- 205

racy of the code by counting how many pass unit 206

tests (pass@k). In this definition, we will assume 207

that the minimization of the error, E, is preferable. 208

3.1 Ambiguity in Plotting Code 209

Definition We define ambiguity from the perspec- 210

tive of the coder. Intuitively, we frame ambiguity 211

as any portion of uncertainty held by the coder that 212

could be reduced by changing the natural language 213

utterance U . More specifically, interpreting E as a 214

form of error, we define ambiguity as the quantity: 215

E(I,C(U))− E(I,C(U∗))

where U∗ = argminU ′∈Υ E(I,C(U ′)),
(1) 216

and Υ is a constraining set to ensure director ut- 217

terances are “reasonable.” For instance, Υ could 218

be the set of all finite, grammatically correct utter- 219

ances in the English language. 220

Interpretation In a typical machine learning 221

problem, a model h is picked from some constrain- 222

ing set model class H, selecting this model to re- 223

duce error as much as possible. For instance, we 224

can select a linear model h from the set H of all 225

linear models parameterized by elements of Rd. 226

Meanwhile, there is also a best model h∗ that mini- 227

mizes the error for our problem.3 This minimum 228

error (or uncertainty) is simply irreducible without 229

changing the problem definition. Here, we adapt 230

this to define ambiguity. The term E(I,C(U∗)) 231

represents the minimum uncertainty, treating the 232

utterance itself U as the model h we wish to pick, 233

within the aforementioned problem. In turn, am- 234

biguity is formally defined as the excess error (or 235

uncertainty) of the coder that could have been re- 236

duced through improved communication by the di- 237

rector. This quantity formalizes the process of 238

disambiguation – studied throughout this paper – 239

and what it means to disambiguate for a coder with 240

fixed knowledge. 241

Taxonomy Next, we use this definition to arrive 242

at a taxonomy of ambiguities in the plotting domain. 243

We observe that different input modalities to LLMs 244

inherently convey different types of ambiguity (see 245

Figure 2), as these modalities serve different user 246

3The best model h∗ is called the Bayes optimal model
and the error of this model is the Bayes error or the aleatoric
uncertainty (Hüllermeier and Waegeman, 2021).

3

Figure 2: This figure depicts the causal graph of a multi-
modal coding task. I: Image, C: ground truth code used
to generate I, T: unit tests, P: director’s prompt, and A:
coder’s answer. When ambiguity is prevalent, then the
edges of this graph are cut, and the coder’s answer relies
on a non-descriptive prompt.

intents. For instance, an image in the “mind’s eye”247

of the director corresponds to an ideal end product,248

but the director may not know how this translates to249

precise code or the best ways to communicate their250

ideal. This type of cross-modality dependency has251

been studied by the discourse coherence literature252

(Alikhani et al., 2020; Inan and Alikhani, 2024).253

In order to represent these cross-modal dependen-254

cies, we need a taxonomy that captures the different255

types and sources of ambiguity, which we present256

next. These categories draw inspiration from cog-257

nitive science, linguistics, and discourse literatures,258

as well as our definition.259

• Semantic ambiguity: Certain words and their260

meanings can have multiple interpretations.261

Thus, misinterpretation of U by the coder may262

lead to errors that would be prevented with a263

better choice of words (i.e., the optimal utter-264

ance U∗), implying higher ambiguity (Eq. 1).265

This category is based on semantic ambiguity266

in cognitive science literature as explored by267

Zempleni et al. (2007); Degani and Tokowicz268

(2010).269

e.g. “regular matplotlib style plot”, “grouped270

histogram”, “color plot”271

• Presupposition: Instructions may presuppose272

default parameter values without explicitly273

mentioning their use, and disagreement in274

coder and director presuppositions can also be275

a source of error caused by the coder’s inter-276

pretation of U , leading to increased ambiguity.277

This category is based on the presuppositional278

ambiguity as explored by Zuber (1973); Atlas279

(1977); Kempson (1979); Jaszczolt (2002).280

e.g. knowing the default parameters of the281

scatter() function, or original instructions282

ask to “keep the distribution plot in blue”,283

but no explicit parameter for “blue” is made284

because the default is known to be blue.285

• Underspecification: Some non-default pa-286

rameter values or functions are either not men-287

tioned at all, or partially described in the in- 288

structions. By leaving out these details, a 289

coder’s own interpretation of U can be counter 290

to the director’s goals, once again increasing 291

the error compared to U∗ and the ambiguity as 292

defined previously. This category is based on 293

the relationship between underspecification 294

and ambiguity as explored by van Deemter 295

and Peters (1996). Some context-specific sub- 296

categories for scientific plotting can include, 297
– Color parameter, e.g. “solid red”, alpha value 298

is set but not mentioned 299
– Distance parameter, e.g. “enough” space be- 300

tween axes 301
– Shape parameter, e.g. marker shape is set even 302

though not mentioned 303
– Size parameter, e.g. marker size is set even 304

though not mentioned 305
– Location parameter, e.g. legend location is set 306

even though not mentioned 307
– Label parameter, e.g. title is set to be “xxx” 308

even though not mentioned 309
– Line parameter, e.g. “full line”, “dashed line” 310
– Function, e.g. to plot a heatmap, using either 311

imshow() or pcolor(). 312

Annotating for Ambiguity We carry out an an- 313

notation and do a preliminary analysis of the dis- 314

tribution of these categories of ambiguity in the 315

DS1000 dataset (Lai et al., 2022), specifically with 316

questions from plotting libraries (e.g., Matplotlib, 317

Seaborn) (Hunter, 2007). This dataset, featuring 318

natural language prompts from StackOverflow with 319

human-written tests and plots, inherently contains 320

potential human-introduced ambiguities. We, the 321

authors, who have prior experience with ambigu- 322

ity in dialogue, annotated 155 coding instructions 323

from the DS1000 dataset. Despite the DS1000 324

dataset’s claim that the problems are written to be 325

unambiguous, we still find that 57% of the plotting 326

questions fall under one or more of the categories 327

we have defined above. Interannotator agreement 328

on 25 sampled questions, measured by Cohen’s 329

Kappa (κ = 0.587), indicates moderate to substan- 330

tial agreement, as anticipated for this subjective 331

meta-labeling task (Fleiss and Cohen, 1973; Baner- 332

jee et al., 1999; Viera et al., 2005). Table 1 shows 333

the distribution of different categories. 334

3.2 Automatic Metrics for Ambiguity 335

In addition to the human annotations, we propose 336

automatic ways of measuring ambiguity based on 337

our formalizations and taxonomy (§3.1), and com- 338

pare them to traditionally employed uncertainty- 339

based metrics. 340

4

Figure 3: This figure shows the dialogue flow for a pragmatic director, where the initial intent of the dialogue is
given on the left, and the different responses generated using separate personas are given in the middle.

Ambiguity Category Distribution

semantic ambiguity 23.8%
presupposition 11.9%

underspecification 73.8%

Table 1: This table shows the ambiguity category distri-
bution within the ambiguous prompts (57%) of the 155
plotting questions in the DS1000 dataset based on our
annotations.

Sampling Diversity (SD) A common approach341

(Cole et al., 2023) to measuring uncertainty about a342

given utterance U is to count the number of distinct343

programs that satisfy the constraints specified in the344

prompt. If the coder’s solution distribution C(U)345

assigns non-zero probability to many codes (i.e.,346

it generates many different codes upon sampling),347

then these codes all differ in apsects unconstrained348

by the prompt U from the coder’s perspective. This349

indicates the coder is uncertain about the intent350

of U . The more distinct programs there are for351

a given sample size, the higher the coder’s uncer-352

tainty about the utterance is. This method serves353

as a baseline for ambiguity measurement; while354

it does capture uncertainty about the utterance U ,355

it does not capture information about the optimal356

prompt U∗ in any way. This is an important dis-357

tinction between typical notions of uncertainty and358

our proposed definition of ambiguity. We give the359

implementation details in Appendix §D, where we360

compare Abstract Syntax Trees (AST) of both pro-361

grams using edit distance.362

Repeated Parameter Counting (RPC) Another363

way to quantify ambiguity in an utterance U is364

to focus on identifying function calls/parameters365

that appear across the set of proposed programs. 366

This is conceptually similar to sampling diversity, 367

which compares distinct solutions directly. We hy- 368

pothesize function calls and parameters may better 369

capture presuppositional ambiguity within our tax- 370

onomy since this ambiguity is directly related to 371

the default parameter settings within a code library. 372

More specifically, our proposed RPC metric mea- 373

sures ambiguity by counting which function calls 374

and parameters remain constant across the code so- 375

lutions. The fewer elements that must remain fixed, 376

the higher the ambiguity. Similar to sample diver- 377

sity, this metric does not explicitly consider the 378

optimal prompt U∗. We expect it to perform well 379

for presupposition, because it focuses on aspects of 380

code that are often presupposed. 381

Optimal Result Gap (ORG) Building on our 382

definition in Eq. 1, we propose a subfamily of met- 383

rics that attempt to directly compute this mathemat- 384

ical notion of ambiguity. While the coder’s realized 385

uncertainty E(I,C(U)) is easy to compute by us- 386

ing Pass@k scores for a given utterance U , the min- 387

imum uncertainty E(I,C(U∗)) is more difficult 388

because we cannot be sure of the optimal utterance 389

U∗. We propose to approximate U∗ by using one 390

of three oracle information sources: ground-truth 391

code for the plot, ground-truth image for the plot, 392

and unit tests for the “Pass” determination. We pro- 393

vide these oracle sources to a large language model 394

and ask it to provide a prompt that enable itself to 395

generate the code, create the image with code, or 396

generate code that would pass the tests. While this 397

approach provides an estimate, we acknowledge 398

its limitations: the model-generated re-prompt may 399

not fully capture an ideal, ambiguity-free prompt, 400

5

making it an imperfect but practical approximation401

of the optimal formulation. At the same time, we402

expect it to improve over the previous two metrics403

because it does consider the optimal prompt U∗.404

Self Verification This is a traditional method of405

uncertainty estimation where a model is asked to406

return its uncertainty about a solution when pro-407

vided a problem statement. This baseline uncer-408

tainty methodology, like sampling diversity and409

RPC, does not explicitly consider the optimal ut-410

terance U∗, which is an important aspect of our411

definition. We use a prompt similar to the ones412

used by Cole et al. (2023) and Sicilia et al. (2024).413

LLM-Based Ambiguity Rating (LAR) On the414

other hand, we can extend self-verification to bet-415

ter consider our definitions of ambiguity. Instead416

of querying the model for its uncertainty, we can417

prompt it to rate the ambiguity of U on a scale of418

1 to 10, providing the model with our ambiguity419

taxonomy as a resource in the prompt. This en-420

courages the rating aligning with our pre-defined421

ambiguity categories, rather than being an arbitrary422

self-assessment. Since these categories are also423

based on our initial mathematical definition of am-424

biguity, it also serves as heuristic approximation425

of Eq. 1. Different from baseline methods focused426

on uncertainty, it implicitly considers the optimal427

prompt U∗ through the characterizations of opti-428

mality encoded in our taxonomy.429

4 Disambiguation with Coding Dialogues430

After formalizing ways of identifying ambiguity,431

we now propose that ambiguity can be resolved432

using dialogues, and we formalize a dialogue setup433

with persona-based generation components.434

4.1 Basic Dialogue Setup435

We propose resolving ambiguity in natural lan-436

guage specifications of intent with multi-turn di-437

alogue. Each coding task is defined by the natu-438

ral language intent I (see Figure 3) and the initial439

request U1, as before. Meanwhile, our proposal440

extends the previous setting to allow for dialogue:441

1. Director presents instruction U1(I).442

2. Coder responds with an utterance U2(U1).443

3. Director continues Ui(U:i−1, I), using access444

to target image and utterance history.445

4. Coder continues Ui+1(U:i−1), using access to446

utterance history only.447

5. Repeat steps 3 and 4 based on the number of448

turns controlled as a hyperparameter.449

6. Session always terminates with coder provid- 450

ing their final code Î(U:). 451

In this setting, coder utterances can include di- 452

alogue acts like clarification questions, e.g., “C: 453

what location should I put the legend,” which 454

evokes a specific response, “D: The top left cor- 455

ner” or can be more general declarations that start 456

a sub-topic of conversation “C: I’ll plan for the de- 457

fault legend arguments. D: Hmm. Keep it on the 458

top left. What else can you change?” 459

4.2 A Pragmatic Dialogue Setup 460

We hypothesize ambiguity reduction in our pro- 461

posed dialogue setting can be improved by encour- 462

aging LLM-based coders to consider pragmatics 463

in their dialogue strategy. We operationalize this 464

by using persona prompting and in-context learn- 465

ing as described in Wang et al. (2024); Schulhoff 466

et al. (2024), and Zheng et al. (2024). Next, we 467

describe the personas we use to generate responses. 468

These are based on three theories of discourse: co- 469

operative, discoursive, and inquisitive. For the im- 470

plementation details of this setup, please refer to 471

Appendix A. 472

4.2.1 Dialogue Strategies 473

Cooperative The first framework we use is based 474

on Grice’s maxims of cooperative dialogue part- 475

ners (Grice, 1975; Horn, 1984; Levinson, 2000; 476

McMahan and Stone, 2020). Here, the coder is a 477

pragmatic agent that recursively engages in inter- 478

action and models the director’s state of mind to 479

respond to an utterance. We use the Gricean co- 480

operativity principle to design the prompt for this 481

dialogue strategy, given in Appendix B. 482

Discoursive The second pragmatics framework 483

is based on Discourse theories. Here, the coder is 484

not necessarily responding strategically. Still, it’s 485

utterance is always related to the history of the con- 486

versation and the coding context through a set of 487

coherence relations. Hence, when a coder produces 488

an utterance, it relates to the set of solutions it has 489

sampled as well as what the director has said in 490

the previous turn. This definition of discourse is 491

mostly similar to SDRT-like dialogue-based rela- 492

tion categories (Ko et al., 2023; Asher et al., 2016; 493

Fu, 2022; Atwell et al., 2024; Alikhani et al., 2023). 494

We provide the persona prompt in Appendix B. 495

Inquisitive The third pragmatics framework is 496

related to discourse theories, but focuses more on 497

question-type relations. In this case, the coders 498

6

Sem. Amb. Underspec. Presup. Avg.

RPC 0.450 0.412 0.466 0.443
ORGC 0.527 0.495 0.326 0.449
ORGI 0.597 0.450 0.451 0.499
ORGU 0.561 0.494 0.445 0.500
LAR 0.655 0.453 0.447 0.518
LART 0.585 0.530 0.622 0.579
SV 0.380 0.399 0.493 0.424

Table 2: This table shows the AUC scores between dif-
ferent ambiguity metrics we propose and the ambiguity
categories from our taxonomy. This shows that most
metrics are predictive of semantic ambiguity, while un-
derspecification and presupposition are less correlated.
Subscripts indicate the ground truth modality: I (im-
ages), C (code), U (unit test).

utterance explicitly answers an implicit question499

posed by the director. This discourse framing is de-500

scribed by Clifton and Frazier (2012) under the um-501

brella term of Questions Under Discussion (QUD).502

When a director gives a coding instruction, the prag-503

matic coder with QUD understanding first detects504

an implied question indirectly posed by the director505

and the coder answers that question. The persona506

prompt is given in Appendix B.507

5 Experiments & Findings508

In this section, we provide details of our experi-509

ments of disambiguation, and user simulation and510

show the utility of our ambiguity taxonomy and511

metrics. We answer multiple research questions512

and report our findings in combination with our513

experiments. We first describe the experiments for514

our taxonomy and automatic metrics as described515

in Section §3.1, and then follow up with experimen-516

tation based on the dialogue approach to coding517

we described in Section §4. We experiment mainly518

with GPT-4o in our experiments, but provide ad-519

ditional results for LLaMA-3.2, StarCoder, and520

CodeLLaMA in Appendix §C.521

Our Metrics Predict Ambiguity Categories To522

test the hypothesis of whether our metrics are pre-523

dictive of ambiguity (as we defined), we carry out524

a correlation study using ROC AUC scores4 (Ta-525

ble 2). In our case, we use it to measure correla-526

tion between the ambiguity scores and the ground-527

truth human-produced ambiguity labels for each528

instance of the 155 plotting questions. We observe529

4Area Under the ROC Curve (AUC) is a measure of corre-
lation about how well a continuous independent variable can
predict a binary dependent variable, via testing a variety of
different thresholds. An AUC of 0.5 is equivalent to a random
baseline, while an optimal score is 1.

Pass@1

Baseline (no dialogue) 68.38%

Cooperative 79.44%
Discoursive 74.11%

With Reference
Code

Inquisitive 66.34%

Cooperative 75.23%
Discoursive 74.06%

With Reference
Image

Inquisitive 64.56%

Ceiling Performance
(Non-Ambiguous Reprompt)

87.74%

Table 3: This table presents the mean pass@1 scores
for different types of dialogue strategies that we pro-
pose (§4). The baseline corresponds to the GPT-4o code
answers to the original prompts, while the ceiling per-
formance uses non-ambiguous reprompts. Having a
dialogue with pragmatics-inspired personas improves
task success drastically, yet there is still ambiguity be-
tween the ceiling performance.

that ORG, which contains the oracle solutions to 530

approximate ambiguity, predicts the semantic ambi- 531

guity category, but less so the other categories. This 532

may be due to the class imbalance in the dataset, 533

and also the suboptimal nature of reprompts used 534

in the ORG metrics. The most predictive of any 535

ambiguity category is the LART metric, where a 536

model is asked to rate the ambiguity using our tax- 537

onomy. This shows the validity and applicability 538

of this metric to unsupervised contexts. The lowest 539

prediction power comes from the traditional uncer- 540

tainty measurement technique of self-verification 541

(SV), as it does not necessarily correlate with the 542

ambiguity of the user’s intent, but the uncertainty 543

of the model providing an answer to the prompt. 544

Pragmatic Dialogue Increases Task Success To 545

test the hypothesis of whether the pragmatic dia- 546

logue setup that we proposed in §4 disambiguates 547

and improves task success (as measured by the 548

pass@k correctness score), we carry out a com- 549

parative experiment with results shown in Table 3. 550

Here, we test two scenarios, one in which the di- 551

rector is given the reference code and one where 552

the reference image is used. This comparison alle- 553

viates the concern about whether there is ground 554

truth code leakage from the director to the coder. 555

It can be observed that the best-performing dia- 556

logue strategy is pragmatic cooperative reasoning 557

in both categories, likely benefiting from the theory- 558

of-mind reasoning and chain-of-thought training in 559

modern LLMs. 560

The inquisitive strategy is the least-performing 561

7

Coding Question Ambiguity Baseline Cooperative Discoursive Inquisitive

draw a line (with random y) for each
different line style

underspecification 0.000 0.000 0.200 0.000

draw a full line from (0,0) to (1,2) semantic ambiguity 0.000 0.067 0.000 0.000
make seaborn relation plot and color

by the gender field of the dataframe df
underspecification 0.067 0.533 0.000 0.000

highlight in red the x range 2 to 4 semantic ambiguity 0.667 0.967 1.000 0.167

Table 4: This table shows a breakdown of the final executability scores (pass@1 with 30 samples each instance) for
different questions in the DS1000 dataset, with their annotated ambiguity categories. The examples are picked to
show when most models have low scores, or to show the performance according to different categories of ambiguity.

model, even worse than the baseline, which may562

mean that always looking for questions under the563

discussion can hinder disambiguation. Despite564

improvements, a gap remains between the best-565

performing strategy and the ceiling performance,566

indicating unresolved ambiguity. Since user intent567

is fixed in this static task, full resolution is unlikely,568

and even the ceiling performance is imperfect, as569

the re-prompt itself may still contain ambiguity.570

Figure 4: This figure shows a breakdown of the change
in the mean pass@1 scores (∆ = post-dialogue − origi-
nal) across ambiguous and non-ambiguous instances of
the DS1000 dataset. Dialogue shows better performance
in ambiguous instances instead of non-ambiguous ones.

Pragmatic Dialogue Targets Ambiguities To571

evaluate whether dialogue strategies improve code572

accuracy by directly addressing the ambiguities573

identified in our taxonomy, we measure the change574

in mean pass@1 scores between ambiguous and575

non-ambiguous cases (Figure 4)5. The results576

clearly show that dialogue-driven improvements577

are consistently greater for ambiguous cases than578

for non-ambiguous ones. This confirms that di-579

5We focus specifically on task success rather than user sat-
isfaction due to the subjectivity and costs of user experiments,
while already showing that ambiguity is addressed.

alogue effectively disambiguates prompts across 580

all three pragmatic personas. However, when the 581

reference image is provided instead of the code, 582

the Discoursive Persona performs similarly in both 583

cases, suggesting that dialogue alone may not fully 584

resolve ambiguities. Additionally, in line with Ta- 585

ble 3, ∆pass@1 for the Inquisitive Persona is neg- 586

ative in non-ambiguous instances, yet it still suc- 587

ceeds in clarifying ambiguous prompts. 588

5.1 Error Analysis 589

Table 4 presents a detailed performance breakdown 590

of different dialogue strategies. Notably, certain 591

questions remain challenging even after dialogue, 592

yet specific ambiguity categories align with the 593

most effective pragmatic strategy. For instance, 594

nearly all personas failed to resolve the first un- 595

derspecification question (mean pass@1: 0.000), 596

with only the cooperative persona achieving oc- 597

casional success (mean pass@1: 0.267). Interest- 598

ingly, in some cases, additional dialogue negatively 599

impacted performance across all personas. The 600

inquisitive persona performed best for vagueness- 601

related ambiguities, while the discoursive and coop- 602

erative personas excelled in addressing parameter 603

underspecification. 604

6 Conclusion 605

Overall, in this paper, we have proposed a dialogue- 606

oriented perspective to code generation. We charac- 607

terized various pragmatics frameworks in relation 608

to pair-programming-like dialogues that happen be- 609

tween a director and a coder. We then analyzed the 610

effects of having dialogues with different reasoning 611

strategies on the executability and disambiguation 612

of the final generated code. As having a dialogue 613

based on code is becoming the norm with LLMs, fo- 614

cusing on the pragmatics of dialogue opens up new 615

venues for developing dialogue systems, datasets, 616

and evaluation mechanisms for code generation. 617

8

Limitations618

We proposed using pragmatic dialogue for code619

generation, but the major limitation is from the620

side of human data collection and evaluation. We621

resorted to automatic metrics already being used or622

developed for this study to evaluate our setup with-623

out relying on human annotators. However, this624

entails that the evaluations may not be human-like625

and may not show the most accurate representa-626

tions even though they show improvements in gen-627

erally accepted code executability standards. Fur-628

ther, we did not deploy a dialogue system to study629

our approach. Instead, we resorted to simulations630

using LLMs, which may or may not accurately rep-631

resent how a human interlocutor would act in a632

real-world setting. We wanted to minimize this by633

using large parameter models for dialogue gener-634

ation and StackOverflow-based code instructions635

from the DS1000 dataset.636

Ethics Statement637

In our simulation process we have used GPT-4o,638

and this is a closed-source LLM, and we are aware639

that this model can propagate its own training bi-640

ases. The scientific community does not have ac-641

cess to any information regarding how this model642

is trained or what the dataset consists of. This may643

result in a deficient evaluation of the final perfor-644

mance and human-likeness of the generated dia-645

logue. This is a simulated analysis study to identify646

and characterize pragmatics frameworks with pos-647

sible LLM behavior in a pair programming setting.648

Hence, we do not involve humans in our current649

setup. The biases propagated by GPT-4o are the650

responsibility of OpenAI and should be held ac-651

countable by their and the scientific community’s652

ethical standards.653

References654

Malihe Alikhani, Baber Khalid, and Matthew Stone.655
2023. Image–text coherence and its implications for656
multimodal AI. Front. Artif. Intell., 6:1048874.657

Malihe Alikhani, Piyush Sharma, Shengjie Li, Radu658
Soricut, and Matthew Stone. 2020. Cross-modal co-659
herence modeling for caption generation. In Proceed-660
ings of the 58th Annual Meeting of the Association661
for Computational Linguistics, pages 6525–6535, On-662
line. Association for Computational Linguistics.663

Chinmaya Andukuri, Jan-Philipp Fränken, Tobias Ger-664
stenberg, and Noah D. Goodman. 2024. Star-gate:665

Teaching language models to ask clarifying questions. 666
ArXiv, abs/2403.19154. 667

Nicholas Asher, Julie Hunter, Mathieu Morey, Bena- 668
mara Farah, and Stergos Afantenos. 2016. Discourse 669
structure and dialogue acts in multiparty dialogue: 670
the STAC corpus. In Proceedings of the Tenth In- 671
ternational Conference on Language Resources and 672
Evaluation (LREC’16), pages 2721–2727, Portorož, 673
Slovenia. European Language Resources Association 674
(ELRA). 675

Jay David Atlas. 1977. Negation, ambiguity, and presup- 676
position. Linguistics and Philosophy, 1(3):321–336. 677

Katherine Atwell, Remi Choi, Junyi Jessy Li, and Mal- 678
ihe Alikhani. 2022. The role of context and uncer- 679
tainty in shallow discourse parsing. In Proceedings of 680
the 29th International Conference on Computational 681
Linguistics, pages 797–811, Gyeongju, Republic of 682
Korea. International Committee on Computational 683
Linguistics. 684

Katherine Atwell, Mert Inan, Anthony B. Sicilia, and 685
Malihe Alikhani. 2024. Combining discourse coher- 686
ence with large language models for more inclusive, 687
equitable, and robust task-oriented dialogue. In Pro- 688
ceedings of the 2024 Joint International Conference 689
on Computational Linguistics, Language Resources 690
and Evaluation (LREC-COLING 2024), pages 3538– 691
3552, Torino, Italia. ELRA and ICCL. 692

Katherine Atwell, Junyi Jessy Li, and Malihe Alikhani. 693
2021. Where are we in discourse relation recogni- 694
tion? In Proceedings of the 22nd Annual Meeting 695
of the Special Interest Group on Discourse and Dia- 696
logue, pages 314–325, Singapore and Online. Asso- 697
ciation for Computational Linguistics. 698

Mousumi Banerjee, Michelle Capozzoli, Laura Mc- 699
Sweeney, and Debajyoti Sinha. 1999. Beyond kappa: 700
A review of interrater agreement measures. Can. J. 701
Stat., 27(1):3–23. 702

Muneera Bano. Addressing the challenges of require- 703
ments ambiguity: A review of empirical literature. In 704
2015 IEEE Fifth International Workshop on Empir- 705
ical Requirements Engineering (EmpiRE), page 24. 706
IEEE. 707

Adithya Bhaskar, Tushar Tomar, Ashutosh Sathe, and 708
Sunita Sarawagi. 2023. Benchmarking and improv- 709
ing text-to-SQL generation under ambiguity. In Pro- 710
ceedings of the 2023 Conference on Empirical Meth- 711
ods in Natural Language Processing, pages 7053– 712
7074, Singapore. Association for Computational Lin- 713
guistics. 714

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 715
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 716
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 717
Greg Brockman, Alex Ray, Raul Puri, Gretchen 718
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 719
try, Pamela Mishkin, Brooke Chan, Scott Gray, 720
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 721
Kaiser, Mohammad Bavarian, Clemens Winter, 722

9

https://doi.org/10.3389/frai.2023.1048874
https://doi.org/10.3389/frai.2023.1048874
https://doi.org/10.3389/frai.2023.1048874
https://doi.org/10.18653/v1/2020.acl-main.583
https://doi.org/10.18653/v1/2020.acl-main.583
https://doi.org/10.18653/v1/2020.acl-main.583
https://api.semanticscholar.org/CorpusID:268732915
https://api.semanticscholar.org/CorpusID:268732915
https://api.semanticscholar.org/CorpusID:268732915
https://aclanthology.org/L16-1432
https://aclanthology.org/L16-1432
https://aclanthology.org/L16-1432
https://aclanthology.org/L16-1432
https://aclanthology.org/L16-1432
https://doi.org/10.1007/BF00353452
https://doi.org/10.1007/BF00353452
https://doi.org/10.1007/BF00353452
https://aclanthology.org/2022.coling-1.67
https://aclanthology.org/2022.coling-1.67
https://aclanthology.org/2022.coling-1.67
https://aclanthology.org/2024.lrec-main.314
https://aclanthology.org/2024.lrec-main.314
https://aclanthology.org/2024.lrec-main.314
https://aclanthology.org/2024.lrec-main.314
https://aclanthology.org/2024.lrec-main.314
https://doi.org/10.18653/v1/2021.sigdial-1.34
https://doi.org/10.18653/v1/2021.sigdial-1.34
https://doi.org/10.18653/v1/2021.sigdial-1.34
https://doi.org/10.2307/3315487
https://doi.org/10.2307/3315487
https://doi.org/10.2307/3315487
https://doi.org/10.1109/EmpiRE.2015.7431303
https://doi.org/10.1109/EmpiRE.2015.7431303
https://doi.org/10.1109/EmpiRE.2015.7431303
https://doi.org/10.18653/v1/2023.emnlp-main.436
https://doi.org/10.18653/v1/2023.emnlp-main.436
https://doi.org/10.18653/v1/2023.emnlp-main.436

Philippe Tillet, Felipe Petroski Such, Dave Cum-723
mings, Matthias Plappert, Fotios Chantzis, Eliza-724
beth Barnes, Ariel Herbert-Voss, William Hebgen725
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie726
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,727
William Saunders, Christopher Hesse, Andrew N.728
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan729
Morikawa, Alec Radford, Matthew Knight, Miles730
Brundage, Mira Murati, Katie Mayer, Peter Welinder,731
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya732
Sutskever, and Wojciech Zaremba. 2021. Evaluat-733
ing large language models trained on code. Preprint,734
arXiv:2107.03374.735

Ta-Chung Chi and Alexander Rudnicky. 2022. Struc-736
tured dialogue discourse parsing. In Proceedings737
of the 23rd Annual Meeting of the Special Interest738
Group on Discourse and Dialogue, pages 325–335,739
Edinburgh, UK. Association for Computational Lin-740
guistics.741

Herbert H. Clark. 1996. Using Language. Cambridge742
University Press, Cambridge, England, UK.743

Charles Clifton, Jr. and Lyn Frazier. 2012. Discourse In-744
tegration Guided by the ‘Question under Discussion’.745
Cognit. Psychol., 65(2):352.746

Jeremy Cole, Michael Zhang, Daniel Gillick, Julian747
Eisenschlos, Bhuwan Dhingra, and Jacob Eisenstein.748
2023. Selectively answering ambiguous questions.749
In Proceedings of the 2023 Conference on Empiri-750
cal Methods in Natural Language Processing, pages751
530–543, Singapore. Association for Computational752
Linguistics.753

Tamar Degani and Natasha Tokowicz. 2010. Semantic754
Ambiguity within and across Languages: An Integra-755
tive Review. Q. J. Exp. Psychol., 63(7):1266–1303.756

Yang Deng, Lizi Liao, Liang Chen, Hongru Wang,757
Wenqiang Lei, and Tat-Seng Chua. 2023. Prompt-758
ing and evaluating large language models for proac-759
tive dialogues: Clarification, target-guided, and non-760
collaboration. In Findings of the Association for761
Computational Linguistics: EMNLP 2023, pages762
10602–10621, Singapore. Association for Compu-763
tational Linguistics.764

Joseph L. Fleiss and Jacob Cohen. 1973. The Equiva-765
lence of Weighted Kappa and the Intraclass Correla-766
tion Coefficient as Measures of Reliability. Educa-767
tional and Psychological Measurement, 33(3):613–768
619.769

Michael C. Frank and Noah D. Goodman. 2012. Predict-770
ing pragmatic reasoning in language games. Science,771
336(6084):998–998.772

Yingxue Fu. 2022. Towards unification of discourse773
annotation frameworks. In Proceedings of the 60th774
Annual Meeting of the Association for Computational775
Linguistics: Student Research Workshop, pages 132–776
142, Dublin, Ireland. Association for Computational777
Linguistics.778

H. P. Grice. 1975. Logic and Conversation. In Speech 779
Acts, pages 41–58. Brill, Leiden, The Netherlands. 780

Laurence Horn. 1984. Toward a new taxonomy for 781
pragmatic inference: Q-based and r-based implica- 782
ture. Meaning, Form, and Use in Context: Linguistic 783
Applications, page 11–42. 784

Eyke Hüllermeier and Willem Waegeman. 2021. 785
Aleatoric and epistemic uncertainty in machine learn- 786
ing: An introduction to concepts and methods. Ma- 787
chine learning, 110(3):457–506. 788

J. D. Hunter. 2007. Matplotlib: A 2d graphics environ- 789
ment. Computing in Science & Engineering, 9(3):90– 790
95. 791

Mert Inan and Malihe Alikhani. 2024. Seeing eye-to- 792
eye: Cross-modal coherence relations inform eye- 793
gaze patterns during comprehension & production. 794
In Proceedings of the 2024 Joint International Con- 795
ference on Computational Linguistics, Language 796
Resources and Evaluation (LREC-COLING 2024), 797
pages 14494–14512, Torino, Italia. ELRA and ICCL. 798

Vivek Iyer, Pinzhen Chen, and Alexandra Birch. 2023. 799
Towards effective disambiguation for machine trans- 800
lation with large language models. In Proceedings 801
of the Eighth Conference on Machine Translation, 802
pages 482–495, Singapore. Association for Compu- 803
tational Linguistics. 804

K. M. Jaszczolt. 2002. Against ambiguity and un- 805
derspecification: evidence from presupposition as 806
anaphora. Journal of Pragmatics, 34(7):829–849. 807

Carlos E Jimenez, John Yang, Alexander Wettig, 808
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R 809
Narasimhan. 2024. SWE-bench: Can language mod- 810
els resolve real-world github issues? In The Twelfth 811
International Conference on Learning Representa- 812
tions. 813

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom 814
Henighan, Dawn Drain, Ethan Perez, Nicholas 815
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli 816
Tran-Johnson, Scott Johnston, Sheer El-Showk, 817
Andy Jones, Nelson Elhage, Tristan Hume, Anna 818
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort, 819
Deep Ganguli, Danny Hernandez, Josh Jacobson, 820
Jackson Kernion, Shauna Kravec, Liane Lovitt, Ka- 821
mal Ndousse, Catherine Olsson, Sam Ringer, Dario 822
Amodei, Tom Brown, Jack Clark, Nicholas Joseph, 823
Ben Mann, Sam McCandlish, Chris Olah, and Jared 824
Kaplan. 2022. Language models (mostly) know what 825
they know. Preprint, arXiv:2207.05221. 826

Hans Kamp, Josef Van Genabith, and Uwe Reyle. 2010. 827
Discourse representation theory. In Handbook of 828
Philosophical Logic: Volume 15, pages 125–394. 829
Springer. 830

Erik Kamsties. 2005. Understanding Ambiguity in Re- 831
quirements Engineering. In Engineering and Manag- 832
ing Software Requirements, pages 245–266. Springer, 833
Berlin, Germany. 834

10

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2022.sigdial-1.32
https://doi.org/10.18653/v1/2022.sigdial-1.32
https://doi.org/10.18653/v1/2022.sigdial-1.32
https://doi.org/10.1017/CBO9780511620539
https://doi.org/10.1016/j.cogpsych.2012.04.001
https://doi.org/10.1016/j.cogpsych.2012.04.001
https://doi.org/10.1016/j.cogpsych.2012.04.001
https://doi.org/10.18653/v1/2023.emnlp-main.35
https://doi.org/10.1080/17470210903377372
https://doi.org/10.1080/17470210903377372
https://doi.org/10.1080/17470210903377372
https://doi.org/10.1080/17470210903377372
https://doi.org/10.1080/17470210903377372
https://doi.org/10.18653/v1/2023.findings-emnlp.711
https://doi.org/10.18653/v1/2023.findings-emnlp.711
https://doi.org/10.18653/v1/2023.findings-emnlp.711
https://doi.org/10.18653/v1/2023.findings-emnlp.711
https://doi.org/10.18653/v1/2023.findings-emnlp.711
https://doi.org/10.18653/v1/2023.findings-emnlp.711
https://doi.org/10.18653/v1/2023.findings-emnlp.711
https://doi.org/10.1177/001316447303300309
https://doi.org/10.1177/001316447303300309
https://doi.org/10.1177/001316447303300309
https://doi.org/10.1177/001316447303300309
https://doi.org/10.1177/001316447303300309
https://doi.org/10.1126/science.1218633
https://doi.org/10.1126/science.1218633
https://doi.org/10.1126/science.1218633
https://doi.org/10.18653/v1/2022.acl-srw.12
https://doi.org/10.18653/v1/2022.acl-srw.12
https://doi.org/10.18653/v1/2022.acl-srw.12
https://doi.org/10.1163/9789004368811_003
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://aclanthology.org/2024.lrec-main.1263/
https://aclanthology.org/2024.lrec-main.1263/
https://aclanthology.org/2024.lrec-main.1263/
https://aclanthology.org/2024.lrec-main.1263/
https://aclanthology.org/2024.lrec-main.1263/
https://doi.org/10.18653/v1/2023.wmt-1.44
https://doi.org/10.18653/v1/2023.wmt-1.44
https://doi.org/10.18653/v1/2023.wmt-1.44
https://doi.org/10.1016/S0378-2166(01)00064-9
https://doi.org/10.1016/S0378-2166(01)00064-9
https://doi.org/10.1016/S0378-2166(01)00064-9
https://doi.org/10.1016/S0378-2166(01)00064-9
https://doi.org/10.1016/S0378-2166(01)00064-9
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2207.05221
https://doi.org/10.1007/3-540-28244-0_11
https://doi.org/10.1007/3-540-28244-0_11
https://doi.org/10.1007/3-540-28244-0_11

Ruth M. Kempson. 1979. Presupposition, Opacity, and835
Ambiguity. In Presupposition, pages 283–297. Brill,836
Leiden, The Netherlands.837

Gangwoo Kim, Sungdong Kim, Byeongguk Jeon, Joon-838
suk Park, and Jaewoo Kang. 2023. Tree of clarifica-839
tions: Answering ambiguous questions with retrieval-840
augmented large language models. In Proceedings841
of the 2023 Conference on Empirical Methods in842
Natural Language Processing, pages 996–1009, Sin-843
gapore. Association for Computational Linguistics.844

Wei-Jen Ko, Yating Wu, Cutter Dalton, Dananjay Srini-845
vas, Greg Durrett, and Junyi Jessy Li. 2023. Dis-846
course analysis via questions and answers: Parsing847
dependency structures of questions under discussion.848
In Findings of the Association for Computational Lin-849
guistics: ACL 2023, pages 11181–11195, Toronto,850
Canada. Association for Computational Linguistics.851

Dmitrii Krasheninnikov, Egor Krasheninnikov, and852
David Krueger. 2022. Assistance with large language853
models. In NeurIPS ML Safety Workshop.854

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023a.855
Clam: Selective clarification for ambiguous ques-856
tions with generative language models. Preprint,857
arXiv:2212.07769.858

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023b.859
Semantic uncertainty: Linguistic invariances for un-860
certainty estimation in natural language generation.861
In The Eleventh International Conference on Learn-862
ing Representations.863

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,864
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih,865
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000:866
A natural and reliable benchmark for data science867
code generation. Preprint, arXiv:2211.11501.868

Alex Lascarides and Nicholas Asher. 2007. Segmented869
discourse representation theory: Dynamic semantics870
with discourse structure. In Computing meaning,871
pages 87–124. Springer.872

Stephen C. Levinson. 2000. Presumptive Meanings:873
The Theory of Generalized Conversational Implica-874
ture. The MIT Press, Cambridge, MA, USA.875

Haau-Sing (Xiaocheng) Li, Mohsen Mesgar, André Mar-876
tins, and Iryna Gurevych. 2023. Python code genera-877
tion by asking clarification questions. In Proceedings878
of the 61st Annual Meeting of the Association for879
Computational Linguistics (Volume 1: Long Papers),880
pages 14287–14306, Toronto, Canada. Association881
for Computational Linguistics.882

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. 2024.883
Generating with confidence: Uncertainty quantifica-884
tion for black-box large language models. Transac-885
tions on Machine Learning Research.886

Alisa Liu, Zhaofeng Wu, Julian Michael, Alane Suhr,887
Peter West, Alexander Koller, Swabha Swayamdipta,888
Noah Smith, and Yejin Choi. 2023. We’re afraid889

language models aren’t modeling ambiguity. In Pro- 890
ceedings of the 2023 Conference on Empirical Meth- 891
ods in Natural Language Processing, pages 790–807, 892
Singapore. Association for Computational Linguis- 893
tics. 894

Yue Liu, Chakkrit Tantithamthavorn, Yonghui Liu, and 895
Li Li. 2024. On the Reliability and Explainability 896
of Language Models for Program Generation. ACM 897
Trans. Software Eng. Method., 33(5):1–26. 898

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed- 899
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi, 900
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, 901
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur 902
Zucker, Younes Belkada, Zijian Wang, Qian Liu, 903
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen- 904
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue 905
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, 906
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, 907
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, 908
Niklas Muennighoff, Xiangru Tang, Muhtasham 909
Oblokulov, Christopher Akiki, Marc Marone, Cheng- 910
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, 911
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas 912
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten 913
Scholak, Sebastien Paquet, Jennifer Robinson, Car- 914
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat- 915
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz 916
Ferrandis, Lingming Zhang, Sean Hughes, Thomas 917
Wolf, Arjun Guha, Leandro von Werra, and Harm 918
de Vries. 2024. Starcoder 2 and the stack v2: The 919
next generation. Preprint, arXiv:2402.19173. 920

Qianou Ma, Tongshuang Wu, and Kenneth Koedinger. 921
2023. Is ai the better programming partner? human- 922
human pair programming vs. human-ai pair program- 923
ming. Preprint, arXiv:2306.05153. 924

Brielen Madureira, Patrick Kahardipraja, and David 925
Schlangen. 2024. When only time will tell: Inter- 926
preting how transformers process local ambiguities 927
through the lens of restart-incrementality. In Pro- 928
ceedings of the 62nd Annual Meeting of the Associa- 929
tion for Computational Linguistics (Volume 1: Long 930
Papers), pages 4722–4749, Bangkok, Thailand. As- 931
sociation for Computational Linguistics. 932

Brian McMahan and Matthew Stone. 2020. Analyz- 933
ing speaker strategy in referential communication. 934
In Proceedings of the 21th Annual Meeting of the 935
Special Interest Group on Discourse and Dialogue, 936
pages 175–185, 1st virtual meeting. Association for 937
Computational Linguistics. 938

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and 939
Luke Zettlemoyer. 2020. AmbigQA: Answering am- 940
biguous open-domain questions. In Proceedings of 941
the 2020 Conference on Empirical Methods in Nat- 942
ural Language Processing (EMNLP), pages 5783– 943
5797, Online. Association for Computational Lin- 944
guistics. 945

Will Monroe, Robert X.D. Hawkins, Noah D. Good- 946
man, and Christopher Potts. 2017. Colors in context: 947

11

https://doi.org/10.1163/9789004368880_013
https://doi.org/10.1163/9789004368880_013
https://doi.org/10.1163/9789004368880_013
https://doi.org/10.18653/v1/2023.emnlp-main.63
https://doi.org/10.18653/v1/2023.emnlp-main.63
https://doi.org/10.18653/v1/2023.emnlp-main.63
https://doi.org/10.18653/v1/2023.emnlp-main.63
https://doi.org/10.18653/v1/2023.emnlp-main.63
https://doi.org/10.18653/v1/2023.findings-acl.710
https://doi.org/10.18653/v1/2023.findings-acl.710
https://doi.org/10.18653/v1/2023.findings-acl.710
https://doi.org/10.18653/v1/2023.findings-acl.710
https://doi.org/10.18653/v1/2023.findings-acl.710
https://openreview.net/forum?id=OE9V81spp6B
https://openreview.net/forum?id=OE9V81spp6B
https://openreview.net/forum?id=OE9V81spp6B
https://arxiv.org/abs/2212.07769
https://arxiv.org/abs/2212.07769
https://arxiv.org/abs/2212.07769
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://doi.org/10.7551/mitpress/5526.001.0001
https://doi.org/10.7551/mitpress/5526.001.0001
https://doi.org/10.7551/mitpress/5526.001.0001
https://doi.org/10.7551/mitpress/5526.001.0001
https://doi.org/10.7551/mitpress/5526.001.0001
https://doi.org/10.18653/v1/2023.acl-long.799
https://doi.org/10.18653/v1/2023.acl-long.799
https://doi.org/10.18653/v1/2023.acl-long.799
https://openreview.net/forum?id=DWkJCSxKU5
https://openreview.net/forum?id=DWkJCSxKU5
https://openreview.net/forum?id=DWkJCSxKU5
https://doi.org/10.18653/v1/2023.emnlp-main.51
https://doi.org/10.18653/v1/2023.emnlp-main.51
https://doi.org/10.18653/v1/2023.emnlp-main.51
https://doi.org/10.1145/3641540
https://doi.org/10.1145/3641540
https://doi.org/10.1145/3641540
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2306.05153
https://arxiv.org/abs/2306.05153
https://arxiv.org/abs/2306.05153
https://arxiv.org/abs/2306.05153
https://arxiv.org/abs/2306.05153
https://doi.org/10.18653/v1/2024.acl-long.260
https://doi.org/10.18653/v1/2024.acl-long.260
https://doi.org/10.18653/v1/2024.acl-long.260
https://doi.org/10.18653/v1/2024.acl-long.260
https://doi.org/10.18653/v1/2024.acl-long.260
https://doi.org/10.18653/v1/2020.sigdial-1.22
https://doi.org/10.18653/v1/2020.sigdial-1.22
https://doi.org/10.18653/v1/2020.sigdial-1.22
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://doi.org/10.1162/tacl_a_00064
https://doi.org/10.1162/tacl_a_00064

A pragmatic neural model for grounded language948
understanding. Transactions of the Association for949
Computational Linguistics, 5:325–338.950

Hussein Mozannar, Valerie Chen, Mohammed Alsobay,951
Subhro Das, Sebastian Zhao, Dennis Wei, Manish952
Nagireddy, Prasanna Sattigeri, Ameet Talwalkar, and953
David Sontag. 2024. The realhumaneval: Evaluating954
large language models’ abilities to support program-955
mers. Preprint, arXiv:2404.02806.956

Fangwen Mu, Lin Shi, Song Wang, Zhuohao Yu, Bin-957
quan Zhang, ChenXue Wang, Shichao Liu, and Qing958
Wang. 2024. ClarifyGPT: A Framework for Enhanc-959
ing LLM-Based Code Generation via Requirements960
Clarification. Proc. ACM Softw. Eng., 1(FSE):2332–961
2354.962

Sydney Nguyen, Hannah McLean Babe, Yangtian Zi,963
Arjun Guha, Carolyn Jane Anderson, and Molly Q964
Feldman. 2024. How beginning programmers and965
code llms (mis)read each other. CHI ’24, New York,966
NY, USA. Association for Computing Machinery.967

Ayana Niwa and Hayate Iso. 2024. Ambignlg: Address-968
ing task ambiguity in instruction for nlg. Preprint,969
arXiv:2402.17717.970

Konstantinos Papakostas and Irene Papadopoulou. 2023.971
Model analysis & evaluation for ambiguous question972
answering. In Findings of the Association for Com-973
putational Linguistics: ACL 2023, pages 4570–4580,974
Toronto, Canada. Association for Computational Lin-975
guistics.976

Brendan Park, Madeline Janecek, Naser Ezzati-Jivan,977
Yifeng Li, and Ali Emami. 2024. Picturing ambigu-978
ity: A visual twist on the Winograd schema challenge.979
In Proceedings of the 62nd Annual Meeting of the980
Association for Computational Linguistics (Volume981
1: Long Papers), pages 355–374, Bangkok, Thailand.982
Association for Computational Linguistics.983

Massimo Poesio and Ron Artstein. 2005. The reliability984
of anaphoric annotation, reconsidered: Taking ambi-985
guity into account. In Proceedings of the Workshop986
on Frontiers in Corpus Annotations II: Pie in the Sky,987
pages 76–83, Ann Arbor, Michigan. Association for988
Computational Linguistics.989

Yewen Pu, Kevin Ellis, Marta Kryven, Josh Tenenbaum,990
and Armando Solar-Lezama. 2020. Program synthe-991
sis with pragmatic communication. In Advances in992
Neural Information Processing Systems, volume 33,993
pages 13249–13259. Curran Associates, Inc.994

Yewen Pu, Saujas Vaduguru, Priyan Vaithilingam, Elena995
Glassman, and Daniel Fried. 2023. Amortizing prag-996
matic program synthesis with rankings. Preprint,997
arXiv:2309.03225.998

Craige Roberts. 2012. Information structure in dis-999
course: Towards an integrated formal theory of prag-1000
matics. Semantics and Pragmatics, 5(6):1–69.1001

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 1002
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 1003
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy 1004
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna 1005
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron 1006
Grattafiori, Wenhan Xiong, Alexandre Défossez, 1007
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar- 1008
tin, Nicolas Usunier, Thomas Scialom, and Gabriel 1009
Synnaeve. 2024. Code llama: Open foundation mod- 1010
els for code. Preprint, arXiv:2308.12950. 1011

Advait Sarkar, Andrew D. Gordon, Carina Negreanu, 1012
Christian Poelitz, Sruti Srinivasa Ragavan, and Ben 1013
Zorn. 2022. What is it like to program with artificial 1014
intelligence? Preprint, arXiv:2208.06213. 1015

Stefan Schouten, Peter Bloem, Ilia Markov, and Piek 1016
Vossen. 2023. Reasoning about ambiguous definite 1017
descriptions. In Findings of the Association for Com- 1018
putational Linguistics: EMNLP 2023, pages 4479– 1019
4484, Singapore. Association for Computational Lin- 1020
guistics. 1021

Sander Schulhoff, Michael Ilie, Nishant Balepur, Kon- 1022
stantine Kahadze, Amanda Liu, Chenglei Si, Yin- 1023
heng Li, Aayush Gupta, HyoJung Han, Sevien Schul- 1024
hoff, Pranav Sandeep Dulepet, Saurav Vidyadhara, 1025
Dayeon Ki, Sweta Agrawal, Chau Pham, Gerson 1026
Kroiz, Feileen Li, Hudson Tao, Ashay Srivastava, 1027
Hevander Da Costa, Saloni Gupta, Megan L. Rogers, 1028
Inna Goncearenco, Giuseppe Sarli, Igor Galynker, 1029
Denis Peskoff, Marine Carpuat, Jules White, Shya- 1030
mal Anadkat, Alexander Hoyle, and Philip Resnik. 1031
2024. The prompt report: A systematic survey of 1032
prompting techniques. Preprint, arXiv:2406.06608. 1033

Anthony Sicilia, Mert Inan, and Malihe Alikhani. 2024. 1034
Accounting for sycophancy in language model uncer- 1035
tainty estimation. Preprint, arXiv:2410.14746. 1036

Saujas Vaduguru, Daniel Fried, and Yewen Pu. 2024. 1037
Generating pragmatic examples to train neural pro- 1038
gram synthesizers. In The Twelfth International Con- 1039
ference on Learning Representations. 1040

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glass- 1041
man. 2022. Expectation vs. Experience: Evaluating 1042
the Usability of Code Generation Tools Powered by 1043
Large Language Models. In CHI EA ’22: Extended 1044
Abstracts of the 2022 CHI Conference on Human Fac- 1045
tors in Computing Systems, pages 1–7. Association 1046
for Computing Machinery, New York, NY, USA. 1047

K. van Deemter and S. Peters. 1996. Semantic Ambigu- 1048
ity and Underspecification. Center for the Study of 1049
Language and Information Publication Lecture Notes. 1050
Cambridge University Press. 1051

Anthony J Viera, Joanne M Garrett, et al. 2005. Under- 1052
standing interobserver agreement: the kappa statistic. 1053
Fam med, 37(5):360–363. 1054

Bing Wang, Yan Gao, Zhoujun Li, and Jian-Guang Lou. 1055
2023. Know what I don’t know: Handling ambigu- 1056
ous and unknown questions for text-to-SQL. In Find- 1057
ings of the Association for Computational Linguis- 1058

12

https://doi.org/10.1162/tacl_a_00064
https://doi.org/10.1162/tacl_a_00064
https://doi.org/10.1162/tacl_a_00064
https://arxiv.org/abs/2404.02806
https://arxiv.org/abs/2404.02806
https://arxiv.org/abs/2404.02806
https://arxiv.org/abs/2404.02806
https://arxiv.org/abs/2404.02806
https://doi.org/10.1145/3660810
https://doi.org/10.1145/3660810
https://doi.org/10.1145/3660810
https://doi.org/10.1145/3660810
https://doi.org/10.1145/3660810
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1145/3613904.3642706
https://arxiv.org/abs/2402.17717
https://arxiv.org/abs/2402.17717
https://arxiv.org/abs/2402.17717
https://doi.org/10.18653/v1/2023.findings-acl.279
https://doi.org/10.18653/v1/2023.findings-acl.279
https://doi.org/10.18653/v1/2023.findings-acl.279
https://doi.org/10.18653/v1/2024.acl-long.22
https://doi.org/10.18653/v1/2024.acl-long.22
https://doi.org/10.18653/v1/2024.acl-long.22
https://aclanthology.org/W05-0311
https://aclanthology.org/W05-0311
https://aclanthology.org/W05-0311
https://aclanthology.org/W05-0311
https://aclanthology.org/W05-0311
https://proceedings.neurips.cc/paper_files/paper/2020/file/99c83c904d0d64fbef50d919a5c66a80-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/99c83c904d0d64fbef50d919a5c66a80-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/99c83c904d0d64fbef50d919a5c66a80-Paper.pdf
https://arxiv.org/abs/2309.03225
https://arxiv.org/abs/2309.03225
https://arxiv.org/abs/2309.03225
https://doi.org/10.3765/sp.5.6
https://doi.org/10.3765/sp.5.6
https://doi.org/10.3765/sp.5.6
https://doi.org/10.3765/sp.5.6
https://doi.org/10.3765/sp.5.6
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2208.06213
https://arxiv.org/abs/2208.06213
https://arxiv.org/abs/2208.06213
https://doi.org/10.18653/v1/2023.findings-emnlp.296
https://doi.org/10.18653/v1/2023.findings-emnlp.296
https://doi.org/10.18653/v1/2023.findings-emnlp.296
https://arxiv.org/abs/2406.06608
https://arxiv.org/abs/2406.06608
https://arxiv.org/abs/2406.06608
https://arxiv.org/abs/2410.14746
https://arxiv.org/abs/2410.14746
https://arxiv.org/abs/2410.14746
https://openreview.net/forum?id=yxKZGQLzOP
https://openreview.net/forum?id=yxKZGQLzOP
https://openreview.net/forum?id=yxKZGQLzOP
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://books.google.com/books?id=bN6NQgAACAAJ
https://books.google.com/books?id=bN6NQgAACAAJ
https://books.google.com/books?id=bN6NQgAACAAJ
https://doi.org/10.18653/v1/2023.findings-acl.352
https://doi.org/10.18653/v1/2023.findings-acl.352
https://doi.org/10.18653/v1/2023.findings-acl.352

tics: ACL 2023, pages 5701–5714, Toronto, Canada.1059
Association for Computational Linguistics.1060

Noah Wang, Zy Peng, Haoran Que, Jiaheng Liu,1061
Wangchunshu Zhou, Yuhan Wu, Hongcheng Guo,1062
Ruitong Gan, Zehao Ni, Jian Yang, et al. 2024.1063
Rolellm: Benchmarking, eliciting, and enhancing1064
role-playing abilities of large language models. In1065
Findings of the Association for Computational Lin-1066
guistics ACL 2024, pages 14743–14777.1067

Frank Wildenburg, Michael Hanna, and Sandro Pezzelle.1068
2024. Do pre-trained language models detect and1069
understand semantic underspecification? ask the1070
DUST! In Findings of the Association for Compu-1071
tational Linguistics: ACL 2024, pages 9598–9613,1072
Bangkok, Thailand. Association for Computational1073
Linguistics.1074

L. Williams. 2001. Integrating pair programming into1075
a software development process. In Proceedings1076
14th Conference on Software Engineering Education1077
and Training. ’In search of a software engineering1078
profession’ (Cat. No.PR01059), pages 27–36.1079

Monika-Zita Zempleni, Remco Renken, John C. J.1080
Hoeks, Johannes M. Hoogduin, and Laurie A. Stowe.1081
2007. Semantic ambiguity processing in sentence1082
context: Evidence from event-related fMRI. Neu-1083
roimage, 34(3):1270–1279.1084

Tianyi Zhang, Tao Yu, Tatsunori Hashimoto, Mike1085
Lewis, Wen-Tau Yih, Daniel Fried, and Sida Wang.1086
2023. Coder reviewer reranking for code generation.1087
In Proceedings of the 40th International Conference1088
on Machine Learning, volume 202 of Proceedings1089
of Machine Learning Research, pages 41832–41846.1090
PMLR.1091

Tong Zhang, Peixin Qin, Yang Deng, Chen Huang, Wen-1092
qiang Lei, Junhong Liu, Dingnan Jin, Hongru Liang,1093
and Tat-Seng Chua. 2024. CLAMBER: A bench-1094
mark of identifying and clarifying ambiguous infor-1095
mation needs in large language models. In Proceed-1096
ings of the 62nd Annual Meeting of the Association1097
for Computational Linguistics (Volume 1: Long Pa-1098
pers), pages 10746–10766, Bangkok, Thailand. As-1099
sociation for Computational Linguistics.1100

Mingqian Zheng, Jiaxin Pei, Lajanugen Logeswaran,1101
Moontae Lee, and David Jurgens. 2024. When”1102
a helpful assistant” is not really helpful: Personas1103
in system prompts do not improve performances of1104
large language models. In Findings of the Associa-1105
tion for Computational Linguistics: EMNLP 2024,1106
pages 15126–15154.1107

Ryszard Zuber. 1973. Presuppositional ambiguity.1108
Logique et Analyse, 16(63/64):443–449.1109

A Generating Dialogue Responses1110

We simulate our dialogues for plotting code using1111

LLMs and based on the algorithm given in Algo-1112

rithm 1. In the algorithm, fD and fC are defined1113

based on different pragmatics strategies as given in 1114

detail in Section §4.2. 1115

Algorithm 1 Dialogue Simulation with LLMs.

Require: Problem instance (uD1 , I)
Require: Director model fD
Require: Coder model for NL response fC
Require: Coder model to generate code gC
Require: Number of samples k
Require: Number of rounds of dialogue n

1: S ← {si ∼ gC(u
D
1) | 1 ≤ i ≤ k}

2: u← []
3: for n times do
4: uC ← fC(u)
5: u← u+ [uC]
6: uD ← fD(I,u)
7: u← u+ [uD]
8: end for
9: c ∼ gC(u)

10: return u, c

Director We prompt the director model fD to 1116

generate instructions and clarifications that guide 1117

a coder model toward the correct solution. Since 1118

we work with an artificial director agent, we source 1119

intents from the DS-1000 dataset. We present the 1120

intent to the director in one of two ways – as the 1121

code for a reference solution or the plot generated 1122

by the code presented as an image. Since a natu- 1123

ral language instruction accompanies the DS-1000 1124

problem instances, we seed the interaction using 1125

that interaction as the first director turn (uD1). We 1126

prompt the model to use different strategies to gen- 1127

erate responses. 1128

Pragmatic Coder We first extract the code con- 1129

text and the coding instructions from the DS1000 1130

dataset and then convert it into a dialogue format as 1131

described in section §4.2. Then, using GPT-4o, we 1132

generate codes that respond to the original instruc- 1133

tion (sampled k times). To the pragmatic coder, 1134

we present a set of possible unique answers it can 1135

choose from the generated codes and the dialogue 1136

history that is happening and ask for a follow-up 1137

utterance for the coder to converge to the solution 1138

that the director is describing, i.e. gC(u
D
1). We 1139

then instruct it to give three solutions based on the 1140

reasoning types. For the regular director, we pro- 1141

vide the reference code (or the reference plot in 1142

the case of a multimodal model) and the dialogue 1143

history and ask to generate a follow-up utterance 1144

13

https://doi.org/10.18653/v1/2024.findings-acl.572
https://doi.org/10.18653/v1/2024.findings-acl.572
https://doi.org/10.18653/v1/2024.findings-acl.572
https://doi.org/10.18653/v1/2024.findings-acl.572
https://doi.org/10.18653/v1/2024.findings-acl.572
https://doi.org/10.1109/CSEE.2001.913816
https://doi.org/10.1109/CSEE.2001.913816
https://doi.org/10.1109/CSEE.2001.913816
https://doi.org/10.1016/j.neuroimage.2006.09.048
https://doi.org/10.1016/j.neuroimage.2006.09.048
https://doi.org/10.1016/j.neuroimage.2006.09.048
https://proceedings.mlr.press/v202/zhang23av.html
https://doi.org/10.18653/v1/2024.acl-long.578
https://doi.org/10.18653/v1/2024.acl-long.578
https://doi.org/10.18653/v1/2024.acl-long.578
https://doi.org/10.18653/v1/2024.acl-long.578
https://doi.org/10.18653/v1/2024.acl-long.578
http://www.jstor.org/stable/44085133

to converge to a solution without giving away the1145

answer. All the details of the prompts are given in1146

Appendix B.1147

Dialogue Policy We employ a rule-based dia-1148

logue policy to choose one of the three utterances1149

we generated for each strategy in the simulation.1150

For the first turn of the dialogue, we do not use1151

any LLM generations but directly use the coding1152

instruction from the DS1000 dataset. For the fol-1153

lowing turns, we generate three different utterances,1154

one for each of the pragmatic director’s reasoning1155

ways, and then generate a single utterance without1156

any pragmatic reasoning prompting for the coder1157

for each of the three responses of the director. We1158

use the number of turns as a hyperparameter to1159

generate the dialogue and perform ablation experi-1160

ments on it. We do not mix reasoning styles across1161

the dialogue’s turns, but we choose a single reason-1162

ing style for the overall dialogue. We also exper-1163

iment with providing the reference image or the1164

reference code to the director to see how clarity of1165

instructions affects execution.1166

B Prompting Details1167

B.1 Pragmatic Coder1168

B.1.1 System Prompts:1169

Director: You are a coding director. There is an-1170

other coding agent you are going to have a dialogue1171

with. You have a final product in mind. This is go-1172

ing to be named the REF CODE. You want a coder1173

to write the codes for this final product. For the first1174

turn of the dialogue, you give a specific instruction1175

or a question about the final product. Then, the1176

coder will give you some answers, and then you1177

will have another turn to refine the codes.1178

Coder: You are a coding agent. There is another1179

director agent you are going to have a dialogue with.1180

The things you say depend on your persona. You1181

have the following different personas (reasoning1182

styles):1183

- Cooperative Persona (Pragmatic): You want1184

to converge on the solution as quickly as possible1185

and follow Grice’s Maxims when choosing your1186

words. You anticipate the director’s cooperative1187

reasoning. You possess theory-of-mind capabilities1188

and common sense.1189

- Discourse Reasoning Persona: Everything you1190

say is connected to the previous turn with a rela-1191

tion. The possible discourse relations are Comment,1192

Clarification Question, Elaboration, Acknowledg-1193

ment, Continuation, Explanation, Conditional, Al- 1194

ternation, Result, Background, Narration, Correc- 1195

tion, Parallel, Contrast. You try to identify the 1196

relation between the utterance of the director in the 1197

previous with your utterance. Then you reply with 1198

an utterance that has the appropriate relation. 1199

- Questioning Persona: Everything you say has 1200

an implicit question underneath it. You should tell 1201

what the director is actually asking for (the question 1202

under their instruction), and give your answer to 1203

that implicit question. 1204

The director has a final product in mind. You, as 1205

the coder, write the codes for this final product or 1206

have a dialogue about the instruction. For the first 1207

turn of the dialogue, the director gives a specific 1208

instruction or a question about the final product. 1209

Then, you will give some answers, and then the 1210

director will have another turn to refine the codes. 1211

user prompts: 1212

Director: REF CODE: “‘+ ref-code “‘ + DIA- 1213

LOGUE HISTORY:" + dialogue-history + What 1214

can you say on the follow-up turn for the coder 1215

to converge to the reference code? Do not men- 1216

tion anything about the REF CODE, and don’t give 1217

away the answer. 1218

Coder: POSSIBLE GENERATED CODES: So- 1219

lution 1: “‘CODE“‘ Solution 2: “‘CODE“‘ 1220

DIALOGUE HISTORY: + dialogue-history + 1221

What can you say on the following turn as the 1222

coder to converge to the solution that the director 1223

has in mind? Give responses for all types of your 1224

personas. Personas must not give the same solu- 1225

tion! Your solution MUST NOT contain any new 1226

code. You can talk about the provided code. 1227

C Additional Experiments with Various 1228

Models 1229

This section presents results from several experi- 1230

ments with multiple other models, such as CodeL- 1231

LaMA, LLaMMA3.2, StarCoder-2 in Table 5 and 1232

Table 6. 1233

D Abstract Syntax Tree (AST) Functional 1234

Uniqueness Algorithm 1235

In this section, we detail the AST-based function 1236

uniqueness comparison algorithm between two sep- 1237

arate generated functions. The code for the algo- 1238

rithm is given in Listing 1. We find this form of 1239

comparison to be appropriate for plotting tasks as 1240

the lines of code of interest are generally the calls 1241

14

Figure 5: This figure shows the change in unique responses of code completions depending on the temperature of
the model. From the left, the plots are showing histograms for 0.3, 0.7, and 1.0 temperatures. The horizontal axis is
the question number from the DS1000 matplotlib dataset. It is observable that the uniqueness is high for higher
temperatures, expectedly. However, very high temperatures may have minor differences that increase the overall
uniqueness. Hence, a moderate temperature like 0.7 gives more reliable results for further experimentation.

Pass@1↑ ds↓

Baseline No Dialogue 0.422 0.744

Pragmatic
Coder

with code
Cooperative 0.427 0.640
Discoursive 0.467 0.613
Inquisitive 0.396 0.716

with image
Cooperative 0.447 0.584
Discoursive 0.493 0.624
Inquisitive 0.393 0.711

Table 5: This figure shows the main results of our experi-
mentation for CodeLLaMA as the coder, and GPT-4o as
the director, and the baseline corresponds to StarCoder2.
Here, we give the metrics for both executability and sam-
pling diversity. Having a dialogue generally performs
better than the baseline code completion without any
dialogue. For each pragmatic setting, we experiment
with all the reasoning styles and have an image or code
as the reference solution for the director.

to library functions, particularly those provided by1242

the matplotlib API.1243

E Temperature Adjustments1244

We present our experimentation results for the tem-1245

perature tuning in Figure 5.1246

No Dialogue

Pass @ 1 OG I C U

GPT 4o 68.38% 68.38% 87.74% 81.29%
LLaMA 3.2 63.23% 64.52% 77.42% 65.81%
LLaMA → GPT - 66.45% 85.16% 78.71%
GPT → LLaMA - 77.42% 81.29% 79.36%

Table 6: This table shows the results for ambiguity
representation transfer between different models. OG:
original prompt, I: image reprompt, C: code reprompt,
U: unit test reprompt.

F Example Dialogues 1247

We present the reference-image-based coder- 1248

director dialogues for the final example from Table 1249

4. 1250

15

1 def compare_parse_trees(response1 , response2):
2 """ Compare the parse trees of two responses."""
3 unique_function_calls = []
4 unique_params = {}
5 unique_keywords = {}
6 try:
7 tree1 = ast.parse(response1)
8 functions1 = get_params(tree1)
9 tree2 = ast.parse(response2)

10 functions2 = get_params(tree2)
11 for function in functions1.keys():
12 if function not in functions2.keys():
13 unique_function_calls.append(function)
14 else:
15 for i, arg in enumerate(functions1[function]):
16 if arg not in functions2[function]:
17 if function not in unique_params.keys():
18 unique_params[function] = []
19 unique_params[function]. append(arg)
20 if isinstance(arg , dict):
21 for key in arg.keys():
22 for j in range(len(functions2[function])):
23 if isinstance(functions2[function][j], dict):
24 if key not in functions2[function][j].keys():
25 if function not in unique_keywords.keys():
26 unique_keywords[function] = []
27 unique_keywords[function]. append(key)
28 else:
29 if arg[key] != functions2[function][j][key]:
30 if function not in unique_keywords.keys

():
31 unique_keywords[function] = []
32 unique_keywords[function]. append(key)
33 except SyntaxError:
34 print("Syntax Error")
35 return unique_function_calls , unique_params , unique_keywords

Listing 1: This code snippet shows how the functions of two separate generated codes are compared using their
ASTs.

16

Coding Question: highlight in red the x range 2 to 4 (0.667 Initial Pass@1)

Cooperative Dialogue (0.967 Final Pass@1)
Director: highlight in red the x range 2 to 4
Coder: Both solutions will highlight the x range from 2 to 4 in red, but they differ in transparency.
Solution 1 uses an ‘alpha‘ of 0.3, which means it’s more transparent than Solution 2 with an
‘alpha‘ of 0.5. If you want a less noticeable highlight, go with Solution 1; for more prominence,
choose Solution 2.
Director: Increase the opacity of the highlighted area so that it’s fully opaque instead of
transparent. Make sure the highlight is prominently visible.
Coder: To make the highlight fully opaque, you’ll need to set the ‘alpha‘ parameter to 1. You
can modify either of the existing solutions by changing ‘alpha=0.3‘ or ‘alpha=0.5‘ to ‘alpha=1‘.
This will eliminate transparency entirely and ensure that the red highlight is prominently visible.
Director: Make sure the highlight completely covers the x range from 2 to 4 with no gaps or
transparency. The highlighted area should be clearly distinguished and fully filled in red.

Discoursive Dialogue (1.0 Final Pass@1)
Director: highlight in red the x range 2 to 4
Coder: Clarification Question – The provided solutions differ in their transparency settings
through the ‘alpha‘ values. Could you specify your preference regarding how prominent or
subtle you’d like this red highlighting effect to be?
Director: Please ensure that the red highlight is fully opaque, with no transparency effect.
Coder: Correction – To make sure we match your requirement of having no transparency, you’ll
need to modify the ‘alpha‘ value in either solution from its current setting to ’1’, achieving a
fully opaque appearance.
Director: Please ensure the x range highlighted in red is fully opaque with no transparency. We
need it to stand out distinctly against the rest of the plot.

Inquisitive Dialogue (0.167 Final Pass@1)
Director: highlight in red the x range 2 to 4
Coder: What you seem to want is ensuring that the area between x=2 and x=4 is clearly visible
on your plot highlighted in red. Do you want it to be very noticeable or somewhat subtle? The
difference here is that one solution is more transparent than the other; which visibility level do
you prefer?
Director: Please make the highlighted area more noticeable by removing any transparency so
it’s fully opaque.
Coder: The implicit question here is about achieving complete opacity for the highlighted area
between x=2 and x=4 on a plot. If neither existing solution (‘Solution 1‘ or ‘Solution 2‘) meets
your requirements—since they include some degree of transparency—you’ll need an alternative
with no alpha setting or perhaps adjusting ’alpha’ to ‘1‘.
Director: Ensure the red highlighted area between x=2 and x=4 is fully opaque without any
transparency. The ‘alpha‘ parameter should be set to 1, or simply not included at all to achieve
full opacity.

17

	Introduction
	Related Work
	Defining and Identifying Ambiguity
	Ambiguity in Plotting Code
	Automatic Metrics for Ambiguity

	Disambiguation with Coding Dialogues
	Basic Dialogue Setup
	A Pragmatic Dialogue Setup
	Dialogue Strategies

	Experiments & Findings
	Error Analysis

	Conclusion
	Generating Dialogue Responses
	Prompting Details
	Pragmatic Coder
	System Prompts:

	Additional Experiments with Various Models
	Abstract Syntax Tree (AST) Functional Uniqueness Algorithm
	Temperature Adjustments
	Example Dialogues

