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Abstract

Privacy policies are widely used by digital ser-001
vices and often required for legal purposes.002
Many machine learning based classifiers have003
been developed to automate detection of differ-004
ent concepts in a given privacy policy, which005
can help facilitate other automated tasks such006
as producing a more reader-friendly summary007
and detecting legal compliance issues. Despite008
the successful applications of large language009
models (LLMs) to many NLP tasks in vari-010
ous domains, there is very little work study-011
ing the use of LLMs for automated privacy012
policy analysis, therefore, if and how LLMs013
can help automate privacy policy analysis re-014
mains under-explored. To fill this research015
gap, we conducted a comprehensive evaluation016
of LLM-based privacy policy concept classi-017
fiers, employing both prompt engineering and018
LoRA (low-rank adaptation) fine-tuning, on019
four state-of-the-art (SOTA) privacy policy cor-020
pora and taxonomies. Our experimental results021
demonstrated that combining prompt engineer-022
ing and fine-tuning can make LLM-based clas-023
sifiers outperform other SOTA methods, sig-024
nificantly and consistently across privacy pol-025
icy corpora/taxonomies and concepts. Fur-026
thermore, we evaluated the explainability of027
the LLM-based classifiers using three metrics:028
completeness, logicality, and comprehensibil-029
ity. For all three metrics, a score exceeding030
91.1% was observed in our evaluation, indicat-031
ing that LLMs are not only useful to improve032
the classification performance, but also to en-033
hance the explainability of detection results.034

1 Introduction035

In the digital age, the exponential growth of on-036

line services and applications has precipitated sub-037

stantial concerns pertaining to user privacy pro-038

tection. Some services or applications tend to039

excessively collect or utilize users’ personal in-040

formation, posing threats to privacy security. Pri-041

vacy policies, serving as formal legal documents042

that delineate organizational data practices, con- 043

stitute a critical mechanism for informing users 044

about the collection, processing, storage and shar- 045

ing of their personal data. The examination of 046

privacy policies is of paramount importance for 047

comprehending personal data processing mecha- 048

nisms and evaluating organizational compliance 049

with established privacy regulations such as the EU 050

and the UK’s GDPR (General Data Protection Reg- 051

ulation) (Voigt and Von dem Bussche, 2017) and 052

the USA’s CCPA (California Consumer Privacy 053

Act) (California State Legislature, USA, 2018). 054

However, privacy policies are often complex, filled 055

with technical terms, making comprehension chal- 056

lenging. Past research (Ibdah et al., 2021) has 057

revealed that many users encountered difficulties 058

in understanding the content of privacy policies. 059

Therefore, analyzing privacy policies in a way that 060

facilitates user understanding and comprehension 061

holds significant practical value. Due to the in- 062

creasing number of online services and applica- 063

tions and the iterative nature of privacy policies, 064

manual analysis becomes unsustainable, making 065

machine learning based automated privacy policy 066

analysis a meaningful research direction. 067

Large language models (LLMs) have demon- 068

strated the state-of-the-art performance in various 069

natural language processing (NLP) benchmarks, 070

showcasing a remarkable potential in practical ap- 071

plications such as text generation, dialogue process- 072

ing, and knowledge question-answering (Chang 073

et al., 2024). It is highly likely that LLMs will 074

perform well in analyzing privacy policies written 075

in natural language, as their capabilities can be ef- 076

fectively leveraged given the complex nature of 077

these policies. Although many researchers have 078

proposed machine learning based classifiers for au- 079

tomated privacy policy analysis, to the best of our 080

knowledge, except the limited work by Goknil et al. 081

(2024) on exploring the use of prompt engineer- 082

ing LLMs for this purpose, the potential of LLMs 083
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remains largely unexplored.084

In this paper, we report our comprehensive eval-085

uation of utilizing both prompt engineering and086

LoRA (low-rank adaptation) fine-tuning to develop087

LLM-based privacy policy concept classifiers. We088

conducted experiments across four state-of-the-art089

(SOTA) privacy policy corpora/taxonomies and sev-090

eral mainstream LLMs, exploring the effects of dif-091

ferent factors such as temperature and model size092

on the model performance. Explainability refers093

to the ability to explain or present the behavior of094

AI models in human-understandable terms (Zhao095

et al., 2024). In addition to assessing the detec-096

tion performance of LLM-based privacy policy con-097

cept classifiers, we also studied how to use LLMs098

to explain the detection results using customized099

prompts for different concepts. We evaluated the100

model’s explainability across three metrics: com-101

pleteness, logicality, and comprehensibility. Our102

key contributions are as follows:103

1) We conducted a systematic evaluation on104

how to use LLMs to conduct automated privacy105

policy analysis, which, to the best of our knowl-106

edge, represents the first comprehensive study of107

this kind. By leveraging both prompt engineering108

and LoRA fine-tuning, we managed to use LLMs109

to produce new privacy policy concept classifiers110

that can outperform other SOTA classifiers signif-111

icantly and consistently across three mainstream112

open-source LLMs and four SOTA privacy policy113

corpora/taxonomies.114

2) We systematically investigated the potential115

of using LLMs to explain detection results of LLM-116

based privacy policy concept classifiers. Based117

on the above-mentioned three metrics, our human-118

based assessment results demonstrate that LLMs119

can generate meaningful explanations with high120

satisfaction (a score exceeding 91.1% observed for121

all three metrics), although there are some short-122

comings in logicality.123

The remainder of this paper is structured as fol-124

lows. Section 2 presents related work. Section 3125

details our approach. Section 4 outlines the ex-126

periment setup and results. Section 5 explores the127

explainability of LLMs in privacy policy analysis.128

The last two sections conclude this paper and dis-129

cuss limitations of the work, respectively.130

2 Related Work 131

2.1 Privacy Policy Corpora 132

Annotated privacy policy datasets are crucial for the 133

training and evaluation of machine learning models. 134

A common annotation involves segmenting privacy 135

policies and classifying these segments based on 136

taxonomies derived from legal standards or real- 137

world privacy policies. As the first and the most 138

widely used privacy policy dataset, OPP-115 (Wil- 139

son et al., 2016) provides fine-grained annotations 140

at the paragraph level. It encompasses 115 pri- 141

vacy policies from online services, with 3,792 para- 142

graphs categorized into 12 privacy policy concep- 143

tual categories (which forms a mini-taxonomy). 144

Each paragraph was independently annotated by 145

three legal experts and assigned to one or multi- 146

ple privacy policy concepts. Three more recent 147

datasets were released in 2024. Among them, Tang 148

et al. (2024) introduced GoPPC-150, a dataset fea- 149

turing paragraph-level annotations and a more com- 150

prehensive taxonomy tailored to GDPR require- 151

ments. Two other new datasets, CAPP-130 (Zhu 152

et al., 2023) and APPCP-100 (Zhang et al., 2024), 153

focus on Chinese privacy policies, offering sup- 154

port for research on privacy policy analysis in a 155

multilingual context. 156

2.2 Automated Privacy Policy Analysis 157

Automated privacy policy analysis encompasses 158

various tasks such as concept classification (Srinath 159

et al., 2021; Mousavi Nejad et al., 2020; Tang et al., 160

2024), summary generation (Zhu et al., 2023), ques- 161

tion answering (Harkous et al., 2018), and the anno- 162

tation of key information like opt-out options (Ban- 163

nihatti Kumar et al., 2020). Among these, concept 164

classification in privacy policies has been more ex- 165

tensively studied. It involves segmenting privacy 166

policies and labeling each segment based on a tax- 167

onomy covering relevant concepts. This approach 168

can facilitate readers with a quick understanding 169

of key conceptual points in different parts of the 170

privacy policy. In addition, the coverage of con- 171

cepts serves as an important criterion for assessing 172

a privacy policy’s legal compliance against a given 173

data protection law. 174

Some researchers (Torre et al., 2020; 175

Mousavi Nejad et al., 2020; Mustapha et al., 176

2020; Srinath et al., 2021; Tang et al., 2024) 177

employed NLP approaches to automatically 178

analyze the content of a given privacy policy and 179

evaluated it on privacy policy corpora, establishing 180
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a stable baseline. Some others (Xiang et al.,181

2023; Cejas et al., 2024) adopted semantic role182

based approaches to do large-scale privacy policy183

completeness violation studies. However, there184

has been very little research on automated privacy185

policy analysis based on LLMs. The only past186

study we are aware of was done by Goknil et al.187

(2024), who looked at using prompt engineering188

LLMs for this purpose only.189

2.3 Large Language Models190

Large language models (LLMs), like OpenAI’s191

GPT series (Radford et al., 2018) and Meta’s Llama192

series (Touvron et al., 2023), possess immense193

parameter sizes and learning capabilities. A no-194

table capability of LLMs is their rich contextual195

learning ability (Brown et al., 2020). Through196

carefully designed prompts, such as detailed task-197

specific instructions or a few illustrative examples,198

researchers can effectively guide models to gen-199

erate targeted outputs. Many prompt engineering200

methods for LLMs have been developed in the past201

a few years (Schulhoff et al., 2024), e.g., Wei et al.202

(2022c) introduced the chain-of-thought (CoT) ap-203

proach, which decomposes complex problems into204

intermediate reasoning steps, helping LLMs gener-205

ate more logical and coherent responses. In addi-206

tion to prompt engineering, which is more in the207

domain of zero- or few-shot training, fine-tuning is208

another effective way to improve LLMs’ abilities of209

solving new tasks (Wei et al., 2022a). However, the210

time complexity and costs of full-parameter fine-211

tuning can be exceedingly high due to the huge212

number of parameters in LLMs. To mitigate this213

issue, more efficient fine-tuning methods have been214

extensively developed, such as adapter tuning, pre-215

fix tuning, prompt tuning and LORA (Ding et al.,216

2023; Li and Liang, 2021; Lester et al., 2021; Hu217

et al., 2022).218

3 Methodology219

3.1 Problem Formulation220

The problem can be defined as a multi-class multi-221

label classification task of assigning a segment in a222

given privacy policy one or more concepts defined223

in a relevant taxonomy. Among all privacy policy224

taxonomies, the one supporting the privacy policy225

corpus GoPPC-150 (Tang et al., 2024) is the most226

advance and the first multi-level one, with fine-227

grained privacy policy concepts especially those228

related to the GDPR. A partial hierarchy of the229

CONTROLLER DATA SHARING PD PRINCIPLE OTHER

IDENTITY CONTACT RECIPIENTS CONDITION
PURPOSE 

LIMITATION
DATA 

MINIMIZATION

First Level

Second Level

Figure 1: A partial hierarchy of GoPPC-150.

GoPPC-150 taxonomy is illustrated as a directed 230

acyclic graph (DAG) in Figure 1. 231

To elucidate the process of privacy policy con- 232

cept classification, let us consider an illustrative 233

example. Given a privacy policy segment X , the 234

classifier H(·) produces a label Y1 indicating one 235

of the first-level nodes of the taxonomy, denoted as 236

Y1 = H(X). A special value of Y1 is ‘OTHER’, 237

indicating that X does not match any first-level 238

nodes in the taxonomy. If Y1 does refer to a leaf 239

node, such as ‘DATA SHARING’ the partial tax- 240

onomy in Figure 1, a subsequent classification task 241

will proceed to determine the associated second- 242

level node following a similar process, denoted 243

as Y2 = H(X,Y1), where Y2 refers to the pro- 244

duced second-level node. The process can continue 245

until a leaf node is reached, although for GoPPC- 246

150 only the first two levels have sufficient data 247

so the process will stop at the second level. The 248

final classification result of X is therefore a cas- 249

caded code denoted by Y1.Y2, e.g., ‘DATA SHAR- 250

ING.CONDITION’. Note that X may be labeled 251

multiple concepts so more than one final classifica- 252

tion code could be produced. 253

3.2 Design Prompts 254

We explored applying prompt engineering to pri- 255

vacy policy analysis. Given that the OPP-115 pri- 256

vacy policy corpus represents the first published 257

and most widely used dataset in this domain, we 258

utilized it as the benchmark to assess the effec- 259

tiveness of various prompt designs. To compre- 260

hensively assess the impact of different prompt 261

engineering techniques, such as few-shot and CoT, 262

we designed five different prompts to elicit related 263

concepts from privacy policy segments. 264

Each prompt was designed to provide different 265

levels of guidance and context to LLMs. Figure 4 266

in Appendix A shows greater details of the five 267

prompts. 268
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• Prompt 1 simply describes the task without269

providing any additional explanations or ex-270

amples.271

• Prompt 2 extends Prompt 1 by including de-272

tailed explanations of all the 12 concepts de-273

fined in OPP-115.274

• Prompts 3 and 4, in addition to providing cat-275

egory explanations, are designed for few-shot276

learning with one (Prompt 3) or two (Prompt277

4) examples for each category.278

• Prompt 5 introduces CoT as a structured rea-279

soning process to guide LLMs through a step-280

by-step approach.281

3.3 Fine-Tuning282

We propose a method to streamline the adaptation283

of LLMs to hierarchical classification tasks, using284

the multi-level corpus GoPPC-150 as the bench-285

mark dataset. The fine-tuning process involves two286

distinct tasks: predicting first-level nodes based287

on segment content, and subsequently predicting288

second-level nodes based on both segment content289

and the predicted first-level nodes. Figure 2 shows290

the two-leveled fine-tuning process. The process is291

progressive, and LLMs acquire two-stage predic-292

tion capabilities through this process.293

Task1 For Level-1 Nodes
Query:

Task definition
Categories:

Response: 
CONTORLLER

Task2 For Level-2 Nodes
Query:

Task definition
Category is CONTORLLER
Attributes:

Response: 
CONTORLLER.CONTACT

Re-format
datasets

Finetuned model
for Level 1

Finetuned model
for Level 2

Re-format
datasets

Figure 2: Two-leveled fine-tuning process.

4 Experiments and Results294

4.1 Setup295

Corpora. Different corpora employ different con-296

cept taxonomies. These taxonomies differ in both297

granularity, multi-level taxonomies being more de-298

tailed than single-level ones, and construction stan-299

dard, with some tailored to specific regulations300

such as the GDPR and others being more general.301

OPP-115 uses a simple single-level taxonomy to302

broadly categorize concepts. The taxonomy it em- 303

ploys was defined based on real-world privacy poli- 304

cies by law experts over multiple iterations. In 305

contrast, corpora like GoPPC-150 and APPCP-100 306

employ a multi-level taxonomy that is specifically 307

designed to align with the hierarchical nature of 308

privacy policies and a data protection regulatory 309

framework, thereby offering greater relevance and 310

applicability to real-world scenarios. For a compre- 311

hensive study of diverse taxonomies, we selected 312

OPP-115 and GoPPC-150, complemented by their 313

Chinese counterparts, CAPP-130 and APPCP-100, 314

which adhere to a single-level and a multi-level 315

taxonomy, respectively. 316

The OPP-115 corpus consists of 10 concept cat- 317

egories, with the final category ‘OTHER’ further 318

subdivided into three distinct categories: ‘Introduc- 319

tory/Generic’, ‘Privacy Contact Information’, and 320

‘Practice Not Covered’. We considered all the 12 321

categories as a single-level taxonomy for our exper- 322

iments. The GoPPC-150 corpus has nodes at three 323

levels, but only 14 first-level and 21 second-level 324

nodes have sufficient data, which were used for 325

our experiments. The CAPP-130 corpus classifies 326

privacy policy segments by three aspects: impor- 327

tance, risk, and topic classification. This paper 328

focuses on the topic classification task (with 11 329

topical categories) that is aligned with the classifi- 330

cation of concepts. For APPCP-100, the nodes that 331

appear infrequently are filtered and 13 first-level, 332

25 second-level, and 16 third-level nodes were se- 333

lected for our experiments. 334

Models. To ensure that our experimental results 335

align with the latest advancements of LLMs, we se- 336

lected three widely recognized open-source models 337

for our experiments. These include Llama devel- 338

oped by Meta (Touvron et al., 2023), the Qwen 339

series developed by Alibaba (Bai et al., 2023), 340

and ChatGLM developed by the Tsinghua Univer- 341

sity (GLM et al., 2024). We also conducted limited 342

experiments using GPT, the most studied closed- 343

source LLM from Open AI (Radford et al., 2018). 344

These models were chosen because of their strong 345

performance in various benchmarks and relevance 346

to current research trends. We aim to provide a ro- 347

bust and comprehensive evaluation of our proposed 348

method using these models. 349

4.2 Evaluation Metrics 350

We treated our multi-label multi-class classifica- 351

tion task as multiple independent binary classifica- 352

tion tasks. Therefore, we employed classic metrics 353
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for binary classifiers such as precision, recall, and354

the F1 score. To comprehensively evaluate perfor-355

mance across all labels, we calculated the average356

of these metrics over all labels. The macro-average357

calculates the arithmetic mean of the metrics across358

all categories, treating each category equally re-359

gardless of its frequency. It provides the model’s360

overall performance by evaluating its ability to dis-361

criminate across all categories independently. In362

contrast, the micro-average gives more weight to363

categories with a larger number of samples, effec-364

tively reflecting the model’s performance relative365

to the actual distribution of categories. Both met-366

rics are commonly employed to assess the model367

performance in multi-label classification tasks, and368

neither can be considered universally superior. Con-369

sequently, we compared and reported both macro-370

average and micro-average.371

4.3 Prompt-Based Experiments372

We conducted experiments to evaluate the effective-373

ness of prompt engineering using the Llama3-8B-374

Instruct model. Specifically, we tested five different375

prompts on the OPP-115 corpus, using a configura-376

tion with temperature of 0.6, top-p of 0.9, and top-k377

of 50. The experimental results are summarized in378

the Table 1, which includes F1 scores as well as379

macro- and micro-average scores.380

The overall performance of the model was rel-381

atively poor. The poor performance for some cat-382

egories, like ‘Introductory/Generic’ and ‘Practice383

Not Covered’, can be attributed to them being less384

clearly defined, making it challenging to assess385

based on individual sentences.1 Also, the model’s386

strong hallucination led to an excessive number387

of false positives, resulting in high recall but low388

precision rates and consequently poor F1 scores, es-389

pecially for categories like ‘Data Retention’, ‘Data390

Security’, and ‘Do Not Track’. For instance, a seg-391

ment that mentions protecting user privacy, like392

“We are committed to protecting and respecting393

your privacy” was mistakenly classified as ‘Data394

Security’. While it refers to the commitment to395

privacy protection, it does not describe specific396

security measures, therefore, it is not related to397

this concept. On the other hand, the model per-398

formed well on categories such as ‘First Party Col-399

1As reported in (Wilson et al., 2016), during the annotation
process, they have shown significant disagreement among
the three legal experts. The ‘OTHER’ class (which covers
the two aforementioned concepts) has the poorest inter-rater
agreement, with Fleiss’ kappa equal to just 0.49.

lection/Use’, ‘Third Party Collection/Use’, and ‘In- 400

ternational/Specific Audiences’, probably due to 401

their being easier concepts. 402

Differences in performance were observed be- 403

tween the five prompts. Prompt 1, which only con- 404

tains a task description, performed the worst, which 405

is not surprising given it providing the least infor- 406

mation. Prompt 2 adds explanations of concept 407

categories, so the model can understand the con- 408

cepts better. Prompts 3 and 4 show a significant 409

improvement in a few-shot setting. Compared to 410

Prompt 3, where one example per concept category 411

is used, Prompt 4 includes two examples. However, 412

the increase in the number of examples did not im- 413

prove the results, which was unexpected, indicating 414

more is not always better. Prompt 5 used the CoT 415

approach, but it performed the second worst, which 416

was also unexpected. 417

4.4 Temperature Experiments 418

Several factors, such as sampling methods, tem- 419

perature, top-p and top-k, can significantly impact 420

model performance. We conducted experiments to 421

show the role of temperature. We employed Prompt 422

3 for these experiments because it achieved the best 423

performance among all five prompts as reported in 424

the previous subsection. Utilizing the Llama3-8B- 425

Instruct model again, experiments were conducted 426

on the OPP-115 corpus with top-p fixed at 0.9 and 427

top-k set to 50, while the temperature was varied 428

across 0.3, 0.6, and 0.9, including a greedy gen- 429

eration for comparison. The performance under 430

different generation configurations are shown in 431

Table 2. It indicates that the Llama3-8B-Instruct 432

model exhibits limited sensitivity to temperature 433

variations for the task of concern. 434

4.5 Fine-Tuning: Baseline Experiments 435

We conducted experiments to evaluate the capabil- 436

ity of fine-tuning the smaller versions of the three 437

selected mainstream open-source LLMs, Llama3- 438

8B, Qwen1.5-7B, and ChatGLM3-6B, utilizing 439

four privacy policy corpora, OPP-115, GoPPC- 440

150, CAPP-130, and APPCP-100. We perform 441

LoRA fine-tuning on an RTX 4090 machine, pri- 442

marily because LoRA significantly reduces com- 443

putational costs compared to full fine-tuning and 444

it can achieve a performance comparable to full 445

fine-tuning in many scenarios, and it usually per- 446

forms better than other alternative fine-tuning meth- 447

ods (Hu et al., 2023). 448

For OPP-115, we selected the results of 449
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Label Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5

First Party Collection/Use 0.740 0.774 0.762 0.788 0.748
Third Party Collection/Use 0.730 0.772 0.762 0.714 0.758

User Choice/Control 0.366 0.441 0.465 0.458 0.478
User Access, Edit and Deletion 0.533 0.582 0.667 0.646 0.611

Data Retention 0.135 0.217 0.385 0.300 0.204
Data Security 0.549 0.517 0.549 0.550 0.471
Policy Change 0.472 0.467 0.512 0.568 0.532
Do Not Track 0.240 0.300 0.286 0.222 0.240

International/Specific Audiences 0.451 0.768 0.803 0.835 0.762
Introductory/Generic 0.436 0.564 0.431 0.471 0.514

Privacy Contact Information 0.731 0.696 0.707 0.682 0.714
Practice Not Covered 0.091 0.198 0.250 0.220 0.193

Macro Average 0.456 0.525 0.548 0.538 0.519
Micro Average 0.548 0.620 0.636 0.623 0.611

Table 1: Performance of Llama3-8B-Instruct using 5 prompts on the OPP-115 corpus (F1 scores).

Setting Macro Average Micro Average

Greedy 0.536 0.629
T=0.3 0.546 0.632
T=0.6 0.548 0.636
T=0.9 0.541 0.634

Table 2: Effect of temperature on the model perfor-
mance (F1 scores).

PrivBERT (Srinath et al., 2021) as the baseline. For450

GoPPC-150, we adopted the PrivBERT+NN (neu-451

ral network) approach used in (Tang et al., 2024) as452

the baseline. For CAPP-130, we used RoBERTa as453

the baseline because it achieved best performance454

among all models as described in (Zhu et al., 2023).455

For APPCP-100, we employed BERT+RF (random456

forests) described in (Zhang et al., 2024) as the457

baseline.458

Table 3 presents the performances of differ-459

ent LLMs compared with the baselines, demon-460

strating a significant improvement2. Notably, the461

advantages of LLMs are more pronounced on462

GoPPC-150, suggesting their superiority in han-463

dling such complex and fine-grained tasks. Llama3-464

8B demonstrates a superior performance on the465

two English corpora but a slightly lower perfor-466

mance on the two Chinese corpora, likely due to467

the limited coverage of Chinese in its pre-training468

corpus. Due to the importance of GPT series in469

the field of LLMs, we also experimented with it.470

We fine-tuned and evaluated gpt3.5-turbo-0125 on471

the OPP-115 corpus. The final performance, with472

2We also conducted experiments using Llama3.1 and
Qwen2.5 on OPP-115 corpus. But it shows no improvement
compared to Llama3 and Qwen1.5. So we did not employ
them on other corpora. Llama3.1-8B: macro F1 0.828, micro
F1 0.871; Qwen2.5-7B: macro F1 0.825, micro F1 0.872.

a macro-average F1 score of 0.801 and a micro- 473

average F1 score of 0.851, shows no improvement 474

over other three open-source models. Due to the 475

prohibitive costs of fine-tuning GPT and its lack 476

of significant performance advantages compared 477

to other LLMs, we strategically limited our ex- 478

perimental evaluation of GPT to a single corpus 479

(OPP-115). 480

4.6 Fine-Tuning: Experiments on Different 481

Model Sizes 482

Prior research (Wei et al., 2022b) has indicated 483

that, for some tasks, larger LLMs exhibit a signifi- 484

cantly superior performance compared to smaller 485

ones. However, in certain tasks, smaller models 486

have been observed to achieve a substantial por- 487

tion of the performance of larger models, thereby 488

offering a more cost-effective and practical alterna- 489

tive. We conducted experiments to investigate this 490

phenomenon for the task we are studying. We fo- 491

cused on the Qwen1.5 series, which encompasses 492

a more diverse range of model scales especially at 493

the lower end, including 0.5B, 1.8B, 4B, and 7B 494

parameters. Qwen1.5-7B has also demonstrated 495

a robust performance in our own experiments and 496

other researchers’ past studies, making it a reason- 497

able choice. 498

We evaluated the performance of Qwen1.5 mod- 499

els of various scales (0.5B, 1.8B, 4B, and 7B) on all 500

the four privacy policy corpora. Figure 3 shows the 501

performances of Qwen1.5 models with different 502

size, revealing a trend that larger models generally 503

outperform smaller ones, but the improvement is 504

small or marginal. Notably, after fine-tuning, the 505

0.5B model was already able to achieve over 90% 506

of the performance of the 7B model. Therefore, if 507
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Standard Baseline Llama3-8B Qwen1.5-7B Chatglm3-6B

macro micro macro micro macro micro macro micro

OPP-115 All 0.830 0.870 0.836 0.877 0.831 0.868 0.819 0.867

GoPPC-150 Level 1 0.669 0.697 0.717 0.725 0.709 0.718 0.705 0.712
All 0.529 0.589 0.618 0.685 0.612 0.673 0.609 0.668

CAPP-130 Topic 0.841 0.819 0.838 0.821 0.852 0.829 0.858 0.837

APPCP-100 Level 1 0.832 0.867 0.831 0.875 0.843 0.883 0.840 0.878
All 0.767 0.846 0.767 0.858 0.782 0.865 0.778 0.858

Table 3: Performance of different LLMs with fine-tuning compared with baseline.

the performance requirements are not high, smaller508

models have certain advantages.509

Figure 3: Effect of model size on the performance. Stan-
dards s1-s6 represent OPP-115, GoPPC-150 level-1, All
nodes, CAPP-130 Topic, APPCP-100 level-1 and All
nodes, respectively.

4.7 Fine-Tuning: Experiments on Single- vs510

Multi-Task Settings511

Single-task training focuses on optimizing a model512

for one specific task, while multi-task training in-513

volves training a model on multiple tasks simul-514

taneously. We conducted experiments to explore515

the application of multi-task fine-tuning to enhance516

the ease of model deployment. Specifically, we517

integrated the first- and second-level node classi-518

fication tasks of GoPPC-150 into a unified task519

framework by merging the two aforementioned520

single-task fine-tuning corpora. By fine-tuning the521

Llama3-8B model on this consolidated corpus, we522

achieved an excellent performance on both tasks523

simultaneously. Table 4 presents the performances524

of the two training paradigms. The performance525

of multi-task fine-tuning shows just a small sig-526

nificant drop compared to single-task fine-tuning,527

demonstrating its feasibility.528

4.8 Performance Comparison529

As mentioned in Section 2, Goknil et al. (2024)530

explored the use of prompt engineering and LLMs531

for automated privacy policy analysis, using OPP-532

115 as the corpus. To compare with their work, we533

adopted their best results on Llama3-8B. Since they534

Method Macro average Micro average

Single-task 0.618 0.685
Multi-task 0.614 0.679

Table 4: Performances of single- and multi-task
paradigms.

did not consider the last three categories in OPP- 535

115, we also excluded them in our performance 536

comparison experiments, leading to slight discrep- 537

ancies with the results reported in Section 4.3. Ta- 538

ble 5 presents a comparison of the performance 539

figures (F1 scores) on the OPP-115 corpus. The 540

results show that prompt engineering methods gen- 541

erally perform more poorly, while the fine-tuning 542

method we employed demonstrates a far superior 543

performance. 544

Category Goknil
et al.’s

Ours
(PE)

Ours
(Finetuned)

First Party
Collection/Use

0.760 0.789 0.939

Third Party
Sharing/Collection

0.710 0.789 0.935

User
Choice/Control

0.630 0.477 0.847

User Access, Edit
and Deletion

0.730 0.667 0.821

Data Retention 0.400 0.348 0.696
Data Security 0.740 0.568 0.873
Policy Change 0.880 0.585 0.973
Do Not Track 0.810 0.300 1.000

International and
Specific Audiences

0.810 0.827 0.918

Micro Average 0.730 0.694 0.916

Table 5: Comparison of performances (F1 scores) on
the OPP-115 corpus (PE = prompt-engineered).

5 Explainability 545

Compared to traditional deep learning methods, 546

LLMs has the potential to offer enhanced explain- 547

ability due to its capability of producing human- 548
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like texts in natural languages. To investigate the549

explainability of LLMs for privacy policy con-550

cept classification, we fed privacy policy segments551

along with their corresponding concept categories552

into an LLM, prompting it to analyze and explain553

the classification results. Specifically, our prompts554

include the task description, the concept categories’555

descriptions, the required output format, and some556

examples. The task description and concept cate-557

gories’ descriptions are consistent with those de-558

tailed in Section 3.2. We instructed the LLM to, for559

each category, first explain its meaning and then560

analyze the segment’s relevance to the category.561

As an example, we utilized the Llama3-8B-562

Instruct model, with settings of temperature=0.6563

and top-p=0.9, to generate explanations for 100564

privacy policy segments randomly selected from565

OPP-115. We focused on the first 11 categories566

of the OPP-115 taxonomy, excluding the ‘Practice567

Not Covered’ category, which does not require any568

specific explanation.569

We established three metrics to assess the quality570

of the LLM-generated explanations, as explained571

below. Each metric was scored by three human an-572

notators on a scale of 1, 2, or 3, where 1 indicates573

‘poor performance’, 2 indicates ‘acceptable perfor-574

mance’, and 3 indicates ‘outstanding performance’.575

Completeness assesses whether the explanation576

covers all key points of the privacy policy segment577

that identifies the relevant concept categories.578

Logicality evaluates the accuracy of the model’s579

understanding of the privacy policy segment and580

the coherence of the model’s reasoning.581

Comprehensibility focuses on the clarity and582

understanding of the explanation itself, especially583

in terms of language.584

The three human annotators are three co-authors585

of the paper, all postgraduate research students,586

who conducted a qualitative evaluation of the ex-587

planations of LLM outputs based on the three met-588

rics mentioned above. To prevent potential positive589

scoring bias, we included 10 decoy explanations590

that were made blind to the annotators. These de-591

coy explanations were crafted to exhibit at least592

one aspect of relatively poor performance while593

maintaining basic explanatory quality. After ag-594

gregating the scores, the average scores for the595

three metrics are presented in Table 6. The average596

scores of the 10 artificially crafted explanations are597

significantly lower across all three metrics com-598

pared to the LLM-generated ones. We assessed the599

inter-rater reliability among three annotators using600

Fleiss’ kappa (Landis and Koch, 1977). The re- 601

sults indicated a substantial agreement for all three 602

metrics: 0.765 for completeness, 0.695 for logical- 603

ity, and 0.656 for comprehensibility. Our primary 604

finding is that LLMs exhibit very very good ex- 605

plainability in explaining the classification results 606

of the 100 privacy policy segments, across all three 607

metrics. Notably, the Llama3-8B-Instruct model 608

tend to offer comprehensive analyses of the original 609

text, which contributes to their strong performance 610

in terms of completeness. Moreover, the language 611

style of the LLM-generated content can be easily 612

set to be clear, concise, and easy to understand 613

through the use of prompts, thus demonstrating 614

strong comprehensibility. However, the Llama3- 615

8B-Instruct model’ understanding of privacy policy 616

segments occasionally lacks depth, which results 617

in slightly lower logicality score. 618

Source C1 L C2

LLM 2.84 2.73 2.87
Artificial 2.43 2.10 2.73

Table 6: Average scores of LLM-generated explanations
and artificially crafted explanations (C1 = completeness,
L = Logicality, C2 = comprehensibility).

6 Conclusion 619

This paper proposes a method for utilizing LLMs 620

to classify concepts in a privacy policy based on 621

an established taxonomy. Unlike prior studies, we 622

provided a comprehensive evaluation of LLMs in 623

this domain, incorporating both prompt engineer- 624

ing and LoRA techniques, and assess performance 625

across four SOTA privacy policy corpora and mul- 626

tiple mainstream LLMs, achieving SOTA results 627

against existing methods. We investigated the ef- 628

fects of factors such as temperature, model size, 629

and training paradigm. To enhance the explainabil- 630

ity of the classification results, we used LLMs to 631

generate explanations for the identified concepts 632

and designed an evaluation framework to assess the 633

explanations based on three metrics: completeness, 634

logicality, and comprehensibility. The findings 635

demonstrate that LLMs can provide satisfactory 636

explanations to three human annotators. This paper 637

highlights the great potential of LLMs for both au- 638

tomating analysis of privacy policies and producing 639

useful human-understandable explanations, there- 640

fore opening up their use for many downstream 641

tasks in this important application domain. 642
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7 Limitations643

The performance achieved using prompt engineer-644

ing in our experiments is quite poor. This can be645

two reasons: more advanced prompt engineering646

methods are necessary, and LLMs may not have647

seen enough privacy policies so fine-tuning is a648

must to improve the performance of any tasks about649

privacy policies. We call for more follow-up re-650

search to clarify both points.651

Due to resource limitation, we primarily utilized652

smaller and locally deployed models. While these653

models achieved SOTA performances in our exper-654

iments and demonstrated a great potential, we did655

not experiment with larger models like Llama-3-656

70B and GPT-4. As a result, we were unable to657

evaluate the performance upper bound of LLMs for658

privacy policy concept classification. Additionally,659

we achieved promising results using LoRA. Prior660

studies (Hu et al., 2022) have shown that LoRA661

can closely approximate the performance of full-662

parameter fine-tuning. However, the underlying663

mechanisms of these approaches differ, and further664

research is required to fully explore the potential665

of full-parameter fine-tuning.666

LLMs also benefit from pre-training to acquire667

domain-specific knowledge. Some studies (Gupta668

et al., 2023; Ke et al., 2023) adopted the continual669

pre-training paradigm, enabling models to perform670

unsupervised learning on domain-specific corpora671

before being fine-tuned for specific tasks. This ap-672

proach allows LLMs to acquire substantial knowl-673

edge in a given domain and therefore likely to be674

able to solve targeted problems more effectively.675

In this paper, we did not adopt the continual pre-676

training paradigm, but relied on fine-tuning to help677

LLMs learn domain-specific knowledge. The ef-678

fectiveness of the continual pre-training paradigm679

remains an area for future research.680

In order to support other researchers to repro-681

duce our results and to conduct follow-up research,682

we will make all data and code used publicly avail-683

able.684
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You are an expert in privacy policy. You are given 12 concepts about personal privacy which may be mentioned in privacy policy. 
These concepts are: First Party Collection/Use; Third Party Sharing/Collection; User Choice/Control; User Access, Edit and Deletion; Data 
Retention; Data Security; Policy Change; Do Not Track; International/Specific Audiences; Introductory/Generic; Privacy Contact Information; 
Practice Not Covered.
In the following conversation, user will provide one segment from a privacy policy. The segment can be annotated with at least one concept. 
You need to only return the concepts mentioned in this segment.

Explanations for 12 concepts:
“First Party Collection/Use” referring to how and why a service provider collects or use user information.
“User Choice/Control” referring to choices and control options available to users.
……

Examples:
User: Privacy Policy Sci-News.com is committed to protecting and respecting your privacy. To better inform you of our policy concerning user 
privacy, we have adopted the following terms. Please note that these terms are subject to change, and any such changes will be included on 
this page.
Assistant: Policy Change; Introductory/Generic.

When you are given a segment from a privacy policy that can be annotated with at least one concept, you need to follow the following steps:
1. Read the segment and summarize its main message briefly.
2. Highlight key phrases and terms according to 12 concepts.
3. Associate these key indicators with relevant concepts.

Let us work through a few examples to demonstrate this process:

Example1: Communications from the Site Special Offers and Updates We send all new members a welcoming email to verify password and 
username. Established members will occasionally receive information on products, services, special deals, and a newsletter. Out of respect for 
the privacy of our users we present the option to not receive these types of communications. Please see the Choice and Opt-out sections. 

Step1: Read the segment and summarize its main message briefly. The segment is about registered users may be sent email and other 
information but users can choose not to receive them.

Step2: Highlight key phrases and terms according to 12 concepts. Keywords and phrases identified: email, password and username, the option 
to not receive, Choice and Opt-out sections.

Step3: Associate these key indicators with relevant concepts. email, password and username belong to user information. First Party(the 
company) uses them, so it matches First Party Collection/Use. the option to not receive, Choice and Opt-out sections indicate users have their 
own choices to not receive information. It matches User Choice/Control.
So your response is First Party Collection/Use; User Choice/Control.

Prompt1

Prompt2

Prompt3 & 4

Not included 
in Promt5

Prompt5

Figure 4: Examples of the five types of prompts used in our experiments. The content within the yellow dashed box
is not included in Prompt 5.
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