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Abstract

Privacy policies are widely used by digital ser-
vices and often required for legal purposes.
Many machine learning based classifiers have
been developed to automate detection of differ-
ent concepts in a given privacy policy, which
can help facilitate other automated tasks such
as producing a more reader-friendly summary
and detecting legal compliance issues. Despite
the successful applications of large language
models (LLMs) to many NLP tasks in vari-
ous domains, there is very little work study-
ing the use of LLMs for automated privacy
policy analysis, therefore, if and how LLMs
can help automate privacy policy analysis re-
mains under-explored. To fill this research
gap, we conducted a comprehensive evaluation
of LLM-based privacy policy concept classi-
fiers, employing both prompt engineering and
LoRA (low-rank adaptation) fine-tuning, on
four state-of-the-art (SOTA) privacy policy cor-
pora and taxonomies. Our experimental results
demonstrated that combining prompt engineer-
ing and fine-tuning can make LLM-based clas-
sifiers outperform other SOTA methods, sig-
nificantly and consistently across privacy pol-
icy corpora/taxonomies and concepts. Fur-
thermore, we evaluated the explainability of
the LLM-based classifiers using three metrics:
completeness, logicality, and comprehensibil-
ity. For all three metrics, a score exceeding
91.1% was observed in our evaluation, indicat-
ing that LLMs are not only useful to improve
the classification performance, but also to en-
hance the explainability of detection results.

1 Introduction

In the digital age, the exponential growth of on-
line services and applications has precipitated sub-
stantial concerns pertaining to user privacy pro-
tection. Some services or applications tend to
excessively collect or utilize users’ personal in-
formation, posing threats to privacy security. Pri-
vacy policies, serving as formal legal documents

that delineate organizational data practices, con-
stitute a critical mechanism for informing users
about the collection, processing, storage and shar-
ing of their personal data. The examination of
privacy policies is of paramount importance for
comprehending personal data processing mecha-
nisms and evaluating organizational compliance
with established privacy regulations such as the EU
and the UK’s GDPR (General Data Protection Reg-
ulation) (Voigt and Von dem Bussche, 2017) and
the USA’s CCPA (California Consumer Privacy
Act) (California State Legislature, USA, 2018).
However, privacy policies are often complex, filled
with technical terms, making comprehension chal-
lenging. Past research (Ibdah et al., 2021) has
revealed that many users encountered difficulties
in understanding the content of privacy policies.
Therefore, analyzing privacy policies in a way that
facilitates user understanding and comprehension
holds significant practical value. Due to the in-
creasing number of online services and applica-
tions and the iterative nature of privacy policies,
manual analysis becomes unsustainable, making
machine learning based automated privacy policy
analysis a meaningful research direction.

Large language models (LLMs) have demon-
strated the state-of-the-art performance in various
natural language processing (NLP) benchmarks,
showcasing a remarkable potential in practical ap-
plications such as text generation, dialogue process-
ing, and knowledge question-answering (Chang
et al., 2024). It is highly likely that LLMs will
perform well in analyzing privacy policies written
in natural language, as their capabilities can be ef-
fectively leveraged given the complex nature of
these policies. Although many researchers have
proposed machine learning based classifiers for au-
tomated privacy policy analysis, to the best of our
knowledge, except the limited work by Goknil et al.
(2024) on exploring the use of prompt engineer-
ing LLMs for this purpose, the potential of LLMs



remains largely unexplored.

In this paper, we report our comprehensive eval-
uation of utilizing both prompt engineering and
LoRA (low-rank adaptation) fine-tuning to develop
LLM-based privacy policy concept classifiers. We
conducted experiments across four state-of-the-art
(SOTA) privacy policy corpora/taxonomies and sev-
eral mainstream LLMs, exploring the effects of dif-
ferent factors such as temperature and model size
on the model performance. Explainability refers
to the ability to explain or present the behavior of
Al models in human-understandable terms (Zhao
et al., 2024). In addition to assessing the detec-
tion performance of LLM-based privacy policy con-
cept classifiers, we also studied how to use LLMs
to explain the detection results using customized
prompts for different concepts. We evaluated the
model’s explainability across three metrics: com-
pleteness, logicality, and comprehensibility. Our
key contributions are as follows:

1) We conducted a systematic evaluation on
how to use LLMs to conduct automated privacy
policy analysis, which, to the best of our knowl-
edge, represents the first comprehensive study of
this kind. By leveraging both prompt engineering
and LoRA fine-tuning, we managed to use LLMs
to produce new privacy policy concept classifiers
that can outperform other SOTA classifiers signif-
icantly and consistently across three mainstream
open-source LLMs and four SOTA privacy policy
corpora/taxonomies.

2) We systematically investigated the potential
of using LLMs to explain detection results of LLM-
based privacy policy concept classifiers. Based
on the above-mentioned three metrics, our human-
based assessment results demonstrate that LLMs
can generate meaningful explanations with high
satisfaction (a score exceeding 91.1% observed for
all three metrics), although there are some short-
comings in logicality.

The remainder of this paper is structured as fol-
lows. Section 2 presents related work. Section 3
details our approach. Section 4 outlines the ex-
periment setup and results. Section 5 explores the
explainability of LLLMs in privacy policy analysis.
The last two sections conclude this paper and dis-
cuss limitations of the work, respectively.

2 Related Work

2.1 Privacy Policy Corpora

Annotated privacy policy datasets are crucial for the
training and evaluation of machine learning models.
A common annotation involves segmenting privacy
policies and classifying these segments based on
taxonomies derived from legal standards or real-
world privacy policies. As the first and the most
widely used privacy policy dataset, OPP-115 (Wil-
son et al., 2016) provides fine-grained annotations
at the paragraph level. It encompasses 115 pri-
vacy policies from online services, with 3,792 para-
graphs categorized into 12 privacy policy concep-
tual categories (which forms a mini-taxonomy).
Each paragraph was independently annotated by
three legal experts and assigned to one or multi-
ple privacy policy concepts. Three more recent
datasets were released in 2024. Among them, Tang
et al. (2024) introduced GoPPC-150, a dataset fea-
turing paragraph-level annotations and a more com-
prehensive taxonomy tailored to GDPR require-
ments. Two other new datasets, CAPP-130 (Zhu
et al., 2023) and APPCP-100 (Zhang et al., 2024),
focus on Chinese privacy policies, offering sup-
port for research on privacy policy analysis in a
multilingual context.

2.2 Automated Privacy Policy Analysis

Automated privacy policy analysis encompasses
various tasks such as concept classification (Srinath
et al., 2021; Mousavi Nejad et al., 2020; Tang et al.,
2024), summary generation (Zhu et al., 2023), ques-
tion answering (Harkous et al., 2018), and the anno-
tation of key information like opt-out options (Ban-
nihatti Kumar et al., 2020). Among these, concept
classification in privacy policies has been more ex-
tensively studied. It involves segmenting privacy
policies and labeling each segment based on a tax-
onomy covering relevant concepts. This approach
can facilitate readers with a quick understanding
of key conceptual points in different parts of the
privacy policy. In addition, the coverage of con-
cepts serves as an important criterion for assessing
a privacy policy’s legal compliance against a given
data protection law.

Some researchers (Torre et al., 2020;
Mousavi Nejad et al., 2020; Mustapha et al.,
2020; Srinath et al., 2021; Tang et al., 2024)
employed NLP approaches to automatically
analyze the content of a given privacy policy and
evaluated it on privacy policy corpora, establishing



a stable baseline. Some others (Xiang et al.,
2023; Cejas et al., 2024) adopted semantic role
based approaches to do large-scale privacy policy
completeness violation studies. However, there
has been very little research on automated privacy
policy analysis based on LLMs. The only past
study we are aware of was done by Goknil et al.
(2024), who looked at using prompt engineering
LLMs for this purpose only.

2.3 Large Language Models

Large language models (LLMs), like OpenAl’s
GPT series (Radford et al., 2018) and Meta’s Llama
series (Touvron et al., 2023), possess immense
parameter sizes and learning capabilities. A no-
table capability of LLMs is their rich contextual
learning ability (Brown et al., 2020). Through
carefully designed prompts, such as detailed task-
specific instructions or a few illustrative examples,
researchers can effectively guide models to gen-
erate targeted outputs. Many prompt engineering
methods for LLMs have been developed in the past
a few years (Schulhoff et al., 2024), e.g., Wei et al.
(2022c¢) introduced the chain-of-thought (CoT) ap-
proach, which decomposes complex problems into
intermediate reasoning steps, helping LLMs gener-
ate more logical and coherent responses. In addi-
tion to prompt engineering, which is more in the
domain of zero- or few-shot training, fine-tuning is
another effective way to improve LLMs’ abilities of
solving new tasks (Wei et al., 2022a). However, the
time complexity and costs of full-parameter fine-
tuning can be exceedingly high due to the huge
number of parameters in LLMs. To mitigate this
issue, more efficient fine-tuning methods have been
extensively developed, such as adapter tuning, pre-
fix tuning, prompt tuning and LORA (Ding et al.,
2023; Li and Liang, 2021; Lester et al., 2021; Hu
et al., 2022).

3 Methodology

3.1 Problem Formulation

The problem can be defined as a multi-class multi-
label classification task of assigning a segment in a
given privacy policy one or more concepts defined
in a relevant taxonomy. Among all privacy policy
taxonomies, the one supporting the privacy policy
corpus GoPPC-150 (Tang et al., 2024) is the most
advance and the first multi-level one, with fine-
grained privacy policy concepts especially those
related to the GDPR. A partial hierarchy of the
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Figure 1: A partial hierarchy of GoPPC-150.

GoPPC-150 taxonomy is illustrated as a directed
acyclic graph (DAG) in Figure 1.

To elucidate the process of privacy policy con-
cept classification, let us consider an illustrative
example. Given a privacy policy segment X, the
classifier H () produces a label Y] indicating one
of the first-level nodes of the taxonomy, denoted as
Y1 = H(X). A special value of Y7 is ‘OTHER’,
indicating that X does not match any first-level
nodes in the taxonomy. If Y] does refer to a leaf
node, such as ‘DATA SHARING’ the partial tax-
onomy in Figure 1, a subsequent classification task
will proceed to determine the associated second-
level node following a similar process, denoted
as Yo = H(X,Y1), where Y3 refers to the pro-
duced second-level node. The process can continue
until a leaf node is reached, although for GoPPC-
150 only the first two levels have sufficient data
so the process will stop at the second level. The
final classification result of X is therefore a cas-
caded code denoted by Y;.Y5, e.g., ‘DATA SHAR-
ING.CONDITION". Note that X may be labeled
multiple concepts so more than one final classifica-
tion code could be produced.

3.2 Design Prompts

We explored applying prompt engineering to pri-
vacy policy analysis. Given that the OPP-115 pri-
vacy policy corpus represents the first published
and most widely used dataset in this domain, we
utilized it as the benchmark to assess the effec-
tiveness of various prompt designs. To compre-
hensively assess the impact of different prompt
engineering techniques, such as few-shot and CoT,
we designed five different prompts to elicit related
concepts from privacy policy segments.

Each prompt was designed to provide different
levels of guidance and context to LLMs. Figure 4
in Appendix A shows greater details of the five
prompts.



* Prompt 1 simply describes the task without
providing any additional explanations or ex-
amples.

* Prompt 2 extends Prompt 1 by including de-
tailed explanations of all the 12 concepts de-
fined in OPP-115.

e Prompts 3 and 4, in addition to providing cat-
egory explanations, are designed for few-shot
learning with one (Prompt 3) or two (Prompt
4) examples for each category.

* Prompt 5 introduces CoT as a structured rea-
soning process to guide LL.Ms through a step-
by-step approach.

3.3 Fine-Tuning

We propose a method to streamline the adaptation
of LLMs to hierarchical classification tasks, using
the multi-level corpus GoPPC-150 as the bench-
mark dataset. The fine-tuning process involves two
distinct tasks: predicting first-level nodes based
on segment content, and subsequently predicting
second-level nodes based on both segment content
and the predicted first-level nodes. Figure 2 shows
the two-leveled fine-tuning process. The process is
progressive, and LLMs acquire two-stage predic-
tion capabilities through this process.

Taskl For Level-1 Nodes

Query: o
Task definition Re-format oao-o. Finetuned model
Categories: datasets mg. for Level 1
Response:
( 2 l
Task2 For Level-2 Nodes
Query:

oy
Re-format 9,030 Finetuned model
datasets o,g. for Level 2

Task definition
Category is CONTORLLER
Attributes:

Response:
CONTORLLER.CONTACT

Figure 2: Two-leveled fine-tuning process.

4 Experiments and Results

4.1 Setup

Corpora. Different corpora employ different con-
cept taxonomies. These taxonomies differ in both
granularity, multi-level taxonomies being more de-
tailed than single-level ones, and construction stan-
dard, with some tailored to specific regulations
such as the GDPR and others being more general.
OPP-115 uses a simple single-level taxonomy to

broadly categorize concepts. The taxonomy it em-
ploys was defined based on real-world privacy poli-
cies by law experts over multiple iterations. In
contrast, corpora like GoPPC-150 and APPCP-100
employ a multi-level taxonomy that is specifically
designed to align with the hierarchical nature of
privacy policies and a data protection regulatory
framework, thereby offering greater relevance and
applicability to real-world scenarios. For a compre-
hensive study of diverse taxonomies, we selected
OPP-115 and GoPPC-150, complemented by their
Chinese counterparts, CAPP-130 and APPCP-100,
which adhere to a single-level and a multi-level
taxonomy, respectively.

The OPP-115 corpus consists of 10 concept cat-
egories, with the final category ‘OTHER’ further
subdivided into three distinct categories: ‘Introduc-
tory/Generic’, ‘Privacy Contact Information’, and
‘Practice Not Covered’. We considered all the 12
categories as a single-level taxonomy for our exper-
iments. The GoPPC-150 corpus has nodes at three
levels, but only 14 first-level and 21 second-level
nodes have sufficient data, which were used for
our experiments. The CAPP-130 corpus classifies
privacy policy segments by three aspects: impor-
tance, risk, and topic classification. This paper
focuses on the topic classification task (with 11
topical categories) that is aligned with the classifi-
cation of concepts. For APPCP-100, the nodes that
appear infrequently are filtered and 13 first-level,
25 second-level, and 16 third-level nodes were se-
lected for our experiments.

Models. To ensure that our experimental results
align with the latest advancements of LLMs, we se-
lected three widely recognized open-source models
for our experiments. These include Llama devel-
oped by Meta (Touvron et al., 2023), the Qwen
series developed by Alibaba (Bai et al., 2023),
and ChatGLM developed by the Tsinghua Univer-
sity (GLM et al., 2024). We also conducted limited
experiments using GPT, the most studied closed-
source LLM from Open Al (Radford et al., 2018).
These models were chosen because of their strong
performance in various benchmarks and relevance
to current research trends. We aim to provide a ro-
bust and comprehensive evaluation of our proposed
method using these models.

4.2 Evaluation Metrics

We treated our multi-label multi-class classifica-
tion task as multiple independent binary classifica-
tion tasks. Therefore, we employed classic metrics



for binary classifiers such as precision, recall, and
the F1 score. To comprehensively evaluate perfor-
mance across all labels, we calculated the average
of these metrics over all labels. The macro-average
calculates the arithmetic mean of the metrics across
all categories, treating each category equally re-
gardless of its frequency. It provides the model’s
overall performance by evaluating its ability to dis-
criminate across all categories independently. In
contrast, the micro-average gives more weight to
categories with a larger number of samples, effec-
tively reflecting the model’s performance relative
to the actual distribution of categories. Both met-
rics are commonly employed to assess the model
performance in multi-label classification tasks, and
neither can be considered universally superior. Con-
sequently, we compared and reported both macro-
average and micro-average.

4.3 Prompt-Based Experiments

We conducted experiments to evaluate the effective-
ness of prompt engineering using the Llama3-8B-
Instruct model. Specifically, we tested five different
prompts on the OPP-115 corpus, using a configura-
tion with temperature of 0.6, top-p of 0.9, and top-k
of 50. The experimental results are summarized in
the Table 1, which includes F1 scores as well as
macro- and micro-average scores.

The overall performance of the model was rel-
atively poor. The poor performance for some cat-
egories, like ‘Introductory/Generic’ and ‘Practice
Not Covered’, can be attributed to them being less
clearly defined, making it challenging to assess
based on individual sentences.! Also, the model’s
strong hallucination led to an excessive number
of false positives, resulting in high recall but low
precision rates and consequently poor F1 scores, es-
pecially for categories like ‘Data Retention’, ‘Data
Security’, and ‘Do Not Track’. For instance, a seg-
ment that mentions protecting user privacy, like
“We are committed to protecting and respecting
your privacy” was mistakenly classified as ‘Data
Security’. While it refers to the commitment to
privacy protection, it does not describe specific
security measures, therefore, it is not related to
this concept. On the other hand, the model per-
formed well on categories such as ‘First Party Col-

'As reported in (Wilson et al., 2016), during the annotation
process, they have shown significant disagreement among
the three legal experts. The ‘OTHER’ class (which covers
the two aforementioned concepts) has the poorest inter-rater
agreement, with Fleiss’ kappa equal to just 0.49.

lection/Use’, ‘“Third Party Collection/Use’, and ‘In-
ternational/Specific Audiences’, probably due to
their being easier concepts.

Differences in performance were observed be-
tween the five prompts. Prompt 1, which only con-
tains a task description, performed the worst, which
is not surprising given it providing the least infor-
mation. Prompt 2 adds explanations of concept
categories, so the model can understand the con-
cepts better. Prompts 3 and 4 show a significant
improvement in a few-shot setting. Compared to
Prompt 3, where one example per concept category
is used, Prompt 4 includes two examples. However,
the increase in the number of examples did not im-
prove the results, which was unexpected, indicating
more is not always better. Prompt 5 used the CoT
approach, but it performed the second worst, which
was also unexpected.

4.4 Temperature Experiments

Several factors, such as sampling methods, tem-
perature, top-p and top-k, can significantly impact
model performance. We conducted experiments to
show the role of temperature. We employed Prompt
3 for these experiments because it achieved the best
performance among all five prompts as reported in
the previous subsection. Utilizing the Llama3-8B-
Instruct model again, experiments were conducted
on the OPP-115 corpus with top-p fixed at 0.9 and
top-k set to 50, while the temperature was varied
across 0.3, 0.6, and 0.9, including a greedy gen-
eration for comparison. The performance under
different generation configurations are shown in
Table 2. It indicates that the Llama3-8B-Instruct
model exhibits limited sensitivity to temperature
variations for the task of concern.

4.5 Fine-Tuning: Baseline Experiments

We conducted experiments to evaluate the capabil-
ity of fine-tuning the smaller versions of the three
selected mainstream open-source LLMs, Llama3-
8B, Qwenl.5-7B, and ChatGLM3-6B, utilizing
four privacy policy corpora, OPP-115, GoPPC-
150, CAPP-130, and APPCP-100. We perform
LoRA fine-tuning on an RTX 4090 machine, pri-
marily because LoRA significantly reduces com-
putational costs compared to full fine-tuning and
it can achieve a performance comparable to full
fine-tuning in many scenarios, and it usually per-
forms better than other alternative fine-tuning meth-
ods (Hu et al., 2023).

For OPP-115, we selected the results of



Label Prompt1 Prompt2 Prompt3 Prompt4 Prompt5
First Party Collection/Use 0.740 0.774 0.762 0.788 0.748
Third Party Collection/Use 0.730 0.772 0.762 0.714 0.758
User Choice/Control 0.366 0.441 0.465 0.458 0.478
User Access, Edit and Deletion 0.533 0.582 0.667 0.646 0.611
Data Retention 0.135 0.217 0.385 0.300 0.204
Data Security 0.549 0.517 0.549 0.550 0.471
Policy Change 0.472 0.467 0.512 0.568 0.532
Do Not Track 0.240 0.300 0.286 0.222 0.240
International/Specific Audiences 0.451 0.768 0.803 0.835 0.762
Introductory/Generic 0.436 0.564 0.431 0.471 0.514
Privacy Contact Information 0.731 0.696 0.707 0.682 0.714
Practice Not Covered 0.091 0.198 0.250 0.220 0.193
Macro Average 0.456 0.525 0.548 0.538 0.519
Micro Average 0.548 0.620 0.636 0.623 0.611

Table 1: Performance of Llama3-8B-Instruct using 5 prompts on the OPP-115 corpus (F1 scores).

Setting  Macro Average  Micro Average
Greedy 0.536 0.629
T=0.3 0.546 0.632
T=0.6 0.548 0.636
T=0.9 0.541 0.634

Table 2: Effect of temperature on the model perfor-
mance (F1 scores).

PrivBERT (Srinath et al., 2021) as the baseline. For
GoPPC-150, we adopted the PrivBERT+NN (neu-
ral network) approach used in (Tang et al., 2024) as
the baseline. For CAPP-130, we used RoBERTa as
the baseline because it achieved best performance
among all models as described in (Zhu et al., 2023).
For APPCP-100, we employed BERT+RF (random
forests) described in (Zhang et al., 2024) as the
baseline.

Table 3 presents the performances of differ-
ent LLMs compared with the baselines, demon-
strating a significant improvement”. Notably, the
advantages of LLMs are more pronounced on
GoPPC-150, suggesting their superiority in han-
dling such complex and fine-grained tasks. Llama3-
8B demonstrates a superior performance on the
two English corpora but a slightly lower perfor-
mance on the two Chinese corpora, likely due to
the limited coverage of Chinese in its pre-training
corpus. Due to the importance of GPT series in
the field of LLMs, we also experimented with it.
We fine-tuned and evaluated gpt3.5-turbo-0125 on
the OPP-115 corpus. The final performance, with

>We also conducted experiments using Llama3.1 and
Qwen2.5 on OPP-115 corpus. But it shows no improvement
compared to Llama3 and Qwenl.5. So we did not employ
them on other corpora. Llama3.1-8B: macro F1 0.828, micro
F1 0.871; Qwen2.5-7B: macro F1 0.825, micro F1 0.872.

a macro-average F1 score of 0.801 and a micro-
average F1 score of 0.851, shows no improvement
over other three open-source models. Due to the
prohibitive costs of fine-tuning GPT and its lack
of significant performance advantages compared
to other LLMs, we strategically limited our ex-
perimental evaluation of GPT to a single corpus
(OPP-115).

4.6 Fine-Tuning: Experiments on Different
Model Sizes

Prior research (Wei et al., 2022b) has indicated
that, for some tasks, larger LLMs exhibit a signifi-
cantly superior performance compared to smaller
ones. However, in certain tasks, smaller models
have been observed to achieve a substantial por-
tion of the performance of larger models, thereby
offering a more cost-effective and practical alterna-
tive. We conducted experiments to investigate this
phenomenon for the task we are studying. We fo-
cused on the Qwenl.5 series, which encompasses
a more diverse range of model scales especially at
the lower end, including 0.5B, 1.8B, 4B, and 7B
parameters. Qwenl.5-7B has also demonstrated
a robust performance in our own experiments and
other researchers’ past studies, making it a reason-
able choice.

We evaluated the performance of Qwenl1.5 mod-
els of various scales (0.5B, 1.8B, 4B, and 7B) on all
the four privacy policy corpora. Figure 3 shows the
performances of Qwenl.5 models with different
size, revealing a trend that larger models generally
outperform smaller ones, but the improvement is
small or marginal. Notably, after fine-tuning, the
0.5B model was already able to achieve over 90%
of the performance of the 7B model. Therefore, if



Standard Baseline Llama3-8B Qwenl.5-7B Chatglm3-6B
macro  micro macro  micro macro  micro macro  micro
OPP-115 All 0.830 0.870 0.836 0.877 0.831 0.868 0.819 0.867
GoPPC-150 Level 1 0.669 0.697 0.717  0.725 0.709  0.718 0.705 0.712
All 0.529 0.589 0.618 0.685 0.612 0.673 0.609 0.668
CAPP-130 Topic 0.841 0.819 0.838 0.821 0.852 0.829 0.858 0.837
APPCP-100 Level 1 0.832 0.867 0.831 0.875 0.843 0.883 0.840 0.878
All 0.767 0.846 0.767  0.858 0.782 0.865 0.778 0.858

Table 3: Performance of different LLMs with fine-tuning compared with baseline.

the performance requirements are not high, smaller
models have certain advantages.

i
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Figure 3: Effect of model size on the performance. Stan-
dards s1-s6 represent OPP-115, GoPPC-150 level-1, All
nodes, CAPP-130 Topic, APPCP-100 level-1 and All
nodes, respectively.

4.7 Fine-Tuning: Experiments on Single- vs
Multi-Task Settings

Single-task training focuses on optimizing a model
for one specific task, while multi-task training in-
volves training a model on multiple tasks simul-
taneously. We conducted experiments to explore
the application of multi-task fine-tuning to enhance
the ease of model deployment. Specifically, we
integrated the first- and second-level node classi-
fication tasks of GoPPC-150 into a unified task
framework by merging the two aforementioned
single-task fine-tuning corpora. By fine-tuning the
Llama3-8B model on this consolidated corpus, we
achieved an excellent performance on both tasks
simultaneously. Table 4 presents the performances
of the two training paradigms. The performance
of multi-task fine-tuning shows just a small sig-
nificant drop compared to single-task fine-tuning,
demonstrating its feasibility.

4.8 Performance Comparison

As mentioned in Section 2, Goknil et al. (2024)
explored the use of prompt engineering and LLMs
for automated privacy policy analysis, using OPP-
115 as the corpus. To compare with their work, we
adopted their best results on Llama3-8B. Since they

Method Micro average

0.685
0.679

Macro average

0.618
0.614

Single-task
Multi-task

Table 4: Performances of single- and multi-task
paradigms.

did not consider the last three categories in OPP-
115, we also excluded them in our performance
comparison experiments, leading to slight discrep-
ancies with the results reported in Section 4.3. Ta-
ble 5 presents a comparison of the performance
figures (F1 scores) on the OPP-115 corpus. The
results show that prompt engineering methods gen-
erally perform more poorly, while the fine-tuning
method we employed demonstrates a far superior
performance.

Category Goknil Ours Ours
etal’s (PE) (Finetuned)
First Party 0.760 0.789 0.939
Collection/Use
Third Party 0.710 0.789 0.935
Sharing/Collection
User 0.630 0.477 0.847
Choice/Control
User Access, Edit 0.730 0.667 0.821
and Deletion
Data Retention 0.400 0.348 0.696
Data Security 0.740 0.568 0.873
Policy Change 0.880 0.585 0.973
Do Not Track 0.810 0.300 1.000
International and 0.810 0.827 0.918
Specific Audiences
Micro Average 0.730 0.694 0.916

Table 5: Comparison of performances (F1 scores) on
the OPP-115 corpus (PE = prompt-engineered).

5 Explainability

Compared to traditional deep learning methods,
LLMs has the potential to offer enhanced explain-
ability due to its capability of producing human-



like texts in natural languages. To investigate the
explainability of LLMs for privacy policy con-
cept classification, we fed privacy policy segments
along with their corresponding concept categories
into an LLLM, prompting it to analyze and explain
the classification results. Specifically, our prompts
include the task description, the concept categories’
descriptions, the required output format, and some
examples. The task description and concept cate-
gories’ descriptions are consistent with those de-
tailed in Section 3.2. We instructed the LLM to, for
each category, first explain its meaning and then
analyze the segment’s relevance to the category.

As an example, we utilized the Llama3-8B-
Instruct model, with settings of temperature=0.6
and top-p=0.9, to generate explanations for 100
privacy policy segments randomly selected from
OPP-115. We focused on the first 11 categories
of the OPP-115 taxonomy, excluding the ‘Practice
Not Covered’ category, which does not require any
specific explanation.

We established three metrics to assess the quality
of the LLLM-generated explanations, as explained
below. Each metric was scored by three human an-
notators on a scale of 1, 2, or 3, where 1 indicates
‘poor performance’, 2 indicates ‘acceptable perfor-
mance’, and 3 indicates ‘outstanding performance’.

Completeness assesses whether the explanation
covers all key points of the privacy policy segment
that identifies the relevant concept categories.

Logicality evaluates the accuracy of the model’s
understanding of the privacy policy segment and
the coherence of the model’s reasoning.

Comprehensibility focuses on the clarity and
understanding of the explanation itself, especially
in terms of language.

The three human annotators are three co-authors
of the paper, all postgraduate research students,
who conducted a qualitative evaluation of the ex-
planations of LLM outputs based on the three met-
rics mentioned above. To prevent potential positive
scoring bias, we included 10 decoy explanations
that were made blind to the annotators. These de-
coy explanations were crafted to exhibit at least
one aspect of relatively poor performance while
maintaining basic explanatory quality. After ag-
gregating the scores, the average scores for the
three metrics are presented in Table 6. The average
scores of the 10 artificially crafted explanations are
significantly lower across all three metrics com-
pared to the LLM-generated ones. We assessed the
inter-rater reliability among three annotators using

Fleiss’ kappa (Landis and Koch, 1977). The re-
sults indicated a substantial agreement for all three
metrics: 0.765 for completeness, 0.695 for logical-
ity, and 0.656 for comprehensibility. Our primary
finding is that LLMs exhibit very very good ex-
plainability in explaining the classification results
of the 100 privacy policy segments, across all three
metrics. Notably, the Llama3-8B-Instruct model
tend to offer comprehensive analyses of the original
text, which contributes to their strong performance
in terms of completeness. Moreover, the language
style of the LLM-generated content can be easily
set to be clear, concise, and easy to understand
through the use of prompts, thus demonstrating
strong comprehensibility. However, the Llama3-
8B-Instruct model’ understanding of privacy policy
segments occasionally lacks depth, which results
in slightly lower logicality score.

Source Cl L C2

LLM 2.84 273 287
Artificial 243 210 273

Table 6: Average scores of LLM-generated explanations
and artificially crafted explanations (C1 = completeness,
L = Logicality, C2 = comprehensibility).

6 Conclusion

This paper proposes a method for utilizing LLMs
to classify concepts in a privacy policy based on
an established taxonomy. Unlike prior studies, we
provided a comprehensive evaluation of LLMs in
this domain, incorporating both prompt engineer-
ing and LoRA techniques, and assess performance
across four SOTA privacy policy corpora and mul-
tiple mainstream LLMs, achieving SOTA results
against existing methods. We investigated the ef-
fects of factors such as temperature, model size,
and training paradigm. To enhance the explainabil-
ity of the classification results, we used LLMs to
generate explanations for the identified concepts
and designed an evaluation framework to assess the
explanations based on three metrics: completeness,
logicality, and comprehensibility. The findings
demonstrate that LL.Ms can provide satisfactory
explanations to three human annotators. This paper
highlights the great potential of LLMs for both au-
tomating analysis of privacy policies and producing
useful human-understandable explanations, there-
fore opening up their use for many downstream
tasks in this important application domain.



7 Limitations

The performance achieved using prompt engineer-
ing in our experiments is quite poor. This can be
two reasons: more advanced prompt engineering
methods are necessary, and LLMs may not have
seen enough privacy policies so fine-tuning is a
must to improve the performance of any tasks about
privacy policies. We call for more follow-up re-
search to clarify both points.

Due to resource limitation, we primarily utilized
smaller and locally deployed models. While these
models achieved SOTA performances in our exper-
iments and demonstrated a great potential, we did
not experiment with larger models like Llama-3-
70B and GPT-4. As a result, we were unable to
evaluate the performance upper bound of LLMs for
privacy policy concept classification. Additionally,
we achieved promising results using LoRA. Prior
studies (Hu et al., 2022) have shown that LoRA
can closely approximate the performance of full-
parameter fine-tuning. However, the underlying
mechanisms of these approaches differ, and further
research is required to fully explore the potential
of full-parameter fine-tuning.

LLMs also benefit from pre-training to acquire
domain-specific knowledge. Some studies (Gupta
et al., 2023; Ke et al., 2023) adopted the continual
pre-training paradigm, enabling models to perform
unsupervised learning on domain-specific corpora
before being fine-tuned for specific tasks. This ap-
proach allows LL.Ms to acquire substantial knowl-
edge in a given domain and therefore likely to be
able to solve targeted problems more effectively.
In this paper, we did not adopt the continual pre-
training paradigm, but relied on fine-tuning to help
LLMs learn domain-specific knowledge. The ef-
fectiveness of the continual pre-training paradigm
remains an area for future research.

In order to support other researchers to repro-
duce our results and to conduct follow-up research,
we will make all data and code used publicly avail-
able.
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A Details of Five Types of Prompts

As mentioned in Section 3.2, we designed five
types of prompts, and Figure 4 shows an exam-
ple of these five prompts.
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You are an expert in privacy policy. You are given 12 concepts about personal privacy which may be mentioned in privacy policy.

These concepts are: First Party Collection/Use; Third Party Sharing/Collection; User Choice/Control; User Access, Edit and Deletion; Data
Retention; Data Security; Policy Change; Do Not Track; International/Specific Audiences; Introductory/Generic; Privacy Contact Information;
Practice Not Covered.

In the following conversation, user will provide one segment from a privacy policy. The segment can be annotated with at least one concept.
You need to only return the concepts mentioned in this segment.

Explanations for 12 concepts: Prompt1
“First Party Collection/Use” referring to how and why a service provider collects or use user information.
“User Choice/Control” referring to choices and control options available to users.

,” ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ; Prompt2
| Examples: 0
| User: Privacy Policy Sci-News.com is committed to protecting and respecting your privacy. To better inform you of our policy concerning user '
3 {)l'l"!vacy, we have adopted the following terms. Please note that these terms are subject to change, and any such changes will be includedon ' | 5t included
| this page. i Promt5
| Assistant: Policy Change; Introductory/Generic. | o™
""""""" o Prompt3 &4

When you are given a segment from a privacy policy that can be annotated with at least one concept, you need to follow the following steps: P

1. Read the segment and summarize its main message briefly.

2. Highlight key phrases and terms according to 12 concepts.

3. Associate these key indicators with relevant concepts.

Let us work through a few examples to demonstrate this process:

Example1: Communications from the Site Special Offers and Updates We send all new members a welcoming email to verify password and

username. Established members will occasionally receive information on products, services, special deals, and a newsletter. Out of respect for

the privacy of our users we present the option to not receive these types of communications. Please see the Choice and Opt-out sections.

Step1: Read the segment and summarize its main message briefly. The segment is about registered users may be sent email and other

information but users can choose not to receive them.

Step2: Highlight key phrases and terms according to 12 concepts. Keywords and phrases identified: email, password and username, the option

to not receive, Choice and Opt-out sections.

Step3: Associate these key indicators with relevant concepts. email, password and username belong to user information. First Party(the

company) uses them, so it matches First Party Collection/Use. the option to not receive, Choice and Opt-out sections indicate users have their

own choices to not receive information. It matches User Choice/Control.

So your response is First Party Collection/Use; User Choice/Control. Prompt5

Figure 4: Examples of the five types of prompts used in our experiments. The content within the yellow dashed box
is not included in Prompt 5.
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