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ABSTRACT

Certified patch defenses can guarantee robustness of an image classifier to arbi-
trary changes within a bounded contiguous region. But, currently, this robustness
comes at a cost of degraded standard accuracies and slower inference times. We
demonstrate how using vision transformers enables significantly better certified
patch robustness that is also more computationally efficient and does not incur a
substantial drop in standard accuracy. These improvements stem from the inherent
ability of the vision transformer to gracefully handle severely masked images.1

1 INTRODUCTION

High-stakes scenarios warrant the development of certifiably robust models that are guaranteed to be
robust to a set of transformations. These techniques are beginning to find applications in real-world
settings, such as verifying the safety of aircraft controllers to variability in approaching aircraft
(Julian & Kochenderfer, 2019), and the stability of automotive systems to sensor noise (Wong et al.,
2020).

We study robustness in the context of adversarial patches—a broad class of arbitrary changes con-
tained within a small, contiguous region. Adversarial patches capture the essence of a range of
maliciously designed physical objects such as adversarial glasses (Sharif et al., 2016), stickers/-
graffiti (Evtimov et al., 2018), and clothing (Wu et al., 2020b). Researchers have used adversarial
patches to fool image classifiers (Brown et al., 2018), manipulate object detectors (Lee & Kolter,
2019; Hoory et al., 2020), and disrupt optical flow estimation (Ranjan et al., 2019).

Adversarial patch defenses can be tricky to evaluate—recent work broke several empirical defenses
(Bafna et al., 2018; Hayes, 2018; Naseer et al., 2019) with stronger adaptive attacks (Tramer et al.,
2020; Chiang et al., 2020). This gave rise to certified defenses, which deliver provably robust models
without relying on an empirical evaluation. However, certified guarantees tend to be modest and
come at cost: poor standard accuracy and slower inference times (Levine & Feizi, 2020b;a; Zhang
et al., 2020; Xiang et al., 2021). For example, a top-performing, recently proposed method reduces
standard accuracy by 30% and increases inference time by two orders of magnitude, but certifies
only 13.9% accuracy on ImageNet against patches that take up 2% of the image (Levine & Feizi,
2020a). These drawbacks are commonly accepted as the cost of certification, and severely limit the
applicability of certified defenses. But does certified robustness really need to come at such a high
price?

OUR CONTRIBUTIONS

In this paper, we demonstrate how to leverage vision transformers to create certified patch defenses
that achieve higher robustness guarantees than prior work. Moreover, certified patch defenses with
vision transformers can actually maintain standard accuracy and inference times comparable to stan-
dard (non-robust) models. At its core, our methodology exploits the token-based nature of attention
modules used in vision transformers (Dosovitskiy et al., 2021; Wu et al., 2020a) to gracefully handle
the images used in certified patch defenses. Specifically, we demonstrate the following:

1Our anonymous code is attached to the submission.
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Improved guarantees via smoothed vision transformers. We find that using vision transformers
as the backbone of the derandomized smoothing defense (Levine & Feizi, 2020a) enables signifi-
cantly improved certified patch robustness. Indeed, this change alone boosts certified accuracy by
up to 13% on ImageNet, and 5% on CIFAR-10 over similarly sized ResNets.

Standard accuracy comparable to that of standard architecures. We demonstrate that vision
transformers enable certified defenses with standard accuracies comparable to that of standard, non-
robust models. In particular, our largest vision transformer achieves state-of-the-art certified robust-
ness on ImageNet while maintaining 73% standard accuracy, which is similar to that of a standard
(non-robust) ResNet-50.

Faster inference speeds. We modify the vision transformer architecture to drop unnecessary to-
kens, and reduce the smoothing process to pass over mostly redundant computation. These changes
turn out to vastly speed up inference time for smoothed vision transformers. In our framework, a for-
ward pass on ImageNet becomes up to two orders of magnitude faster than prior certified defenses,
and is close in speed to a standard (non-robust) ResNet-50.

2 CERTIFIED PATCH DEFENSE WITH SMOOTHING & TRANSFORMERS

Smoothing methods are a general class of certified defenses that combine the predictions of a clas-
sifier over many variations of an input to create predictions that are certifiably robust (Cohen et al.,
2019; Levine & Feizi, 2020b). To obtain robustness to adversarial patches, derandomized smooth-
ing (Levine & Feizi, 2020a) aggregates a classifier’s predictions on various image ablations, where
most of the image is masked out.

By default, these approaches typically use CNNs to evaluate the image ablations, which can achieve
non-trivial robustness guarantees. The starting point of our approach is to ask the following question:
are convolutional architectures the right tool for this task? The crux of our methodology is exactly
to leverage vision transformers, which can more gracefully handle these image ablations that arise
in derandomized smoothing.

2.1 PRELIMINARIES

Image ablations. Image ablations are variations of an image where all but a small portion of the
image is masked out (Levine & Feizi, 2020a). For example, a column ablation masks the entire
image except for a column of a fixed width (see Figure 1 for an example). We focus primarily on
column ablations and explore the more general block ablation in Appendix E.

…

Figure 1: Examples of column ablations for the left-most image with column width 19px.

For a input h × w sized image x, we denote Sb(x) as the set of all possible column ablations of
width b. A column ablation can start at any position and wrap around the image, so there are w total
ablations in Sb(x).

Derandomized smoothing. Derandomized smoothing (Levine & Feizi, 2020a) constructs a
smoothed classifier comprising of two main components: (1) a base classifier, and (2) a set of
image ablations used to smooth the base classifier. Then, the resulting smoothed classifier returns
the most frequent prediction of the base classifier over the ablation set Sb(x). Specifically, for an
input image x, ablation set Sb(x), and a base classifier f , a smoothed classifier g is defined as:

g(x) = arg max
c

nc(x) (1)
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Figure 2: Illustration of the smoothed vision transformer. For a given image, we first generate a set
of ablations. We encode each ablation into tokens, and drop fully masked tokens. The remaining
tokens for each ablation are then fed into a vision transformer, which predicts a class label for each
ablation. We predict the class with the most predictions over all the ablations, and use the margin to
the second-place class for robustness certification.

where
nc(x) =

∑
x′∈Sb(x)

I{f(x′) = c}

denotes the number of image ablations that were classified as class c. We denote the fraction of
images that the smoothed classifier correctly classifies as standard accuracy.

A smoothed classifier is certifiably robust for an input image if the number of ablations for the most
frequent class exceeds the second most frequent class by a large enough margin. Intuitively, a large
margin makes it impossible for an adversarial patch to change the prediction of a smoothed classifier
since a patch can only affect a limited number of ablations.

Specifically, let ∆ be the maximum number of ablations in the ablation set Sb(x) that an adversarial
patch can simultaneously intersect (e.g. for column ablations of size b, an m×m patch can intersect
with at most ∆ = m+ b− 1 ablations). Then, a smoothed classifier is certifiably robust on an input
x if it is the case that for the predicted class c:

nc(x) > max
c′ 6=c

nc′(x) + 2∆. (2)

If this threshold is met, the most frequent class is guaranteed to not change even if an adversarial
patch compromises every ablation it intersects. We denote the fraction of predictions by the smooth
classifier that are both correct and certifiably robust (according to Equation 2) as certified accuracy.

Vision transformers. A key component of our approach is the vision transformer (ViT) archi-
tecture (Dosovitskiy et al., 2021). In contrast to convolutional architecures, ViTs use self-attention
layers instead of convolutional layers as their primary building block and are inspired by the success
of self-attention in natural language processing. ViTs process images in three main stages:

1. Tokenization: The ViTs split the image into p × p patches. Each patch is then embedded
into a positionally encoded token.

2. Self-Attention: The set of tokens are then passed through a series of multi-headed self-
attention layers (Vaswani et al., 2017).

3. Classification head: The resulting representation is fed into a fully connected layer to make
predictions for classification.

2.2 SMOOTHED VISION TRANSFORMERS

Two central properties of vision transformers make ViTs particularly appealing for processing the
image ablations that arise in derandomized smoothing. Firstly, unlike CNNs, ViTs process images
as sets of tokens. ViTs thus have the natural capability to simply drop unwanted tokens from the
input and “ignore” large regions of the image, which can greatly speed up the processing of image
ablations.

Moreover, unlike convolutions which operate locally, the self-attention mechanism in ViTs shares
information globally at every layer (Vaswani et al., 2017). Thus, one would expect ViTs to be better
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Table 1: Summary of our ImageNet results and comparisons to certified patch defenses from the
literature: Clipped Bagnet (CBG), Derandomized Smoothing (DS), and PatchGuard (PG). Time
refers to the inference time for a batch of 1024 images, b is the ablation size, and s is the ablation
stride. An extended version is in Appendix F.

Standard and Certified Accuracy on ImageNet (%)

Standard 1% pixels 2% pixels 3% pixels Time (sec)

Baselines

Standard ResNet-50 76.1 — — — 0.67
WRN-101-2 78.85 — — — 3.1
ViT-S 79.90 — — — 0.4
ViT-B 81.80 — — — 0.95
CBN (Zhang et al., 2020) 49.5 13.4 7.1 3.1 3.05
DS (Levine & Feizi, 2020a)* 44.4 17.7 14.0 11.2 149.5
PG (Xiang et al., 2021)† 55.1† 32.3† 26.0† 19.7† 3.05

Smoothed models

ResNet-50 (b = 19) 51.5 22.8 18.3 15.3 149.5
ViT-S (b = 19) 63.5 36.8 31.6 27.9 14.0
WRN-101-2 (b = 19) 61.4 33.3 28.1 24.1 694.5
ViT-B (b = 19) 69.3 43.8 38.3 34.3 31.5
ViT-B (b = 37) 73.2 43.0 38.2 34.1 58.7
ViT-B (b = 19, s = 10) 68.3 36.9 36.9 31.4 3.2

suited for classifying image ablations, since a ViT can dynamically attend to the small, unmasked
region. In contrast, a CNN must gradually build up its receptive field over multiple layers and
process masked-out pixels.

Guided by these intuitions, our methodology leverages the ViT architecture as the base classifier for
processing the image ablations used in derandomized smoothing. We first demonstrate that these
smoothed vision transformers enable substantially improved robustness guarantees, without losing
much standard accuracy (Section 3). We then modify the ViT architecture and smoothing procedure
to drastically speed up the cost of inference of a smoothed ViT (Section 4). We present an overview
of our approach in Figure 2.

Setup. We focus primarily on the column smoothing setting and defer block smoothing results
to Appendix E. We consider the CIFAR-10 (Krizhevsky, 2009) and ImageNet (Deng et al., 2009)
datasets, and perform our analysis on three sizes of vision transformers—ViT-Tiny (ViT-T), ViT-
Small (ViT-S), and ViT-Base (ViT-B) models (Wightman, 2019; Dosovitskiy et al., 2021). We
compare to residual networks of similar size—ResNet-18, ResNet-50 (He et al., 2016), and Wide
ResNet-101-2 (Zagoruyko & Komodakis, 2016), respectively. Further details of our experimental
setup can be found in Appendix A.

3 IMPROVING CERTIFIED AND STANDARD ACCURACIES WITH VITS

Recall that even though certified patch defenses can guarantee robustness to patch attacks, this ro-
bustness typically does not come for free. Indeed, certified patch defenses tend to have substantially

*We found that ResNets could achieve a significantly higher certified accuracy than was reported by Levine
& Feizi (2020a) if we use early stopping-based model selection, which we elaborate on in Appendix A.

†The PatchGuard defense uses a specific mask size that guarantees robustness to patches smaller than the
mask, and provides no guarantees to larger patches. In this table, we report their best results: each patch size
corresponds to a separate model that achieves 0% certified accuracy against larger patches. Comparisons across
the individual models can be found in Appendix F.
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Table 2: Summary of our CIFAR-10 results and comparisons to certified patch defenses from the
literature: Clipped Bagnet (CBG), Derandomized Smoothing (DS), and PatchGuard (PG). b is the
column ablation size out of 32 pixels. An extended version is in Appendix F.

Standard and Certified Accuracy on CIFAR-10 (%)

Standard 2× 2 4× 4

Baselines

CBN (Zhang et al., 2020) 84.2 44.2 9.3
DS (Levine & Feizi, 2020a)* 83.9 68.9 56.2
PG (Xiang et al., 2021)† 84.7† 69.2† 57.7†

Smoothed models

ResNet-50 (b = 4) 86.4 71.6 59.0
ViT-S (b = 4) 88.4 75.0 63.8
WRN-101-2 (b = 4) 88.2 73.9 62.0
ViT-B (b = 4) 90.8 78.1 67.6

lower standard accuracy when compared to typical (non-robust) models, while delivering a fairly
limited degree of (certified) robustness.

In this section, we show how to use ViTs to substantially improve both standard and certified ac-
curacies for certified patch defenses. To this end, we first empirically demonstrate that ViTs are a
more suitable architecture than traditional convolutional networks for classifying the image abla-
tions used in derandomized smoothing (Section 3.1). Specifically, this change in architecture alone
yields models with significantly improved standard and certified accuracies. We then show how a
careful selection of smoothing parameters can enable smoothed ViTs to have even higher standard
accuracies that are comparable to typical (non-robust) models, without sacrificing much certified
performance (Section 3.2).

Our ImageNet and CIFAR-10 results are summarized in Table 1 and Table 2, respectively. We
further include the inference time to evaluate a batch of images, using the modifications described
in Section 4. See Appendix F for extended tables covering a wider range of experiments.

3.1 VITS OUTPERFORM RESNETS ON IMAGE ABLATIONS.

We first isolate the effect of using a ViT instead of a ResNet as the base classifier for derandomized
smoothing. Specifically, we keep all smoothing parameters fixed and only vary the base classifier.
We use column ablations of width b = 4 for CIFAR-10 and b = 19 for ImageNet for both training
and certification, following Levine & Feizi (2020a).

Ablation accuracy. The performance of derandomized smoothing entirely depends on whether the
base classifier can accurately classify image ablations. We thus measure the accuracy of ViTs and
ResNets at classifying column ablated images across a range of evaluation ablation sizes as shown
in Figure 3. We find that ViTs are significantly more accurate on column ablations than comparably
sized ResNets. For example, on ImageNet, ViT-S has up to 12% higher ablation accuracy than
ResNet-50.

Certified patch robustness. We next measure the effect of improved ablation accuracy on certified
accuracy. We find that using a ViT as the base classifier in derandomized smoothing substantially
boosts certified accuracy over ResNets across a range of model sizes and adversarial patch sizes,
as shown in Figure 4. For example, against 32 × 32 adversarial patches on ImageNet (2% of the
image), a smoothed ViT-S improves certified accuracy by 14% over a smoothed ResNet-50, while
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Figure 3: Ablation accuracies for models on CIFAR-10 and ImageNet column-ablated images. The
models were trained on column ablations of width b = 19 for ImageNet and b = 4 for CIFAR-
10, and evaluated on a range of ablation sizes. ViTs outperform ResNets on image ablations by a
sizeable margin.
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Figure 4: Certified accuracies for ViT and ResNet models on CIFAR-10 and ImageNet for various
adversarial patch sizes. Certification was performed using a fixed ablation size b = 4 for CIFAR-10
and b = 19 for ImageNet following Levine & Feizi (2020a).

the larger ViT-B reaches a certified accuracy of 39%—well above the highest reported baseline of
26% (Xiang et al., 2021)2.

Standard accuracy. We further find that smoothed ViTs can mitigate the precipitous drop in
standard accuracy typically observed in certified defenses, in particular for larger architectures
and datasets. While a smoothed WRN-101-2 loses 17% in standard accuracy from smoothing
on ImageNet, a smoothed ViT-B loses only 12%. The smoothed ViT-B remains 69% accurate on
ImageNet—14.2% higher standard accuracy than the best performing prior work (Table 1). A full
comparison between the performance of smoothed models and their non-robust counterparts can be
found in Appendix F.

3.2 ABLATION SIZE MATTERS

In the previous section, we fixed the width of column ablations at b = 19 for derandomized smooth-
ing on ImageNet, following Levine & Feizi (2020a). We now demonstrate that properly choosing
the ablation size can improve the standard accuracy even further—by 4% on ImageNet—without
sacrificing certified performance.

Specifically, we take ImageNet models trained on column ablations with width b = 19, and change
the smoothing procedure to use a different width at test time. We report the resulting standard
and certified accuracies in Figure 5, and defer additional experiments on changing the ablation size
during training to Appendix B.1.

Although Levine & Feizi (2020a) found a steep trade-off between certified and standard accuracy
in CIFAR-10 (which we verify in Appendix B.2), we find this to not be the case for ImageNet.
Specifically, we can substantially increase the ablation size to improve standard accuracy without
significantly dropping certified performance as shown in Figure 5. For example, increasing the

2The highest reported certified accuracy in the literature for this patch size on ImageNet is 26% from Patch-
Guard (Xiang et al., 2021). However, this defense uses a masking technique that is optimized for this particular
patch size, and achieves 0% certified accuracy against larger patches.
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Figure 5: Certified (left) and standard (right) accuracies for a collection of smoothed models trained
with a fixed ablation size b = 19 on ImageNet, and evaluated with varying ablation sizes. Certi-
fied accuracy remains stable across a range of ablation sizes, while standard accuracy substantially
improves with larger ablations.

width of column ablations to b = 37 improves the standard accuracy of the smoothed ViT-B model
by nearly 4% to 73% while maintaining a 38% certified accuracy against 32 × 32 patches. In
addition to being 12% higher than the standard accuracy of the best performing prior work, this
model’s standard accuracy is only 3% lower than that of a non-robust ResNet-50.

Thus, using smoothed ViTs, we can achieve state-of-the-art certified robustness to patch attacks
in the ImageNet setting while attaining standard accuracies that are more comparable to those of
non-robust ResNets.

4 FASTER INFERENCE WITH VITS

Derandomized smoothing with column ablations is an expensive operation, especially for large im-
ages. Indeed, an image with h× w pixels has w column ablations, so the forward pass of smoothed
model is w times slower than a normal forward pass—two orders of magnitude slower on ImageNet.

To address this, we first modify the ViT architecture to avoid unnecessary computation on masked
pixels (Section 4.1). We then demonstrate that reducing the number of ablations via striding of-
fers further speed up (Section 4.2). These two (complementary) modifications vastly improve the
inference time for smoothed ViTs, making them comparable in speed to standard (non-robust) con-
volutional architectures.

4.1 DROPPING MASKED TOKENS

Recall that the first operation in a ViT is to split and encode the input image as a set of tokens, where
each token corresponds to a patch in the image. However, for image ablations, a large number of
these tokens correspond to fully masked regions of the image.

Our strategy is to pass only the subset of tokens that contain an unmasked part of the original image,
thus avoiding computation on fully masked tokens. Specifically, given an image ablation, we alter
the ViT architecture to do the following steps:

1. Positionally encode the entire ablated image into a set of tokens.
2. Drop any tokens that correspond to a fully masked region of the input.
3. Pass the remaining tokens through the self-attention layers.

As one would expect, since the positional encoding maintains the spatial information of the remain-
ing tokens, the ViT’s accuracy on image ablations barely changes when we drop the fully masked
tokens. We defer a detailed analysis of this phenomenon, along with a formal description of the
token-dropping procedure to Appendix C.

Computational complexity. We now provide an informal summary of the computational com-
plexity of this procedure, and defer a formal Big-O analysis to Appendix C.1. After tokenization,
the bulk of a ViT consists of two main operation types:

• Attention operators, which have costs that scale quadratically with the number of tokens
but linearly in the hidden dimension.
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Table 3: Multiplicative speed up of inference with a smoothed ViT with dropped tokens over a
smoothed ResNet, measured over a batch of 1024 images with b = 19.

ResNet-18 ResNet-50 WRN-101

ViT-T 5.85x 21.96x 101.99x
ViT-S 2.85x 10.68x 49.62x
ViT-B 1.26x 4.75x 22.04x

• Fully-connected operators, which have costs that scale linearly with the number of tokens
but quadratically in the hidden dimension.

Reducing the number of tokens thus directly reduces the cost of attention and fully connected op-
erators at a quadratic and linear rate, respectively. For a small number of tokens, the linear scaling
from the fully-connected operators tends to dominate. The cost of processing column ablations thus
scales linearly with the width of the column, which we empirically validate in Figure 6. Further
details about how we time these models can be found in Appendix A.4.
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Figure 6: The average time to compute a forward pass for ViTs on 1024 column ablated images
with varying ablation sizes, with and without dropping masked tokens. The cost of processing a full
image without dropping masked tokens corresponds to the maximum ablation size b = 224.

4.2 EMPIRICAL SPEED-UP FOR SMOOTHED VITS

Smoothed classifiers must process a large number of image ablations in order to make predictions
and certify robustness. Consequently, using our ViT (with dropped tokens) as the base classifier for
derandomized smoothing directly speeds up inference time. In this section, we explore how much
faster smoothed ViTs are in practice.

We first measure the number of images per second that smoothed ViTs and smoothed ResNets
can process. We use column ablations of size b = 19 on ImageNet, following Levine & Feizi
(2020a). In Table 3, we find speedups of 5-22x for smoothed ViTs over smoothed ResNets of
similar size, with larger architectures showing greater gains. Notably, using our largest ViT (ViT-B)
as the base classifier is 1.25x faster than using a ResNet-18, despite being 8x larger in parameter
count. Dropping masked tokens thus substantially speeds up inference time for smoothed ViTs, to
the point where using a large ViT is comparable in speed to using a small ResNet.

Strided ablations. We now consider a complementary means of speeding up smoothed classi-
fiers: directly reducing the size of the ablation set via strided ablations. Specifically, instead of
using every possible ablation, we can subsample every s-th ablation for a given stride s. Striding
can reduce the total number of ablations (and consequently speed up inference) by a factor of s,
without substantially hurting standard or certified accuracy (Table 1). We study this in more detail
in Appendix D.

Strided ablations, in conjunction with the dropped tokens optimization from Section 4.1, lead to
smoothed ViTs having inference times comparable to standard (non-robust) models. For example,
when using stride s = 10 and dropping masked tokens, a smoothed ViT-S is only 2x slower than a
single inference step of a standard ResNet-50, while a smoothed ViT-B is only 5x slower. We report
the inference time of these models, along with their standard and certified accuracies, in Table 1.
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5 RELATED WORK

Certified defenses. An extensive body of research has studied the development of certified or
provable defenses to adversarial perturbations. This line of research largely falls into one of three
categories: convex relaxation-based defenses (Wong & Kolter, 2018; Raghunathan et al., 2018;
Wong et al., 2018; Gowal et al., 2018; 2019; Mirman et al., 2018; Weng et al., 2018; Zhang et al.,
2018; Salman et al., 2019b), tighter or exact verifiers (Katz et al., 2017; Ehlers, 2017; Lomuscio
& Maganti, 2017; Tjeng et al., 2019; Xiao et al., 2019), and smoothing-based defenses (Lecuyer
et al., 2019; Li et al., 2018; Cohen et al., 2019; Salman et al., 2019a; Levine & Feizi, 2020c;a;
Yang et al., 2020; Salman et al., 2020). The earliest certified patch defense used an instance of
convex relaxation (interval bounds) to derive provable guarantees to adversarial patch (Chiang et al.,
2020). Subsequent work (Levine & Feizi, 2020b) focused on randomized smoothing. This approach
smooths classifiers over random noise, but are traditionally extremely expensive to use (4-5 orders of
magnitudes slower than a standard, non-robust model) (Cohen et al., 2019; Levine & Feizi, 2020b).
Recently, Lin et al. (2021) proposed a variant based on randomized cropping that performs similarly
to Levine & Feizi (2020a) but with better guarantees under worse-case patch transformations.

Deterministic smoothing. To mitigate the expensive inference times of randomized smoothing,
Levine & Feizi (2020a) proposed derandomized smoothing, which used a finite set of ablations to
smooth a base classifier. This substantially reduced the computational requirements of smoothing,
but is still two orders of magnitude slower than standard models. Two similar defenses, Clipped
BagNet (Zhang et al., 2020) and PatchGuard (Xiang et al., 2021), rely on restricting the model’s re-
ceptive field. These approaches are faster than derandomized smoothing, but have other limitations.
Clipped BagNet has substantially weaker robustness guarantees than derandomized smoothing. On
the other hand, PatchGuard has higher but brittle guarantees: a defended model is optimally de-
fended against a specific patch size, and achieves no robustness at all against patches that are even
slightly larger than the one considered.

Empirical methods: attacks and defenses. Another line of work studies empirical approaches
for generating adversarial patches and designing empirical defenses. Adversarial patches have been
developed for downstream tasks such as image classification (Karmon et al., 2018), object detection
(Eykholt et al., 2018; Chen et al., 2018; Liu et al., 2018), and facial recognition (Sharif et al., 2016;
Thys et al., 2019; Bose & Aarabi, 2018). Several of these attacks work in the physical domain
(Brown et al., 2018; Eykholt et al., 2018; Chen et al., 2018), and can successfully target tasks such
as traffic sign recognition (Eykholt et al., 2018; Chen et al., 2018). Heuristic defenses to these
attacks include watermarking (Hayes, 2018) and gradient smoothing (Naseer et al., 2019); however,
these defenses were shown to be vulnerable adaptive attacks (Chiang et al., 2020). More recently,
Rao et al. (2020) proposed an adversarial training approach to improve empirical robustness to patch
attacks.

Vision transformers. Our work leverages the vision transformer (ViT) architecture (Dosovitskiy
et al., 2021), which adapts the popular attention-based model from the language setting (Vaswani
et al., 2017) to the vision setting. Recent work (Touvron et al., 2020) has released more efficient
training methods as well as pre-trained ViTs that have made these architectures more accessible to
the wider research community.

6 CONCLUSION

We demonstrate how applying visual transformers (ViTs) in the smoothing framework leads to sig-
nificantly improved certified robustness to adversarial patches while maintaining standard accuracies
that are on par with regular (non-robust) models. Further, we put forth changes to the ViT archi-
tecture and the corresponding smoothing procedure that greatly speed up the resulting inference
times—they end up being only 2-5x slower than that of a regular ResNet-50. We believe that these
improvements finally establish models that are certifiably robust to adversarial patches as a viable
alternative to standard (non-robust) models.

9
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A EXPERIMENTAL SETUP

A.1 MODELS AND ARCHITECTURES

We use three sizes of vision transformers—ViT-Tiny (ViT-T), ViT-Small (ViT-S), and ViT-Base
(ViT-B) models (Wightman, 2019; Dosovitskiy et al., 2021) and compare to to residual networks
of similar (or larger) size—ResNet-18, ResNet-50 (He et al., 2016), and Wide ResNet-101-2
(Zagoruyko & Komodakis, 2016), respectively. These architectures and their corresponding number
of parameters are summarized in Table 4.

Table 4: A collection of neural network architectures we use in our paper.

Architecture ViT-T ResNet-18 ViT-S ResNet-50 ViT-B WRN-101-2
Params 5M 12M 22M 26M 86M 126M

We use the same architectures for both ImageNet and CIFAR-10 models, and finetune our smoothed
models from publicly released checkpoints pretrained on ImageNet. All our CIFAR-10 experiments
are thus conducted on up-sampled CIFAR-10 images of size 224× 224.

A.2 DATASETS

We use two datasets:

1. CIFAR (Krizhevsky, 2009) https://paperswithcode.com/dataset/
cifar-10.

2. ImageNet (Russakovsky et al., 2015), with a custom (research, non-commercial) license,
as found here https://paperswithcode.com/dataset/imagenet.

A.3 TRAINING PARAMETERS

Derandomized smoothing requires that the base classifier predict well on image ablations. A stan-
dard technique for derandomized smoothing methods is to directly train the base classifier on image
ablations (Levine & Feizi, 2020a). Thus, unless otherwise stated, in each epoch we randomly apply
a column ablation of fixed width to each image of the training set.

To facilitate training of the base classifiers, we start from pretrained ResNets3 and ViT architectures4

and fine-tune as follows:

ImageNet. We train for 30 epochs using SGD of fixed learning rate of 10−3, a batch size of 256,
a weight-decay of 10−4, a momentum of 0.9, and with column ablations of fixed width b = 19. For
data-augmentation, we use random resized crop, random horizontal flip, and color jitter. We then
apply column ablations.

CIFAR-10. We train for 30 epochs using SGD with a step learning rate of 10−2 that drops every
10 epochs by a factor of 10, a batch size of 128, a weight-decay of 5 × 10−4, a momentum of
0.9, and with column ablations of fixed width b = 4. We only use random horizontal flip for data-
augmentation, after which we apply column ablations. We then upsample all CIFAR-10 images to
224× 224 (on GPU).

Training time. Training is relatively fast, with our largest ImageNet model (WRN-101-2) fin-
ishing in roughly two days on one NVIDIA V100 GPU. The smaller models such as ViT-T or
ResNet-18 finish training in only a few hours.

3These are TorchVision’s official checkpoints, and can be found here https://pytorch.org/
vision/stable/models.html.

4We use the DeiT checkpoints of Wightman (2019) which can be found here https:
//github.com/rwightman/pytorch-image-models/blob/master/timm/models/
vision_transformer.py.
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A.4 COMPUTE AND TIMING EXPERIMENTS

We use an internal cluster containing NVIDIA 1080-TI, 2080-TI, V100, and A100 GPUs. Scal-
ability and timing experiments were performed on an A100 and averaged over 50 trials. When
performing scalability experiments, we do not include data loading time or the time to move the
input to the GPU.

A.5 EXAMPLE ABLATIONS

In Figure 7, we display examples of ablations of various types (column, block) and sizes.

Column Ablation

(a) Column ablations with the following ablation size from left to right: orig-
inal image, 13px, 19px, 25px, 31px, 37px.

Block Ablation

(b) Block ablations with the following ablation size from left to right: original
image, 35px, 55px, 75px, 95px, 115px.

Figure 7: Example ablations that we use in our paper.

A.6 DIFFERENCES IN SETUP FROM LEVINE & FEIZI (2020A)

Our work builds on top of that of Levine & Feizi (2020a). We use their robustness guarantee as is
(see Section 2.1), but there are a few differences in the setup of our experiments. All experimental
results (including the de-randomized smoothing baseline) are run using the same experimental setup
in order to remain fair, which only improved the baseline over what was previously reported in the
literature. For completeness, we describe the differences in setup here.

Encoding null inputs. The first difference is that Levine & Feizi (2020a) encode part of the input
as being null or ablated by adding additional color channels, as described in Levine & Feizi (2020b),
so that the null value is distinct from all real pixel colors. In practice, we found this to be unneces-
sary, and were able to replicate their results with ablations that simply replace masked pixels with
0.

Early stopping. We find that ResNets substantially benefit from early stopping when trained with
ablations, and otherwise experience severe overfitting to the ablations with substantially reduced test
accuracies. In our replication, we find that the ResNet-50 result reported by Levine & Feizi (2020a)
can be substantially improved with an earlier checkpoint (improving certified accuracy by nearly
10%), and thus we use early-stopping in all of our ResNet baselines.

Starting from pretrained models. To reduce training time, for both ImageNet and CIFAR-10 ex-
periments, we start from pre-trained ImageNet checkpoints (see Section A.3). This step is especially
necessary for the CIFAR-10 experiments, as it is quite challenging to train a ViT from scratch on
CIFAR-10 (these models tend to require a large amount of data).

Upsampled CIFAR-10. In order to use the pretrained ImageNet checkpoints when training our
base classifiers for CIFAR-10, we (nearest neighbor) upsample the CIFAR-10 inputs to 224 × 224
as part of the model architecture. We verify robustness in the original 32× 32 images.
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Sweeping over ablation size. We note that Levine & Feizi (2020a) tested various ablations sizes
only on CIFAR-10. Due to our speed-ups, we were able to sweep over ablations sizes for ImageNet.
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B ABLATION SWEEPS

In this section, we further explore the impact of changing the ablation size on both standard and
certified performance. In Section B.1, we explore the effect of modifying the ablation size at training
time. In Section B.2, similar to the experiment on ImageNet from Section 3.2, we present additional
results on adjusting the ablation size at test time for CIFAR10.

B.1 TRAIN-TIME ABLATION

We first explore varying the ablation size used during training for ImageNet. Specifically, we train
and certify a ResNet-50 and ViT-S over a range of column widths from 1 to 67 pixels (Figure 8).
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Figure 8: Certified and standard accuracy for a smoothed model trained and evaluated on ImageNet
column ablations with varying widths. The ResNet-50 requires a substantially larger ablation size
for certification, whereas the ViT-S is more flexible.

For ViTs, we find that once the columns are wide enough, we see only marginal improvements
in certified accuracy (i.e. only 1.3% higher certified accuracy over b = 19). This suggests that
small ablations are sufficient at training time, allowing for fast training of ViTs when using cropped
ablations.

On the other hand, ResNets require a substantially larger column width than was previously ex-
plored. Specifically, the certified accuracy of the ResNet baseline can be greatly improved from
18% to 27% when the ablation size is increased to b = 37. This ablation size is optimal for the
ResNet, but is still 6% lower certified accuracy when compared to the ViT.

Overall, we find that certified performance of ViTs on ImageNet remains largely stable with respect
to the column ablation size used for training. We can thus use smaller ablation sizes during training
(e.g b = 19) to improve training speed while certifying using larger ablation sizes.

B.2 TEST-TIME ABLATIONS
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Figure 9: Certified and standard accuracy for a smoothed model on CIFAR-10 trained with a fixed
ablation size (b = 5), and evaluated with varying ablation sizes.

Similar to the experiment on ImageNet from Section 3.2, we present analogous results for varying
the ablation size used at test time for CIFAR-10. These results largely reflect what was previously
observed by Levine & Feizi (2020a). Specifically, the optimal ablation size for CIFAR10 is a column
width of b = 4, with a steep drop-off in performance for larger ablation sizes. This is in contrast to
what we observed in ImageNet, which did not see such a steep drop in performance.
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C DROPPING TOKENS FOR VITS

We first describe the algorithm for processing image ablations with a ViT while dropping masked
tokens. Let x be an image with size h×w, and let S(x) be the set of image ablations of x. For each
z,m ∈ S(x), z is an image ablation of size h × w and m ∈ {0, 1}h×w is its corresponding mask,
such that mij is 0 if the i, j pixel in z is masked and 1 otherwise.

Recall that a ViT has two stages when processing an input z.

• Encoding: z is split into patches of p × p and positionally encoded into tokens. We let
E(w, i, j) be an encoder which positionally encodes the p× p sized patch w which was at
spatial location ip, jp in z.

• Self-Attention: A set of positionally encoded tokens T is passed through self attention
layers V and produces a class label.

Given an image ablation z we modify the ViT to remove tokens in T that correspond to a fully
masked region in z.

Algorithm 1 Forward pass for processing an image ablation z with mask m using a ViT while
dropping masked tokens.

1: function PROCESSABLATION(z,m)
2: T = {} Initialize set of tokens for an ablation
3: for i, j ∈ [h/p]× [w/p] do
4: if not mip:(i+1)p,jp:(j+1)p = 0 then
5: T = T ∪ E(zip:(i+1)p,jp:(j+1)p, i, j)
6: end if
7: end for
8: return V (T )
9: end function

We can then use this function to define the smoothed ViT.

Algorithm 2 Forward pass for a smoothed ViT on an input image x with ablation set S(x)

1: function SMOOTHEDVIT(x)
2: ci = 0 for i ∈ [k] // Initialize counts to zero
3: for z,m ∈ S(x) do
4: y = PROCESSABLATION(z,m)
5: cy = cy + 1 // Update counts
6: end for
7: return arg maxy cy
8: end function

C.1 COMPUTATIONAL COMPLEXITY OF VITS WITH DROPPED TOKENS

We can now derive the computational complexity of the smoothed ViT when dropping tokens.
Specifically, consider a ViT that divides an h × w pixel image into p × p patches, and position-
ally encodes them tokens with d hidden dimensions.

Recall that a ViT has two operation types: attention operators which scale quadratically with the
number of tokens but linearly with hidden dimension d and fully-connected operators which scale
linearly with the number of tokens but quadratically in d. Without dropping tokens, we have hw/p2
tokens. A forward pass of processing an image ablation without dropping tokens thus has an overall
complexity of

O

((
hw

p2

)2

d +

(
hw

p2

)
d2

)
where the first term corresponds to the attention operations, and the second term corresponds to the
fully-connected operations.
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For column ablations with width b, dropping masked tokens reduces the number of tokens to hb/p2.
The complexity of the forward pass to process an image ablation when dropping masked tokens (i.e
ProcessAblation) then drops to

O

((
hb

p2

)2

d +

(
hb

p2

)
d2

)
thus reducing the attention cost by a factor of O(w2/b2) and the fully-connected cost by a factor
of O(w/b). In practice, the computation of fully-connected operations tends to dominate since
d > hw

p2 .

Overall, a smoothed ViT with stride s processes w/s ablations. Thus, the overall complexity of the
smoothed ViT is:

O

(
w

s

((
hb

p2

)2

d +

(
hb

p2

)
d2

))

C.2 EFFECT OF DROPPING TOKENS ON SPEED

We extend the timing experiments comparing ViTs and ResNets to a range of ablation sizes (previ-
ously presented in Table 3 from Section 4 for a single column ablation size of b = 19). Empirically,
even for substantially larger ablations, we find significantly faster training and inference times for
ViTs over ResNets. In Figure 10, we compare the evaluation and training speeds for processing
image ablations with ResNets and ViTs with dropped tokens.
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Figure 10: (a) Average time for computing a forward pass on a batch of 1024 image ablations on
ImageNet (b) Average time for computing a full training step (forward and backward pass) on a
batch of 128 image ablations on ImageNet

C.3 EFFECT OF DROPPING TOKENS ON PERFORMANCE

Since the tokens are individually positionally encoded, dropping tokens that are fully masked does
not remove any information from the input. In Figure 11, we confirm that dropping masked tokens
does not significantly change the accuracy of the ViT base classifier on ablations.
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Figure 11: We compare the ablation accuracies of dropping masked tokens versus processing all
tokens for a collection of vision transformers on CIFAR-10 and ImageNet. Dropping masked tokens
does not substantially degrade accuracy.
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D STRIDED ABLATIONS

In this section, we explore strided ablations for certification in more depth. In Section D.1 we present
the threshold for certification when using strided ablations. In Section D.2 we show how striding
affects performance.

D.1 CERTIFICATION THRESHOLDS FOR STRIDED ABLATION SETS

We briefly describe the new thresholds for certification when using strided ablations. Recall from
equation 2 that a prediction is certified robust if

nc(x) > max
c′ 6=c

nc′(x) + 2∆.

Thus ∆, the number of ablations that a patch can intersect, fully describes the certification threshold.

Column smoothing. For column smoothing with width b and stride s, the maximum number of
ablations that an m×m patch can intersect with is at most ∆column+stride = d(m + s− 1)/se.

D.2 PERFORMANCE UNDER STRIDED ABLATIONS
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Figure 12: Certified and standard accuracy of various ViTs for ImageNet when using strided column
ablations with varying stride lengths.

In this section, we explore how striding affects standard and certified performance. We find that
striding does not result in a monotonic change in certified accuracy—certification accuracy can both
decrease and increase as the stride increases.

For a few choices in striding, it is possible to not substantially change the accuracy of the ViT at
classifying ablations, as shown in Figure 12. For example, a ViT-B which normally obtains 38.3%
certified accuracy without striding, maintains certified accuracies of 37.6% at stride s = 5 and
36.8% at stride s = 10. For these small drops in certified accuracy, striding directly enables 5x or
10x faster inference times.
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E BLOCK SMOOTHING

In this section, we investigate an alternative type of smoothing known as Block Smoothing, previ-
ously investigated in the CIFAR-10 setting (Levine & Feizi, 2020a). In block smoothing, we ablate
(square) blocks of pixels instead of columns of pixels. This procedure is prohibitively expensive for
ImageNet due to its quadratic complexity. For example, smoothing a 224 × 224 image with block
ablations takes a majority vote over 224× 224 = 50, 176 ablations, which is four orders of magni-
tude slower than a standard forward pass. We alleviate this obstacle for larger image settings such
as ImageNet with the token-based speedups for ViTs from Section 4.1 and the striding from Sec-
tion 4.2. In combination, these improvements in speed allow us to perform a practical investigation
into block smoothing on ImageNet.

Certification. Certification of derandomized smoothing models with block ablations is similar to
that of column ablations, and depends on the maximum number of ablations in the ablation set that
an adversarial patch can simultaneously intersect. Recall that for column ablations of size b, the
certification threshold is ∆ = m+ b− 1 ablations. For block ablations of size b (where b here is the
side of the retained block/square of pixels), ∆ = (m + b− 1)2. The threshold can then be plugged
as before into Equation equation 2 to check whether the model is certifiably robust.

E.1 PRACTICAL INFERENCE SPEEDS FOR BLOCK SMOOTHING

We first demonstrate how dropping masked tokens significantly increases the speed of evaluating
block ablations for the base classifier. In Figure 13, we show that dropping masked tokens sub-
stantially reduces the time needed to process 1024 block ablations for various sizes of ViTs. This
directly leads to a 4.85x speedup for ViT-S with ablation size 75.
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Figure 13: Average time to compute a forward pass for ViTs on 1024 block ablated images with
varying ablation sizes with and without dropping masked tokens.

Even with this optimization, however, block smoothing is quite expensive. A forward pass through
the smoothed model still requires around 50k passes through the base classifier. We thus leverage our
second speedup from strided ablations and use strided block smoothing. Similar to strided column
ablations, for a stride length of s, we only consider block ablations that are s pixels apart, vertically
and horizontally. This changes the certification threshold ∆ to be, ∆block+stride = d(m+s−1)/se2.
With dropping fully masked tokens and using a stride of 10, a smoothed ViT-S using an ablation size
of 75 is only 2.8x slower than a standard (non-robust) ResNet-50.

Certified accuracy. We find that, despite an systematic search over stride length and block size
(both at training and evaluation), block smoothing on ImageNet remains significantly worse than
column smoothing. For example, with optimal stride and ablation size, we see up to 5% lower
certified accuracy than column smoothing on the largest model, ViT-B. We checked a range of
ablation sizes from 55 to 115 as well as three stride lengths {7, 10, 14} (Figure 14).

Similar to striding with column ablations, there is a significant amount of variability based on the
stride length. To pinpoint the effect of striding, we certify one of the best-performing block sizes
(b = 75) over a full range of strides from s = 1 to s = 20 (Figure 15). This is a fairly expensive
calculation, as using stride s = 1 corresponds to the full block ablation with 50k ablations.
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(a) We fix the test-time ablation size at b = 75 and plot the certified accuracy as a function of the adversarial
patch size, for various stride length.
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(b) We fix the adversarial patch size m = 32 and plot the certified accuracy as a function of the test-time
ablation size, for various stride length.

Figure 14: Strided block smoothing on ImageNet for a collection of ViT models trained with block
ablations of size b = 75.
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Even when using all possible block ablations (s = 1), block smoothing does not improve over
column smoothing. However, we do find that certain stride lengths (s = 18) can achieve similar
performance to non-strided block ablations (s = 1), which means that we can speed up certification
(by 18x) without sacrificing certified accuracy. Thus, while our methods can make block smoothing
computationally feasible, further investigation is needed to make block smoothing match column
smoothing in terms of certified and standard accuracies.
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Figure 15: Strided block smoothing on ImageNet for ViT-B with a fixed ablation size b = 75.
The reported certified accuracy are against adversarial patches of size 32 × 32. Note how some
stride lengths (s = 18 for example) can achieve similar performance to non-strided block ablations
(s = 1).
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F EXTENDED EXPERIMENTAL RESULTS

Table 5: An extended version of Table 1. Summary of our ImageNet results and comparisons to
certified patch defenses from the literature: Clipped Bagnet (CBG), Derandomized Smoothing (DS),
and PatchGuard (PG). Time refers to the inference time for a batch of 1024 images, b is the ablation
size, and s is the ablation stride.

Standard and Certified Accuracy on ImageNet (%)

Patch Size Clean 1% pixels 2% pixels 3% pixels Time (sec)

CBN (Zhang et al., 2020) 49.5 13.4 7.1 3.1 3.05± 0.02
DS (Levine & Feizi, 2020a) 44.4 17.7 14.0 11.2 149.52± 0.33
PG (Xiang et al., 2021) (1% pixels) 55.1 32.3 0.0 0.0 3.05± 0.02
PG (Xiang et al., 2021) (2% pixels) 54.6 26.0 26.0 0.0 3.05± 0.02
PG (Xiang et al., 2021) (3% pixels) 54.1 19.7 19.7 19.7 3.05± 0.02

Vary Ablation Size (Stride = 1)

ResNet-18 (b = 19) 50.6 24.1 19.8 16.9 39.84± 0.97
ResNet-18 (b = 25) 52.7 24.2 20.0 17.1 39.84± 0.97
ResNet-18 (b = 37) 54.3 22.4 18.6 15.7 39.84± 0.97
ViT-T (b = 19) 52.3 27.3 22.9 19.9 6.81± 0.05
ViT-T (b = 25) 53.7 26.9 22.8 19.7 6.82± 0.05
ViT-T (b = 37) 55.6 25.5 21.7 18.8 12.64± 0.10

ResNet-50 (b = 19) 51.5 22.8 18.3 15.3 149.52± 0.33
ResNet-50 (b = 25) 54.7 23.8 19.5 16.4 149.52± 0.33
ResNet-50 (b = 37) 57.8 23.1 19.0 16.1 149.52± 0.33
ViT-S (b = 19) 63.5 36.8 31.6 27.9 14.00± 0.16
ViT-S (b = 25) 65.1 36.8 31.9 28.2 20.58± 0.18
ViT-S (b = 37) 67.1 35.3 30.7 27.1 20.61± 0.16

WRN-101-2 (b = 19) 61.4 33.3 28.1 24.1 694.50± 0.58
WRN-101-2 (b = 25) 64.2 34.3 29.1 25.3 694.50± 0.58
WRN-101-2 (b = 37) 67.2 33.7 28.8 25.2 694.50± 0.58
ViT-B (b = 19) 69.3 43.8 38.3 34.3 31.51± 0.17
ViT-B (b = 25) 71.1 44.0 38.8 34.8 31.52± 0.21
ViT-B (b = 37) 73.2 43.0 38.2 34.1 58.74± 0.17

Vary Ablation Stride

WRN-101-2 (b = 19, s = 5) 61.1 30.1 27.3 21.9 138.90± 0.12
WRN-101-2 (b = 19, s = 10) 59.7 25.8 25.8 20.9 69.45± 0.06
ViT-B (b = 19, s = 5) 69.0 40.6 37.7 32.0 6.30± 0.03
ViT-B (b = 19, s = 10) 68.3 36.9 36.9 31.4 3.15± 0.02

WRN-101-2 (b = 37, s = 5) 66.9 32.6 27.2 24.7 138.90± 0.12
WRN-101-2 (b = 37, s = 10) 66.1 31.7 26.7 21.7 69.45± 0.06
ViT-B (b = 37, s = 5) 73.1 41.9 36.4 33.5 11.75± 0.03
ViT-B (b = 37, s = 10) 72.6 41.3 36.1 30.8 5.87± 0.02
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Table 6: An extended version of Table 2. Summary of our CIFAR-10 results and comparisons
to certified patch defenses from the literature: Clipped Bagnet (CBG), Derandomized Smoothing
(DS), and PatchGuard (PG). b is the column ablation size out of 32 pixels.

Standard and Certified Accuracy on CIFAR-10 (%)

Patch Size Clean 2× 2 4× 4

Baselines

CBN (Zhang et al., 2020) 84.2 44.2 9.3
DS (Levine & Feizi, 2020a) 83.9 68.9 56.2
PG (Xiang et al., 2021) (2× 2) 84.7 69.2 0.0
PG (Xiang et al., 2021) (4× 4) 84.6 57.7 57.7

Smoothed models

ResNet-18 (b = 4) 83.6 67.0 54.2
ViT-T (b = 4) 85.5 70.0 58.5
ResNet-50 (b = 4) 86.4 71.6 59.0
ViT-S (b = 4) 88.4 75.0 63.8
WRN-101-2 (b = 4) 88.2 73.9 62.0
ViT-B (b = 4) 90.8 78.1 67.6

Table 7: Standard accuracies of regularly trained architectures vs. smoothed architectures with
column ablations of size b = 4 for CIFAR-10 and b = 19 for ImageNet.

Standard accuracy of architecture (%)

ViT-T ResNet-18 ViT-S ResNet-50 ViT-B WRN-101-2

ImageNet
Standard 72.03 69.76 79.72 76.13 81.74 78.85
Smoothed 52.25 50.62 63.48 51.47 69.33 61.38

Difference 19.77 19.14 16.24 24.66 12.41 17.47

CIFAR-10
Standard 93.13 95.72 93.33 96.16 97.07 97.85
Smoothed 85.53 88.41 86.39 83.57 90.75 88.20

Difference 7.60 7.31 6.94 12.59 6.32 9.65
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Table 8: ImageNet certified models trained with ablations of size 19, with a variety of test-time
ablations sizes b and ablation stride lengths s.

Standard accuracy(%) Certified Accuracy(%)
Architecture s b 1% pixels 2% pixels 3% pixels

ResNet-18

1
19 50.6 24.1 19.8 16.9
25 52.7 24.2 20.0 17.1
37 54.3 22.4 18.6 15.7

5
19 50.3 21.5 19.3 15.3
25 52.4 22.1 17.9 15.8
37 54.2 21.5 17.4 15.4

10
19 49.3 18.7 18.7 14.8
25 51.5 21.5 17.3 13.6
37 53.7 21.0 17.1 13.5

ViT-T

1
19 52.3 27.3 22.9 19.9
25 53.7 26.9 22.8 19.7
37 55.6 25.5 21.7 18.8

5
19 51.9 24.6 22.4 18.2
25 53.5 25.1 20.6 18.5
37 55.4 24.7 20.5 18.5

10 19 51.2 21.8 21.8 17.8
25 53.1 24.6 20.4 16.4
37 55.1 24.4 20.3 16.5

ResNet-50

1
19 51.5 22.8 18.3 15.3
25 54.7 23.8 19.5 16.4
37 57.8 23.1 19.0 16.1

5
19 51.0 20.1 17.9 13.6
25 54.5 21.7 17.2 15.1
37 57.7 22.1 17.7 15.8

10
19 49.9 17.2 17.2 13.2
25 53.7 21.0 16.7 12.8
37 57.1 21.7 17.6 13.7

ViT-S

1
19 63.5 36.8 31.6 27.9
25 65.1 36.8 31.9 28.2
37 67.1 35.3 30.7 27.1

5
19 63.1 33.8 31.1 25.7
25 64.9 34.4 29.3 26.7
37 67.0 34.3 29.1 26.7

10
19 62.2 30.3 30.3 25.2
25 64.3 33.9 28.7 23.7
37 66.5 33.8 29.0 24.2

WRN-101

1
19 61.4 33.3 28.1 24.1
25 64.2 34.3 29.1 25.3
37 67.2 33.7 28.8 25.2

5
19 61.1 30.1 27.3 21.9
25 63.8 31.8 26.3 23.7
37 66.9 32.6 27.2 24.7

10
19 59.7 25.8 25.8 20.9
25 62.7 30.5 25.3 20.5
37 66.1 31.7 26.7 21.7

ViT-B

1
19 69.3 43.8 38.3 34.3
25 71.1 44.0 38.8 34.8
37 73.2 43.0 38.2 34.1

5
19 69.0 40.6 37.7 32.0
25 70.8 41.6 36.0 33.0
37 73.1 41.9 36.4 33.5

10
19 68.3 36.9 36.9 31.4
25 70.3 40.9 35.2 29.8
37 72.6 41.3 36.1 30.8
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