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Abstract

Reconstructing accurate implicit surface representations from point clouds remains1

a challenging task, particularly when data is captured using low-quality scanning2

devices. These point clouds often contain substantial noise, leading to inaccurate3

surface reconstructions. Inspired by the Noise2Noise paradigm for 2D images, we4

introduce NoiseSDF2NoiseSDF, a novel method designed to extend this concept5

to 3D neural fields. Our approach enables learning clean neural SDFs directly6

from noisy point clouds through noisy supervision by minimizing the MSE loss7

between noisy SDF representations, allowing the network to implicitly denoise and8

refine surface estimations. We evaluate the effectiveness of NoiseSDF2NoiseSDF9

on benchmarks, including the ShapeNet, ABC, Famous, and Real datasets. Ex-10

perimental results demonstrate that our framework significantly improves surface11

reconstruction quality from noisy inputs.12

1 Introduction13

Learning from imperfect targets [48, 18, 24, 5, 50] is a fundamental challenge in machine learning,14

particularly when obtaining clean training labels is impractical or unfeasible. In image processing,15

the pioneering work of Noise2Noise [24] demonstrated that image restoration could effectively be16

achieved by observing multiple corrupted instances of the same scene. Specifically, this method17

leverages the principle that pixel values at identical coordinates in different noisy images ideally18

represent the same underlying true signal. Consequently, the model learns to restore clean images by19

simply minimizing a straightforward MSE loss between noisy observations. See Figure 1 (a).20

Extending Noise2Noise principles to 3D point clouds [19, 30], however, poses significant challenges21

due to their inherently unstructured nature. Unlike images organized on regular grids, point clouds22

exhibit deviations across all spatial coordinates without the benefit of a stable reference framework.23

This fundamental difference renders a direct extension of unsupervised image denoisers impractical.24

Standard loss functions such as Mean Squared Error (MSE) prove ineffective, necessitating specialized25

loss functions like Earth Mover’s Distance (EMD) to capture geometric correspondences and spatial26

distributions inherent in point cloud data, see Figure 1 (b).27

Recent advances in surface reconstruction have introduced neural fields, such as neural Signed28

Distance Function (neural SDF) [34, 31], which are capable of predicting continuous SDF values29

for any given 3D coordinate. Our key observation is that neural SDF, which encodes the SDF30

mapping 3D coordinates to scalar distance values for 3D shape, exhibits a conceptual parallel to31

the mapping between pixel coordinates and pixel intensities in 2D images, as shown in Figure 1 (c).32

Building on this analogy, we hypothesize that neural SDFs can be denoised by directly using noisy33

SDF observations with the same MSE loss strategy inspired by the Noise2Noise principle in image34

restoration.35
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Figure 1: Comparison of coordinate correspondences: (a) Pixel coordinates represent correspondences between
two noisy images of the same scene. In contrast, (b) point coordinates do not exhibit correspondences between
two noisy point clouds of the same shape. (c) SDF coordinates establish correspondences between two noisy

neural fields representing the same shape.

In this work, we explore the use of noisy-target supervision in neural SDFs for surface reconstruction36

from noisy 3D point clouds. We propose NoiseSDF2NoiseSDF, an adaptation of the Noise2Noise37

framework applied to neural fields. The workflow of our NoiseSDF2NoiseSDF is illustrated in38

Figure 2. The network first takes independently corrupted point clouds as input to predict the39

underlying clean SDF values. Instead of using clean SDFs as ground truth, we employ another noisy40

neural SDF, which is generated by off-the-shelf point-to-SDF methods, as the supervision target. We41

then minimize the discrepancy between the predicted SDF output and the noisy SDF target using42

MSE loss. The network learns to suppress noise and improve consistency across SDF values, leading43

to clean neural representations.44

To evaluate the effectiveness of NoiseSDF2NoiseSDF, we conduct comprehensive experiments45

across benchmark datasets, including ShapeNet [8], ABC [22], Famous [14], and Real [14]. Our46

experimental results demonstrate that neural SDFs can indeed be denoised effectively by employing47

mean squared error loss directly between their noisy representations. This finding confirms our central48

hypothesis: neural SDFs can learn to produce cleaner outputs simply by observing and minimizing49

discrepancies among noisy neural fields, effectively extending the Noise2Noise paradigm into the50

domain of 3D neural surface reconstruction. Our approach eliminates the need for clean training data,51

making it practical and scalable for real-world scenarios where acquiring perfect data is difficult or52

infeasible.53

2 Related Work54

Noise2Noise. The Noise2Noise (N2N) framework [24] has significantly influenced recent image55

denoising. By leveraging pairs of noisy observations of the same scene, the N2N framework learns56

to predict one noisy realization from another via pixel-wise correspondence. Subsequent methods57

like Noise2Void [23], Noise2Self [3] employ blind-spot masking techniques, training models directly58

on individual noisy images without pairs. Noise2Same [43] derives self-supervised loss bounds to59

eliminate the blind-spot restriction altogether. Self2Self [38] and Neighbor2Neighbor [20] exploit60

internal image redundancy, employing dropout or pixel resampling to train directly on single noisy61

observations without explicit noise modeling. Noisier2Noise [33] extends N2N to explicitly introduce62

additional synthetic noise, learning to map noisier images back to their original noisy versions.63

Extending the Noise2Noise framework to 3D [19, 42, 30, 40] is challenging due to the unordered64

nature of point clouds. Methods like TotalDenoising [19] and Noise2Noise Mapping [30] address this65

by leveraging local geometric correspondences instead of exact point matches, replacing MSE with66

Earth Mover’s Distance (EMD) loss to better align noisy point clouds with the underlying surface.67

In our work, we exploit the structural similarities between neural fields and images, proposing a68

Noise2Noise denoising framework for 3D SDFs with MSE loss.69

Implicit Surface Reconstruction. Learning implicit surfaces from point clouds has seen significant70

advances. Overfitting-based methods optimize a neural implicit function for a single point cloud,71
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often with ground-truth SDFs, normals or geometric constraints and physical priors. For example,72

SAL [1], SALD [2], and Sign-SAL [49] use point proximity and self-similarity cues. Gradient73

regularization techniques like IGR [17], DiGS [4], and Neural-Pull [29] improve stability and detail.74

Extensions such as SAP [36], LPI [9], and Implicit Filtering-Net [25] enhance reconstruction under75

sparse sampling and complex geometry. While accurate, these methods are typically sensitive to76

noise. Robust variants (e.g., SAP [36], PGR [26], Neural-IMLS [41], Noise2Noise Mapping [30] and77

LocalN2NM [10]) address this via smoothing, denoising priors, or self-supervision.78

In contrast to overfitting approaches, data-driven methods learn shape priors from large datasets.79

Global-latent methods, such as OCCNet [31], IM-NET [11], and DeepSDF [34], encode entire80

shapes into fixed-length latent codes, capturing overall semantics but often over-smoothing details.81

Local prior methods improve expressiveness by operating at finer scales. Grid-based approaches82

divide space into cells and learn small implicit functions per cell (ConvOccNet [35], SSRNet [32],83

Local Implicit Grid [16], Deep Local Shapes [7]). Patch-based methods segment point clouds into84

local regions and learn shared atomic representations (PatchNets [39], POCO [6], neighborhood-85

based [21]). Hybrid methods combine global context with local detail. For instance, IF-Nets [12]86

and SG-NN [13] fuse PointNet features with voxel hierarchies or contrastive scene priors. Recent87

transformer-based models (ShapeFormer [44], 3DILG [46], 3DS2V [47], LaGeM [45]) leverage88

self-attention for long-range structure modeling. Data-driven models trained with ground-truth SDFs89

are generally more robust to noise. Hybrid approaches like P2S [37] and PPSurf [15] use dual-branch90

networks to predict SDFs with explicit noise-level supervision. However, their performance degrades91

under extreme sparsity and noise of input point clouds. In contrast, our NoiseSDF2NoiseSDF92

framework embraces noise as a training signal, enabling reliable surface recovery from severely93

degraded inputs.94

3 Preliminaries95

In Noise2Noise [24], the key idea is that given multiple noisy observations of the same underlying96

clean image, the pixel intensities at the same spatial coordinates are expected to share the same97

statistical properties. Formally, consider an image domain X ⊂ R2, and let y1, y2, . . . , yn be noisy98

observations of the same underlying clean image taken at different instances. For any pixel coordinate99

x ∈ X, the pixel intensities y1(x), y2(x), . . . , yn(x) are samples drawn from a distribution centered100

around the true pixel value at that location, perturbed by independent, zero-mean noise. The core101

insight of Noise2Noise is that even in the presence of such noise, the expectation of the noisy pixel102

values converges to the true signal:103

E[yi(x)] = y(x), ∀i ∈ {1, 2, . . . , n}, (1)

where yi(x) is the observed pixel value at coordinate x in the i-th noisy image, and y(x) is the true104

underlying pixel value at that coordinate. This property enables training a neural network purely on105

noisy data, using other noisy images as supervision.106

Let fθ denote a neural network parameterized by θ, and let x ∈ X represent a spatial query coordinate.107

The network is designed to predict pixel intensities given a noisy image and the query coordinate.108

The prediction is written as:109

ŷ(x | yi) = fθ(yi, x), (2)

where yi is the noisy input image, x is the queried pixel location, and ŷ(x | yi) is the predicted pixel110

intensity at x.111

The model is trained to minimize the expected squared error between the predicted pixel value and112

the corresponding pixel value in another independent noisy observation. The loss function is:113

L(θ) = Ey1,y2∼p(y|y),x∼U(R2)

[
∥ŷ(x | y1)− y2(x)∥2

]
, (3)

where y1, y2 are independent noisy observations of the same clean image, and x ∈ X is sampled114

uniformly from the image domain.115
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4 Method116

Our proposed method investigates whether clean neural fields can be effectively learned by observing117

their noisy counterparts. Drawing inspiration from Noise2Noise, where noisy images directly serve118

as inputs and targets, we adapt this principle to learning neural fields from noisy point cloud data. In119

contrast to the direct usage of noisy images as input in traditional Noise2Noise setups, we employ a120

neural network conditioned on a noisy point cloud to predict neural SDFs at specific query coordinates.121

Rather than utilizing clean SDFs as supervision, our approach leverages noisy neural fields at identical122

coordinates derived from another independently noisy version of the same underlying shape. This123

ensures one-to-one correspondence between the predicted and target neural fields, allowing effective124

noise suppression through direct MSE loss minimization.125

4.1 NoiseSDF2NoiseSDF126

Applying Noise2Noise [24] to Signed Distance Functions (SDFs) introduces new opportunities for127

denoising in 3D spaces. Unlike unstructured point clouds, SDFs represent 3D geometry in a structured128

and continuous manner, mapping each spatial coordinate q ∈ R3 to its signed distance from the129

surface of an underlying object. This continuity ensures that, for the same query coordinate across130

multiple noisy observations derived from the same shape, the SDF values should remain statistically131

consistent. Let p1, p2, . . . , pn be noisy point cloud observations of the same underlying 3D shape,132

and let s1, s2, . . . , sn be their corresponding noisy SDFs. Given a noisy point cloud pi and a query133

coordinate q, a neural network fθ, parameterized by θ, is trained to predict the SDF value ŝ(q | pi) at134

the queried location:135

ŝ(q | pi) = fθ(pi, q). (4)

The structured nature of SDFs enables the network to learn smooth and continuous surface repre-136

sentations, even from sparse or noisy inputs. This makes SDFs advantageous over unordered point137

clouds for tasks like 3D denoising and reconstruction.138

Training Objective. The model is trained by minimizing the expected squared error between the139

predicted SDF value from one noisy observation and the SDF value at the same query location in140

another noisy observation of the same shape. The loss function is defined as:141

L(θ) = Ep1,p2∼p(p|s), q∼U(R3)

[
∥ŝ(q | p1)− s2(q | p2)∥2

]
, (5)

where p1, p2 are independent noisy point cloud observations sampled from the same underlying shape142

s, and s2(q | p2) is the noisy SDF value at coordinate q associated with noisy point cloud p2.143

This formulation takes advantage of the continuous nature of SDFs, which, unlike point clouds, allows144

for consistent supervision across noisy samples even if the raw point distributions are unstructured. By145

learning to map noisy coordinates to structured SDF representations, the neural network effectively146

filters noise, yielding a refined and more accurate 3D representation of the surface.147

4.2 Implementation148

Our framework is illustrated in Figure 2. The process begins with sampling sparse, noisy point149

clouds from a watertight surface. During training, a pair of noisy point clouds is randomly selected:150

one is processed through the neural SDF network to predict approximate clean SDF values for the151

underlying 3D shape. Simultaneously, a point-to-SDF method is applied to generate a noisy SDF152

target, which serves as noisy supervision during the denoising phase. For each query point, the153

corresponding SDF values from these two representations are extracted and compared using the Mean154

Squared Error (MSE) loss function. This loss is then utilized to update the weights of the neural SDF155

network during denoising.156

Point Sampling. We first normalize the watertight meshes into a unit cube, then sample points from157

the surfaces to obtain the original point cloud p. Following the Noise2Noise Mapping protocol [24,158

30], we apply zero-mean Gaussian noise to generate noisy point cloud pairs. The query point set159

consists of 50% near-surface points and 50% uniformly sampled points from the unit cube. To reduce160
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Figure 2: The training pipeline of the NoiseSDF2NoiseSDF framework. Given two independent noisy point
clouds p1 and p2 of the same underlying shape, p1 is fed into the denoising network to predict a smoothed SDF
ŝ, while p2 is passed through a Point2SDF network to generate a noisy SDF s2. Both SDFs are evaluated at a

shared set of query points q, and their mean squared error is used to update the denoising network weights.

dependency on the original clean surface, we directly use the two input noisy point clouds as the161

near-surface query points. Additionally, we uniformly sample N points within the cube as spatial162

query points.163

Denoising Network. Our SDF prediction network is built on 3DS2V [47]. Initially, a noisy point164

cloud p1 is sampled and transformed into positional embeddings, which are then encoded into a set165

of latent codes through a cross-attention module. Subsequently, self-attention is applied to aggregate166

and exchange information across the latent set, enhancing feature integration. A cross-attention167

module then computes interpolation weights for the query point q. These interpolated feature vectors168

are processed through a fully connected layer to predict SDF values. The network is initialized169

using pretrained weights from 3DS2V. Without the denoising learning, the predicted SDF values are170

typically noisy due to the inherent noise in the input point clouds. During our denoising phase, the171

encoder remains fixed while only the decoder is optimized, improving both efficiency and convergence172

speed. Importantly, our contribution is not limited to the specific architecture of the SDF prediction173

network; other point-to-SDF methods could also be utilized.174

Noisy Target. Given another paired noisy point cloud p2, a Point2SDF method is required to predict175

noisy SDF values s2 from it. In our implementation, we also employ a pretrained 3DS2V [47] model.176

This network accepts as input a noisy point cloud p2 and a query point q, producing the corresponding177

noisy SDF scalar value at q. To ensure that all SDF targets are consistently noisy, we freeze its178

parameters during this process. Notably, this Point2SDF method is also not restricted to a specific179

model; any data-driven or overfitting Point2SDF methods could be seamlessly integrated. The Mean180

Squared Error (MSE) loss function is employed to minimize discrepancies between corresponding181

SDF values. This loss guides the optimization of the neural SDF network’s weights during the182

denoising training.183

5 Experiment184

We designed experiments to evaluate the performance of the NoiseSDF2NoiseSDF framework for185

surface reconstruction from raw noisy point clouds, assessing performance across different noise186

levels using a data-driven paradigm on large 3D shape datasets. We conducted ablation studies to187

validate key components and design choices.188
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5.1 Training Details189

For optimization, we used the AdamW optimizer [28] with a fixed learning rate of 1 × 10−4. For190

resource usage, we trained on three Nvidia A100 GPUs with a batch size of 32 per GPU, taking191

approximately 15 hours for the ShapeNet dataset and 2.5 hours for the ABC dataset.192

We sampled 2048 points from watertight meshes as the initial point cloud. Following the Noise2Noise193

Mapping [30], we applied Gaussian noise with standard deviations of 1%, 2%, online to generate194

noisy and sparse point cloud pairs. Additionally, we sampled 8192 query points online. The noise195

magnitude is defined with respect to both the point-cloud bounding-box size and the point density. For196

a fixed numeric noise level, a smaller bounding box amplifies the relative impact of the perturbation.197

All point clouds are normalized to the cubes [−0.5, 0.5]3 or [−1, 1]3. Furthermore, sparser point sets198

are more susceptible to noise. With only 2048 points, noise levels of 0.01 and 0.02 constitute severe199

perturbations irrespective of the bounding-box scale. The clean underlying surface is recovered from200

the denoised SDF using the Marching Cubes [27].201

5.2 Datasets and Metrics202

We trained our NoiseSDF2NoiseSDF network on the ShapeNet dataset following [47], using the203

same data split and preprocessing procedures. To evaluate denoising effectiveness and surface204

reconstruction quality, we used several metrics, including Intersection-over-Union (IoU), Chamfer205

Distance, F1 Score, and Normal Consistency.206

IoU was computed based on occupancy predictions over densely sampled volumetric points. Follow-207

ing methods [25, 29], we sampled 1× 105 points from the reconstructed and ground-truth surfaces to208

compute the Chamfer Distance and F1 Score.209

To further assess the generalization capability of NoiseSDF2NoiseSDF, we further trained our model210

on the ABC train set [22]—which was not used during the pretraining of 3DS2V—and then evaluated211

it on the ABC test set, as well as the Famous [14] and Real [14] datasets. We utilized the preprocessed212

datasets and data splits provided by [14, 15]. We reported evaluation metrics including Normal213

Consistency, Mesh Normal Consistency, Chamfer Distance, and F1 Score. All metrics reported above214

are evaluated on the reconstructed meshes. We excluded IoU from this benchmark because, under215

severe noise, many reconstructed meshes become non-watertight or heavily degenerated, making it216

infeasible to assign reliable inside/outside labels and rendering the IoU metric unreliable.217

5.3 Results on ShapeNet218

We compared our method against 3DS2V [47] and 3DILG [46] on the seven largest ShapeNet subsets,219

using the same training and testing data split. We used the official pretrained models released by the220

respective authors. Evaluation results are reported for each subset at noise levels of 0.01 (Table 1)221

and 0.02 (Table 2); see visualization results in Figure 3. The results demonstrate that our method222

maintains robustness under both mild σ = 0.01 and severe σ = 0.02 corruption levels. Under lower223

corruption (σ = 0.01), our method outperforms all competing methods across all evaluation metrics.224

For instance, IoU rises by 4% for chair and by about 9% for rifle. Chamfer Distance drops from 0.010225

to 0.008 for airplane and from 0.011 to 0.009 for lamp. Normal Consistency and F-Score likewise226

see significant improvements. At the higher corruption level (σ = 0.02), while the performance of227

all methods degrades, our approach remains the most robust and stable with the best mean metrics228

surpassing all baseline models. In challenging categories such as table, rifle, and lamp, our model229

still leads: rifle achieves an IoU of 0.781 and a Chamfer Distance of 0.014.230

5.4 Results on ABC, Famous, and Real231

We compared results on the ABC, Famous, and Real test datasets offered by P2S [14]. We compared232

three data-driven methods P2S [14], PPSurf [15], and 3DS2V [47] and two overfitting methods233

SAP-O [36], PGR [26]. These methods are widely recognized for their strong resilience to noise234

in point cloud data. For the data-driven methods, we used the pretrained models provided by the235

original authors. For the overfitting baselines we adopted the training configurations recommended236

or set as default in their respective works. Quantitative results are reported in Table 3 and Table 4,237

and qualitative mesh reconstructions are visualized in Figure 4.238
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Table 1: Performance comparison of 3DS2V [47], 3DILG [46], and Ours on ShapeNet test datasets derived
from the 3DS2V with an additional Gaussian noise σ = 0.01. Higher is better for IoU, NC, and F-Score; lower

is better for Chamfer. Best results are highlighted in bold.

Category IoU ↑ NC ↑ Chamfer ↓ F-Score ↑

3DS2V 3DILG Ours 3DS2V 3DILG Ours 3DS2V 3DILG Ours 3DS2V 3DILG Ours

table 0.879 0.856 0.922 0.930 0.932 0.976 0.013 0.014 0.012 0.991 0.982 0.992
car 0.946 0.931 0.959 0.890 0.861 0.908 0.022 0.025 0.020 0.925 0.899 0.925
chair 0.887 0.881 0.921 0.937 0.930 0.966 0.014 0.015 0.013 0.986 0.977 0.986
airplane 0.884 0.871 0.931 0.939 0.924 0.972 0.010 0.010 0.008 0.997 0.990 0.997
sofa 0.946 0.942 0.964 0.943 0.934 0.974 0.014 0.015 0.012 0.986 0.980 0.987
rifle 0.821 0.839 0.910 0.869 0.875 0.960 0.009 0.010 0.007 0.997 0.991 0.998
lamp 0.826 0.825 0.894 0.904 0.883 0.952 0.011 0.016 0.009 0.989 0.956 0.989

mean 0.884 0.878 0.929 0.916 0.905 0.958 0.0132 0.015 0.0113 0.981 0.968 0.986

Table 2: Performance comparison of 3DS2V [47], 3DILG [46], and Ours under an additional Gaussian noise
σ = 0.02. Best results are highlighted in bold.

Category IoU ↑ NC ↑ Chamfer ↓ F-Score ↑

3DS2V 3DILG Ours 3DS2V 3DILG Ours 3DS2V 3DILG Ours 3DS2V 3DILG Ours

table 0.528 0.430 0.591 0.765 0.756 0.912 0.029 0.036 0.028 0.792 0.723 0.859
car 0.434 0.541 0.491 0.715 0.699 0.787 0.040 0.052 0.044 0.669 0.600 0.688
chair 0.463 0.392 0.530 0.729 0.712 0.868 0.034 0.037 0.035 0.694 0.701 0.721
airplane 0.465 0.564 0.536 0.719 0.710 0.856 0.025 0.031 0.022 0.830 0.764 0.899
sofa 0.355 0.312 0.425 0.769 0.737 0.866 0.036 0.039 0.038 0.667 0.664 0.677
rifle 0.625 0.564 0.781 0.691 0.691 0.891 0.021 0.029 0.014 0.887 0.776 0.968
lamp 0.572 0.461 0.649 0.744 0.712 0.896 0.026 0.040 0.025 0.825 0.699 0.880

mean 0.492 0.466 0.572 0.733 0.717 0.868 0.030 0.038 0.029 0.766 0.704 0.813

For data-driven comparison, across all noise levels our method achieves the highest NC and Mesh239

NC, indicating the most coherent geometry and the smoothest surfaces; this is also evident in the240

visual reconstructions (Figure 4). At the 0.01 noise level, the ABC and Famous datasets reach NC241

scores of 0.865 and 0.831, respectively—an improvement of roughly 1.5–2.5 percentage points over242

the second-best approach. When the noise level increases to 0.02, all baselines degrade, yet our243

NC remains the best among them. For methods that fit a surface to each test cloud individually,244

Table 4 shows that SAP-O and PGR can sometimes obtain lower Chamfer distance and higher F1, but245

our approach still leads on NC and Mesh NC. Under 0.01 noise level, our average NC/ Mesh NC /246

F-Score reach 0.847/0.027/0.945, all of which are the top scores. However, when the noise level rises247

to 0.02, our Chamfer and F1 decrease substantially. This drop is partly due to the backbone 3DS2V248

model’s sensitivity to heavy noise: its F1 plunges from 0.962 to 0.813 as the noise level increases249

from 0.01 to 0.02. As illustrated in Figure 4, the mesh geometry becomes severely corrupted and250

large holes appear. Although NoiseSDF2NoiseSDF averages the neural SDF and closes some gaps, it251

cannot perfectly recover the underlying surface. Moreover, the smoothing effect of our model at the252

0.02 noise level removes certain fine details; while this yields visually smoother meshes, Chamfer253

distance and F1—metrics that emphasize global geometric fidelity rather than surface roughness—are254

consequently worse.255

3DS2V Ours GT 3DS2V Ours GT 3DS2V Ours GTnoisy input noisy input noisy input

Figure 3: Comparison on the ShapeNet dataset. The first row corresponds to Gaussian noise with standard
deviation σ = 0.01, and the second row to σ = 0.02. Compared to the baseline 3DS2V[47] method, our

approach produces smoother reconstructions that more closely align with the underlying surfaces.
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Table 3: Comparison of P2S [14], PPSurf [15], 3DS2V [47], and Ours on six noisy test datasets. Higher is
better for NC, F-Score; lower is better for Mesh NC and Chamfer distance.

Dataset NC ↑ Mesh NC ↓ Chamfer F-Score

P2S PPSurf 3DS2V Ours P2S PPSurf 3DS2V Ours P2S PPSurf 3DS2V Ours P2S PPSurf 3DS2V Ours

ABC (σ = 0.01) 0.790 0.770 0.859 0.865 0.330 0.059 0.036 0.024 0.017 0.017 0.014 0.015 0.919 0.935 0.959 0.938
ABC (σ = 0.02) 0.753 0.728 0.735 0.812 0.381 0.061 0.060 0.018 0.027 0.022 0.028 0.032 0.852 0.870 0.780 0.724
Famous (σ = 0.01) 0.771 0.761 0.819 0.831 0.268 0.053 0.040 0.025 0.017 0.015 0.014 0.016 0.928 0.959 0.962 0.941
Famous (σ = 0.02) 0.727 0.728 0.705 0.767 0.328 0.054 0.064 0.024 0.022 0.020 0.028 0.032 0.868 0.899 0.788 0.726
Real (σ = 0.01) 0.789 0.776 0.818 0.845 0.177 0.057 0.056 0.031 0.016 0.016 0.014 0.015 0.946 0.954 0.964 0.956
Real (σ = 0.02) 0.734 0.745 0.735 0.793 0.269 0.053 0.071 0.020 0.021 0.022 0.021 0.026 0.877 0.876 0.873 0.809

mean (σ = 0.01) 0.783 0.769 0.832 0.847 0.258 0.056 0.044 0.027 0.017 0.016 0.014 0.015 0.931 0.949 0.962 0.945
mean (all) 0.761 0.751 0.778 0.819 0.292 0.056 0.055 0.024 0.020 0.019 0.020 0.023 0.898 0.916 0.888 0.849

Table 4: Comparison of SAP-O [36], PGR [26], and Ours on six noisy test datasets. The released PGR
implementation uses an adaptive Marching Cubes resolution that, for 2,048-point-point clouds, occasionally

drops to 64 rather than 128, which can yield artificially smoother meshes.

Dataset NC ↑ Mesh NC ↓ Chamfer F-Score

SAP-O PGR Ours SAP-O PGR Ours SAP-O PGR Ours SAP-O PGR Ours

ABC (σ = 0.01) 0.710 0.835 0.865 0.079 0.037 0.024 0.021 0.020 0.014 0.906 0.896 0.938
ABC (σ = 0.02) 0.622 0.778 0.812 0.095 0.065 0.018 0.026 0.026 0.032 0.824 0.815 0.724
Famous (σ = 0.01) 0.745 0.813 0.831 0.053 0.035 0.025 0.022 0.017 0.016 0.876 0.931 0.941
Famous (σ = 0.02) 0.614 0.755 0.767 0.104 0.064 0.024 0.023 0.024 0.032 0.849 0.834 0.726
Real (σ = 0.01) 0.683 0.827 0.845 0.097 0.032 0.031 0.023 0.015 0.015 0.902 0.956 0.956
Real (σ = 0.02) 0.595 0.756 0.793 0.122 0.062 0.020 0.025 0.026 0.026 0.841 0.824 0.809

mean (σ = 0.01) 0.713 0.825 0.847 0.076 0.035 0.027 0.022 0.017 0.015 0.895 0.928 0.945
mean (all) 0.661 0.794 0.819 0.092 0.049 0.024 0.023 0.021 0.023 0.866 0.876 0.849
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Figure 4: Visualization of surface reconstruction under Gaussian noise (σ = 0.01 and 0.02), comparing two
overfitting-based methods (PGR [26] and SAP-O [36]), three data-driven approaches (P2S [14], PPSurf [15],

3DS2V [47]), and our proposed method. Results are shown for three benchmark datasets: ABC [22],
Famous [14], and Real [14].
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5.5 Ablation Study256

Our ablation experiments were carried out on the “Chair” subset of ShapeNet, which contains 6271257

models for training, 169 for validation, and 338 for testing. The configurations for all of our principal258

experiments originate with this subset and are progressively generalized to broader settings.259

Denoising Network. The 3DS2V decoder contains 24 self-attention blocks, one cross-attention block,260

and a fully connected layer. Fine-tuning the entire decoder yields the best denoising performance,261

with metrics steadily improving over 15 epochs: IoU increases from 0.88 to 0.93, and Normal262

Consistency (NC) improves from 0.93 to 0.96. In comparison, fine-tuning only the fully connected263

layer offers virtually no benefit. Adding the cross-attention block introduces a clear gain—its final264

NC reaches 0.95, close to the best model—but at the cost of doubling the training time.265

Table 5: Comparison of fine-tuning strategies on denoising performance.
Metric FC Layer Only FC + Cross-Attention Block Entire Decoder

IoU 0.88 (no gain) 0.92 0.93
NC 0.93 (no gain) 0.95 0.96
Epochs – 30 15

Noise Type. Beyond standard zero-mean Gaussian noise, we evaluated three additional noise266

types—Uniform, Discrete, and Laplace noise—each applied at a fixed magnitude of σ = 0.01. Fur-267

thermore, to assess the impact of non-zero bias in Gaussian perturbations, we conducted experiments268

over the domain [−1, 1]3 using means of µ = 0.005, 0.01, and 0.02. Comprehensive quantitative269

results are presented in Table 6.270

At σ = 0.01 on [−1, 1]3, our model consistently shows denoising performance under Uniform and271

Discrete noise, with notable gains in both IoU and NC. However, it shows limited benefit under272

Laplace noise. For Gaussian noise with σ = 0.01 increasing µ, our model remains effective at lower273

µ, but its advantage diminishes as the µ grows, eventually leading to degraded reconstruction quality.274

Table 6: Performance comparison between the 3DS2V [47] and our method under various noise types and
levels. Noise distributions tested are Uniform, Discrete and Laplace with σ = 0.01, and Gaussian with

σ = 0.01 under different means µ = 0, 0.005, 0.01, 0.02.

Dataset IoU ↑ NC ↑ Chamfer F-Score

3DS2V Ours 3DS2V Ours 3DS2V Ours 3DS2V Ours

Uniform (σ = 0.01) 0.873 0.911 0.920 0.962 0.015 0.013 0.985 0.986
Discrete (σ = 0.01) 0.867 0.895 0.915 0.960 0.015 0.014 0.984 0.985
Laplace (σ = 0.01) 0.909 0.908 0.956 0.956 0.014 0.014 0.985 0.985
Gaussian (σ = 0.01) 0.887 0.927 0.937 0.966 0.014 0.013 0.986 0.986
Gaussian (σ = 0.01, µ = 0.005) 0.860 0.881 0.942 0.964 0.017 0.016 0.982 0.984
Gaussian (σ = 0.01, µ = 0.01) 0.798 0.800 0.946 0.949 0.024 0.023 0.952 0.960
Gaussian (σ = 0.01, µ = 0.02) 0.661 0.666 0.875 0.898 0.038 0.039 0.549 0.524

6 Conclusion275

In this work, we introduced NoiseSDF2NoiseSDF, a framework capable of recovering clean surfaces276

from noisy and sparse point clouds by leveraging paired noisy SDFs in a Noise2Noise denoising277

approach. We demonstrated that, at noise intensities of 0.01 and 0.02, the reconstructed surfaces278

produced by our method are notably cleaner and smoother, both quantitatively and visually, com-279

pared to previous works. In future research, we aim to explore additional applications of the280

NoiseSDF2NoiseSDF framework, such as scaling up point cloud sizes to enhance geometric detail281

recovery, or replacing components within the framework with alternative architectures trained from282

scratch, thus improving the model’s ability to represent point cloud noise and further enhancing283

denoising performance.284
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• If the paper includes experiments, a No answer to this question will not be perceived520

well by the reviewers: Making the paper reproducible is important, regardless of521

whether the code and data are provided or not.522

• If the contribution is a dataset and/or model, the authors should describe the steps taken523

to make their results reproducible or verifiable.524

• Depending on the contribution, reproducibility can be accomplished in various ways.525

For example, if the contribution is a novel architecture, describing the architecture fully526

might suffice, or if the contribution is a specific model and empirical evaluation, it may527

be necessary to either make it possible for others to replicate the model with the same528

dataset, or provide access to the model. In general. releasing code and data is often529

one good way to accomplish this, but reproducibility can also be provided via detailed530

instructions for how to replicate the results, access to a hosted model (e.g., in the case531

of a large language model), releasing of a model checkpoint, or other means that are532

appropriate to the research performed.533

• While NeurIPS does not require releasing code, the conference does require all submis-534

sions to provide some reasonable avenue for reproducibility, which may depend on the535

nature of the contribution. For example536

(a) If the contribution is primarily a new algorithm, the paper should make it clear how537

to reproduce that algorithm.538

(b) If the contribution is primarily a new model architecture, the paper should describe539

the architecture clearly and fully.540
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(c) If the contribution is a new model (e.g., a large language model), then there should541

either be a way to access this model for reproducing the results or a way to reproduce542

the model (e.g., with an open-source dataset or instructions for how to construct543

the dataset).544

(d) We recognize that reproducibility may be tricky in some cases, in which case545

authors are welcome to describe the particular way they provide for reproducibility.546

In the case of closed-source models, it may be that access to the model is limited in547

some way (e.g., to registered users), but it should be possible for other researchers548

to have some path to reproducing or verifying the results.549

5. Open access to data and code550

Question: Does the paper provide open access to the data and code, with sufficient instruc-551

tions to faithfully reproduce the main experimental results, as described in supplemental552

material?553

Answer: [Yes]554

Justification: The code is included in our supplementary materials. We will release the full555

source code, dataset, and detailed instructions for reproduction.556

Guidelines:557

• The answer NA means that paper does not include experiments requiring code.558

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/559

public/guides/CodeSubmissionPolicy) for more details.560

• While we encourage the release of code and data, we understand that this might not be561

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not562

including code, unless this is central to the contribution (e.g., for a new open-source563

benchmark).564

• The instructions should contain the exact command and environment needed to run to565

reproduce the results. See the NeurIPS code and data submission guidelines (https:566

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.567

• The authors should provide instructions on data access and preparation, including how568

to access the raw data, preprocessed data, intermediate data, and generated data, etc.569

• The authors should provide scripts to reproduce all experimental results for the new570

proposed method and baselines. If only a subset of experiments are reproducible, they571

should state which ones are omitted from the script and why.572

• At submission time, to preserve anonymity, the authors should release anonymized573

versions (if applicable).574

• Providing as much information as possible in supplemental material (appended to the575

paper) is recommended, but including URLs to data and code is permitted.576

6. Experimental setting/details577

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-578

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the579

results?580

Answer: [Yes]581

Justification: We provide all the experiment setup in 5582

Guidelines:583

• The answer NA means that the paper does not include experiments.584

• The experimental setting should be presented in the core of the paper to a level of detail585

that is necessary to appreciate the results and make sense of them.586

• The full details can be provided either with the code, in appendix, or as supplemental587

material.588

7. Experiment statistical significance589

Question: Does the paper report error bars suitably and correctly defined or other appropriate590

information about the statistical significance of the experiments?591

Answer: [No]592
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Justification: We did not include confidence intervals or error bars due to the relatively long593

evaluation time required for each run. However, we observed that the results across repeated594

runs within the same experimental setup are highly consistent, with minimal variation. This595

empirical stability gives us confidence in the reliability of the reported outcomes, even596

without formal statistical testing.597

Guidelines:598

• The answer NA means that the paper does not include experiments.599

• The authors should answer "Yes" if the results are accompanied by error bars, confi-600

dence intervals, or statistical significance tests, at least for the experiments that support601

the main claims of the paper.602

• The factors of variability that the error bars are capturing should be clearly stated (for603

example, train/test split, initialization, random drawing of some parameter, or overall604

run with given experimental conditions).605

• The method for calculating the error bars should be explained (closed form formula,606

call to a library function, bootstrap, etc.)607

• The assumptions made should be given (e.g., Normally distributed errors).608

• It should be clear whether the error bar is the standard deviation or the standard error609

of the mean.610

• It is OK to report 1-sigma error bars, but one should state it. The authors should611

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis612

of Normality of errors is not verified.613

• For asymmetric distributions, the authors should be careful not to show in tables or614

figures symmetric error bars that would yield results that are out of range (e.g. negative615

error rates).616

• If error bars are reported in tables or plots, The authors should explain in the text how617

they were calculated and reference the corresponding figures or tables in the text.618

8. Experiments compute resources619

Question: For each experiment, does the paper provide sufficient information on the com-620

puter resources (type of compute workers, memory, time of execution) needed to reproduce621

the experiments?622

Answer: [Yes]623

Justification: We provide detailed information in 5.1.624

Guidelines:625

• The answer NA means that the paper does not include experiments.626

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,627

or cloud provider, including relevant memory and storage.628

• The paper should provide the amount of compute required for each of the individual629

experimental runs as well as estimate the total compute.630

• The paper should disclose whether the full research project required more compute631

than the experiments reported in the paper (e.g., preliminary or failed experiments that632

didn’t make it into the paper).633

9. Code of ethics634

Question: Does the research conducted in the paper conform, in every respect, with the635

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?636

Answer: [Yes]637

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our research638

fully conforms to its guidelines. Our work does not involve human subjects, personally639

identifiable data, or sensitive content. All datasets used are publicly available, and we have640

taken care to ensure that our method does not pose foreseeable risks related to safety, dis-641

crimination, or misuse. We also plan to release our code and models to support transparency642

and reproducibility.643

Guidelines:644
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.645

• If the authors answer No, they should explain the special circumstances that require a646

deviation from the Code of Ethics.647

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-648

eration due to laws or regulations in their jurisdiction).649

10. Broader impacts650

Question: Does the paper discuss both potential positive societal impacts and negative651

societal impacts of the work performed?652

Answer: [Yes]653

Justification: We provide broader impacts in Appendix A.2.654

Guidelines:655

• The answer NA means that there is no societal impact of the work performed.656

• If the authors answer NA or No, they should explain why their work has no societal657

impact or why the paper does not address societal impact.658

• Examples of negative societal impacts include potential malicious or unintended uses659

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations660

(e.g., deployment of technologies that could make decisions that unfairly impact specific661

groups), privacy considerations, and security considerations.662

• The conference expects that many papers will be foundational research and not tied663

to particular applications, let alone deployments. However, if there is a direct path to664

any negative applications, the authors should point it out. For example, it is legitimate665

to point out that an improvement in the quality of generative models could be used to666

generate deepfakes for disinformation. On the other hand, it is not needed to point out667

that a generic algorithm for optimizing neural networks could enable people to train668

models that generate Deepfakes faster.669

• The authors should consider possible harms that could arise when the technology is670

being used as intended and functioning correctly, harms that could arise when the671

technology is being used as intended but gives incorrect results, and harms following672

from (intentional or unintentional) misuse of the technology.673

• If there are negative societal impacts, the authors could also discuss possible mitigation674

strategies (e.g., gated release of models, providing defenses in addition to attacks,675

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from676

feedback over time, improving the efficiency and accessibility of ML).677

11. Safeguards678

Question: Does the paper describe safeguards that have been put in place for responsible679

release of data or models that have a high risk for misuse (e.g., pretrained language models,680

image generators, or scraped datasets)?681

Answer: [NA]682

Justification: There is no such risk for our work.683

Guidelines:684

• The answer NA means that the paper poses no such risks.685

• Released models that have a high risk for misuse or dual-use should be released with686

necessary safeguards to allow for controlled use of the model, for example by requiring687

that users adhere to usage guidelines or restrictions to access the model or implementing688

safety filters.689

• Datasets that have been scraped from the Internet could pose safety risks. The authors690

should describe how they avoided releasing unsafe images.691

• We recognize that providing effective safeguards is challenging, and many papers do692

not require this, but we encourage authors to take this into account and make a best693

faith effort.694

12. Licenses for existing assets695
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in696

the paper, properly credited and are the license and terms of use explicitly mentioned and697

properly respected?698

Answer: [Yes]699

Justification: We properly cite each dataset, pretrained model used in our paper and use700

them under their licence.701

Guidelines:702

• The answer NA means that the paper does not use existing assets.703

• The authors should cite the original paper that produced the code package or dataset.704

• The authors should state which version of the asset is used and, if possible, include a705

URL.706

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.707

• For scraped data from a particular source (e.g., website), the copyright and terms of708

service of that source should be provided.709

• If assets are released, the license, copyright information, and terms of use in the710

package should be provided. For popular datasets, paperswithcode.com/datasets711

has curated licenses for some datasets. Their licensing guide can help determine the712

license of a dataset.713

• For existing datasets that are re-packaged, both the original license and the license of714

the derived asset (if it has changed) should be provided.715

• If this information is not available online, the authors are encouraged to reach out to716

the asset’s creators.717

13. New assets718

Question: Are new assets introduced in the paper well documented and is the documentation719

provided alongside the assets?720

Answer: [NA]721

Justification: No assets released in our work.722

Guidelines:723

• The answer NA means that the paper does not release new assets.724

• Researchers should communicate the details of the dataset/code/model as part of their725

submissions via structured templates. This includes details about training, license,726

limitations, etc.727

• The paper should discuss whether and how consent was obtained from people whose728

asset is used.729

• At submission time, remember to anonymize your assets (if applicable). You can either730

create an anonymized URL or include an anonymized zip file.731

14. Crowdsourcing and research with human subjects732

Question: For crowdsourcing experiments and research with human subjects, does the paper733

include the full text of instructions given to participants and screenshots, if applicable, as734

well as details about compensation (if any)?735

Answer: [NA]736

Justification: Our work focuses solely on point cloud denoising and reconstruction and does737

not involve any crowdsourcing or human-subject experiments.738

Guidelines:739

• The answer NA means that the paper does not involve crowdsourcing nor research with740

human subjects.741

• Including this information in the supplemental material is fine, but if the main contribu-742

tion of the paper involves human subjects, then as much detail as possible should be743

included in the main paper.744

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,745

or other labor should be paid at least the minimum wage in the country of the data746

collector.747
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15. Institutional review board (IRB) approvals or equivalent for research with human748

subjects749

Question: Does the paper describe potential risks incurred by study participants, whether750

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)751

approvals (or an equivalent approval/review based on the requirements of your country or752

institution) were obtained?753

Answer: [NA]754

Justification: Our research does not involve any human subjects or crowdsourcing experi-755

ments. Therefore, no IRB or equivalent approvals were required.756

Guidelines:757

• The answer NA means that the paper does not involve crowdsourcing nor research with758

human subjects.759

• Depending on the country in which research is conducted, IRB approval (or equivalent)760

may be required for any human subjects research. If you obtained IRB approval, you761

should clearly state this in the paper.762

• We recognize that the procedures for this may vary significantly between institutions763

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the764

guidelines for their institution.765

• For initial submissions, do not include any information that would break anonymity (if766

applicable), such as the institution conducting the review.767

16. Declaration of LLM usage768

Question: Does the paper describe the usage of LLMs if it is an important, original, or769

non-standard component of the core methods in this research? Note that if the LLM is used770

only for writing, editing, or formatting purposes and does not impact the core methodology,771

scientific rigorousness, or originality of the research, declaration is not required.772

Answer: [NA]773

Justification: Our research does not involve large language models in any component of the774

core methodology.775

Guidelines:776

• The answer NA means that the core method development in this research does not777

involve LLMs as any important, original, or non-standard components.778

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)779

for what should or should not be described.780
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