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Abstract

Reconstructing accurate implicit surface representations from point clouds remains
a challenging task, particularly when data is captured using low-quality scanning
devices. These point clouds often contain substantial noise, leading to inaccurate
surface reconstructions. Inspired by the Noise2Noise paradigm for 2D images, we
introduce NoiseSDF2NoiseSDF, a novel method designed to extend this concept
to 3D neural fields. Our approach enables learning clean neural SDFs directly
from noisy point clouds through noisy supervision by minimizing the MSE loss
between noisy SDF representations, allowing the network to implicitly denoise and
refine surface estimations. We evaluate the effectiveness of NoiseSDF2NoiseSDF
on benchmarks, including the ShapeNet, ABC, Famous, and Real datasets. Ex-
perimental results demonstrate that our framework significantly improves surface
reconstruction quality from noisy inputs.

1 Introduction

Learning from imperfect targets [48} 18| 24,5, |50] is a fundamental challenge in machine learning,
particularly when obtaining clean training labels is impractical or unfeasible. In image processing,
the pioneering work of Noise2Noise [24] demonstrated that image restoration could effectively be
achieved by observing multiple corrupted instances of the same scene. Specifically, this method
leverages the principle that pixel values at identical coordinates in different noisy images ideally
represent the same underlying true signal. Consequently, the model learns to restore clean images by
simply minimizing a straightforward MSE loss between noisy observations. See Figure|l|(a).

Extending Noise2Noise principles to 3D point clouds [[19} 30], however, poses significant challenges
due to their inherently unstructured nature. Unlike images organized on regular grids, point clouds
exhibit deviations across all spatial coordinates without the benefit of a stable reference framework.
This fundamental difference renders a direct extension of unsupervised image denoisers impractical.
Standard loss functions such as Mean Squared Error (MSE) prove ineffective, necessitating specialized
loss functions like Earth Mover’s Distance (EMD) to capture geometric correspondences and spatial
distributions inherent in point cloud data, see Figure|l|(b).

Recent advances in surface reconstruction have introduced neural fields, such as neural Signed
Distance Function (neural SDF) [34}31], which are capable of predicting continuous SDF values
for any given 3D coordinate. Our key observation is that neural SDF, which encodes the SDF
mapping 3D coordinates to scalar distance values for 3D shape, exhibits a conceptual parallel to
the mapping between pixel coordinates and pixel intensities in 2D images, as shown in Figure|l|(c).
Building on this analogy, we hypothesize that neural SDFs can be denoised by directly using noisy
SDF observations with the same MSE loss strategy inspired by the Noise2Noise principle in image
restoration.
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Figure 1: Comparison of coordinate correspondences: (a) Pixel coordinates represent correspondences between
two noisy images of the same scene. In contrast, (b) point coordinates do not exhibit correspondences between
two noisy point clouds of the same shape. (c) SDF coordinates establish correspondences between two noisy
neural fields representing the same shape.

In this work, we explore the use of noisy-target supervision in neural SDFs for surface reconstruction
from noisy 3D point clouds. We propose NoiseSDF2NoiseSDF, an adaptation of the Noise2Noise
framework applied to neural fields. The workflow of our NoiseSDF2NoiseSDF is illustrated in
Figure 2] The network first takes independently corrupted point clouds as input to predict the
underlying clean SDF values. Instead of using clean SDFs as ground truth, we employ another noisy
neural SDF, which is generated by off-the-shelf point-to-SDF methods, as the supervision target. We
then minimize the discrepancy between the predicted SDF output and the noisy SDF target using
MSE loss. The network learns to suppress noise and improve consistency across SDF values, leading
to clean neural representations.

To evaluate the effectiveness of NoiseSDF2NoiseSDF, we conduct comprehensive experiments
across benchmark datasets, including ShapeNet [8], ABC [22], Famous [14], and Real [14]. Our
experimental results demonstrate that neural SDFs can indeed be denoised effectively by employing
mean squared error loss directly between their noisy representations. This finding confirms our central
hypothesis: neural SDFs can learn to produce cleaner outputs simply by observing and minimizing
discrepancies among noisy neural fields, effectively extending the Noise2Noise paradigm into the
domain of 3D neural surface reconstruction. Our approach eliminates the need for clean training data,
making it practical and scalable for real-world scenarios where acquiring perfect data is difficult or
infeasible.

2 Related Work

Noise2Noise. The Noise2Noise (N2N) framework has significantly influenced recent image
denoising. By leveraging pairs of noisy observations of the same scene, the N2N framework learns
to predict one noisy realization from another via pixel-wise correspondence. Subsequent methods
like Noise2Void [23]], Noise2Self [3] employ blind-spot masking techniques, training models directly
on individual noisy images without pairs. Noise2Same derives self-supervised loss bounds to
eliminate the blind-spot restriction altogether. Self2Self [38] and Neighbor2Neighbor [20] exploit
internal image redundancy, employing dropout or pixel resampling to train directly on single noisy
observations without explicit noise modeling. Noisier2Noise [33]] extends N2N to explicitly introduce
additional synthetic noise, learning to map noisier images back to their original noisy versions.

Extending the Noise2Noise framework to 3D [[19, /42, 30} 40]] is challenging due to the unordered
nature of point clouds. Methods like TotalDenoising [19] and Noise2Noise Mapping [30] address this
by leveraging local geometric correspondences instead of exact point matches, replacing MSE with
Earth Mover’s Distance (EMD) loss to better align noisy point clouds with the underlying surface.
In our work, we exploit the structural similarities between neural fields and images, proposing a
Noise2Noise denoising framework for 3D SDFs with MSE loss.

Implicit Surface Reconstruction. Learning implicit surfaces from point clouds has seen significant
advances. Overfitting-based methods optimize a neural implicit function for a single point cloud,
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often with ground-truth SDFs, normals or geometric constraints and physical priors. For example,
SAL [1]], SALD [2], and Sign-SAL [49] use point proximity and self-similarity cues. Gradient
regularization techniques like IGR [[17], DiGS [4], and Neural-Pull [29] improve stability and detail.
Extensions such as SAP [36]], LPI [9]], and Implicit Filtering-Net [25] enhance reconstruction under
sparse sampling and complex geometry. While accurate, these methods are typically sensitive to
noise. Robust variants (e.g., SAP [36], PGR [26], Neural-IMLS [41]], Noise2Noise Mapping [30] and
LocalN2NM [[10]]) address this via smoothing, denoising priors, or self-supervision.

In contrast to overfitting approaches, data-driven methods learn shape priors from large datasets.
Global-latent methods, such as OCCNet [31], IM-NET [11], and DeepSDF [34], encode entire
shapes into fixed-length latent codes, capturing overall semantics but often over-smoothing details.
Local prior methods improve expressiveness by operating at finer scales. Grid-based approaches
divide space into cells and learn small implicit functions per cell (ConvOccNet [35]], SSRNet [32],
Local Implicit Grid [[16], Deep Local Shapes [7]]). Patch-based methods segment point clouds into
local regions and learn shared atomic representations (PatchNets [39], POCO [6], neighborhood-
based [21]]). Hybrid methods combine global context with local detail. For instance, IF-Nets [[12]
and SG-NN [13]] fuse PointNet features with voxel hierarchies or contrastive scene priors. Recent
transformer-based models (ShapeFormer [44], 3DILG [46], 3DS2V [47], LaGeM [45])) leverage
self-attention for long-range structure modeling. Data-driven models trained with ground-truth SDFs
are generally more robust to noise. Hybrid approaches like P2S [37] and PPSurf [[15] use dual-branch
networks to predict SDFs with explicit noise-level supervision. However, their performance degrades
under extreme sparsity and noise of input point clouds. In contrast, our NoiseSDF2NoiseSDF
framework embraces noise as a training signal, enabling reliable surface recovery from severely
degraded inputs.

3 Preliminaries

In Noise2Noise [24], the key idea is that given multiple noisy observations of the same underlying
clean image, the pixel intensities at the same spatial coordinates are expected to share the same
statistical properties. Formally, consider an image domain X C R, and let yy, ¥, - . ., ¥, be noisy
observations of the same underlying clean image taken at different instances. For any pixel coordinate
x € X, the pixel intensities y1 (), y2(z), . . ., yn(2) are samples drawn from a distribution centered
around the true pixel value at that location, perturbed by independent, zero-mean noise. The core
insight of Noise2Noise is that even in the presence of such noise, the expectation of the noisy pixel
values converges to the true signal:

Elyi(2)] = y(z), Vie{l,2,...,n}, M

where y; () is the observed pixel value at coordinate x in the i-th noisy image, and y(z) is the true
underlying pixel value at that coordinate. This property enables training a neural network purely on
noisy data, using other noisy images as supervision.

Let fy denote a neural network parameterized by 6, and let € X represent a spatial query coordinate.
The network is designed to predict pixel intensities given a noisy image and the query coordinate.
The prediction is written as:

9(w | yi) = folyi, @), 2)

where y; is the noisy input image, x is the queried pixel location, and §(x | y;) is the predicted pixel
intensity at x.

The model is trained to minimize the expected squared error between the predicted pixel value and
the corresponding pixel value in another independent noisy observation. The loss function is:

L(0) = By, yomp(yly)a~u@) [10(z | y1) — y2(2)]?], (3)

where y1, y2 are independent noisy observations of the same clean image, and x € X is sampled
uniformly from the image domain.
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4 Method

Our proposed method investigates whether clean neural fields can be effectively learned by observing
their noisy counterparts. Drawing inspiration from Noise2Noise, where noisy images directly serve
as inputs and targets, we adapt this principle to learning neural fields from noisy point cloud data. In
contrast to the direct usage of noisy images as input in traditional Noise2Noise setups, we employ a
neural network conditioned on a noisy point cloud to predict neural SDFs at specific query coordinates.
Rather than utilizing clean SDFs as supervision, our approach leverages noisy neural fields at identical
coordinates derived from another independently noisy version of the same underlying shape. This
ensures one-to-one correspondence between the predicted and target neural fields, allowing effective
noise suppression through direct MSE loss minimization.

4.1 NoiseSDF2NoiseSDF

Applying Noise2Noise [24] to Signed Distance Functions (SDFs) introduces new opportunities for
denoising in 3D spaces. Unlike unstructured point clouds, SDFs represent 3D geometry in a structured
and continuous manner, mapping each spatial coordinate ¢ € R? to its signed distance from the
surface of an underlying object. This continuity ensures that, for the same query coordinate across
multiple noisy observations derived from the same shape, the SDF values should remain statistically
consistent. Let p1, pa, .. ., pn be noisy point cloud observations of the same underlying 3D shape,
and let s1, S92, . . ., Sy, be their corresponding noisy SDFs. Given a noisy point cloud p; and a query
coordinate ¢, a neural network fy, parameterized by 6, is trained to predict the SDF value 5(q | p;) at
the queried location:

3(q | pi) = fo(pi, @)- “)

The structured nature of SDFs enables the network to learn smooth and continuous surface repre-
sentations, even from sparse or noisy inputs. This makes SDFs advantageous over unordered point
clouds for tasks like 3D denoising and reconstruction.

Training Objective. The model is trained by minimizing the expected squared error between the
predicted SDF value from one noisy observation and the SDF value at the same query location in
another noisy observation of the same shape. The loss function is defined as:

L(6) = Epy panp(pls), g~ (R3) {||§(q | p1) — s2(q | P2)H2] ) ©)

where p1, po are independent noisy point cloud observations sampled from the same underlying shape
s, and s2(q | p2) is the noisy SDF value at coordinate ¢ associated with noisy point cloud ps.

This formulation takes advantage of the continuous nature of SDFs, which, unlike point clouds, allows
for consistent supervision across noisy samples even if the raw point distributions are unstructured. By
learning to map noisy coordinates to structured SDF representations, the neural network effectively
filters noise, yielding a refined and more accurate 3D representation of the surface.

4.2 TImplementation

Our framework is illustrated in Figure 2| The process begins with sampling sparse, noisy point
clouds from a watertight surface. During training, a pair of noisy point clouds is randomly selected:
one is processed through the neural SDF network to predict approximate clean SDF values for the
underlying 3D shape. Simultaneously, a point-to-SDF method is applied to generate a noisy SDF
target, which serves as noisy supervision during the denoising phase. For each query point, the
corresponding SDF values from these two representations are extracted and compared using the Mean
Squared Error (MSE) loss function. This loss is then utilized to update the weights of the neural SDF
network during denoising.

Point Sampling. We first normalize the watertight meshes into a unit cube, then sample points from
the surfaces to obtain the original point cloud p. Following the Noise2Noise Mapping protocol [24]
30], we apply zero-mean Gaussian noise to generate noisy point cloud pairs. The query point set
consists of 50% near-surface points and 50% uniformly sampled points from the unit cube. To reduce



161
162
163

164
165
166
167
168
169
170
171
172
173
174

175
176
177
178
179
180
181
182
183

184

185
186
187
188

Query Points q
Noisy Point Cloud p,

By —— Point2SDF

l

l Predicted SDF § Noisy SDF s,

Noisy Point Cloud p;

Denoising Network I

MSE Loss for Same Query

Figure 2: The training pipeline of the NoiseSDF2NoiseSDF framework. Given two independent noisy point
clouds p; and p> of the same underlying shape, p; is fed into the denoising network to predict a smoothed SDF
§, while p- is passed through a Point2SDF network to generate a noisy SDF s2. Both SDFs are evaluated at a
shared set of query points ¢, and their mean squared error is used to update the denoising network weights.

dependency on the original clean surface, we directly use the two input noisy point clouds as the
near-surface query points. Additionally, we uniformly sample [V points within the cube as spatial
query points.

Denoising Network. Our SDF prediction network is built on 3DS2V [47]]. Initially, a noisy point
cloud p; is sampled and transformed into positional embeddings, which are then encoded into a set
of latent codes through a cross-attention module. Subsequently, self-attention is applied to aggregate
and exchange information across the latent set, enhancing feature integration. A cross-attention
module then computes interpolation weights for the query point g. These interpolated feature vectors
are processed through a fully connected layer to predict SDF values. The network is initialized
using pretrained weights from 3DS2V. Without the denoising learning, the predicted SDF values are
typically noisy due to the inherent noise in the input point clouds. During our denoising phase, the
encoder remains fixed while only the decoder is optimized, improving both efficiency and convergence
speed. Importantly, our contribution is not limited to the specific architecture of the SDF prediction
network; other point-to-SDF methods could also be utilized.

Noisy Target. Given another paired noisy point cloud p2, a Point2SDF method is required to predict
noisy SDF values ss from it. In our implementation, we also employ a pretrained 3DS2V model.
This network accepts as input a noisy point cloud p, and a query point ¢, producing the corresponding
noisy SDF scalar value at g. To ensure that all SDF targets are consistently noisy, we freeze its
parameters during this process. Notably, this Point2SDF method is also not restricted to a specific
model; any data-driven or overfitting Point2SDF methods could be seamlessly integrated. The Mean
Squared Error (MSE) loss function is employed to minimize discrepancies between corresponding
SDF values. This loss guides the optimization of the neural SDF network’s weights during the
denoising training.

5 Experiment

We designed experiments to evaluate the performance of the NoiseSDF2NoiseSDF framework for
surface reconstruction from raw noisy point clouds, assessing performance across different noise
levels using a data-driven paradigm on large 3D shape datasets. We conducted ablation studies to
validate key components and design choices.
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5.1 Training Details

For optimization, we used the AdamW optimizer [28] with a fixed learning rate of 1 x 10~%. For
resource usage, we trained on three Nvidia A100 GPUs with a batch size of 32 per GPU, taking
approximately 15 hours for the ShapeNet dataset and 2.5 hours for the ABC dataset.

We sampled 2048 points from watertight meshes as the initial point cloud. Following the Noise2Noise
Mapping [30], we applied Gaussian noise with standard deviations of 1%, 2%, online to generate
noisy and sparse point cloud pairs. Additionally, we sampled 8192 query points online. The noise
magnitude is defined with respect to both the point-cloud bounding-box size and the point density. For
a fixed numeric noise level, a smaller bounding box amplifies the relative impact of the perturbation.
All point clouds are normalized to the cubes [—0.5,0.5]° or [—1, 1]3. Furthermore, sparser point sets
are more susceptible to noise. With only 2048 points, noise levels of 0.01 and 0.02 constitute severe
perturbations irrespective of the bounding-box scale. The clean underlying surface is recovered from
the denoised SDF using the Marching Cubes [27].

5.2 Datasets and Metrics

We trained our NoiseSDF2NoiseSDF network on the ShapeNet dataset following [47], using the
same data split and preprocessing procedures. To evaluate denoising effectiveness and surface
reconstruction quality, we used several metrics, including Intersection-over-Union (IoU), Chamfer
Distance, F1 Score, and Normal Consistency.

IoU was computed based on occupancy predictions over densely sampled volumetric points. Follow-
ing methods [25} 29]], we sampled 1 x 10° points from the reconstructed and ground-truth surfaces to
compute the Chamfer Distance and F1 Score.

To further assess the generalization capability of NoiseSDF2NoiseSDF, we further trained our model
on the ABC train set [22]—which was not used during the pretraining of 3DS2V—and then evaluated
it on the ABC test set, as well as the Famous [14] and Real [14] datasets. We utilized the preprocessed
datasets and data splits provided by [14} [15]. We reported evaluation metrics including Normal
Consistency, Mesh Normal Consistency, Chamfer Distance, and F1 Score. All metrics reported above
are evaluated on the reconstructed meshes. We excluded IoU from this benchmark because, under
severe noise, many reconstructed meshes become non-watertight or heavily degenerated, making it
infeasible to assign reliable inside/outside labels and rendering the IoU metric unreliable.

5.3 Results on ShapeNet

We compared our method against 3DS2V [47]] and 3DILG [46] on the seven largest ShapeNet subsets,
using the same training and testing data split. We used the official pretrained models released by the
respective authors. Evaluation results are reported for each subset at noise levels of 0.01 (Table|[T)
and 0.02 (Table @; see visualization results in FigureE} The results demonstrate that our method
maintains robustness under both mild o = 0.01 and severe ¢ = 0.02 corruption levels. Under lower
corruption (¢ = 0.01), our method outperforms all competing methods across all evaluation metrics.
For instance, IoU rises by 4% for chair and by about 9% for rifle. Chamfer Distance drops from 0.010
to 0.008 for airplane and from 0.011 to 0.009 for lamp. Normal Consistency and F-Score likewise
see significant improvements. At the higher corruption level (o = 0.02), while the performance of
all methods degrades, our approach remains the most robust and stable with the best mean metrics
surpassing all baseline models. In challenging categories such as table, rifle, and lamp, our model
still leads: rifle achieves an IoU of 0.781 and a Chamfer Distance of 0.014.

5.4 Results on ABC, Famous, and Real

We compared results on the ABC, Famous, and Real test datasets offered by P2S [14]. We compared
three data-driven methods P2S [14], PPSurf [15], and 3DS2V [47] and two overfitting methods
SAP-O [36], PGR [26]. These methods are widely recognized for their strong resilience to noise
in point cloud data. For the data-driven methods, we used the pretrained models provided by the
original authors. For the overfitting baselines we adopted the training configurations recommended
or set as default in their respective works. Quantitative results are reported in Table 3] and Table 4]
and qualitative mesh reconstructions are visualized in Figure
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Table 1: Performance comparison of 3DS2V [47]], 3DILG [46], and Ours on ShapeNet test datasets derived
from the 3DS2V with an additional Gaussian noise o = 0.01. Higher is better for loU, NC, and F-Score; lower
is better for Chamfer. Best results are highlighted in bold.

Category ToU 1 NC 1 Chamfer | F-Score 1

3DS2V 3DILG Ours 3DS2V 3DILG Ours 3DS2V 3DILG Ours 3DS2V 3DILG Ours

table 0.879 0.856 0.922 0.930 0.932 0976 0.013 0.014 0.012 0991 0.982 0.992
car 0.946 0.931 0.959 0.890 0.861 0.908 0.022 0.025 0.020 0.925 0.899 0.925
chair 0.887 0.881 0.921 0.937 0.930 0.966 0.014 0.015 0.013 0986 0.977 0.986
airplane  0.884 0.871 0.931 0939 0924 0.972 0.010 0.010 0.008 0.997 0.990 0.997
sofa 0.946 0942 0.964 0943 0.934 0974 0.014 0.015 0.012 0986 0.980 0.987
rifle 0.821 0.839 0.910 0.869 0.875 0.960 0.009 0.010 0.007 0.997 0.991 0.998
lamp 0.826 0.825 0.894 0.904 0.883 0.952 0.011 0.016 0.009 00989 0.956 0.989
mean 0.884 0.878 0.929 0916 0.905 0.958 0.0132 0.015 0.0113 0.981 0.968 0.986

Table 2: Performance comparison of 3DS2V [47]], 3DILG [46], and Ours under an additional Gaussian noise
o = 0.02. Best results are highlighted in bold.

Category IoU 1 NC 1 Chamfer | F-Score 1

3DS2V 3DILG Ours 3DS2V 3DILG Ours 3DS2V 3DILG Ours 3DS2V 3DILG Ours

table 0.528 0430 0.591 0.765 0.756 0.912 0.029 0.036 0.028 0.792 0.723 0.859
car 0.434  0.541 0491 0.715 0.699 0.787 0.040 0.052 0.044 0.669 0.600 0.688
chair 0.463 0392 0.530 0.729 0.712 0.868 0.034 0.037 0.035 0.694 0.701 0.721
airplane  0.465 0.564 0.536 0.719 0.710 0.856 0.025 0.031 0.022 0.830 0.764 0.899
sofa 0.355 0312 0425 0.769 0.737 0.866 0.036 0.039 0.038 0.667 0.664 0.677
rifle 0.625 0.564 0.781 0.691 0.691 0.891 0.021 0.029 0.014 0.887 0.776 0.968
lamp 0.572  0.461 0.649 0.744 0.712 0.896 0.026 0.040 0.025 0.825 0.699 0.880

mean 0.492 0466 0.572 0.733 0.717 0.868 0.030 0.038 0.029 0.766 0.704 0.813

For data-driven comparison, across all noise levels our method achieves the highest NC and Mesh
NC, indicating the most coherent geometry and the smoothest surfaces; this is also evident in the
visual reconstructions (Figure E[) At the 0.01 noise level, the ABC and Famous datasets reach NC
scores of 0.865 and 0.831, respectively—an improvement of roughly 1.5-2.5 percentage points over
the second-best approach. When the noise level increases to 0.02, all baselines degrade, yet our
NC remains the best among them. For methods that fit a surface to each test cloud individually,
Table[d] shows that SAP-O and PGR can sometimes obtain lower Chamfer distance and higher F1, but
our approach still leads on NC and Mesh NC. Under 0.01 noise level, our average NC/ Mesh NC /
F-Score reach 0.847/0.027/0.945, all of which are the top scores. However, when the noise level rises
to 0.02, our Chamfer and F1 decrease substantially. This drop is partly due to the backbone 3DS2V
model’s sensitivity to heavy noise: its F1 plunges from 0.962 to 0.813 as the noise level increases
from 0.01 to 0.02. As illustrated in Figure[d] the mesh geometry becomes severely corrupted and
large holes appear. Although NoiseSDF2NoiseSDF averages the neural SDF and closes some gaps, it
cannot perfectly recover the underlying surface. Moreover, the smoothing effect of our model at the
0.02 noise level removes certain fine details; while this yields visually smoother meshes, Chamfer
distance and F1—metrics that emphasize global geometric fidelity rather than surface roughness—are
consequently worse.

noisy input 3DS2V Ours GT noisy input 3DS2v  Ours noisyinput  3psav Ours GT

= ﬁ vvv

Figure 3: Comparison on the ShapeNet dataset. The first row corresponds to Gaussian noise with standard
deviation o = 0.01, and the second row to o = 0.02. Compared to the baseline 3DS2V[47] method, our
approach produces smoother reconstructions that more closely align with the underlying surfaces.




Table 3: Comparison of P2S [14]], PPSurf [13]], 3DS2V [47]], and Ours on six noisy test datasets. Higher is
better for NC, F-Score; lower is better for Mesh NC and Chamfer distance.

Dataset NC 1t Mesh NC | Chamfer F-Score

P2S PPSurf 3DS2V Ours P2S PPSurf 3DS2V Ours P2S PPSurf 3DS2V Ours P2S PPSurf 3DS2V Ours
ABC (o = 0.01)  0.790 0.770 0.859 0.865 0.330 0.059 0.036 0.024 0.017 0.017 0.014 0.015 0.919 0.935 0.959 0.938
ABC (0 =0.02) 0.753 0.728 0.735 0.812 0.381 0.061 0.060 0.018 0.027 0.022 0.028 0.032 0.852 0.870 0.780 0.724
Famous (¢ = 0.01) 0.771 0.761 0.819 0.831 0.268 0.053 0.040 0.025 0.017 0.015 0.014 0.016 0.928 0.959 0.962 0.941
Famous (o = 0.02) 0.727 0.728 0.705 0.767 0.328 0.054 0.064 0.024 0.022 0.020 0.028 0.032 0.868 0.899 0.788 0.726
Real (o = 0.01) 0.789 0.776  0.818 0.845 0.177 0.057 0.056 0.031 0.016 0.016 0.014 0.015 0.946 0.954 0.964 0.956
Real (o0 = 0.02) 0.734 0.745 0.735 0.793 0.269 0.053 0.071 0.020 0.021 0.022 0.021 0.026 0.877 0.876 0.873 0.809
mean (¢ = 0.01)  0.783 0.769 0.832 0.847 0.258 0.056 0.044 0.027 0.017 0.016 0.014 0.015 0.931 0.949 0.962 0.945
mean (all) 0.761 0.751 0.778 0.819 0.292 0.056 0.055 0.024 0.020 0.019 0.020 0.023 0.898 0.916 0.888 0.849

Table 4: Comparison of SAP-O [36], PGR [26]], and Ours on six noisy test datasets. The released PGR
implementation uses an adaptive Marching Cubes resolution that, for 2,048-point-point clouds, occasionally
drops to 64 rather than 128, which can yield artificially smoother meshes.

Dataset NC 1 Mesh NC | Chamfer F-Score
SAP-O PGR Ours SAP-O PGR Ours SAP-O PGR Ours SAP-O PGR Ours
ABC (o = 0.01) 0.710 0.835 0.865 0.079 0.037 0.024 0.021 0.020 0.014 0.906 0.896 0.938
ABC (o = 0.02) 0.622 0.778 0.812 0.095 0.065 0.018 0.026 0.026 0.032 0.824 0.815 0.724
Famous (¢ = 0.01) 0.745 0.813 0.831 0.053 0.035 0.025 0.022 0.017 0.016 0.876 0.931 0.941
Famous (o = 0.02) 0.614 0.755 0.767 0.104 0.064 0.024 0.023 0.024 0.032 0.849 0.834 0.726
Real (o = 0.01) 0.683 0.827 0.845 0.097 0.032 0.031 0.023 0.015 0.015 0.902 0.956 0.956
Real (o = 0.02) 0.595 0.756 0.793 0.122 0.062 0.020 0.025 0.026 0.026 0.841 0.824 0.809
mean (o = 0.01) 0.713 0.825 0.847 0.076 0.035 0.027 0.022 0.017 0.015 0.895 0.928 0.945
mean (all) 0.661 0.794 0.819 0.092 0.049 0.024 0.023 0.021 0.023 0.866 0.876 0.849

noisy input PGR

ABCO0.01

RealWorld0.01 Famous0.01

ABCO0.02

02

Figure 4: Visualization of surface reconstruction under Gaussian noise (¢ = 0.01 and 0.02), comparing two
overfitting-based methods (PGR [26] and SAP-O [36]]), three data-driven approaches (P2S [14]], PPSurf [13],
3DS2V [47]), and our proposed method. Results are shown for three benchmark datasets: ABC [22]],
Famous [14]], and Real [14]).
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5.5 Ablation Study

Our ablation experiments were carried out on the “Chair” subset of ShapeNet, which contains 6271
models for training, 169 for validation, and 338 for testing. The configurations for all of our principal
experiments originate with this subset and are progressively generalized to broader settings.

Denoising Network. The 3DS2V decoder contains 24 self-attention blocks, one cross-attention block,
and a fully connected layer. Fine-tuning the entire decoder yields the best denoising performance,
with metrics steadily improving over 15 epochs: IoU increases from 0.88 to 0.93, and Normal
Consistency (NC) improves from 0.93 to 0.96. In comparison, fine-tuning only the fully connected
layer offers virtually no benefit. Adding the cross-attention block introduces a clear gain—its final
NC reaches 0.95, close to the best model—but at the cost of doubling the training time.

Table 5: Comparison of fine-tuning strategies on denoising performance.

Metric  FC Layer Only  FC + Cross-Attention Block  Entire Decoder

ToU 0.88 (no gain) 0.92 0.93
NC 0.93 (no gain) 0.95 0.96
Epochs - 30 15

Noise Type. Beyond standard zero-mean Gaussian noise, we evaluated three additional noise
types—Uniform, Discrete, and Laplace noise—each applied at a fixed magnitude of o = 0.01. Fur-
thermore, to assess the impact of non-zero bias in Gaussian perturbations, we conducted experiments
over the domain [—1,1]® using means of x = 0.005, 0.01, and 0.02. Comprehensive quantitative
results are presented in Table [6]

At o = 0.01 on [—1,1]3, our model consistently shows denoising performance under Uniform and
Discrete noise, with notable gains in both IoU and NC. However, it shows limited benefit under
Laplace noise. For Gaussian noise with 0 = 0.01 increasing i, our model remains effective at lower
1, but its advantage diminishes as the p grows, eventually leading to degraded reconstruction quality.

Table 6: Performance comparison between the 3DS2V [47] and our method under various noise types and
levels. Noise distributions tested are Uniform, Discrete and Laplace with ¢ = 0.01, and Gaussian with
o = 0.01 under different means . = 0,0.005,0.01, 0.02.

Dataset IoU 1 NC 1t Chamfer F-Score
3DS2V  Ours 3DS2V  Ours 3DS2V  Ours 3DS2V  Ours
Uniform (o = 0.01) 0.873 0911 0.920 0.962 0.015 0.013 0985 0.986
Discrete (o = 0.01) 0.867 0.895 0915 0960 0.015 0.014 0.984 0.985
Laplace (o = 0.01) 0.909 0908 0.956 0956 0.014 0.014 0.985 0.985
Gaussian (o = 0.01) 0.887 0927 0.937 0966 0.014 0.013 0986 0.986

Gaussian (o0 = 0.01, x = 0.005) 0.860 0.881 0.942 0.964 0.017 0.016 0.982 0.984
Gaussian (¢ = 0.01, z = 0.01) 0.798 0.800 0.946 0.949 0.024 0.023 0.952 0.960
Gaussian (o = 0.01, x = 0.02) 0.661 0.666 0.875 0.898 0.038 0.039 0.549 0.524

6 Conclusion

In this work, we introduced NoiseSDF2NoiseSDF, a framework capable of recovering clean surfaces
from noisy and sparse point clouds by leveraging paired noisy SDFs in a Noise2Noise denoising
approach. We demonstrated that, at noise intensities of 0.01 and 0.02, the reconstructed surfaces
produced by our method are notably cleaner and smoother, both quantitatively and visually, com-
pared to previous works. In future research, we aim to explore additional applications of the
NoiseSDF2NoiseSDF framework, such as scaling up point cloud sizes to enhance geometric detail
recovery, or replacing components within the framework with alternative architectures trained from
scratch, thus improving the model’s ability to represent point cloud noise and further enhancing
denoising performance.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately state the main contributions of the
paper, including the proposal of NSDF2NSDF—a denoising method for signed distance
Fields based on the Noise2Noise framework. The claims are supported by comprehensive
experiments across multiple benchmark datasets.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We offer the limitation discussion in Appendix A.1.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our work is based on the theoretical analogy between neural fields and images,
motivating the idea that the Noise2Noise framework can similarly be applied to neural fields.
While we do not provide a formal mathematical proof of this assumption, our subsequent
experiments empirically support its validity.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We offer detail in[4.2] and
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is included in our supplementary materials. We will release the full
source code, dataset, and detailed instructions for reproduction.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all the experiment setup in[3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
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Justification: We did not include confidence intervals or error bars due to the relatively long
evaluation time required for each run. However, we observed that the results across repeated
runs within the same experimental setup are highly consistent, with minimal variation. This
empirical stability gives us confidence in the reliability of the reported outcomes, even
without formal statistical testing.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide detailed information in[5.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our research
fully conforms to its guidelines. Our work does not involve human subjects, personally
identifiable data, or sensitive content. All datasets used are publicly available, and we have
taken care to ensure that our method does not pose foreseeable risks related to safety, dis-
crimination, or misuse. We also plan to release our code and models to support transparency
and reproducibility.

Guidelines:
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» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide broader impacts in Appendix A.2.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There is no such risk for our work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite each dataset, pretrained model used in our paper and use
them under their licence.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No assets released in our work.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work focuses solely on point cloud denoising and reconstruction and does
not involve any crowdsourcing or human-subject experiments.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not involve any human subjects or crowdsourcing experi-
ments. Therefore, no IRB or equivalent approvals were required.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our research does not involve large language models in any component of the
core methodology.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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