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ABSTRACT

Graph Domain Adaptation (GDA) addresses a pressing challenge in cross-network
learning, particularly pertinent due to the absence of labeled data in real-world
graph datasets. Recent studies attempted to learn domain invariant representations
by eliminating structural shifts between graphs. In this work, we show that existing
methodologies have overlooked the significance of the graph node attribute, a
pivotal factor for graph domain alignment. Specifically, we first reveal the impact
of node attributes for GDA by theoretically proving that in addition to the graph
structural divergence between the domains, the node attribute discrepancy also
plays a critical role in GDA. Moreover, we also empirically show that the attribute
shift is more substantial than the topology shift, which further underscore the
importance of node attribute alignment in GDA. Inspired by this finding, a novel
cross-channel module is developed to fuse and align both views between the source
and target graphs for GDA. Experimental results on a variety of benchmark verify
the effectiveness of our method.

1 INTRODUCTION

In the area of widespread internet data collection, graph vertices are frequently associated with
content information, referred to as node attributes within basic graph data. Such graph data can be
widely used in prevalent real-world applications, with data suffering from label scarcity problems
in annotating complex structured data is both expensive and difficult (Xu et al., 2022). To solve
such a challenge, transferring abundant labeling knowledge from task-related graphs is a method
considered (Chen et al., 2019). Giving labeled graphs as a source to solve unlabeled graph targets has
been proposed as graph domain adaptation (GDA) as a paradigm to effectively transfer knowledge
across graphs by addressing distribution shifts (Shi et al., 2024).
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Figure 1: This represents feature value in two
groups of datasets. This shows the feature value
distribution gap in the attribute is larger than in the
topology.

Early works on GDA apply deep domain adaptation
(DA) techniques directly, thereby (Shen et al., 2020b;
Shui et al., 2023; Wu et al., 2020; Shen et al., 2020a;
Dai et al., 2022) without considering the topologi-
cal structures of graphs for domain alignment. To
address this issue, several recent works have been
proposed to leverage the inherent properties of graph
topology (e.g., adjacency matrix). While these meth-
ods (Yan & Wang, 2020; Shi et al., 2023; Shen et al.,
2023; Wu et al., 2023) have achieved substantial im-
provements by alleviating the topological discrepancy
between domains, they overlook the importance of node attributes, a fundamental aspect of GDA. To
verify our argument, we investigate the projected feature values1 of graph topology and attribute on

∗Equal contribution
†Corresponding author
1Details on the construction of project features are presented in SectionB of Appendix.

1



Published as a conference paper at ICLR 2025

two GDA benchmarks, as shown in Figure1. It can be observed that feature value discrepancy exists
in all GDA benchmark inside datasets, with feature value discrepancy for attributes significantly
larger than topology feature value discrepancy. Based on this observation, we can conclude that (1)
graph distribution shift exists in both attribute and topology; (2) attribute divergence between the
source and target graphs is more significant than the topology divergence.

(a) Framework Overview

(ii) Existing Methods

(iii) GAA

(i) Before Alignment

/ Source / Target data

Graph topology view Graph attribute view

(b) Attribute-Driven Example

Figure 2: (a) An overview of our method. GAA gives attribute and topology graph representation,
where minimizing source and target distribution shift through two views. (b)(i) Distribution shifts
exist in both topology and attribute views before alignment. (ii) Existing GDA algorithms can only
address graph topology shifts but not attribute shifts. (iii) GAA can address GDA attribute shifts.

Motivated by this observation, we theoretically investigate the domain discrepancy between two
graphs, revealing the role of node attribute for GDA. Specifically, by leveraging the PAC-Bayes
framework, we derive a generalization bound of GDA, which unveils how graph structure and node
attributes jointly affect the expected risk of the target graph. Moreover, we also show that the
discrepancy between the source and target graphs can be upper bounded in terms of both node
attributes and topological structure. In other words, our theoretical analysis reveals that both attribute
and topology views should be considered for GDA, with the former having a more significant impact
on domain alignment, as shown in Figure .1.

Our theoretical insights highlight the significance of characterizing the cross-network domain shifts
in both node attributes and topology. To this end, we propose a novel cross-channel graph attribute-
driven alignment (GAA) algorithm for cross-network node classification, as shown in Figure.2
(a). Unlike existing methods that rely solely on topology, GAA also constructs an attribute graph
(feature graph) to mitigate domain discrepancies. Furthermore, GAA also introduces a cross-view
similarity matrix, which acts as a filter to enhance and integrate feature information within each
domain, facilitating synergistic refinement of both attribute and topology views for GDA. Figure2 (b)
illustrates the benefits of GAA for GDA, which alleviates both attribute and topology shifts.

Our main contributions are summarized as follows:

• We reveal the importance of node attributes in GDA from both empirical and theoretical
aspects.

• Motivated by our theoretical analysis, we proposed GAA, a novel GDA algorithm that
minimizes both attribute and topology distribution shifts based on intrinsic graph property.

• Comprehensive experiments on benchmarks show the superior performance of our method
compared to other state-of-the-art methods for real-world datasets of the cross-network node
classification tasks.
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2 RELATED WORK

Unsupervised domain adaptation is a wildly used setting of transfer learning methods that aims to
minimize the discrepancy between the source and target domains. To solve cross-domain classification
tasks, these methods are based on deep feature representation (Zhu et al., 2022; Zeng et al., 2024b;a),
which maps different domains into a common feature space. Some recent studies have overcome
the imbalance of domains and the label distribution shift of classes to transfer model well (Zeng
et al., 2023; Jing et al., 2021; Zeng et al., 2025; Xu et al., 2023; Pu et al., 2025; Zeng et al., 2024c).
Some novel settings in domain adaption have also gotten a lot of attention, like source free domain
adaption(SFDA) (Yang et al., 2021; Xu et al., 2025), test time domain adaption(TTDA) (Wang
et al., 2022). As for graph-structured data, several studies have been proposed for cross-graph
knowledge transfer via GDA setting methods (Shen & Chung, 2019; Dai et al., 2022; Shi et al., 2024).
ACDNE (Shen et al., 2020a) adopt k-hop PPMI matrix to capture high-order proximity as global
consistency for source information on graphs. CDNE (Shen et al., 2020b) learning cross-network
embedding from source and target data to minimize the maximum mean discrepancy (MMD) directly.
GraphAE (Yan & Wang, 2020) analyzes node degree distribution shift in domain discrepancy and
solves it by aligning message-passing routers. DM-GNN (Shen et al., 2023) proposes a method to
propagate node label information by combining its own and neighbors’ edge structure. UDAGCN (Wu
et al., 2020) develops a dual graph convolutional network by jointly capturing knowledge from local
and global levels to adapt it by adversarial training. ASN (Zhang et al., 2021) separates domain-
specific and domain-invariant variables by designing a private en-coder and uses the domain-specific
features in the network to extract the domain-invariant shared features across networks. SOGA (Mao
et al., 2024) first time uses discriminability by encouraging the structural consistencies between target
nodes in the same class for the SFDA in the graph. GraphAE (Guo et al., 2022) focuses on how
shifts in node degree distribution affect node embeddings by minimizing the discrepancy between
router embedding to eliminate structural shifts. SpecReg (You et al., 2022) used the optimal transport-
based GDA bound for graph data and discovered that revising the GNNs’ Lipschitz constant can be
achieved by spectral smoothness and maximum frequency response. JHGDA (Shi et al., 2023) studies
the shifts in hierarchical graph structures, which are inherent properties of graphs by aggregating
domain discrepancy from all hierarchy levels to derive a comprehensive discrepancy measurement.
ALEX (Yuan et al., 2023) first creates a label shift enhanced augmented graph view using a low-
rank adjacency matrix obtained through singular value decomposition by driving contrasting loss.
SGDA (Qiao et al., 2023) enhances original source graphs by integrating trainable perturbations
(adaptive shift parameters) into embeddings by conducting adversarial learning to simultaneously
train both the graph encoder and perturbations, to minimize marginal shifts.

3 THEORETICAL ANALYSIS

In this subsection, we provide a discussion on the PAC-Bayesian analysis with the graph domain
adaptation.

Notations. An undirected graph G = {V, E , A,X, Y } consists of a set of nodes V and edges E ,
along with an adjacency matrix A, a feature matrix X , and a label matrix Y . The adjacency matrix
A ∈ RN×N encodes the connections between N nodes, where Aij = 1 indicates an edge between
nodes i and j, and Aij = 0 means the nodes are not connected. The feature matrix X ∈ RN×d

represents the node features, with each node described by a d-dimensional feature vector. Finally,
Y ∈ RN×C contains the labels for the N nodes, where each node is classified into one of C classes.

In this work, we explore the task of node classification in a unsupervised setting, where both the
node feature matrix X and the graph structure A are given before learning. We assume that all key
aspects of our analysis are conditioned on the fixed graph structure A and feature matrix X , while
the uncertainty arises from the node labels Y . Specifically, we assume that the label yi for each node
i ∈ V is drawn from a latent conditional distribution Pr(yi | Zi), where Z = f(X,G), with f being
an aggregation function that combines features from the local neighborhood of each node within
the graph. Additionally, we assume that the labels for different nodes are independent of each other,
given their respective aggregated feature representations Zi. With a partially labeled node set V0 ⊆ V ,
our objective in the node classification problem is to learn a model h : RN×d ×GN → RN×C from
a family of classifiers H that can predict the labels for the remaining unlabeled nodes. For a given
classifier h, the predicted label Ŷi for node i is determined by: Ŷi = argmaxk∈{1,...,C} hi(X,G)[k],
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where hi(X,G) is the output corresponding to node i and hi(X,G)[k] represents the score for the
k-th class for node i.

Margin loss on each domain. Now we can define the empirical and expected margin loss of
a classifier h ∈ H on source graph GS =

{
VS , ES , AS , XS , Y S

}
and target graph GT ={

VT , ET , AT , XT
}

. Given Y S , the empirical margin loss of h on GS for a margin γ ≥ 0 is
defined as

L̂γ
S(h) :=

1

NS

∑
i∈VS

1

[
hi(X

S , GS)[Yi] ≤ γ +max
c ̸=Yi

hi(X
S , GS)[c]

]
(1)

where 1 [·] is the indicator function, c represents node labeling . The expected margin loss is then
defined as

Lγ
S(h) := EYi∼Pr(Y |Zi),i∈VS L̂γ

S(h) (2)

Definition 1 (Expected Loss Discrepancy). Given a distribution P over a function family H, for
any λ > 0 and γ ≥ 0, for any GS and GT , define the expected loss discrepancy between VS and

VT as Dγ
S,T (P ;λ) := lnEh∼P e

λ
(
Lγ/2

T (h)−Lγ
S(h)

)
, where Lγ/2

T (h) and Lγ
S(h) follow the definition

of Eq. (2).

Intuitively, Dγ
S,T (P ;λ) captures the difference of the expected loss between VS and VT in an average

sense (over P ).

Theorem 1 (Domain Adaptation Bound for Deterministic Classifiers). Let H be a family of clas-
sification functions. For any classifier h in H, and for any parameters λ > 0 and γ ≥ 0,
consider any prior distribution P over H that is independent of the training data VS . With
a probability of at least 1 − δ over the sample Y S , for any distribution Q on H such that
Prh̃∼Q

[
maxi∈VS∪VT ∥hi(X,G)− h̃i(X,G)∥∞ < γ

8

]
> 1

2 , the following inequality holds:

L0
T (h̃) ≤ L̂γ

S(h̃) +
1

λ

[
2(DKL(Q∥P ) + 1) + ln

1

δ
+

λ2

4NS
+D

γ/2
S,T (P ;λ)

]
. (3)

We follow the characterization from (Ma et al., 2021). In the generalization bound, the KL-divergence
DKL(Q∥P ) is usually considered as a measurement of the model complexity. The terms ln(1/δ)
and λ2

4NS
are commonly seen in PAC-Bayesian analysis for IID supervised settings. The expected

loss discrepancy D
γ/2
S,T (P ;λ) between the source nodes VS and the targeted nodes VT is essential

to our analysis. To derive the generalization guarantee, we need to upper-bound the expected loss
discrepancy Dγ

S,T (P ;λ).

Proposition 1 (Bound for Dγ
S,T (P ;λ)). For any γ ≥ 0, and under the assumption that the prior

distribution P over the classification function family H is defined, we establish a bound for the
domain discrepancy measure D

γ/2
S,T (P ;λ). Specifically, we have the following inequality:

D
γ/2
S,T (P ;λ) ≤O

 ∑
i∈V S

∑
j∈V T

||(ASXS)i − (ATXT )j ||22 +
∑
i∈V S

∑
j∈V T

||XS
i −XT

j ||22

 . (4)

From Proposition 1, the topological divergence ||(ASXS)i−(ATXT )j ||22 and the attribute divergence
||XS

i −XT
j ||22 constitute the upper bound of Dγ

S,T (P ;λ) and further bound graph domain discrepancy.
It also reveals both attribute and topology divergence of intrinsic graph property influence on GDA
generalization upper-bound. We introduce attribute and topology alignment loss by minimizing
attribute divergence by utilizing the attribute graph and minimizing topology divergence by utilizing
the original graph. Graph GS and GT with topology information AS and AT through the feature
extraction module can represent (ASXS)i and (ASXS)j .
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4 THE PROPOSED METHODOLOGY

In this section, we propose a novel GDA method with attribute-driven alignment (GAA), which first
minimizes graph attribute divergence. The overall framework of GAA is shown in Figure2. The
main components of the proposed method include the specific attribute convolution module and the
attribute-driven alignment module. We will detail the proposed GAA in the following subsections.

4.1 SPECIFIC ATTRIBUTE CONVOLUTION MODULE

Inspired by Proposition 1, we design an attribute-driven GDA model by using topology graph
and feature graph. Our model mainly contains attribute-driven alignment that directly minimize
discrimination in attribute and topology between source and target graph.

Feature Graph Merely using node attribute information through X is unstable (Fang et al., 2022;
Mao et al., 2023; Li et al., 2024; Xie et al., 2024b). A natural idea would be to utilize graph node
attribute by fully making use of the information through feature space propagation (Wang et al., 2020;
Xie et al., 2024a; Kang et al., 2024; Li et al., 2025). Therefore we introduce feature graph into our
work.

To represent the structure of nodes in the feature space, we build a kNN graph Ĝ based on the
feature matrix X . To be precise, a node similarity matrix SM is computed using the cosine similarity
formula:

SMij =
Xi ·Xj

|Xi| · |Xj |
(5)

where SMij is the similarity between node feature Xi and node feature Xj . We derivate feature

graph Ĝ =
{
V, Ê , Â,X, Y

}
, which shares the same X with G, but has a different adjacency

matrix. Therefore, topology graph and feature graph refer to G and Ĝ respectively. Then for
each node we choose the top k nearest neighbors and establish edges. In this way, we construct a
feature graph in attribute view for the source graph ĜS =

{
VS , ÊS , ÂS , XS , Y S

}
and target graph

ĜT =
{
VT , ÊT , ÂT , XT

}
.

Feature Extraction Module To extract meaningful features from graphs, we adopt GCN that is
comprised of multiple graph convolutional layers. With the input graph G, the (l + 1)-th layer’s
output H(l+1) can be represented as:

H(l+1) = ReLU(D− 1
2AD− 1

2H(l)W (l)) (6)

where ReLU is the Relu activation function (ReLU(·) = max(0, ·)), D is the degree matrix of A,
W (l) is a layer-specific trainable weight matrix, H(l) is the activation matrix in the l-th layer and
H(0) = X . In our study we use two GCNs to exploit the information in topology and feature space.
For source graph, output node embedding is donated by ZS generated from GS and ZS

f generated
from ĜS . Similarly, for the target graph, the output node embedding is donated by ZT generated
from GT and ZT

f generated from ĜT .

4.2 SOURCE CLASSIFIER LOSS

The source classifier loss LS

(
fS

(
ZS

)
, Y S

)
is to minimize the cross-entropy for the labeled data

node in the source domain:

LS

(
fS

(
ZS

)
, Y S

)
= − 1

NS

NS∑
i=1

ySi log
(
ŷSi

)
(7)

where ySi denotes the label of the i-th node in the source domain and ŷSi are the classification
prediction for the i-th source graph labeled node vSi ∈ VS .
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4.3 ATTRIBUTE-DRIVEN ALIGNMENT

To make the attribute view fully learnable, we design the attention attribute module to dynamically
utilize the important attribute. Specifically, we design learnable domain adaptive models for alignment
embeddings in topology and attribute views.

Attention-based Attribute To guide the network to take more attention to the important node
attributes and make attributes learnable, we design attention-based embedding models. Specifically,
we map the node attributes into three different latent spaces. By given an example in source graph
attribute embedding: Q = WqZ

S
f

⊤, K = WkZ
S
f

⊤, M = WvZ
S
f

⊤, where Wq ∈ Rd×d,Wk ∈
Rd×d,Wv ∈ Rd×d are the learnable parameter matrices. And Q ∈ Rd×N ,K ∈ Rd×N and M ∈
Rd×N denotes the query matrix, key matrix and value matrix, respectively.

The attention-based attribute matrix attSf can be calculated by:

attSf = softmax

(
K⊤Q√

d

)
M⊤ (8)

Likewise, we can obtain a similar objective of each learnable graph embedding attS , attTf and attT .

Cross-view Similarity Matrix Refinement

Subsequently, the cross-view similarity matrix SS represents the similarity between the source
attribute and topology graph. ST represents the similarity between the target attribute and topology
graph. SS as formulated:

SS =
ZS
f ·

(
ZS

)⊤
||ZS

f ||2 · ||ZS ||2
(9)

Likewise, we can obtain a similarity matrix of the target graph by:

ST =
ZT
f ·

(
ZT

)⊤
∥ZT

f ∥2 · ∥ZT ∥2
(10)

where SS and ST is the cross-view similarity matrix, and ⟨·⟩ is the function to calculate similarity.
Here, we adopt cosine similarity Qian et al. (2024). The proposed similarity matrix SS and ST

measures the similarity between samples by comprehensively considering attribute and structure
information. The connected relationships between different nodes could be reflected by SS and ST .
Therefore, we utilize ST and SS to refine the structure in augmented view with Hadamard product,
attSf can be formulated as:

attS = attS ⊙ SS (11)

Similarly we can get attSf by attSf ⊙SS , attTf by attTf ⊙ST , attT by attT ⊙ST , which respectively
represent source graph and target graph in both topology view and attribute view embedding.

Attribute-Driven Domain Adaptive

The proposed framework follows the transfer learning paradigm, where the model minimizes the
divergence of the two views. In detail, GAA jointly optimizes two views of GDA alignment. To be
specific, LA is the Mean Squared Error (MSE) loss between the source graph attS and attSf and the
target graph attT and attTf , which can be formulated as:

LA = −
(
||attS − attT ||22 + ||attSf − attTf ||22

)
(12)

We adapt the domain in two views, domain classifier loss in the topology view is ||attSf − attTf ||22
enforces that the attribute graph node representation after the node feature extraction and similarity
matrix refinement from source and target graph GS

f and GT
f . Similarly, we get ||attS − attT ||22

6
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from GS and GT . And ||attS − attT ||22 corresponds to the first item of Proposition 1, which
is ||(ASXS)i − (ATXT )j ||22 means minimizing structural distribution shift. In attribute view is
||attSf − attTf ||22 trying to discriminate corresponds to the second term ||XS

i −XT
j ||22 of Proposition

1, which means minimizing attribute distribution shift.

4.4 TARGET NODE CLASSIFICATION

We use Gradient Reversal Layer (GRL) (Ganin et al., 2016) for adversarial training. Mathematically,
we define the GRL as Qλ(x) = x with a reversal gradient∂Qλ(x)

∂x = −λI . Learning a GRL
is adversarial in such a way that: on the one side, the reversal gradient enforces fS(Z

S) to be
maximized; on the other side, θD is optimized by minimizing the cross-entropy domain classifier
loss:

LD = − 1

NS +NT

NS+NT∑
i=1

mi log (m̂i) + (1−mi) log (1− m̂i) (13)

where mi ∈ {0, 1} denotes the groundtruth, and m̂i denotes the domain prediction for the i-th node
in the source domain and target domain, respectively. To utilize the data in the target domain, we use
entropy loss for the target classifier fT :

LT

(
fT

(
ZT

))
= − 1

NT

NT∑
i=1

ŷTi log
(
ŷTi

)
(14)

where ŷTi are the classification prediction for the i-th node in the target graph vTi . Finally, by
combining LA, LS , LD and LT , the overall loss function of our model can be represented as:

L = LA + αLS + βLD + τLT (15)

where α, β and τ are trade-off hyper-parameters. The parameters of the whole framework are updated
via backpropagation.

5 EXPERIMENT

5.1 DATASETS

Types Datasets #Node #Edge #Label

Airport
USA 1,190 13,599

4Brazil 131 1,038
Europe 399 5,995

Citation
ACMv9 9,360 15,556

5Citationv1 8,935 15,098
DBLPv7 5,484 8,117

Social Blog1 2,300 33,471 6Blog2 2,896 53,836

Social Germany 9,498 153,138 2England 7,126 35,324

MAG

US 132,558 697,450

20

CN 101,952 285,561
DE 43,032 126,683
JP 37,498 90,944
RU 32,833 67,994
FR 29,262 78,222

Table 1: Dataset Statistics.

To prove the superiority of our work on domain
adaptation node classification tasks, we evaluate
it on four types of datasets, including Airport
dataset (Ribeiro et al., 2017), Citation dataset (Wu
et al., 2020), Social dataset (Liu et al., 2024a) and
Blog dataset (Li et al., 2015). The airport dataset
involves three countries’ airport traffic networks:
USA (U), Brazil (B), and Europe (E), in which
the node indicates the airport and the edge indi-
cates the routes between two airports. The citation
dataset includes three different citation networks:
DBLPv8 (D) , ACMv9 (A), and Citationv2 (C), in
which the node indicates the article and the edge
indicates the citation relation between two articles.
As for social networks, we choose Twitch gamer
networks and Blog Network, which are collected
from Germany(DE) and England(EN). Two disjoint
Blog social networks, Blog1 (B1) and Blog2 (B2),
which are extracted from the BlogCatalog dataset.
extracted from the BlogCatalog dataset. Because
these four groups of dataset ingredients are gener-
ated from different data sources, their distributions
are naturally diverse. For a comprehensive overview of these datasets, please refer to Tab 5.
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Methods U → B U → E B → U B → E E → U E → B DE → EN EN → DE

GCN 0.366 0.371 0.491 0.452 0.439 0.298 0.673 0.634
kNN-GCN 0.436 0.437 0.461 0.478 0.459 0.464 0.661 0.623

DANN 0.501 0.386 0.402 0.350 0.436 0.538 0.512 0.528

DANE 0.531 0.472 0.491 0.489 0.461 0.520 0.642 0.644
UDAGCN 0.607 0.488 0.497 0.510 0.434 0.477 0.724 0.660
ASN 0.519 0.469 0.498 0.494 0.466 0.595 0.550 0.679
EGI 0.523 0.451 0.417 0.454 0.452 0.588 0.681 0.589
GRADE-N 0.550 0.457 0.497 0.506 0.463 0.588 0.749 0.661
JHGDA 0.695 0.519 0.511 0.569 0.522 0.740 0.766 0.737
SpecReg 0.481 0.487 0.513 0.546 0.436 0.527 0.756 0.678
GIFI 0.636 0.521 0.493 0.535 0.501 0.623 0.719 0.705
PA 0.679 0.557 0.528 0.562 0.547 0.529 0.677 0.760

GAA 0.704 0.563 0.542 0.573 0.546 0.691 0.779 0.751

Table 2: Cross-network node classification on the Airport network.

Methods A → D D → A A → C C → A C → D D → C B1 → B2 B2 → B1

GCN 0.632 0.578 0.675 0.635 0.666 0.654 0.408 0.451
kNN-GCN 0.636 0.587 0.672 0.648 0.668 0.426 0.531 0.579

DANN 0.488 0.436 0.520 0.518 0.518 0.465 0.409 0.419

DANE 0.664 0.619 0.642 0.653 0.661 0.709 0.464 0.423 4
UDAGCN 0.684 0.623 0.728 0.663 0.712 0.645 0.471 0.468
ASN 0.729 0.723 0.752 0.678 0.752 0.754 0.732 0.524
EGI 0.647 0.557 0.676 0.598 0.662 0.652 0.494 0.516
GRADE-N 0.701 0.660 0.736 0.687 0.722 0.687 0.567 0.541
JHGDA 0.755 0.737 0.814 0.756 0.762 0.794 0.619 0.643
SpecReg 0.762 0.654 0.753 0.680 0.768 0.727 0.661 0.631
GIFI 0.751 0.737 0.793 0.755 0.739 0.751 0.653 0.642
PA 0.752 0.751 0.804 0.768 0.755 0.780 0.662 0.654

GAA 0.789 0.754 0.824 0.782 0.771 0.798 0.681 0.679

Table 3: Cross-network node classification on the Citation, Blog and Social network.

Methods US → CN US → DE US → JP US → RU US → FR CN → US CN → DE CN → JP CN → RU CN → FR

GCN 0.042 0.168 0.219 0.147 0.182 0.193 0.064 0.160 0.069 0.067
kNN-GCN 0.092 0.189 0.269 0.186 0.213 0.210 0.133 0.201 0.105 0.102

DANN 0.242 0.263 0.379 0.218 0.207 0.302 0.134 0.214 0.119 0.107

DANE 0.272 0.250 0.280 0.210 0.186 0.279 0.108 0.228 0.170 0.184
UDAGCN OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
ASN 0.290 0.272 0.291 0.222 0.199 0.268 0.121 0.207 0.189 0.190
EGI OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
GRADE-N 0.304 0.299 0.306 0.240 0.217 0.258 0.137 0.210 0.178 0.199
JHGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
SpecReg 0.237 0.267 0.377 0.228 0.218 0.317 0.134 0.199 0.109 116
PA 0.400 0.389 0.474 0.371 0.252 0.452 0.262 0.383 0.333 0.242

GAA 0.410 0.401 0.492 0.372 0.2881 0.453 0.302 0.400 0.351 0.293

Table 4: Cross-network node classification on MAG datasets.

5.2 BASELINES

We choose some representative methods to compare. GCN (Kipf & Welling, 2016) further solves
the efficiency problem by introducing first-order approximation of ChebNet. kNN-GCN (Wang
et al., 2020) use the sparse k-nearest neighbor graph calculated from feature matrix as the input graph
of GCN and name it kNN-GCN. DANN (Ganin et al., 2016) use a 2-layer perceptron to provide
features and a gradient reverse layer (GRL) to learn node embeddings for domain classification
DANE (Zhang et al., 2019) shared distributions embedded space on different networks and further
aligned them through adversarial learning regularization. UDAGCN (Wu et al., 2020) is a dual
graph convolutional network component learning framework for unsupervised GDA, which captures
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knowledge from local and global levels to adapt it by adversarial training. ASN (Zhang et al.,
2021) use the domain-specific features in the network to extract the domain-invariant shared features
across networks. EGI (Zhu et al., 2021) through Ego-Graph Information maximization to analyze
structure-relevant transferability regarding the difference between source-target graph. GRADE-
N (Wu et al., 2023) propose a graph subtree discrepancy to measure the graph distribution shift
between source and target graphs. JHGDA (Shi et al., 2023) explore information from different
levels of network hierarchy by hierarchical pooling model. SpecReg (You et al., 2022) achieve
improving performance regularization inspired by cross-pollinating between the optimal transport
DA and graph filter theories . GIFI (Qiao et al., 2024) uses a parameterized graph reduction module
and variational information bottleneck to filter out irrelevant information. PA (Liu et al., 2024b)
mitigates distribution shifts in graph data by recalibrating edge influences to handle structure shifts
and adjusting classification losses to tackle label shifts.

5.3 EXPERIMENTAL SETUP

The experiments are implemented in the PyTorch platform using an Intel(R) Xeon(R) Silver 4210R
CPU @ 2.40GHz, and GeForce RTX A5000 24G GPU. Technically, two layers GCN is built and we
train our model by utilizing the Adam (Kingma & Ba, 2015) optimizer with learning rate ranging
from 0.0001 to 0.0005. In order to prevent over-fitting, we set the dropout rate to 0.5. In addition, we
set weight decay ∈ {1e− 4, · · · , 5e− 3} and k ∈ {1, · · · , 10} for kNN graph. For fairness, we use
the same parameter settings for all the cross-domain node classification methods in our experiment,
except for some special cases. For GCN, UDA-GCN, and JHGDA the GCNs of both the source and
target networks contain two hidden layers (L = 2) with structure as 128− 16. The dropout rate for
each GCN layer is set to 0.3. We repeatedly train and test our model for five times with the same
partition of dataset and then report the average of ACC.

5.4 CROSS-NETWORK NODE CLASSIFICATION RESULTS

The results of experiments are summarized in Table 2 and 4, where the best performance is highlighted
in boldface. Some results are directly taken from (Shi et al., 2023; Pang et al., 2023). We have the
following findings: It can be seen that our proposed method boosts the performance of SOTA methods
across most evaluation metrics on four group datasets with 16 tasks, which proves its effectiveness.
Particularly, compared with other optimal performances in all datasets, GAA achieves a maximum
average improvement of 1.80% for ACC. This illustrates that our proposed model can effectively
utilize node attribute information. Our GAA achieves much better performances than SpecReg and
JHGDA on all of the metrics in a dataset of Airport and most of the metrics in a dataset of Citation.
This can be explained by our method’s use of attribute and topology structure. In most cases, GAA
produces better performance than GRADE- N (Wu et al., 2023) and JHGDA (Shi et al., 2023), which
were published in 2023. This verifies the advantage of our approach. On most occasions, the feature
graph produces a better result than the original graph. For example, in airport data, kNN-GCN
performance averages better than 5.30% to GCN, and in citation datasets, performance averages
better than 0.60% to GCN. Our findings affirm that the observed discrepancy in node attributes
surpasses that of the topological misalignment, thus suggesting that the alignment of node attributes
holds potential for yielding more substantial enhancements.

5.5 ABLATION STUDY

To validate the effectiveness of different components in our model, we compare GAA with its three
variants on Citation and Airport datasets.

• GAA1: GAA without cross-view similarity matrix Refinement to show the importance of
comprehensive attribute and structure information.

• GAA2: GAA without LA to show the impact of attribute benefit alignment.

• GAA3: GAA without LA and remove channel feature graph and only utilize LD to show
the effect of attribute(feature) graph impact.

According to Figure3, we can draw the following conclusions: (1) The results of GAA are consistently
better than all variants, indicating the rationality of our model. (2) Both topology and feature
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Figure 4: The influence of parameters α, β, τ and k on Citation and Airport dataset.

information are crucial to domain adaptation. (3) The cross-view similarity matrix can improve
performance by enhancing and integrating feature information, benefiting the synergistic refinement
of both attribute and topology.

5.6 PARAMETER ANALYSIS
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Figure 3: The classification accuracy of GAA and
its variants on citation datasets and airport dataset.

In this section, we analyze the sensitivity of the
parameters of our method on the Airport dataset
and Citation dataset. As shown in Figure.5 in
Subfigure (4), the accuracy usually peaks at 2−3
with k. This is reasonable since increasing k
means more high-order proximity information is
incorporated. On the other hand, extremely large
k could also introduce noise that will deteriorate
the performance. Furthermore, each dataset may
require a unique optimal value for k, determined by its inherent properties. For more information,
please refer to the Appendix D. From Figure.5 Subfigure (1) (2) (3), we can see GAA has competitive
performance on a large range of values, which suggests the stability of our method.

6 CONCLUSION

In this paper, we propose GAA framework to solve the GDA problem in cross-network node
classification tasks. We reveal the importance of both attributes and topology in GDA through both
empirical and theoretical analysis, which minimizes attribute and topology distribution shifts based
on intrinsic graph properties. Comprehensive experiments verify the superiority of our approach. In
the future, we may strive to design new frameworks for other cross-network learning tasks, including
link-level and graph-level. We will also deep into graph domain adaptation theory for developing
more powerful models.
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A PROOF OF PROPOSITION 1

To facilitate the analysis, we adopt the following data assumption:
Definition 1. The generated nodes consist of two disjoint sets, denoted as c0 and c1. Each node
feature x is sampled from N(µi, σi) for i ∈ {0, 1}.

Each set ci corresponds to the source graph and target graph compositions, respectively: c(S)
i and

c
(T )
i . The class distribution is balanced, such that P(Y = c0) = P(Y = c1).

Theorem 2. For nodes s ∈ VS and t ∈ VT with aggregated features f = GNN(x), the following
inequality holds:

||P(yu = c0|fu)− P(yv = c0|fv)|| ≤ O(||fu − fv||+ ||fv − µ
(S)
1 ||+ ||fv − µ

(T )
1 ||). (16)

Proof. The conditional probability of class c0 given the aggregated feature f can be expressed using
Bayes’ theorem:

P(ys = c0|fs) =
P(fs|ys = c0)P(ys = c0)

P(fs|ys = c0)P(ys = c0) + P(fs|ys = c1)P(ys = c1)
. (17)

Under the assumption P(y = c0) = P(y = c1), we simplify this to:

P(ys = c0|fs) =
P(fs|ys = c0)

P(fs|ys = c0) + P(fs|ys = c1)
. (18)

Substituting in the expressions for the Gaussian distributions:

P(ys = c0|fs) =
exp

(
− (fu−µ

(S)
0 )2

σ2

)
exp

(
− (fu−µ

(S)
0 )2

σ2

)
+ exp

(
− (fu−µ

(S)
1 )2

σ2

) . (19)

Thus, we have:

||P(yu = c0|fu)− P(yv = c0|fv)||

= || P(fs|ys = c0)

P(fs|ys = c0) + P(fs|ys = c1)
− P(fv|yv = c0)

P(fv|yv = c0) + P(fv|yv = c1)
||

=
||P(fs|ys = c0)P(fv|yv = c1)− P(fv|yv = c0)P(fs|ys = c1)||

[P(fs|ys = c0) + P(fs|ys = c1)] [P(fv|yv = c0) + P(fv|yv = c1)]
.

(20)

Noting that the denominator is bounded, we substitute the probabilities of the Gaussian distributions
into the expression:

||P(yu = c0|fu)− P(yv = c0|fv)||

=

|| exp
(
− (fu−µ

(S)
0 )2

σ2

)
exp

(
− (fv−µ

(T )
1 )2

σ2

)
− exp

(
− (fu−µ

(S)
1 )2

σ2

)
exp

(
− (fv−µ

(T )
0 )2

σ2

)
||

exp(−A)
.

(21)

This leads us to:

||P(yu = c0|fu)−P(yv = c0|fv)|| ≤
1

σ2
||(µ(T )

0 −µ
(S)
0 )(2fu−µ

(S)
0 −µ

(T )
0 )−(µ

(T )
1 −µ

(S)
1 )(2fv−µ

(S)
1 −µ

(T )
1 )||.

(22)
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This simplifies to:

||P(yu = c0|fu)− P(yv = c0|fv)|| ≤ O(||fu − fv||+ ||2fv − µ
(S)
1 − µ

(T )
1 ||). (23)

(a) We note that δµ(·) = ||µ(·)
1 − µ

(·)
0 || and ∆µ

i = ||µ(T )
i − µ

(S)
i ||.

Proposition 2 (Bound for Dγ
S,T (P ;λ)). For any γ ≥ 0, and under the assumption that the prior

distribution P over the classification function family H is defined, we establish a bound for the
domain discrepancy measure D

γ/2
S,T (P ;λ). Specifically, we have the following inequality:

D
γ/2
S,T (P ;λ) ≤O

 ∑
i∈V S

∑
j∈V T

||(ASXS)i − (ATXT )j ||22 +
∑
i∈V S

∑
j∈V T

||XS
i −XT

j ||22

 . (24)

Proof. For notational simplicity, let hi ≡ hi(X,G)for any i ∈ VS ∪ VT . Define ηk(i) =
Pr(yi = k | gi(X,G)) for k ∈ {0, 1}, and let Lγ(hi, yi) = 1 [hi[yi] ≤ γ +maxk ̸=yi

hi[k]] .

We can express the difference in the loss functions as follows:

Lγ/2
T (h)− Lγ

S(h) = EyT

 1

NT

∑
j∈VT

Lγ/2(hj , yj)

− EyS

[
1

NS

∑
i∈VS

Lγ(hi, yi)

]
(25)

≤ 1

max(NS , NT )
EyS ,yT

∑
i∈VS

 1

NT

∑
j∈VT

Lγ/2(hj , yj)− Lγ(hi, yi)

 . (26)

Using Definition 1, we derive:

Lγ/2
T (h)− Lγ

S(h) =
1

max(NS , NT )

∑
i∈VS

1

NT

∑
j∈VT

Eyj
Lγ/2(hj , yj)− Eyi

Lγ(hi, yi)


=

1

max(NS , NT )

∑
i∈VS

1

NT

∑
j∈VT

∑
k

(
ηk(j)Lγ/2(hj , k)− Pr(yi = k)Lγ(hi, k)

)
=

1

max(NS , NT )

∑
i∈VS

1

NT

∑
j∈VT

∑
k

(
ηk(j)Lγ/2(hj , k)− ηk(i)Lγ(hi, k)

)
=

1

max(NS , NT )

∑
i∈VS

1

NT

∑
j∈VT

∑
k

(
ηk(j)

(
Lγ/2(hj , k)− Lγ(hi, k)

)
+ (ηk(j)− ηk(i))Lγ(hi, k)

)
(27)

≤ 1

max(NS , NT )

∑
i∈VS

1

NT

∑
j∈VT

∑
k

(
Lγ/2(hj , k)− Lγ(hi, k) + ∥ηk(j)− ηk(i)∥22

)
.

(28)

The last inequality holds since both ηk(j) and Lγ(hi, k) are upper-bounded by 1, and we assume
Lγ/2(hj , k) ≤ Lγ(hi, k).

By applying Theorem 2, we obtain:∑
k

∥ηk(j)− ηk(i)∥22 ≤ O
(
∥fu − fv∥22 + ∥fv − µ

(S)
1 ∥22 + ∥fv − µ

(T )
1 ∥22 + ∥fv − µ

(S)
0 ∥22 + ∥fv − µ

(T )
0 ∥22

)
.
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Thus, we have:

Lγ/2
T (h)− Lγ

S(h) ≤
1

max(NS , NT )

∑
i∈VS

1

NT

∑
j∈VT

∑
k

∥ηk(j)− ηk(i)∥22

≤ O

∑
i∈VS

∑
j∈VT

∥fu − fv∥22 + ∥fv − µ
(S)
1 ∥22 + ∥fv − µ

(T )
1 ∥22 + ∥fv − µ

(S)
0 ∥22 + ∥fv − µ

(T )
0 ∥22


≤ O

∑
i∈VS

∑
j∈VT

∥(ASXS)i − (ATXT )j∥22 +
∑
i∈VS

∑
j∈VT

∥XSi−XT
j ∥22

 .

B DEFINITION OF AVERAGE FEATURE VALUE

We hope to quantitatively compare the differences in feature values between topology view and
attribute view. Similarly, for the purpose of convenient comparison, we decided to calculate the
average of their feature values. Specifically, we first obtain a topology view matrix through topology
filtering, multiplying A and X to F . Similarly, we perform attribute filtering by multiplying Â
and X to Ff to obtain a matrix of attribute view. So our topology average value is Fetuaret =∑d

j=1

∑N
i=1 |F| /(d ∗N) and attribute feature value is Featuref =

∑d
j=1

∑N
i=1 |Ff | /(d ∗N).

C DESCRIPTION OF ALGORITHM GAA

Algorithm 1: The proposed algorithm GAA

Input: Source node feature matrix XS ; source original graph adjacency matrix AS ; Target node
feature matrix XT ; Target original graph adjacency matrix AT source node label matrix
Y S ; maximum number of iterations η

Compute the feature graph topological structure ÂS and ÂT according to XS and XT by
running kNN algorithm.

for it = 1 to η do
ZS = GCN (AS , XS)
ZS
f = GCN (ÂS , XS)// embedding of source graph

ZT = GCN (AT , XT )
ZT
f = GCN (ÂT , XT )// embedding of target graph

ZS and ZS
f through cross-view similarity matrix refinement to get SS .

ZT and ZT
f through cross-view similarity matrix refinementto get ST .

Attribute-Driven domain adaptive between SS and ST// adaptive in two views
Domain Adaptive Learning between ZS and ZT

ŷSi constrained byySi and ŷTi constrained byŷTi
Calculate the overall loss with Eq.(15)
Update all parameters of the framework according to the overall loss

end
Predict the labels of target graph nodes based on the trained framework.
Output: Classification result Ŷ T

D PARAMETER ANALYSIS

α, β, and τ are chosen from the set {0.005, 0.01, 0.1, 0.5, 1, 5}. These values provide flexibility for
adjusting the relative importance of different loss terms. k (the number of neighbors for k-NN graph
construction) is typically k ∈ {1, · · · , 10} . The optimal value for k depends on the density and
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Figure 5: The influence of parameters α, β, τ and k on two social datasets.

connectivity of the graph. Due to extremely large k could also introduce noisy that will deteriorate
the performance. Usually our largest k will be 5.

Airport Dataset: Often contains transportation networks with fewer nodes but complex edge rela-
tionships. Given the sparsity of this dataset, α, β and τ should be set relatively higher to emphasize
topology alignment and capture key structural relationships. α, β and τ is selected from {0.1, 0.5}.
A smaller k could be more effective due to the sparser nature of these networks. We select k from
{3, 4}.

Citation Dataset: This dataset often has a higher node count and diverse structural characteristics.
In such datasets, balance the impact of node attributes and topology. α, β and τ is selected from
{0.1, 0.5}. A moderate value of k to capture relevant local structures could work well for this dataset.
We select k from {4, 5}.

Social Network Dataset (Blog and Twitch): Social networks often contain a large number of nodes
with rich attribute information but high variance in structural patterns. Emphasize attribute alignment
since social networks tend to have highly distinctive attributes. Thus, attribute shifts are more sensitive
to the values of α, β and τ , which are selected from the set {0.01, 0.1, 0.5}. Small k is recommended
due to the dense connections in social networks. We select k from {3, 4}.

MAG Dataset: The MAG dataset is large and diverse, containing losts of classes with various
relationships and rich metadata. Structural and attribute alignment are key factors. In this context,
attribute shifts are both important to the values of α,β and τ which are selected from the set {0.1, 0.5}.
The parameter k works well in this context, enabling the model to capture high-level local and global
structural information within the graph. We select k from {4, 5}.

E T-SNE SAMPLE

(a) UDAGCN (b) JHGDA (c) GRADE (d) SpecReg (e) GAA

Figure 6: Visualization of learnt representations of different methods on D-A task of dataset.
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Types Datasets α β τ k

Airport

U→B 0.5 0.5 0.01 4
U→E 0.1 0.1 0.01 2
B→U 0.1 0.1 0.01 4
B→E 0.5 0.1 0.1 3
E→U 0.5 0.5 0.1 4
E→B 0.5 0.5 0.1 4

Citation

A→D 0.1 0.1 0.1 3
D→A 0.1 0.1 0.01 4
A→C 0.5 0.5 0.01 4
C→A 0.1 0.1 0.1 3
C→D 0.1 0.1 0.1 4
D→C 0.1 0.1 0.1 4

Blog B1→B2 0.1 0.1 0.1 2
B2→B1 0.1 0.1 0.1 3

Twitch DE→EN 0.1 0.1 0.01 2
EN→DE 0.1 0.5 0.5 2

MAG

US→CN 0.5 0.1 0.1 5
US→DE 0.1 0.1 0.1 5
US→JP 0.1 0.5 0.01 6
US→RU 0.1 0.1 0.5 5
US→FR 0.1 0.1 0.1 6
CN→US 0.1 0.1 0.01 6
CN→DE 0.1 0.1 0.5 6
CN→JP 0.1 0.1 0.01 5
CN→RU 0.5 0.1 0.1 5
CN→FR 0.1 0.01 0.1 6

Table 5: Experiment hyperparameter setting Value.

F TIGHTNESS OF BOUNDS

To evaluate the tightness of our bounds, we conduct additional experiments to verify the effects of
node attribute divergence and topology divergence independently. The following experimental detail
settings are designed to verify these divergences.

F.1 ATTRIBUTE DIVERGENCE

To evaluate the impact of graph attribute discrepancy on GDA, we designed an experiment for this
purpose. In this experiment, we provide node classification tasks across different graphs under
different attribute discrepancy with same topology structure. In this procedure, we aim to generate
a collection of graph datasets, where each graph is characterized by a fixed adjacency matrix A,
consisting of 100 nodes with an average degree of 0.3, and node attribute matrices X randomly
simulated from Gaussian-distributed samples. The specific steps are as follows: Each graph Gi =
(A,Xi) shares the same fixed adjacency matrix A, representing the same graph topology. A is
predetermined and defines the connectivity between nodes, remaining consistent across all generated
graphs. Node attributes Xi for each graph Gi are generated using ’make-blobs’ function from
scikit-learn. Parameters for ’make-blobs’: Number of nodes: nsamples = 100, representing the total
number of nodes in the graph. Number of clusters: centers = 2, corresponding to two distinct classes.
nfeatures = 10, meaning each node is described by a 10-dimensional feature vector. cluster_std is
a variable parameter uniformly sampled from the range [0, 2], determining the dispersion of node
features within each cluster. We construct a dataset of 1000 graphs, {Gi = (A,Xi)}1000i=1 , where:
A: the adjacency matrix, remains fixed across all graphs, representing the structural relationships
between nodes. Xi: the feature matrix, varies between graphs. The variance of the node features
is determined by cluster_std, which is uniformly sampled for each graph to introduce diversity in
the node attributes. GAA is trained for 100 epochs on a fixed source graph and target graphs with
different attribute variances. After training, we reports three key metrics for each dataset: the bound
value, LA (loss value), and the target graph accuracy. To ensure that the bound value and loss value
are on the same scale, we normalize the bound value by dividing it by the number of nodes, i.e.,
100. As illustrated in Figure 6(a), both the bound value and the loss value of the model increase as
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the attribute discrepancy grows. Conversely, the classification performance declines with increasing
attribute discrepancy, highlighting that the bound attribute component is closely related to the GDA
performance.

F.2 TOPOLOGY DIVERGENCE

This procedure involves generating 1000 graphs by Stochastic Block Model (SBM), a probabilistic
model for community-structured graphs. Each graph consists of different adjacency matrix A with
uniformly distributed edge weights and a node attribute matrix X with fixed-dimensional feature
vectors. The generation process is detailed below: The graph Gi = (Ai, Xi) for each instance
is generated using the SBM. SBM parameters are as follows: community contain 100 nodes(
num_nodes = 100): sizes =

[ num_nodes
2 , num_nodes − num_nodes

2

]
, where the graph is divided into

two communities of approximately equal size, which can be seen as 2 classes. Inter- and Intra-

community connection probabilities: probs =

[
p p

10p
10 p

]
, where p = 0.8 denotes the probability

of edges forming within a community and p
10 = 0.08 denotes the probability of edges forming

different communities. To incorporate variability in edge strengths, the weights of edges in the
adjacency matrix Ai are drawn from a uniform distribution. Nonexistent edges are assigned a weight
of 0, thereby preserving the sparsity structure dictated by the Stochastic Block Model (SBM). Each
adjacency matrix Ai, representing graph Gi, is a symmetric n× n matrix. Additionally, each graph
Gi is associated with a node attribute matrix Xi, where Xi contains n rows, corresponding to the
attributes of the n nodes. Each nodes is a fixed 10-dimensional vector, ensuring consistent node
attribute dimensionality across all graphs. All elements of Xi are set to a constant value of 1, ensuring
uniform node attributes across the dataset. The dataset comprises 1000 graphs, each containing
100 nodes, represented as {Gi = (Ai, Xi)}1000i=1 . In this representation: Ai varies between graphs,
following the Stochastic Block Model (SBM) with uniform edge weights, while Xi is a fixed matrix
where each of its 10-dimensional elements is set to 1. GAA is trained for 100 epochs on a fixed
source graph and target graphs with different topology variances. After training, we reports three key
metrics for each dataset: the bound value, LA (loss value), and the target graph accuracy. Similarly,
we normalize the bound value by dividing it by the number of nodes, i.e., 100. As illustrated in
Figure 6(b), both the bound value and the loss value of the model increase as the attribute discrepancy
grows. Conversely, the classification performance declines with increasing topology discrepancy,
emphasizing that the bound’s topology component is also closely linked to the GDA performance.

G MODEL EFFICIENT EXPERIMENT

To further investigate the efficiency of GAAo, Table?? reports the running time comparison across
various algorithms. We also compared the training time and GPU memory usage of common baselines
UDAGCN and a recent SOTA method, JHGDA, which aligns graph domain discrepancy hierarchical
levels. As shown in Table, the evaluation results on airport dataset further demonstrate that our
method achieves superior performance with tolerable computational and storage overhead.
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(a) Attribute component

(b) Topology component

Figure 7: Visualization of bound value and LA value.
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Dataset Method Training Time (Normalized w.r.t. UDAGCN) Memory Usage (Normalized w.r.t. UDAGCN) Accuracy(%)

U→B

UDAGCNB 1 1 0.607
JHGDA 1.314 1.414 0.695

PA 0.498 0.517 0.679
GAAo 0.504 0.514 0.697
GAA 1.063 1.113 0.704

U→E

UDAGCNB 1 1 0.488
JHGDA 1.423 1.513 0.519

PA 0.511 0.509 0.557
GAAo 0.507 0.513 0.556
GAA 1.109 1.098 0.563

B→E

UDAGCNB 1 1 0.510
JHGDA 1.311 1.501 0.569

PA 0.502 0.497 0.562
GAAo 0.507 0.503 0.566
GAA 1.048 1.107 0.573

Table 6: Comparison of Training Time, Memory Usage, and Accuracy on Airport datset.
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