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Abstract
To effectively characterize the nature of para-001
phrase pairs without expert human annotation,002
we proposes two new metrics: word position003
deviation (WPD) and lexical deviation (LD).004
WPD measures the degree of structural alter-005
ation, while LD measures the difference in006
vocabulary used. We apply these metrics to007
better understand the commonly-used MRPC008
dataset and study how it differs from PAWS,009
another paraphrase identification dataset. We010
also perform a detailed study on MRPC and011
propose improvements to the dataset, show-012
ing that it improves generalizability of models013
trained on the dataset. Lastly, we apply our014
metrics to filter the output of a paraphrase gen-015
eration model and show how it can be used to016
generate specific forms of paraphrases for data017
augmentation or robustness testing of NLP018
models.019

1 Introduction020

A robust understanding of semantic meaning, de-021

spite variances in sentence expression, is an integral022

part of natural language processing (NLP) tasks.023

However, many existing NLP models exhibit short-024

comings in understanding real-world variations in025

natural language. These models are often over-026

reliant on learned spurious correlations resulting027

in poor generalization (Sanchez et al., 2018; Mc-028

Coy et al., 2019). This problem is challenging to029

address since it is difficult to distinguish spurious030

correlations from useful features (Gardner et al.,031

2021).032

One way of improving the performance and ro-033

bustness of NLP model is to increase the size of034

the dataset (Hestness et al., 2017). It is possible to035

do so in an efficent manner through data augmenta-036

tion, or the process of generating new data out of037

existing examples, thus creating more training data038

or test cases (Feng et al., 2021; Chen et al., 2021).039

This would also enhance the capability to detecting040

error in a wide range of NLP systems. One method041

of doing so is to condition language models to gen- 042

erate paraphrases of input sentences (Witteveen and 043

Andrews, 2019), often using large language mod- 044

els such as GPT (Radford et al., 2019). However, 045

commonly used paraphrase datasets and paraphrase 046

generation techniques that rely on such datasets can 047

suffer from several shortfalls, such as being noisy 048

due to loose labelling in these datasets and lack of 049

accurate, controllable generation. In this paper, we 050

make three key contributions to address this issue. 051

Firstly, we propose two new metrics for better 052

understanding of paraphrase pairs: word position 053

deviation and lexical deviation. We show, with 054

examples, how these metrics are effective at quan- 055

titatively capturing the linguistic characteristics of 056

paraphrase pair better than existing methods such 057

as ROGUE-L, SELF-BLEU and edit distance. 058

Secondly, we apply the proposed metrics to bet- 059

ter understand the commonly used Microsoft Re- 060

search Paraphrase Corpus (MRPC) (Dolan and 061

Brockett, 2005) dataset. We also study how MRPC 062

differs from Paraphrase Adversaries from Word 063

Scrambling (PAWS) (Zhang et al., 2019), another 064

paraphrase identification dataset. In the process, 065

we perform a detailed study on MRPC and pro- 066

pose some revisions to the dataset. We demonstrate 067

that this improves the quality of paraphrase iden- 068

tification models trained on MRPC, with higher 069

transferability to other paraphrase identification 070

datasets. 071

Lastly, we demonstrate the applicability of our 072

proposed metrics. By applying our metrics to filter 073

the output of a paraphrase generation model, we 074

show how it can be used to generate specific forms 075

of paraphrases, which can be used as training data 076

for data augmentation purposes, or to generate test 077

cases for robustness testing of NLP models. 078

2 Related Work 079

There have been several survey papers done to bet- 080

ter understand the task of paraphrase identification 081
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and generation. A Survey of Paraphrasing and082

Textual Entailment Methods (Androutsopoulos and083

Malakasiotis, 2010) presented a comprehensive sur-084

vey and review on the the aforementioned tasks. In085

this paper, the authors helped to properly define086

the tasks and identified some methods and their087

associated challenges. This was followed up by088

a more recent survey specifically on the task of089

paraphrase identification, A Survey on Paraphrase090

Recognition (Magnolini, 2014), where the focus091

of the survey was the performance of various sta-092

tistical and non-deep learning approaches on para-093

phrase identification on the MRPC dataset. Addi-094

tionally, in On Paraphrase Identification Corpora095

(Rus et al., 2014), the authors performed a survey096

of various paraphrase datasets, also highlighting097

several issues with paraphrase datasets, including098

MRPC, and providing some recommendations for099

improving the curation of paraphrase datasets.100

There have also been previous work on the task101

of better quantifying various characteristics of para-102

phrase pairs. In Texygen: A Benchmarking Plat-103

form for Text Generation Models (Zhu et al., 2018),104

SELF-BLEU was proposed to measure the diver-105

sity in text generation. However, it suffers from106

limitations inherent to BLEU-style metrics: it cap-107

tures the differences in presence of n-grams, but108

not their sequence, and is thus mostly limited to109

capturing the differences of vocabulary, but not the110

overall structure of a sentence. In Paraphrasing111

with Large Language Models (Witteveen and An-112

drews, 2019), ROUGE-L is used as a measurement113

of paraphrase diversity, where lower ROUGE-L114

scores correspond to greater diversity in paraphras-115

ing generation. However, ROUGE-L mainly mea-116

sures degree of similarity in sub-sequences, but not117

the order in which the sub-sequences occur, and118

thus cannot accurately capture the possible struc-119

tural differences present in paraphrase pairs.120

In our paper, we take a deeper look at some of the121

issues related to MRPC, proposing some useful im-122

provements. We also build upon previous attempts123

to characterise paraphrases through the use of quan-124

titative metrics, demonstrating how our proposed125

metrics can capture various different paraphrasing126

techniques better than previously proposed metrics.127

3 What is a Paraphrase?128

3.1 Definition of Paraphrase129

To facilitate more precise discussions in our paper,130

we clearly define a paraphrase as follows:131

Definition 1 (Paraphrase). A sentence is a para- 132

phrase of another sentence if they are not identical 133

but share the same semantic meaning. 134

Therefore, there are two distinct criteria in order 135

to fulfill the definition of being a paraphrase pair: 136

1. The two sentences must have the same mean- 137

ing: it is impossible to derive different in- 138

formation from a paraphrase of a sentence. 139

Where two sentences are not certain to have 140

exactly the same meaning, a common interpre- 141

tation of both sentences should be the same 142

in order for it to be a reasonable paraphrase. 143

This also implies that both sentences in a para- 144

phrase pair necessarily entail each other. 145

2. The two sentences must not be identical, for 146

example having lexical differences (differ- 147

ences in vocabulary) or structural differences 148

(differences in word order, punctuation and 149

syntax). 150

In A Survey of Paraphrasing and Textual Entail- 151

ment Methods (Androutsopoulos and Malakasiotis, 152

2010), the following example is provided, which 153

we shall discuss: 154

1. Wonderworks Ltd. constructed the new bridge.

2. The new bridge was constructed by Wonder-
works Ltd.

3. Wonderworks Ltd. is the constructor of the
new bridge.

155

It is argued that sentence 3 is not a precise para- 156

phrase of sentences 1 and 2 as it is not stated pre- 157

cisely in sentence 3 that the bridge was completed. 158

For the purposes of our discussion, we would con- 159

sider sentence 3 a reasonable paraphrase as well 160

as it is very likely that all three sentences would 161

be interpreted in the same way, and thus share the 162

same semantic meaning based on the most common 163

interpretation of the sentences. 164

These examples illustrate that it is non-trivial to 165

precisely define what is a paraphrase pair, as there 166

is some variance (depending on subjective interpre- 167

tation) on what would be a precise paraphrase. This 168

problem is observed to have caused issues due to 169

the imprecise definitions used while creating para- 170

phrase datasets, such as the MRPC dataset which 171

is very widely used. By adhering strictly to the 172

definition of a paraphrase as detailed in this section, 173

we hope to better facilitate discussion throughout 174

the paper. 175
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3.2 Paraphrase Datasets176

In this paper, we will utilize and compare two com-177

monly used paraphrase datasets, MRPC and PAWS.178

3.2.1 Microsoft Research Paraphrase Corpus179

(MRPC)180

The Microsoft Research Paraphrase Corpus181

(MRPC) is a corpus consists of sentence pairs col-182

lected from web news articles (Dolan and Brockett,183

2005). This dataset is widely used as a benchmark184

for the paraphrase identification task. It can be185

used directly or indirectly as part of the GLUE186

benchmark (Wang et al., 2019). In particular, as187

part of the GLUE benchmark, the dataset has been188

used for training and evaluation in more than 50 re-189

search papers as can be determined from the GLUE190

leaderboard1. It is also less commonly used as a191

paraphrase generation dataset, in works such as192

(Huang and Chang, 2021). MRPC contains 4076193

training and 1725 test examples.194

3.2.2 Paraphrase Adversaries from Word195

Scrambling (PAWS)196

The Paraphrase Adversaries from Word Scrambling197

(PAWS) is a dataset contains sentence pairs ex-198

tracted from Wikipedia and the Quora Question199

Pairs (QQP) dataset (Zhang et al., 2019). While200

it is less commonly used than MRPC, it is a high201

quality and larger dataset, and is is used in a num-202

ber of papers such as (Yu and Ettinger, 2021), (Tu203

et al., 2020) and (Chen et al., 2020) for the pur-204

pose of paraphrase identification. PAWS contains205

49,401 training, 8000 development and 8000 test206

examples.207

4 Proposed Metrics208

4.1 Objectives209

Our objective is to comprehensively evaluate the210

diverse linguistic phenomena involved in paraphras-211

ing, which can include techniques such as synonym212

substitution, negation, diathesis alternation, coordi-213

nation changes and more. We can broadly classify214

these techniques into the use of structural alterna-215

tions and lexical alternations to achieve paraphras-216

ing.217

Thus, to better characterise a paraphrase pair, we218

propose two metrics: word position deviation and219

lexical deviation. These two metrics are introduced220

so as to provide a quantitative understanding on221

what type of paraphrase it is along the two types222

1https://gluebenchmark.com/leaderboard

of changes. A key design consideration of these 223

metrics is the need to be able to capture the extents 224

of structural and lexical alterations in an efficient 225

manner, without resorting to costly human annota- 226

tion or large amounts of computation. We will use 227

these metrics to provide a good understanding of 228

the characteristics of paraphrase pairs both at a in- 229

dividual (paraphrase pair) level and at an aggregate 230

level over the whole dataset. In addition, we ap- 231

ply these metrics to filter outputs from paraphrase 232

generation systems to select for specific types of 233

paraphrases. 234

4.2 Key Definitions 235

In this section, we define some terms that will be 236

used across various metrics computations. Let s1 237

and s2 denote two sentences. We will also refer to 238

the pair of sentences (s1, s2) as a paraphrase pair. 239

Definition 4.1 (Set of common words). The set of 240

common words C(s1,s2) of a paraphrase pair is the 241

set of words, in uncased lemmatized form, which 242

occurs in both s1 and s2. 243

Definition 4.2 (Set of all words). The set of all 244

words A(s1,s2) of a paraphrase pair is the complete 245

set of words, in uncased lemmatized form, which 246

occurs in either or both sentences s1 and s2. 247

Thus, given two sentences: 248

• s1: Yesterday, Bob met Tom at the store. 249

• s2: Tom met Bob yesterday while they were 250

at the store. 251

• C(s1,s2): 252

{ yesterday, bob, meet, tom, at, the, store } 253

• A(s1,s2): 254

{ yesterday, bob, meet, tom, at, the, store, 255

while, they, be } 256

We will also use the notation NC(s1,s2) to refer to 257

the size of set C(s1,s2) and NA(s1,s2)
to refer to the 258

size of set A(s1,s2). We use NC and NA for short 259

when it is obvious which statements s1 and s2 we 260

are referring to. For a word W and a sentence s, 261

we denote by Ns(W ) the number of times that the 262

word W appears in the sentence s. 263

4.3 Word Position Deviation (WPD) 264

We propose the word position deviation (WPD) of a 265

paraphrase pair as a metric that effectively captures 266

the degree of deviation in the structure of para- 267

phrased sentences by looking at changes in word 268
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positions. WPD can be intuitively understood as269

the mean of how much words shift in position after270

a paraphrase. We find that this proposed metric271

is effective in identifying the amount of structural272

alterations present in paraphrase pairs.273

To properly define WPD, we first introduce the274

concept of normalized word position in a para-275

phrase pair.276

Definition 4.3 (Normalized Word Position). Let277

s be a sentence and W be a word. For 1 ≤ n ≤278

Ns(W ), the normalized word position ρs,n(W ) of279

n-th appearance of W in s is its index divided by280

the index of the last word. Thus, a normalized281

word position value ranges from the first word in282

the sentence having a value of 0.0 and last word283

having value of 1.0. For example, if the second284

appearance of W has index a and the last word has285

index b in the sentence s, then ρs,2(W ) = a/b.286

In WPD, we consider the mean differences be-287

tween the normalized word positions. For any288

given word that is common in both sentences in289

a paraphrase pair (s1, s2), we can calculate the rel-290

ative position shift as the difference in normalized291

word position.292

Definition 4.4 (Relative Position Shift). The rel-293

ative position shift of a word W with respect to294

sentence s1 in paraphrase pair (s1, s2) is denoted295

as δs1,s2(W ), only defined for words in C(s1,s2),296

and has the expression297

δs1,s2(W ) =298

Ns1 (W )∑
n=1

min
1≤k≤Ns2 (W )

|ρs1,n(W )− ρs2,k(W )|
Ns1(W )

.

(1)

299

For each occurrence ofW in s1, we calculate the300

smallest difference between its normalized word301

position and that of the occurrences of W in s2.302

We then average these smallest differences over all303

occurrence of W in s1 to get the relative position304

shift of W with respect to s1 in paraphrase pair305

(s1, s2).306

In a simple case with only one occurrence of307

W in each sentence, this reduces to the distance308

between ρs1,1(W ) and ρs2,1(W ), which is309

δs1,s2(W ) = |ρs1,1(W )− ρs2,1(W )|. (2)310

To the concepts described above, a simple exam-311

ple is provided in Figure 1 below.312

We can see that if we had a word W is near313

the start of s1 and near the end of s2, δs1,s2(W ) is314

Figure 1: Illustration of individual words’ relative posi-
tion shifts.

close to 1.0. Conversely, if the word W is near the 315

start of s1 and near the start of the s2, δs1,s2(W ) is 316

close to 1.0. 317

In a generalised case where there can be multi- 318

ple occurrences of W can be present in s1 or s2, 319

the mean distance between one occurrence and the 320

nearest occurrence in the other sentence is con- 321

sidered. However, such instances are much rarer. 322

We illustrate the handling of using a real example, 323

showing how the word his occurs twice, resulting 324

in a mean δ(”his”) of 0.263. 325

Figure 2: Illustration of a special case where multiple
instances of a word occurs.

Thus, we can now define WPD. 326

Definition 4.5 (Word Position Deviation). Let 327

(s1, s2) be a paraphrase pair. The WPD of (s1, s2), 328

denoted as σpos(s1, s2), is the mean of all the rel- 329

ative position shifts of all the words in the set 330

C(s1,s2), namely, 331

σpos(s1, s2) = 332

1

NC

∑
W∈C

max{δs1,s2(W ), δs2,s1(W )}. (3) 333

Below are additional examples of the WPD com- 334

putation on paraphrases in the MRPC dataset. To 335

aid visualization of what the metric measures, the 336

common words are underlined and coloured to aid 337

comparison. 338

4.4 Lexical Deviation (LD) 339

We propose lexical deviation (LD), a metric that 340

effectively captures the degree of deviation in the 341

vocabulary used between the sentences in a para- 342

phrase pair. We find that the proposed metric is ef- 343

fective in identifying and ranking paraphrase pairs 344
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from various datasets according to meaningful dif-345

ferences in their usage of lexical changes to per-346

form paraphrasing.347

Definition 4.6 (Lexical Deviation). Let (s1, s2) be348

a paraphrase pair. The lexical deviation σlex(s1, s2)349

for a paraphrase pair (s1, s2) is defined by350

σlex(s1, s2) = 1− NC
NA

. (4)351

For a case where there is complete reuse of352

words (in other words, NC = NA), the metric will353

compute to 0.0. Likewise, in a case where there is354

no reuse of words, the metric computes to 1.0.355

For the purpose of computing the total set of356

words and the set of common words, we consider357

words that are the same after lemmatization (ig-358

noring capitalization) to be the same word. There-359

fore, we do not consider words that are of different360

forms (e.g. tense) and capitalization to be different361

words. This allows our metric to more accurately362

capture the range of vocabulary used. As word363

forms tend to vary when used as part of different364

sentence structures, we do not wish to capture that365

in this metric, which focuses on the diversity of366

vocabulary (using of different words), and not the367

grammatical usage of a word. In addition, we con-368

sider changes in capitalization a trivial paraphrase,369

and hence do not consider it in this metric.370

5 Application of Metrics371

To demonstrate the applicability of our proposed372

metrics of WPD and LD, we compare them against373

other metrics with similar purposes: ROGUE-L374

(Lin, 2004), SELF-BLEU (Zhu et al., 2018) and375

Damerau–Levenshtein edit distance (Levenshtein,376

1965). In the examples below, we show that with377

WPD and LD, we can effectively distinguish be-378

tween different types of paraphrases that have sim-379

ilar scores via various other metrics.380

Figure 3: Example Pair 1

In Example Pair 1 (Figure 3), we show that 381

two paraphrases can have very similar ROGUE- 382

L scores of 0.76 and 0.75, where ROUGE-L pri- 383

marily measures the degree of sub-string similar- 384

ity (longest common sub-strings). However, with 385

WPD, we are able to additionally distinguish the 386

degree in which the similar sub-strings have been 387

shuffled in position, which is a structural alteration 388

to the sentence. 389

Figure 4: Example Pair 2

In Example Pair 2 (Figure 4), we again show 390

that two paraphrases can have very similar SELF- 391

BLEU scores of 0.60 and 0.59, where SELF-BLEU 392

primarily measures the degree n-gram overlap. 393

However, similar to Example Pair 1, in one of the 394

paraphrases, the two "halves" of the sentence has 395

been swapped in position, and this structural alter- 396

ation is captured by the WPD score. 397

Figure 5: Example Pair 3

Lastly, in Example Pair 3 (Figure 5), we show 398

that two paraphrases can have very similar Dam- 399

erau–Levenshtein edit distance, but feature two 400

completely different types of paraphrasing method. 401

5.1 Comparing MRPC and PAWS 402

5.1.1 Degree of Structural Paraphrasing 403

Using WPD, we are able to obtain an aggregate 404

view of both the MRPC and PAWS datasets. We see 405

that both datasets feature similar distributions of 406

structural paraphrasing, where the average amount 407
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of structural paraphrasing is fairly low and MRPC408

features more structural paraphrasing compared to409

PAWS. A visualization is provided in Figure 6 be-410

low. Hence, we would expect the MRPC dataset to411

be somewhat more diverse in structural paraphrases412

as compared to PAWS.413

Figure 6: Visualization of WPD in MRPC and PAWS.

5.1.2 Degree of Lexical Paraphrasing414

Using LD, we are able to obtain an aggregate view415

of both the MRPC and PAWS datasets to see that416

both datasets feature a very different distribution of417

lexical paraphrasing. A visualization is provided418

in Figure 7 below. MRPC features a large amount419

of lexical paraphrasing, in contrast to PAWS where420

lexical paraphrasing is almost absent. Hence, we421

would expect the MRPC dataset to be substantially422

more diverse in having different examples of lexical423

paraphrases as compared to PAWS.424

Figure 7: Visualization of LD in MRPC and PAWS.

We investigated the source of high LD in MRPC425

and determined that the reason is due to large in-426

consistencies in entities, such as named entities and427

quantities, present in MRPC paraphrase pairs. We428

can see that many of the examples at the high-end429

of lexical deviation are not reasonable paraphrases430

of each other as they contain extremely different431

information in each sentence.432

Figure 8: Some problematic sentence pairs from
MRPC that are not reasonable paraphrases.

When used as training data for paraphrase iden- 433

tification or generation tasks, this can introduce 434

undesired behaviour into models. For example, 435

this can make paraphrase generation models more 436

prone to "hallucinating" additional information in 437

paraphrases, while paraphrase identification mod- 438

els are less able to detect such inconsistencies. 439

Hence, this motivates us to more closely inspect 440

the quality and consistency of labels in the MRPC 441

dataset, and then propose improvements. 442

5.2 Evaluation of MRPC Label Quality 443

Despite its wide usage as a benchmark for para- 444

phrase identification, the labels in the MRPC 445

dataset are not of a consistently high quality. This 446

is a result of the annotation process used to create 447

the MRPC dataset. 448

The annotation process used for MRPC, as de- 449

scribed in the paper Automatically constructing a 450

corpus of sentential paraphrases (Dolan and Brock- 451

ett, 2005), is as follows: a collection of news arti- 452

cles is collected from the web over a 2-year period, 453

and candidates for paraphrase pairs are extracted 454

using automated approaches, followed by human 455

evaluation used to determine if two similar sen- 456

tences are paraphrases. However, the instructions 457

given to the human annotators of the pairs were "ill- 458

defined". Compounding the issue is that several 459

classes of named entities in the text were replaced 460

by generic tags, introducing large amounts of ambi- 461

guity. As a result, the annotators labelled sentences 462

with very inconsistent entities as valid paraphrases, 463

leading to a relatively large number of sentences 464

inside that are not in fact reasonable paraphrases, 465

despite being labelled as such. Thus, models that 466

perform well on MRPC may not able to correctly 467

identify paraphrases in a precise manner. We can 468

show this in Section 5.2.2, where a state-of-the-art 469

language model that performs well on MRPC has 470

nearly random performance on PAWS, despite both 471

being paraphrase identification datasets. 472

To illustrate this issue, we use an example of a 473

sentence pair, labelled as a paraphrase, from the 474

MRPC dataset: 475

1. The stock rose $2.11, or about 11 percent, to
close Friday at $21.51 on the New York Stock
Exchange.

2. PG&E Corp. shares jumped $1.63 or 8 percent
to $21.03 on the New York Stock Exchange on
Friday.

476
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In this example, which is labelled as a477

paraphrase-pair, there are a total of 9 entities across478

the paraphrase pair, but only 2 ("the New York479

Stock Exchange" and "Friday") are present across480

the two. In other words, there is a great inconsis-481

tency in the entities present between each of the482

paraphrase pairs. In this case, this results in a large483

discrepancy in the information contained in each484

sentence, and thus the two sentences are not in485

fact paraphrases despite being labelled as such in486

MRPC. In MRPC, there are a total of 3900 para-487

phrase pairs. Of those, 3016 (77%) have at least 1488

inconsistent entity. Thus, this is a common issue in489

MRPC.490

5.2.1 Proposed Amendments to MRPC491

With the aim to improve the precision of sentence492

pairs labelled as paraphrases in MRPC, we pro-493

posed some amendments to MRPC, including the494

following specific objectives:495

1. Automatically correcting the inconsistency in496

entities;497

2. Rectifying the labels where automated correc-498

tion is not possible.499

Our process to achieve this has two main steps.500

First, we search for inconsistent examples where501

the inconsistency is limited to singular instances of502

any type of quantity. For example, one instance of a503

monetary value that differs between two sentences504

in a paraphrase pair.505

Next, when a match is found, we proceed with a506

to correct the paraphrase. In this specific scenario,507

as we know that both values share the same type,508

we can correct one of the values to be identical to509

the instance in the other sentence, making it a more510

precise paraphrase. In order to avoid being overly511

zealous in this replacement, we inspect the most512

frequent replacements to ensure that no unintended513

replacements occur.514

Of the 3016 inconsistent paraphrase pairs in515

MRPC, 476 (16%) can be corrected using our516

approach. For the rest of the paraphrase pairs517

that we cannot correct, we label them as non-518

paraphrases. After the corrections, 2064 (53%)519

out of the original 3900 paraphrase pairs are re-520

labelled as non-paraphrases. This also changes the521

ratio of paraphrase:non-paraphrase in MRPC from522

approximately 8:5 to approximately 4:8. We term523

this revised version of MRPC as MRPC-R1.524

To illustrate the corrections to text performed 525

during the creation of MRPC-R1, a few examples 526

are shown in the table below: 527

Figure 9: Correcting some examples from MRPC

5.2.2 Evaluating Changes to MRPC 528

In order to evaluate the differences in quality of the 529

datasets, we compare the transferability of a model 530

trained on MRPC and MRPC-R1 to the PAWS test 531

set. 532

Our training setup is as follows: We used a state- 533

of-the-art DeBERTa (He et al., 2021) pretrained 534

langauage model and fine-tuned it on each of the 535

following: MRPC training set, MRPC-R1 training 536

set, and lastly for a baseline, the PAWS training 537

set). We performed the training using the Hugging- 538

Face Transformers library (Wolf et al., 2020) and 539

PyTorch (Paszke et al., 2019), learning rate of 1e-5, 540

and the Adam optimizer (Kingma and Ba, 2015). 541

For MRPC and MRPC-R1, we use a batch size of 542

32, and for PAWS, which has a much larger training 543

set, we use a batch size of 128. We did not perform 544

extensive hyper-parameter tuning. We tested two 545

variations of the DeBERTa model: DeBERTa-base 546

(140M parameters) and DeBERTa-large (400M pa- 547

rameters) Each of the models are evaluated every 548

50 steps on the PAWS development set, and the best 549

model checkpoint is evaluated against the PAWS 550

test set. We report the results below (median from 551

5 runs). 552
553

Model Training Data Dev F1 Test F1
DeBERTa-base PAWS (baseline) 92.77 91.98

DeBERTa-large PAWS (baseline) 95.12 94.32

DeBERTa-base MRPC 35.67 35.07

DeBERTa-large MRPC 30.80 30.80

DeBERTa-base MRPC-R1 52.25 50.83

DeBERTa-large MRPC-R1 56.04 55.22

554

From our results, we can see that training on 555

MRPC-R1 results in much better scores on the 556

PAWS test set for both models. Additionally, if 557

we use the more powerful DeBERTa-large model, 558
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the model overfits more on MRPC training data.559

Thus, DeBERTa-large scores lower than DeBERTa-560

base on the PAWS test set. However, DeBERTa-561

large performs better than DeBERTa-base when562

trained on MRPC-R1, showing that more powerful563

models benefit more from MRPC-R1. Thus, we can564

see that that MRPC-R1 has greater transferability565

to the PAWS test set. These results demonstrate566

that we have increased the generalization ability567

of the trained model through the improving the568

consistency and quality of the labels in MRPC.569

5.3 Evaluation and Filtering for Paraphrase570

Generation571

To demonstrate the applicability of our metrics572

to filter and thus control the output from a para-573

phrase generation model, we combine the para-574

phrase pairs from MRPC-R1 and PAWS to form575

a corpus to train a sequence-to-sequence T5 (Raf-576

fel et al., 2020) transformer language model to577

generate paraphrases. We performed the training578

using the HuggingFace Transformers library and579

PyTorch, using the the pretrained T5-large model580

(770M parameters). We performed training for a581

total of 10 epochs with a batch size of 16, learning582

rate of 1e-5, the Adam optimizer and did not per-583

form extensive hyper-parameter tuning. By using584

WPD and LD, we are able to effectively filter for585

specific types of paraphrases.586

In the following example, we pass "I keep a glass587

of water next to my bed when I sleep." as an input588

to be paraphrased by the model. Some of the out-589

puts are sampled and ranked below according to590

WPD, showing how WPD can be used to select591

paraphrases with varying extents of structural para-592

phrases, and the results can be seen in the table593

below:594
595

Generated Paraphrase WPD
I keep a glass of water beside my bed when I sleep. 0.02

A glass of water is kept next to my bed when I
sleep.

0.10

When I sleep, I always keep a glass of water near
my bed.

0.37

596

We can also do the same for LD, where we can597

see that the lower the the extent of word overlap598

between the original and paraphrase, the greater599

the LD value. Words are marked with italics to600

visually indicate words that have changed from the601

source sentence. The results can be seen in the602

table below:603
604

Generated Paraphrase LD
When I sleep I keep a glass of water next to my
bed.

0.00

I keep a glass of water beside my bed when I sleep. 0.23

During the night, I keep a glass of water next to
my bed.

0.33

605

Thus, we can use WPD, LD, or a combination of 606

both to select specific types of paraphrases, there- 607

fore efficiently obtaining specific variations of data 608

for data augmentation or robustness testing pur- 609

poses. 610

6 Ethical Considerations 611

To the best of our knowledge, we do not introduce 612

any ethical concerns in this work. Our work is 613

based on the existing MRPC and PAWS datasets, 614

which are sampled from online news articles as 615

well as Wikipedia. Hence we expect our findings 616

to generalize well to other English datasets in the 617

general domain. Generalization of our work to 618

domains where usage of language is markedly dif- 619

ferent (for example, in some forms of technical 620

writing) is not certain. When our proposed metrics 621

are used in conjunction with other technology (such 622

as large generative language models), it does not 623

affect the existing ethical considerations of using 624

those technology. 625

7 Conclusions and Future Work 626

In our paper, we have proposed two new metrics 627

to better understand paraphrase pairs: word posi- 628

tion deviation (WPD) and lexical deviation (LD). 629

We have applied these metrics to better understand 630

the MRPC and PAWS datasets, and also to filter 631

the output of a paraphrase generation model to ob- 632

tain specific forms of paraphrases. However, our 633

metrics still have some limitations, which can be 634

address in future work. Although we are able to 635

measure the extent of structural and lexical alter- 636

ations, we cannot determine the fine-grained type 637

of alterations that is being made, for example, a 638

specific form of structural alteration or word sub- 639

stitution. We anticipate that improvements in this 640

area would be valuable to improve our ability to 641

effectively characterize various properties of para- 642

phrases, leading to better data augmentation and 643

robustness testing approaches that eventually re- 644

sulting in better performing NLP systems. 645
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A Appendix773

A.1 Models Checkpoints, Data, Hardware774

This section lists down the specific pretrained775

model checkpoints and data used for various pur-776

poses in this paper.777

• Lemmatization (used for WPD, LD compu-778

tation): SpaCy Lemmatizer, which uses the779

spacy-lookups-data package.780

• Named Entity Recognition (used for MRPC781

dataset corrections): SpaCy en_core_web_trf782

model.783

• Paraphrase classification models: Fine-784

tuned from the microsoft/deberta-base and785

microsoft/deberta-large checkpoints.786

• Paraphrase generation model: Fine-tuned787

from the t5-large checkpoint.788

For model fine-tuning, a single RTX 3090 was789

used. Automatic mixed precision and TF32 is en-790

abled.791

A.2 Code Implementation792

In the non-anonymized version of the paper, a pub-793

lic link to the code implementations will be placed794

here.795

A.3 Additional Examples from MRPC 796

This section contains additional examples of WPD 797

and LD applied to data from the MRPC training 798

set. 799

A.4 Additional Examples from PAWS 800

This section contains additional examples of WPD 801

and LD applied to data from the PAWS training set. 802
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