
Large Language Models Exhibit Limited Reasoning Ability on Coding
Problems

Anonymous ACL submission

Abstract

Claims that large language models (LLMs)001
have complex reasoning ability have stirred002
broad interests, and controversies, of academics003
and non-academics alike. A popular basis004
for such claims comes from LLMs’ ability to005
solve coding problems, which involves under-006
standing the problem statement and provid-007
ing code that solves the problem. Although008
such abilities are remarkable feats worth prais-009
ing, we argue that they come from memoriza-010
tion rather than reasoning. We first show that011
LLMs’ problem-solving ability degrades with012
increased recency of the problem, likely due to013
the reduced amount of training data for more014
recent problems, regardless of the problem dif-015
ficulty labeled by human experts. Addition-016
ally, we show that an LLM often fails to solve017
the problem when presented with reworded but018
equivalent problem statements, further suggest-019
ing their limited reasoning ability.020

1 Introduction021

The development of large language models (LLMs)022

has substantially advanced natural language pro-023

cessing, enabling various applications across mul-024

tiple domains. Their remarkable performance on025

diverse tasks has sparked significant research in-026

terest in their reasoning abilities. While LLMs are027

often claimed to possess reasoning abilities, it still028

remains a controversy (Huang and Chang, 2023;029

Mondorf and Plank, 2024). Although some previ-030

ous studies provide evidence that LLMs are able031

to reason (Shi et al., 2022; Suzgun et al., 2023;032

Lampinen et al., 2024; Saparov and He, 2023), oth-033

ers show that their ability to reason is limited (Ark-034

oudas, 2023; Yang et al., 2023; Kambhampati et al.,035

2024; McCoy et al., 2023; Valmeekam et al., 2023;036

Razeghi et al., 2022). Some studies show evidence037

for both the true ability to reason and reliance on038

shallow heuristics (Prabhakar et al., 2024). Thus,039

it remains unclear whether the behavior of these040

systems is based on true reasoning or superficial041

heuristics such as memorization or recognition of 042

surface-level patterns. 043

In this study, we evaluate LLMs’ reasoning 044

ability on solving coding problems, which inher- 045

ently require reasoning skills. Code generation, 046

where models assist with generating and complet- 047

ing code, is one of the most popular application 048

of LLMs (Jiang et al., 2024), with the promises 049

of AI-generated code improving coding efficiency. 050

While previous research has shown that LLMs 051

can generate code, often more efficiently than hu- 052

mans (Coignion et al., 2024), it has rarely been 053

investigated whether this ability stems from gen- 054

uine reasoning or merely from retrieving patterns 055

from training data. Coding problems provide an ef- 056

fective test case for this distinction, as they require 057

reasoning skills, yet many widely used problem 058

sets are likely to have been included in training 059

data. This allows us to assess whether their perfor- 060

mance reflects true reasoning or pattern recognition. 061

If LLMs exhibit lower accuracy on prompts that 062

are unlikely to have appeared in their training data, 063

while performing well on otherwise similar prob- 064

lems, this would suggest that their performance 065

is primarily dependent on memory retrieval rather 066

than reasoning. 067

To test this, we conducted two analyses. First, 068

we investigated the change in model performance 069

as a function of the time point at which the problem 070

was entered into the coding problem database. If 071

models perform better with older problems, which 072

are more likely included in the training data, com- 073

pared to more recent problems with similar diffi- 074

culty, the finding would suggest that the model tend 075

to recite from memory rather than use reasoning 076

skills. Second, we investigated the effect of prompt 077

perturbation, by replacing 1-3 keywords with their 078

synonyms and testing whether the model perfor- 079

mance changes. If model performance on code 080

generation is susceptible to word-level perturbation 081

in the prompts, as often reported in previous studies 082

1

(Wang et al., 2023; Qiang et al., 2024; Zhu et al.,083

2024; Zhuo et al., 2023), the finding would suggest084

that models perform well only on word sequences085

they have encountered during training, rather than086

applying reasoning skills to solve problems. We087

also examine the effect of word frequency on per-088

formance under perturbation. Our results from both089

analyses demonstrate that models respond differ-090

ently to questions that are essentially the same but091

phrased differently, suggesting that LLMs have lim-092

ited reasoning ability.093

2 Methods094

2.1 Dataset Specification095

The evaluation data set consists of manually col-096

lected random samples of coding problems from097

a popular repository called LeetCode1. Each Leet-098

Code problem has a set of associated attributes:099

Problem ID, difficulty, test cases, # of submissions,100

and # of acceptances. Problem IDs are numerical101

values assigned automatically by LeetCode, indi-102

cating the order in which problems were added to103

the database. A higher ID corresponds to a more104

recently added problem. The difficulty level is one105

of easy, medium, hard and is a manually labeled106

identifier that provides an estimate of the difficulty107

of each problem. Test cases are used to verify the108

correctness of the provided solution and consist of109

input-output pairs that the solution must process110

correctly, producing the expected output for each111

given input. All test cases must pass in order for the112

solution to be correct or accepted. # of submissions113

is the number of attempted solutions submitted by114

the users, and # of acceptances are the subset of115

such submissions that pass all the test cases. A116

sample of the problem and test cases is presented117

in Appendix A.118

The data set collected for the present study con-119

sisted of 30 problems for each difficulty level, re-120

sulting in a total of 90 problems.121

2.2 Model Specifications122

The set of models evaluated is (ordered in the123

decreasing number of model parameters): GPT-124

4o (OpenAI et al., 2024), Gemini 1.5 Pro (Team125

et al., 2024), GPT-3.5 (OpenAI et al., 2024), Llama126

3 70B (Grattafiori et al., 2024), and StarCoder 2127

15B (Li et al., 2023). This selection ensures cov-128

erage of key model variables such as the model129

size, whether the model is open- or closed-source,130

1https://leetcode.com

and whether the model is vanilla or fine-tuned. For 131

example, GPT-4o and Gemini 1.5 Pro are closed- 132

source models, while Llama 3 and StarCoder 2 are 133

open-source. GPT-4o, Gemini 1.5 Pro, and Llama 134

3 are vanilla models optimized for generic question 135

answering, and StarCoder 2 is a model fine-tuned 136

specifically for code generation. 137

2.3 Prompt Perturbation Analysis 138

We examined how modifying certain words within 139

a prompt affects the output quality of large lan- 140

guage models. For this, we used only GPT-4o, as 141

it demonstrated the best performance among all 142

models outlined above (see Section 3). We selected 143

a subset of problems (N=25) for which GPT-4o 144

passed all test cases and modified the prompts with- 145

out altering their meaning. To ensure that the model 146

received essentially the same prompt, we replaced 147

specific keywords with their closest synonyms. 148

We extracted a set of keywords in each prompt 149

using keyBERT (Grootendorst, 2020), a model that 150

provides a list of keywords, each with a score 151

that measures how important the word is in the 152

prompt. KeyBERT utilizes BERT, a model that gen- 153

erates vectors from text, to extract document em- 154

beddings and word embeddings, and provides a set 155

of relevant words based on cosine similarity mea- 156

sures. Using keyBERT, we performed three levels 157

of keyword-based analysis, replacing the highest 158

scoring, the top two, and the top three words with 159

their synonyms, in order to examine changes in 160

model performance as a function of the number of 161

keywords replaced. If a keyword (e.g., stacking) ap- 162

peared in another form (e.g., stacked), all instances 163

were replaced accordingly (e.g., piling, piled), but 164

the total replacement count was still considered as 165

one. That is, we examined the effect of the num- 166

ber of unique keywords replaced. An example of 167

perturbations is presented in Appendix B. 168

Synonyms for the selected keywords were ob- 169

tained from the WordNet database (Princeton Uni- 170

versity, 2010) using the nltk package (Bird et al., 171

2009). From the list of synonyms suggested by 172

WordNet, we selected the one that minimally al- 173

tered the meaning of the original prompt. In ad- 174

dition, we obtained the word frequencies of the 175

original keywords and their synonyms from SUB- 176

TLEXus (Brysbaert and New, 2009) to. If a word 177

does not appear on the SUBTLEXus frequency list, 178

the frequency was regarded as zero. 179

2

2.4 Evaluation Metric180

Each of the model performance is solely evaluated181

on whether or not each output generated passes all182

of the test cases. For a given model m, problem p183

and query q, correctness of the model and problem184

pair for the given query is defined as:185

Cm,p(q) =

1, m’s solution for p generated

from q passes all test cases
0, Otherwise.

186

Given Cm,p(q), the accuracy A is defined as187

Am(q) =

∑
p∈P Cm,p(q)

|P |
188

where accuracy for a given model m for a set of189

problem P varies for input query q.190

3 Results & Discussion191

3.1 Recency effect on accuracy192

We first evaluated how the problem solving perfor-193

mance of the five LLMs outlined in 2.2 changes194

as a function of the time point at which a prob-195

lem was entered into LeetCode. Figure 1 presents196

correctness of the five models’ outputs as a func-197

tion of Problem ID, divided by difficulty. First, the198

accuracy of output was highest among the Easy199

problems (0.82), intermediate among the Medium200

(0.59), and lowest among the Hard ones (0.33). Of201

the five models, GPT-4o exhibited the highest accu-202

racy (0.78). Within each difficulty, we see an effect203

of problem ID such that the model tends to struggle204

more often with higher-numbered (more recent)205

problems. This pattern is observed consistently206

across all models. The result shows that the mod-207

els perform better with older problems, which are208

more likely to have been included in the training209

data, suggesting that the problem solving ability210

is likely based on memorization rather than true211

reasoning.212

3.2 Prompt Perturbation213

Next, we evaluated changes in model performance214

under prompt perturbation. As mentioned in Sec-215

tion 2.3, we only considered GPT-4o’s outputs for216

this analysis, as GPT-4o exhibited the highest over-217

all problem solving performance in 3.1.218

Figure 1 presents the correctness of GPT-4o out-219

puts as a result of prompt perturbation. By design,220

accuracy in the Original Prompt condition is 1, as221

we included only the prompts that the model cor- 222

rectly solved in the analysis. Critically, replacing 223

a single keyword with a synonym already led to 224

a drop in accuracy (0.72), which declined further 225

as more keywords were replaced (0.64 when two 226

words were replaced; 0.56 when three were re- 227

placed). Despite the small sample size, this pattern 228

was consistent across all difficulty levels—accuracy 229

never increased but either remained the same or 230

decreased when more words were replaced. Specif- 231

ically, for Easy problems, the number of correct 232

solutions changed from 7 to 6 to 6 across the 1-, 2-, 233

and 3-word replacements; for Medium problems, 234

from 6 to 5 to 5; and for Hard problems, from 5 to 235

5 to 3. 236

In the 1-word replacement condition, we also 237

examined how the relative frequency between the 238

original word and its synonym affected model per- 239

formance. Among the 25 problems analyzed, one 240

had identical frequencies for both words and was 241

excluded from the analysis. For the remaining 24 242

problems, the new word (synonym) had a higher 243

frequency in 15 cases and a lower frequency in 9 244

cases, compared to the original word. When the 245

new word was more frequent (N=15), the model 246

correctly solved 11 problems and failed on 4 (0.73 247

accuracy). When the new word had a lower fre- 248

quency (N=9), the model correctly solved 6 prob- 249

lems and failed on 3 (0.67 accuracy). Therefore, 250

a decrease in word frequency in the new prompt 251

leads to a greater drop in accuracy compared to an 252

increase in frequency, although this finding should 253

be interpreted with caution due to the small sample 254

size. 255

3.3 Summary & Discussion 256

In summary, LLMs perform better on older Leet- 257

Code problems, likely due to memorization from 258

training data, and exhibit decreasing accuracy on 259

more recent problems and when a small portion of 260

the prompts are perturbed, suggesting a reliance 261

on surface-level patterns rather than true reason- 262

ing. We also found that the accuracy decrease is 263

more noticeable when the new prompt contains 264

rarer words. Our findings are consistent with those 265

of previous studies (Gonen et al., 2023; Razeghi 266

et al., 2022) showing that the more frequently the 267

prompt appears in the training data, the more fa- 268

miliar the model is with it, leading to improved 269

model performance. Similarly, numerous studies 270

have reported a close relationship between pretrain- 271

3

Figure 1: Correctness of model output as a function of Problem ID, grouped by difficulty level and LLM type

Figure 2: Model accuracy Am(q) for m = GPT-4o and varying queries q, grouped by the number of unique keywords
replaced and difficulty level

ing data and task performance (e.g. Elazar et al.272

2023; Kandpal et al. 2023).273

4 Conclusion274

We argue that LLMs are, by design, autoregressive275

word sequence predictors and that there is nothing276

inherent in them that enables reasoning. LLMs277

can only simulate reasoning by learning statisti-278

cal patterns in large amounts of data and applying279

learned patterns in a way that appears logical. This 280

work provides compelling evidence to this argu- 281

ment, which shows that LLMs fail to solve the 282

simplest problems with subtle changes to how the 283

problem is worded. We believe that this work will 284

motivate future research to improve LLMs’ prob- 285

lem solving ability via data augmentation using 286

prompt perturbation and improved LLM architec- 287

tures. 288

4

Limitations289

One of the main limitations of this work is that290

the experiment is performed only on English query291

and result pairs. Although the experimental meth-292

ods are not limited to English, models trained with293

other languages may or may not perform better294

than models trained mostly on English problems.295

Another limitation to discuss is the limited set of296

models evaluated. Although this work evaluates the297

reasoning capabilities of many popular LLMs, it298

does not provide coverage of many available LLMs,299

mainly due to the ever increasing number of LLMs300

coming into the market. In addition, the work does301

not evaluate specialized reasoning models that em-302

ploy Chain-of-Thought (CoT) reasoning. We argue303

that solving LeetCode problems may not be greatly304

influenced by CoT due to the nature of LeetCode305

problems asking for a one-step solution, such claim306

is a worthwhile investigation for future work. The307

last limitation is the low number of samples evalu-308

ated, which is mainly due to the manual nature of309

data collection and the cost of evaluation. We plan310

to address this limitation by obtaining and evaluat-311

ing a larger set of data with additional funding.312

Ethics Statement313

We do not anticipate an immediate ethical or so-314

cietal impact resulting from our work. However,315

we acknowledge that LeetCode is a widely used316

tool in the industry to assess interview candidates’317

programming aptitude. Thus, if the content and the318

result of this work is maliciously used, it can po-319

tentially lead to plagiarism on programming inter-320

views. In addition, it is well known that LLMs hal-321

lucinate, i.e., generate invalid answers that seems322

correct. Thus, code generation via the approaches323

mentioned in this paper can also result in halluci-324

nations, which may lead to unforeseen issues if the325

code is used directly in real-world applications.326

References327

Konstantine Arkoudas. 2023. Gpt-4 can’t reason.328

Steven Bird, Edward Loper, and Ewan Klein. 2009.329
Natural Language Processing with Python. O’Reilly330
Media Inc.331

M. Brysbaert and B New. 2009. Moving beyond Kučera332
and Francis: A critical evaluation of current word333
frequency norms and the introduction of a new and334
improved word frequency measure for American En-335
glish. Behavior Research Methods, 41:977–990.336

Tristan Coignion, Clément Quinton, and Romain Rou- 337
voy. 2024. A performance study of llm-generated 338
code on leetcode. In Proceedings of the 28th Inter- 339
national Conference on Evaluation and Assessment 340
in Software Engineering, EASE 2024, page 79–89. 341
ACM. 342

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Amir 343
Feder, Abhilasha Ravichander, Marius Mosbach, 344
Yonatan Belinkov, Hinrich Schütze, and Yoav Gold- 345
berg. 2023. Measuring causal effects of data statistics 346
on language model’s ‘factual’ predictions. 347

Hila Gonen, Srini Iyer, Terra Blevins, Noah Smith, and 348
Luke Zettlemoyer. 2023. Demystifying prompts in 349
language models via perplexity estimation. In Find- 350
ings of the Association for Computational Linguis- 351
tics: EMNLP 2023, pages 10136–10148, Singapore. 352
Association for Computational Linguistics. 353

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 354
Abhinav Pandey, Abhishek Kadian, et al. 2024. The 355
llama 3 herd of models. 356

Maarten Grootendorst. 2020. Keybert: Minimal key- 357
word extraction with bert. 358

Jie Huang and Kevin Chen-Chuan Chang. 2023. To- 359
wards reasoning in large language models: A survey. 360

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, 361
and Sunghun Kim. 2024. A survey on large lan- 362
guage models for code generation. arXiv preprint 363
arXiv:2406.00515. 364

Subbarao Kambhampati, Karthik Valmeekam, Lin 365
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham- 366
bri, Lucas Saldyt, and Anil Murthy. 2024. Llms can’t 367
plan, but can help planning in llm-modulo frame- 368
works. 369

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric 370
Wallace, and Colin Raffel. 2023. Large language 371
models struggle to learn long-tail knowledge. 372

Andrew K Lampinen, Ishita Dasgupta, Stephanie C Y 373
Chan, Hannah R Sheahan, Antonia Creswell, Dhar- 374
shan Kumaran, James L McClelland, and Felix 375
Hill. 2024. Language models, like humans, show 376
content effects on reasoning tasks. PNAS Nexus, 377
3(7):pgae233. 378

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 379
Muennighoff, Denis Kocetkov, et al. 2023. Starcoder: 380
may the source be with you! 381

R. Thomas McCoy, Shunyu Yao, Dan Friedman, 382
Matthew Hardy, and Thomas L. Griffiths. 2023. Em- 383
bers of autoregression: Understanding large language 384
models through the problem they are trained to solve. 385

Philipp Mondorf and Barbara Plank. 2024. Beyond 386
accuracy: Evaluating the reasoning behavior of large 387
language models - a survey. In First Conference on 388
Language Modeling. 389

5

http://arxiv.org/abs/2308.03762
https://doi.org/10.1145/3661167.3661221
https://doi.org/10.1145/3661167.3661221
https://doi.org/10.1145/3661167.3661221
http://arxiv.org/abs/2207.14251
http://arxiv.org/abs/2207.14251
http://arxiv.org/abs/2207.14251
https://doi.org/10.18653/v1/2023.findings-emnlp.679
https://doi.org/10.18653/v1/2023.findings-emnlp.679
https://doi.org/10.18653/v1/2023.findings-emnlp.679
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
http://arxiv.org/abs/2212.10403
http://arxiv.org/abs/2212.10403
http://arxiv.org/abs/2212.10403
http://arxiv.org/abs/2402.01817
http://arxiv.org/abs/2402.01817
http://arxiv.org/abs/2402.01817
http://arxiv.org/abs/2402.01817
http://arxiv.org/abs/2402.01817
http://arxiv.org/abs/2211.08411
http://arxiv.org/abs/2211.08411
http://arxiv.org/abs/2211.08411
https://doi.org/10.1093/pnasnexus/pgae233
https://doi.org/10.1093/pnasnexus/pgae233
https://doi.org/10.1093/pnasnexus/pgae233
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2309.13638
http://arxiv.org/abs/2309.13638
http://arxiv.org/abs/2309.13638
http://arxiv.org/abs/2309.13638
http://arxiv.org/abs/2309.13638
https://openreview.net/forum?id=Lmjgl2n11u
https://openreview.net/forum?id=Lmjgl2n11u
https://openreview.net/forum?id=Lmjgl2n11u
https://openreview.net/forum?id=Lmjgl2n11u
https://openreview.net/forum?id=Lmjgl2n11u

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,390
Lama Ahmad, et al. 2024. Gpt-4 technical report.391

Akshara Prabhakar, Thomas L. Griffiths, and R. Thomas392
McCoy. 2024. Deciphering the factors influencing393
the efficacy of chain-of-thought: Probability, memo-394
rization, and noisy reasoning.395

Princeton University. 2010. About WordNet.396

Yao Qiang, Subhrangshu Nandi, Ninareh Mehrabi, Greg397
Ver Steeg, Anoop Kumar, Anna Rumshisky, and398
Aram Galstyan. 2024. Prompt perturbation consis-399
tency learning for robust language models. In Find-400
ings of the Association for Computational Linguistics:401
EACL 2024, pages 1357–1370, St. Julian’s, Malta.402
Association for Computational Linguistics.403

Yasaman Razeghi, Raja Sekhar Reddy Mekala, Robert L404
Logan Iv, Matt Gardner, and Sameer Singh. 2022.405
Snoopy: An online interface for exploring the effect406
of pretraining term frequencies on few-shot LM per-407
formance. In Proceedings of the 2022 Conference on408
Empirical Methods in Natural Language Processing:409
System Demonstrations, pages 389–395, Abu Dhabi,410
UAE. Association for Computational Linguistics.411

Abulhair Saparov and He He. 2023. Language models412
are greedy reasoners: A systematic formal analysis413
of chain-of-thought. In The Eleventh International414
Conference on Learning Representations.415

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,416
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,417
Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das,418
and Jason Wei. 2022. Language models are multilin-419
gual chain-of-thought reasoners.420

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-421
bastian Gehrmann, Yi Tay, Hyung Won Chung,422
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny423
Zhou, and Jason Wei. 2023. Challenging BIG-bench424
tasks and whether chain-of-thought can solve them.425
In Findings of the Association for Computational Lin-426
guistics: ACL 2023, pages 13003–13051, Toronto,427
Canada. Association for Computational Linguistics.428

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Bur-429
nell, Libin Bai, et al. 2024. Gemini 1.5: Unlocking430
multimodal understanding across millions of tokens431
of context.432

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,433
Sarath Sreedharan, and Subbarao Kambhampati.434
2023. Planbench: An extensible benchmark for eval-435
uating large language models on planning and rea-436
soning about change. In Thirty-seventh Conference437
on Neural Information Processing Systems Datasets438
and Benchmarks Track.439

Haoyu Wang, Guozheng Ma, Cong Yu, Ning Gui, Linrui440
Zhang, Zhiqi Huang, Suwei Ma, Yongzhe Chang,441
Sen Zhang, Li Shen, Xueqian Wang, Peilin Zhao,442
and Dacheng Tao. 2023. Are large language models443
really robust to word-level perturbations?444

Zhun Yang, Adam Ishay, and Joohyung Lee. 2023. Cou- 445
pling large language models with logic programming 446
for robust and general reasoning from text. In Find- 447
ings of the Association for Computational Linguis- 448
tics: ACL 2023, pages 5186–5219, Toronto, Canada. 449
Association for Computational Linguistics. 450

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang, 451
Hao Chen, Yidong Wang, Linyi Yang, Wei Ye, Yue 452
Zhang, Neil Gong, and Xing Xie. 2024. Promptro- 453
bust: Towards evaluating the robustness of large 454
language models on adversarial prompts. In Pro- 455
ceedings of the 1st ACM Workshop on Large AI Sys- 456
tems and Models with Privacy and Safety Analysis, 457
LAMPS ’24, page 57–68, New York, NY, USA. As- 458
sociation for Computing Machinery. 459

Terry Yue Zhuo, Zhuang Li, Yujin Huang, Fatemeh 460
Shiri, Weiqing Wang, Gholamreza Haffari, and Yuan- 461
Fang Li. 2023. On robustness of prompt-based se- 462
mantic parsing with large pre-trained language model: 463
An empirical study on codex. In Proceedings of the 464
17th Conference of the European Chapter of the As- 465
sociation for Computational Linguistics, pages 1090– 466
1102, Dubrovnik, Croatia. Association for Computa- 467
tional Linguistics. 468

A Problem Structure 469

Each LeetCode problem has three parts: problem 470

description, a set of constraints and code snippet 471

to guide the answer generation. Here is a sample 472

problem. 473

Problem Description: 474

Special Positions in a Binary Matrix. 475

Given an m × n binary matrix mat, re- 476

turn the number of special positions in 477

mat. 478

A position (i, j) is called special if 479

mat[i][j] == 1 and all other elements 480

in row i and column j are 0 (rows and 481

columns are 0-indexed). 482

483

Constraints: 484

m == mat.length 485

n == mat[i].length 486

1 <= m, n <= 100 487

mat[i][j] is either 0 or 1. 488

Code Snippet: 489

def numSpecial(mat): 490

""" 491

:type mat: List[List[int]] 492

:rtype: int 493

""" 494

6

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2407.01687
http://arxiv.org/abs/2407.01687
http://arxiv.org/abs/2407.01687
http://arxiv.org/abs/2407.01687
http://arxiv.org/abs/2407.01687
https://wordnet.princeton.edu
https://aclanthology.org/2024.findings-eacl.91/
https://aclanthology.org/2024.findings-eacl.91/
https://aclanthology.org/2024.findings-eacl.91/
https://doi.org/10.18653/v1/2022.emnlp-demos.39
https://doi.org/10.18653/v1/2022.emnlp-demos.39
https://doi.org/10.18653/v1/2022.emnlp-demos.39
https://doi.org/10.18653/v1/2022.emnlp-demos.39
https://doi.org/10.18653/v1/2022.emnlp-demos.39
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
http://arxiv.org/abs/2210.03057
http://arxiv.org/abs/2210.03057
http://arxiv.org/abs/2210.03057
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2403.05530
https://openreview.net/forum?id=YXogl4uQUO
https://openreview.net/forum?id=YXogl4uQUO
https://openreview.net/forum?id=YXogl4uQUO
https://openreview.net/forum?id=YXogl4uQUO
https://openreview.net/forum?id=YXogl4uQUO
http://arxiv.org/abs/2309.11166
http://arxiv.org/abs/2309.11166
http://arxiv.org/abs/2309.11166
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.1145/3689217.3690621
https://doi.org/10.1145/3689217.3690621
https://doi.org/10.1145/3689217.3690621
https://doi.org/10.1145/3689217.3690621
https://doi.org/10.1145/3689217.3690621
https://doi.org/10.18653/v1/2023.eacl-main.77
https://doi.org/10.18653/v1/2023.eacl-main.77
https://doi.org/10.18653/v1/2023.eacl-main.77
https://doi.org/10.18653/v1/2023.eacl-main.77
https://doi.org/10.18653/v1/2023.eacl-main.77

Given such problem template, the prompt involves495

prepending the following statement:496

Can you write python 2 code to solve this497

problem using the code snippet below:498

To test whether the generated code is correct,499

each problem also has a set of test cases with an ID500

that specify a set of inputs and expected output.501

502
ID Input Output
1 [[[1,0,0],[0,0,1],[1,0,0]]] 1
2 [[[1,0,0],[0,1,0],[0,0,1]]] 3
3 [[[1,1,0],[0,0,0],[0,0,0]]] 0

503

If the generated code is correct, the code should504

produce the correct output for all inputs in a rea-505

sonable amount of time.506

B Prompt Perturbation Example507

An example of prompt perturbation is as follows.508

Consider the following original prompt:509

Can you write python 2 code to solve this510

problem using the code snippet below:511

Maximum Height by Stacking Cuboids512

Given n cuboids where the dimensions513

of the ith cuboid is cuboids[i]=514

[width_i,length_i,height_i] (0-515

indexed). Choose a subset of cuboids516

and place them on each other.517

You can place cuboid i on518

cuboid j if width_i<=width_j519

and length_i<=length_j and520

height_i<=height_j. You can521

rearrange any cuboid’s dimensions by522

rotating it to put it on another cuboid.523

Return the maximum height of the524

stacked cuboids.525

526

Constraints:527

n == cuboids.length528

1 <= n <= 100529

1 <= w_i, l_i, h_i <= 100530

Code Snippet:531

def maxHeight(cuboids):532

"""533

:type cuboids: List[List[int]]534

:rtype: int535

"""536

KeyBert model identified the words ‘cuboid, height, 537

stacked’ as the keywords, and the synonyms of 538

these words are selected as ‘box, tallness, piled‘. 539

The selected words are emphasized in the example 540

prompt. These words, along with other forms of 541

the same words, such as ‘cuboids’ and ‘stacking’, 542

are replaced with respective synonyms and used as 543

queries to the LLM of interest. 544

7

