Large Language Models Exhibit Limited Reasoning Ability on Coding
Problems

Anonymous ACL submission

Abstract

Claims that large language models (LLMs)
have complex reasoning ability have stirred
broad interests, and controversies, of academics
and non-academics alike. A popular basis
for such claims comes from LLMs’ ability to
solve coding problems, which involves under-
standing the problem statement and provid-
ing code that solves the problem. Although
such abilities are remarkable feats worth prais-
ing, we argue that they come from memoriza-
tion rather than reasoning. We first show that
LLMs’ problem-solving ability degrades with
increased recency of the problem, likely due to
the reduced amount of training data for more
recent problems, regardless of the problem dif-
ficulty labeled by human experts. Addition-
ally, we show that an LLM often fails to solve
the problem when presented with reworded but
equivalent problem statements, further suggest-
ing their limited reasoning ability.

1 Introduction

The development of large language models (LLMs)
has substantially advanced natural language pro-
cessing, enabling various applications across mul-
tiple domains. Their remarkable performance on
diverse tasks has sparked significant research in-
terest in their reasoning abilities. While LL.Ms are
often claimed to possess reasoning abilities, it still
remains a controversy (Huang and Chang, 2023;
Mondorf and Plank, 2024). Although some previ-
ous studies provide evidence that LLMs are able
to reason (Shi et al., 2022; Suzgun et al., 2023;
Lampinen et al., 2024; Saparov and He, 2023), oth-
ers show that their ability to reason is limited (Ark-
oudas, 2023; Yang et al., 2023; Kambhampati et al.,
2024; McCoy et al., 2023; Valmeekam et al., 2023;
Razeghi et al., 2022). Some studies show evidence
for both the true ability to reason and reliance on
shallow heuristics (Prabhakar et al., 2024). Thus,
it remains unclear whether the behavior of these
systems is based on true reasoning or superficial

heuristics such as memorization or recognition of
surface-level patterns.

In this study, we evaluate LLMs’ reasoning
ability on solving coding problems, which inher-
ently require reasoning skills. Code generation,
where models assist with generating and complet-
ing code, is one of the most popular application
of LLMs (Jiang et al., 2024), with the promises
of Al-generated code improving coding efficiency.
While previous research has shown that LLMs
can generate code, often more efficiently than hu-
mans (Coignion et al., 2024), it has rarely been
investigated whether this ability stems from gen-
uine reasoning or merely from retrieving patterns
from training data. Coding problems provide an ef-
fective test case for this distinction, as they require
reasoning skills, yet many widely used problem
sets are likely to have been included in training
data. This allows us to assess whether their perfor-
mance reflects true reasoning or pattern recognition.
If LLMs exhibit lower accuracy on prompts that
are unlikely to have appeared in their training data,
while performing well on otherwise similar prob-
lems, this would suggest that their performance
is primarily dependent on memory retrieval rather
than reasoning.

To test this, we conducted two analyses. First,
we investigated the change in model performance
as a function of the time point at which the problem
was entered into the coding problem database. If
models perform better with older problems, which
are more likely included in the training data, com-
pared to more recent problems with similar diffi-
culty, the finding would suggest that the model tend
to recite from memory rather than use reasoning
skills. Second, we investigated the effect of prompt
perturbation, by replacing 1-3 keywords with their
synonyms and testing whether the model perfor-
mance changes. If model performance on code
generation is susceptible to word-level perturbation
in the prompts, as often reported in previous studies

(Wang et al., 2023; Qiang et al., 2024; Zhu et al.,
2024; Zhuo et al., 2023), the finding would suggest
that models perform well only on word sequences
they have encountered during training, rather than
applying reasoning skills to solve problems. We
also examine the effect of word frequency on per-
formance under perturbation. Our results from both
analyses demonstrate that models respond differ-
ently to questions that are essentially the same but
phrased differently, suggesting that LLMs have lim-
ited reasoning ability.

2 Methods

2.1 Dataset Specification

The evaluation data set consists of manually col-
lected random samples of coding problems from
a popular repository called LeetCode'. Each Leet-
Code problem has a set of associated attributes:
Problem ID, difficulty, test cases, # of submissions,
and # of acceptances. Problem IDs are numerical
values assigned automatically by LeetCode, indi-
cating the order in which problems were added to
the database. A higher ID corresponds to a more
recently added problem. The difficulty level is one
of easy, medium, hard and is a manually labeled
identifier that provides an estimate of the difficulty
of each problem. Test cases are used to verify the
correctness of the provided solution and consist of
input-output pairs that the solution must process
correctly, producing the expected output for each
given input. All test cases must pass in order for the
solution to be correct or accepted. # of submissions
is the number of attempted solutions submitted by
the users, and # of acceptances are the subset of
such submissions that pass all the test cases. A
sample of the problem and test cases is presented
in Appendix A.

The data set collected for the present study con-
sisted of 30 problems for each difficulty level, re-
sulting in a total of 90 problems.

2.2 Model Specifications

The set of models evaluated is (ordered in the
decreasing number of model parameters): GPT-
40 (OpenAl et al., 2024), Gemini 1.5 Pro (Team
etal., 2024), GPT-3.5 (OpenAl et al., 2024), Llama
3 70B (Grattafiori et al., 2024), and StarCoder 2
15B (Li et al., 2023). This selection ensures cov-
erage of key model variables such as the model
size, whether the model is open- or closed-source,

"https://leetcode.com

and whether the model is vanilla or fine-tuned. For
example, GPT-40 and Gemini 1.5 Pro are closed-
source models, while Llama 3 and StarCoder 2 are
open-source. GPT-40, Gemini 1.5 Pro, and Llama
3 are vanilla models optimized for generic question
answering, and StarCoder 2 is a model fine-tuned
specifically for code generation.

2.3 Prompt Perturbation Analysis

We examined how modifying certain words within
a prompt affects the output quality of large lan-
guage models. For this, we used only GPT-40, as
it demonstrated the best performance among all
models outlined above (see Section 3). We selected
a subset of problems (N=25) for which GPT-40
passed all test cases and modified the prompts with-
out altering their meaning. To ensure that the model
received essentially the same prompt, we replaced
specific keywords with their closest synonyms.

We extracted a set of keywords in each prompt
using keyBERT (Grootendorst, 2020), a model that
provides a list of keywords, each with a score
that measures how important the word is in the
prompt. KeyBERT utilizes BERT, a model that gen-
erates vectors from text, to extract document em-
beddings and word embeddings, and provides a set
of relevant words based on cosine similarity mea-
sures. Using keyBERT, we performed three levels
of keyword-based analysis, replacing the highest
scoring, the top two, and the top three words with
their synonyms, in order to examine changes in
model performance as a function of the number of
keywords replaced. If a keyword (e.g., stacking) ap-
peared in another form (e.g., stacked), all instances
were replaced accordingly (e.g., piling, piled), but
the total replacement count was still considered as
one. That is, we examined the effect of the num-
ber of unique keywords replaced. An example of
perturbations is presented in Appendix B.

Synonyms for the selected keywords were ob-
tained from the WordNet database (Princeton Uni-
versity, 2010) using the nltk package (Bird et al.,
2009). From the list of synonyms suggested by
WordNet, we selected the one that minimally al-
tered the meaning of the original prompt. In ad-
dition, we obtained the word frequencies of the
original keywords and their synonyms from SUB-
TLEXus (Brysbaert and New, 2009) to. If a word
does not appear on the SUBTLEXus frequency list,
the frequency was regarded as zero.

2.4 Evaluation Metric

Each of the model performance is solely evaluated
on whether or not each output generated passes all
of the test cases. For a given model m, problem p
and query q, correctness of the model and problem
pair for the given query is defined as:

1, m’s solution for p generated

Cm,p(Q) =

from g passes all test cases
0, Otherwise.

Given Cy, ,(q), the accuracy A is defined as

ZpEP Crmp(q)

Am(q) = P

where accuracy for a given model m for a set of
problem P varies for input query gq.

3 Results & Discussion

3.1 Recency effect on accuracy

We first evaluated how the problem solving perfor-
mance of the five LLMs outlined in 2.2 changes
as a function of the time point at which a prob-
lem was entered into LeetCode. Figure 1 presents
correctness of the five models’ outputs as a func-
tion of Problem ID, divided by difficulty. First, the
accuracy of output was highest among the Easy
problems (0.82), intermediate among the Medium
(0.59), and lowest among the Hard ones (0.33). Of
the five models, GPT-40 exhibited the highest accu-
racy (0.78). Within each difficulty, we see an effect
of problem ID such that the model tends to struggle
more often with higher-numbered (more recent)
problems. This pattern is observed consistently
across all models. The result shows that the mod-
els perform better with older problems, which are
more likely to have been included in the training
data, suggesting that the problem solving ability
is likely based on memorization rather than true
reasoning.

3.2 Prompt Perturbation

Next, we evaluated changes in model performance
under prompt perturbation. As mentioned in Sec-
tion 2.3, we only considered GPT-40’s outputs for
this analysis, as GPT-40 exhibited the highest over-
all problem solving performance in 3.1.

Figure 1 presents the correctness of GPT-40 out-
puts as a result of prompt perturbation. By design,
accuracy in the Original Prompt condition is 1, as

we included only the prompts that the model cor-
rectly solved in the analysis. Critically, replacing
a single keyword with a synonym already led to
a drop in accuracy (0.72), which declined further
as more keywords were replaced (0.64 when two
words were replaced; 0.56 when three were re-
placed). Despite the small sample size, this pattern
was consistent across all difficulty levels—accuracy
never increased but either remained the same or
decreased when more words were replaced. Specif-
ically, for Easy problems, the number of correct
solutions changed from 7 to 6 to 6 across the 1-, 2-,
and 3-word replacements; for Medium problems,
from 6 to 5 to 5; and for Hard problems, from 5 to
5to 3.

In the 1-word replacement condition, we also
examined how the relative frequency between the
original word and its synonym affected model per-
formance. Among the 25 problems analyzed, one
had identical frequencies for both words and was
excluded from the analysis. For the remaining 24
problems, the new word (synonym) had a higher
frequency in 15 cases and a lower frequency in 9
cases, compared to the original word. When the
new word was more frequent (N=15), the model
correctly solved 11 problems and failed on 4 (0.73
accuracy). When the new word had a lower fre-
quency (N=9), the model correctly solved 6 prob-
lems and failed on 3 (0.67 accuracy). Therefore,
a decrease in word frequency in the new prompt
leads to a greater drop in accuracy compared to an
increase in frequency, although this finding should
be interpreted with caution due to the small sample
size.

3.3 Summary & Discussion

In summary, LLMs perform better on older Leet-
Code problems, likely due to memorization from
training data, and exhibit decreasing accuracy on
more recent problems and when a small portion of
the prompts are perturbed, suggesting a reliance
on surface-level patterns rather than true reason-
ing. We also found that the accuracy decrease is
more noticeable when the new prompt contains
rarer words. Our findings are consistent with those
of previous studies (Gonen et al., 2023; Razeghi
et al., 2022) showing that the more frequently the
prompt appears in the training data, the more fa-
miliar the model is with it, leading to improved
model performance. Similarly, numerous studies
have reported a close relationship between pretrain-

Easy Medium Hard
(0]
- 0%®a 800 ¥ 0@ © & o ©O o o o o o o CBD
e
b= x X X x x X % x X X % x XX Xxx X X ox X x¥Ex X K x X % —‘
o
- gL 0° & oB 8 2 ®o0% ©%e o °° o ® oo o %
ol
i y . I i} X x% % x Xx x W @ Xx wf o
)
N
8-0&5’&8’ 8% o8 8 o o ®°H °8 o g oo 8 &°° o8 % G oo o %
] =
£- x X x x x % x oxoox %% &
Q
(&)
- 806 8% &888 ° g @0 oo °©° 6 o, o & ©° o o o =
=
. L. x X ¢ xx ¥ %X XX X X w< x X s % a
@«
- 009 ©° ® & o 8° °e ° ® ° o o §‘>’
g
- x X % x x x % Pe%s i ¥ X% XX % X% XX X 06X M X X %% 9
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

Problem ID (Higher number means more recent problem)

Correctness ©

Correct %

Incorrect

Figure 1: Correctness of model output as a function of Problem ID, grouped by difficulty level and LLM type

Original Prompt 1 Word Replaced

1.00 -

0.75-

0.50 -

Proportion

0.25-

0.00-

Easy Medium Hard

Easy Medium Hard
Difficulty

2 Words Replaced 3 Words Replaced

Easy Medium Hard Easy Medium Hard

Correctness . Incorrect . Correct

Figure 2: Model accuracy A, (q) for m = GPT-4o and varying queries ¢, grouped by the number of unique keywords

replaced and difficulty level

ing data and task performance (e.g. Elazar et al.
2023; Kandpal et al. 2023).

4 Conclusion

We argue that LLMs are, by design, autoregressive
word sequence predictors and that there is nothing
inherent in them that enables reasoning. LLMs
can only simulate reasoning by learning statisti-
cal patterns in large amounts of data and applying

learned patterns in a way that appears logical. This
work provides compelling evidence to this argu-
ment, which shows that LLMs fail to solve the
simplest problems with subtle changes to how the
problem is worded. We believe that this work will
motivate future research to improve LLMs’ prob-
lem solving ability via data augmentation using
prompt perturbation and improved LLM architec-
tures.

Limitations

One of the main limitations of this work is that
the experiment is performed only on English query
and result pairs. Although the experimental meth-
ods are not limited to English, models trained with
other languages may or may not perform better
than models trained mostly on English problems.
Another limitation to discuss is the limited set of
models evaluated. Although this work evaluates the
reasoning capabilities of many popular LLMs, it
does not provide coverage of many available LLMs,
mainly due to the ever increasing number of LLMs
coming into the market. In addition, the work does
not evaluate specialized reasoning models that em-
ploy Chain-of-Thought (CoT) reasoning. We argue
that solving LeetCode problems may not be greatly
influenced by CoT due to the nature of LeetCode
problems asking for a one-step solution, such claim
is a worthwhile investigation for future work. The
last limitation is the low number of samples evalu-
ated, which is mainly due to the manual nature of
data collection and the cost of evaluation. We plan
to address this limitation by obtaining and evaluat-
ing a larger set of data with additional funding.

Ethics Statement

We do not anticipate an immediate ethical or so-
cietal impact resulting from our work. However,
we acknowledge that LeetCode is a widely used
tool in the industry to assess interview candidates’
programming aptitude. Thus, if the content and the
result of this work is maliciously used, it can po-
tentially lead to plagiarism on programming inter-
views. In addition, it is well known that LLMs hal-
lucinate, i.e., generate invalid answers that seems
correct. Thus, code generation via the approaches
mentioned in this paper can also result in halluci-
nations, which may lead to unforeseen issues if the
code is used directly in real-world applications.

References

Konstantine Arkoudas. 2023. Gpt-4 can’t reason.

Steven Bird, Edward Loper, and Ewan Klein. 2009.
Natural Language Processing with Python. O’Reilly
Media Inc.

M. Brysbaert and B New. 2009. Moving beyond Kucera
and Francis: A critical evaluation of current word
frequency norms and the introduction of a new and

improved word frequency measure for American En-
glish. Behavior Research Methods, 41:977-990.

Tristan Coignion, Clément Quinton, and Romain Rou-
voy. 2024. A performance study of 1lm-generated
code on leetcode. In Proceedings of the 28th Inter-
national Conference on Evaluation and Assessment
in Software Engineering, EASE 2024, page 79-89.
ACM.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Amir
Feder, Abhilasha Ravichander, Marius Mosbach,
Yonatan Belinkov, Hinrich Schiitze, and Yoav Gold-
berg. 2023. Measuring causal effects of data statistics
on language model’s ‘factual’ predictions.

Hila Gonen, Srini Iyer, Terra Blevins, Noah Smith, and
Luke Zettlemoyer. 2023. Demystifying prompts in
language models via perplexity estimation. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 10136-10148, Singapore.
Association for Computational Linguistics.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, et al. 2024. The
llama 3 herd of models.

Maarten Grootendorst. 2020. Keybert: Minimal key-
word extraction with bert.

Jie Huang and Kevin Chen-Chuan Chang. 2023. To-
wards reasoning in large language models: A survey.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large lan-
guage models for code generation. arXiv preprint
arXiv:2406.00515.

Subbarao Kambhampati, Karthik Valmeekam, Lin
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham-
bri, Lucas Saldyt, and Anil Murthy. 2024. Llms can’t
plan, but can help planning in llm-modulo frame-
works.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric
Wallace, and Colin Raffel. 2023. Large language
models struggle to learn long-tail knowledge.

Andrew K Lampinen, Ishita Dasgupta, Stephanie C Y
Chan, Hannah R Sheahan, Antonia Creswell, Dhar-
shan Kumaran, James L McClelland, and Felix
Hill. 2024. Language models, like humans, show
content effects on reasoning tasks. PNAS Nexus,
3(7):pgae233.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, et al. 2023. Starcoder:
may the source be with you!

R. Thomas McCoy, Shunyu Yao, Dan Friedman,
Matthew Hardy, and Thomas L. Griffiths. 2023. Em-
bers of autoregression: Understanding large language
models through the problem they are trained to solve.

Philipp Mondorf and Barbara Plank. 2024. Beyond
accuracy: Evaluating the reasoning behavior of large
language models - a survey. In First Conference on
Language Modeling.

http://arxiv.org/abs/2308.03762
https://doi.org/10.1145/3661167.3661221
https://doi.org/10.1145/3661167.3661221
https://doi.org/10.1145/3661167.3661221
http://arxiv.org/abs/2207.14251
http://arxiv.org/abs/2207.14251
http://arxiv.org/abs/2207.14251
https://doi.org/10.18653/v1/2023.findings-emnlp.679
https://doi.org/10.18653/v1/2023.findings-emnlp.679
https://doi.org/10.18653/v1/2023.findings-emnlp.679
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
http://arxiv.org/abs/2212.10403
http://arxiv.org/abs/2212.10403
http://arxiv.org/abs/2212.10403
http://arxiv.org/abs/2402.01817
http://arxiv.org/abs/2402.01817
http://arxiv.org/abs/2402.01817
http://arxiv.org/abs/2402.01817
http://arxiv.org/abs/2402.01817
http://arxiv.org/abs/2211.08411
http://arxiv.org/abs/2211.08411
http://arxiv.org/abs/2211.08411
https://doi.org/10.1093/pnasnexus/pgae233
https://doi.org/10.1093/pnasnexus/pgae233
https://doi.org/10.1093/pnasnexus/pgae233
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2309.13638
http://arxiv.org/abs/2309.13638
http://arxiv.org/abs/2309.13638
http://arxiv.org/abs/2309.13638
http://arxiv.org/abs/2309.13638
https://openreview.net/forum?id=Lmjgl2n11u
https://openreview.net/forum?id=Lmjgl2n11u
https://openreview.net/forum?id=Lmjgl2n11u
https://openreview.net/forum?id=Lmjgl2n11u
https://openreview.net/forum?id=Lmjgl2n11u

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, et al. 2024. Gpt-4 technical report.

Akshara Prabhakar, Thomas L. Griffiths, and R. Thomas
McCoy. 2024. Deciphering the factors influencing
the efficacy of chain-of-thought: Probability, memo-
rization, and noisy reasoning.

Princeton University. 2010. About WordNet.

Yao Qiang, Subhrangshu Nandi, Ninareh Mehrabi, Greg
Ver Steeg, Anoop Kumar, Anna Rumshisky, and
Aram Galstyan. 2024. Prompt perturbation consis-
tency learning for robust language models. In Find-
ings of the Association for Computational Linguistics:
EACL 2024, pages 1357-1370, St. Julian’s, Malta.
Association for Computational Linguistics.

Yasaman Razeghi, Raja Sekhar Reddy Mekala, Robert L
Logan Iv, Matt Gardner, and Sameer Singh. 2022.
Snoopy: An online interface for exploring the effect
of pretraining term frequencies on few-shot LM per-
formance. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 389-395, Abu Dhabi,
UAE. Association for Computational Linguistics.

Abulhair Saparov and He He. 2023. Language models
are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International
Conference on Learning Representations.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das,
and Jason Wei. 2022. Language models are multilin-
gual chain-of-thought reasoners.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, and Jason Wei. 2023. Challenging BIG-bench
tasks and whether chain-of-thought can solve them.
In Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 13003-13051, Toronto,
Canada. Association for Computational Linguistics.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Bur-
nell, Libin Bai, et al. 2024. Gemini 1.5: Unlocking
multimodal understanding across millions of tokens
of context.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,
Sarath Sreedharan, and Subbarao Kambhampati.
2023. Planbench: An extensible benchmark for eval-
uating large language models on planning and rea-
soning about change. In Thirty-seventh Conference
on Neural Information Processing Systems Datasets
and Benchmarks Track.

Haoyu Wang, Guozheng Ma, Cong Yu, Ning Gui, Linrui
Zhang, Zhiqi Huang, Suwei Ma, Yongzhe Chang,
Sen Zhang, Li Shen, Xueqian Wang, Peilin Zhao,
and Dacheng Tao. 2023. Are large language models
really robust to word-level perturbations?

Zhun Yang, Adam Ishay, and Joohyung Lee. 2023. Cou-
pling large language models with logic programming
for robust and general reasoning from text. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2023, pages 51865219, Toronto, Canada.
Association for Computational Linguistics.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang,
Hao Chen, Yidong Wang, Linyi Yang, Wei Ye, Yue
Zhang, Neil Gong, and Xing Xie. 2024. Promptro-
bust: Towards evaluating the robustness of large
language models on adversarial prompts. In Pro-
ceedings of the 1st ACM Workshop on Large Al Sys-
tems and Models with Privacy and Safety Analysis,
LAMPS °24, page 57-68, New York, NY, USA. As-
sociation for Computing Machinery.

Terry Yue Zhuo, Zhuang Li, Yujin Huang, Fatemeh
Shiri, Weiqing Wang, Gholamreza Haffari, and Yuan-
Fang Li. 2023. On robustness of prompt-based se-
mantic parsing with large pre-trained language model:
An empirical study on codex. In Proceedings of the
17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 1090—
1102, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

A Problem Structure

Each LeetCode problem has three parts: problem
description, a set of constraints and code snippet
to guide the answer generation. Here is a sample
problem.

Problem Description:

Special Positions in a Binary Matrix.
Given an m X n binary matrix mat, re-
turn the number of special positions in
mat.

A position (i, j) is called special if
mat[iJ[j] == 1 and all other elements
in row i and column j are @ (rows and
columns are 0-indexed).

Constraints:

m == mat.length

n == mat[i].length

1 <=m, n<=100

mat[iJ[j] is either @ or 1.

Code Snippet:

def numSpecial(mat):
:type mat: List[List[int]]
:rtype: int

nnn

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2407.01687
http://arxiv.org/abs/2407.01687
http://arxiv.org/abs/2407.01687
http://arxiv.org/abs/2407.01687
http://arxiv.org/abs/2407.01687
https://wordnet.princeton.edu
https://aclanthology.org/2024.findings-eacl.91/
https://aclanthology.org/2024.findings-eacl.91/
https://aclanthology.org/2024.findings-eacl.91/
https://doi.org/10.18653/v1/2022.emnlp-demos.39
https://doi.org/10.18653/v1/2022.emnlp-demos.39
https://doi.org/10.18653/v1/2022.emnlp-demos.39
https://doi.org/10.18653/v1/2022.emnlp-demos.39
https://doi.org/10.18653/v1/2022.emnlp-demos.39
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
http://arxiv.org/abs/2210.03057
http://arxiv.org/abs/2210.03057
http://arxiv.org/abs/2210.03057
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2403.05530
https://openreview.net/forum?id=YXogl4uQUO
https://openreview.net/forum?id=YXogl4uQUO
https://openreview.net/forum?id=YXogl4uQUO
https://openreview.net/forum?id=YXogl4uQUO
https://openreview.net/forum?id=YXogl4uQUO
http://arxiv.org/abs/2309.11166
http://arxiv.org/abs/2309.11166
http://arxiv.org/abs/2309.11166
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.1145/3689217.3690621
https://doi.org/10.1145/3689217.3690621
https://doi.org/10.1145/3689217.3690621
https://doi.org/10.1145/3689217.3690621
https://doi.org/10.1145/3689217.3690621
https://doi.org/10.18653/v1/2023.eacl-main.77
https://doi.org/10.18653/v1/2023.eacl-main.77
https://doi.org/10.18653/v1/2023.eacl-main.77
https://doi.org/10.18653/v1/2023.eacl-main.77
https://doi.org/10.18653/v1/2023.eacl-main.77

Given such problem template, the prompt involves
prepending the following statement:

Can you write python 2 code to solve this
problem using the code snippet below:

To test whether the generated code is correct,
each problem also has a set of test cases with an ID
that specify a set of inputs and expected output.

’ ID ‘ Input \ Output

1 | [[[1,0,0]1,[0,0,1],[1,0,0]]] 1

2 | [[[1,0,0]1,[0,1,0],[0,0,11]] 3

3 | [ff1,1,0],[0,0,0],[0,0,0]]] 0

If the generated code is correct, the code should
produce the correct output for all inputs in a rea-
sonable amount of time.

B Prompt Perturbation Example

An example of prompt perturbation is as follows.
Consider the following original prompt:

Can you write python 2 code to solve this
problem using the code snippet below:

Maximum Height by Stacking Cuboids

Given n cuboids where the dimensions
of the i™ cuboid is cuboids[il=
[width_i,length_i,height_i] (O-
indexed). Choose a subset of cuboids
and place them on each other.

You <can place cuboid i on
cuboid j if width_i<=width_j
and length_i<=length_j and
height_i<=height_j. You can
rearrange any cuboid’s dimensions by
rotating it to put it on another cuboid.

Return the maximum height of the
stacked cuboids.

Constraints:

n == cuboids.length
1 <= n <= 100
1 <=w_i, 1_i, h_i <= 100

Code Snippet:

def maxHeight(cuboids):
:type cuboids: List[List[int]]
:rtype: int

nnn

KeyBert model identified the words ‘cuboid, height,
stacked’ as the keywords, and the synonyms of
these words are selected as ‘box, tallness, piled".
The selected words are emphasized in the example
prompt. These words, along with other forms of
the same words, such as ‘cuboids’ and ‘stacking’,
are replaced with respective synonyms and used as
queries to the LLM of interest.

