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Abstract

Despite the rapid growth in access to digital de-
vices, the new users of the devices, especially
in developing countries like India, are not able
to access information on their rights and enti-
tlements, jobs and livelihood, healthcare, edu-
cation, etc. as the information is in the form
of very long, complex sentences and heavy in
legal parlance. Open information extraction
techniques can be used to convert unstructured
legal text into triples of the form (subject,
relation, object) in a domain-independent
manner. However, the legal text is long and
complex which calls for extracting structure be-
yond triples, also called complex information
extraction. This paper proposes a generative
approach to perform complex information ex-
traction from legal statements. We achieve this
by encoding legal statements as trees to capture
their complex structure and semantics. This
end-to-end modeling reduces the propagation
of errors across complicated pipelines. We ex-
perimented with multiple generative architec-
tures to conclude that our proposed approach
reports up to 14.7 % gain on an Indian Legal
benchmark and is competitive on open infor-
mation extraction benchmarks.

1 Introduction

The number of people with access to smartphones
and other computing devices is on a constant rise.
Some data sources point to there being a 71% reach
of smartphones in 2023 [39, 17]. This should lead
to greater access to information and data for a large
part of the population, however we observe that the
new users of digital devices (often called the Next
Billion Users) [16] is not able to leverage the access
to devices to access information about their rights
and entitlements, jobs, livelihood, health or edu-
cation. One primary reason for this phenomenon
is that information in these domains, if they exist,
exist in textual formats, in legal parlance, with long
and complex sentence structures [1]. Understand-
ing the textual information and taking action on

them puts substantial cognitive load on the new
users, who often do not have the educational train-
ing and agency to consume and act on the informa-
tion [20].

NLP techniques can assist in structuring and or-
ganizing legal data to enable automatic search and
retrieval [11, 43]. Open information extraction
(OIE) techniques [23, 38, 13] can be used to ex-
tract structured information such as triples of the
form (subject, relation, object) from a sentence
in a domain-independent manner. However, legal
text poses unique challenges - Legal sentences and
documents are lengthy with complex inter-clausal
relationships between them [8]. Existing OIE tech-
niques are unable to return the best results on legal
sentences. For instance, the output of OpenlE6
[23] on If over 50 percent of a company’s work-
ers take concerted casual leave, it will be treated
as a strike are 2 triples - i) (it, will be treated,
as a strike), ’LZ) (over 50 percent of a company’s
workers, take concerted, casual 1eave>. The model
fails to identify that a condition connects the two
extractions. Apart from condition, clauses can have
relations such as contrast or disjunction, etc (Table
1) among them. Identifying such relations is impor-
tant to design systems that empower users interpret
complex legal information.

The problem of extracting structure beyond
triples is handled by a relatively new area of
research known as complex information extrac-
tion [26]. However, most of these techniques
[32, 33] involve multiple-step pipelines for identi-
fying clauses and relationships between them that
propagate errors. They also lack language under-
standing and generalization capabilities. This pa-
per proposes LeGen, an end-to-end generative ap-
proach for complex information extraction from
legal sentences. Generative architectures, such as
T5 [35], BART [25], or GPT [34] have been very
successful in understanding text and generalization.
By encoding legal sentences as a discourse tree



Sentence Clauses Relations | Relations among Clauses
If over 50 percent 1) Over 50 percent CONDITION }%CCUVDITIOAz(Over
of a company’s of a company’s 50 percent of a
workers take workers take company’s workers
concerted casual concerted casual take concerted
leave, it will leave casual leave, It
be treated as a 2) It will be will be treated as
strike treated as a a strike)
strike
A non-resident 1) A non-resident CONTRAST, R (A
- - CONTRAST
can open an NPS can open an NPS CONDITION non-resident
account, but the account can open an
account will be 2) The account NPS account,
closed if the will be closed Rconprrron(The
citizenship status 3) The citizenship account will
of the NRI has status of the NRI be closed, The
been changed. has been changed citizenship status
of the NRI has
been changed))
If balance amount 1) Balance amount CONDITION, R (Balance
CONDITION
in the account in the account DISJUNCTION amount in the
of a deceased of a deceased account of a
is higher than is higher than deceased is higher
150,000 then the 150,000 then than 150,000 then,
nominee or legal 2) The nominee Rprssuncrron(The
heir has to prove has to prove the nominee has to
the identity to identity to claim prove the identity
claim the amount the amount to claim the
3) Legal heir amount, Legal heir
has to prove the has to prove the
identity to claim identity to claim
the amount the amount))

Table 1: Examples of clauses and relations CAUSE, CONDITION, CONTRAST, and DISJUNCTION among clauses

[32], (Section 4.1) we use BART and T5 architec-
tures to capture both the structure and semantics
of a complex sentence more accurately. Such end-
to-end modeling reduces the propagation of errors
across multiple steps. Our salient contributions are:

1. We introduce the problem of information ex-
traction for Indian Law

2. We introduce the idea of using complex infor-
mation extraction for legal statements

3. We propose LeGen, an end-to-end generative
approach for legal information extraction us-
ing a novel tree-based encoding technique

4. We release a new benchmark for legal infor-
mation extraction, curated from Indian Law
statements

5. We report substantial gain over Graphene [32],
a state-of-the-art complex information extrac-
tion technique on the Indian Legal benchmark.

6. We show LeGen’s flexibility by training it as
an OIE task, and conclude that it is competi-
tive on an OIE benchmark.

Our paper is organized as follows. In Section
2, we discuss work related to legal, complex, and
open information extraction. We formally describe
the problem in Section 3 and introduce LeGen
in Section 4. We discuss our experiments and re-
sults in Section 5 and 6 and discuss future work
in Section 7. The limitations of our approach are
described in Section 8.



2 Related Work

2.1 Legal Information Extraction

As mentioned in [11], NLP or machine learning
can be applied to legal research for multiple tasks
not limited to finding information relevant to a le-
gal decision [2, 30, 6], contract review (checking
that a contract is complete and avoids risk) [7, 24],
legal entity recognition [4], generating legal docu-
ment — includes legal systems that generate legal
documents by filling the blanks in the already ex-
isting templates and another kind in which, based
on set of questions asked by the system, a tailored
or custom made legal document is produced, and
providing legal advice using QA system [1]. Such
contributions have been made to both Indian and
non-Indian legal systems.

In India, various efforts have been made to au-
tomate the judicial pipeline. The SemEval task
[31] introduced 3 problems to be tackled on the
ILDC corpus [27]. - 7) legal named entity recogni-
tion [21] performs named entity recognition on the
ILDC corpus, ii) rhetorical role prediction struc-
tures legal transcripts into rhetorical roles [22] and
iii) court case judgment prediction proposes us-
ing Al-based techniques to automate course case
judgments. However, to the best of our knowledge,
accurately extracting structure from unstructured
legal sentences in the Indian Legal domain has not
been studied.

Among the datasets, there is the Chinese legal
dataset LEVEN [40] which detects legal events
(charge-related events including general events in
legal documents), the Indian Legal dataset, ILDC
[27] containing Supreme Court cases annotated
with court decisions which can be used for predict-
ing justice and explanation, CaseHold [42] dataset
comprising of multiple choice questions to identify
the relevant cases, CUAD [19], an annotated legal
data set for contract review and various others.

As mentioned above, these data sets and re-
search’s primary focus is understanding the court
cases, judgments, prediction tasks, or segmenta-
tion. Our work focuses on extracting structural
information from complex legal sentences.

2.2 Open Information Extraction

Open Information Extraction uses an independent
paradigm to extract the information as a triple,
(subject, relation, object). Banko et al.,[41] in-
troduced the concept of Open Information Extrac-
tion and proposed Text Runner. Following this,

many rule-based systems were developed like RE-
VERB [13] and OpenlES5 [36]. Moving from rule-
based system, we have RNNOIE 1'[38] which uses
a neural-based approach to open information ex-
traction and is trained by extracting non-neural sys-
tems.

The state-of-the-art in Open Information Extrac-
tion, OpenIE6 2 uses iterative grid labeling with
BERT architecture to generate triples from input
sentences. It combines the results from the three
models (coordination model, OIE model, and Al-
lennlp models) to generate triples from input sen-
tences.

2.3 Complex Information Extraction

Many OIE systems have been developed which
cater to identifying triples in a complex sentence
[26] like OLLIE [37], MinlE [15], ClauslE [12],
StuffIE [33] and Graphene [5].

ClauslE ? , MinIE * and OLLIE ° uses a
linguistic-based approach to information extrac-
tion. OLLIE open information system uses a set
of pre-defined templates and rules to identify the
relation present in the sentence. MinlE also uses
a linguistic approach to extract information with a
difference that enhances the output by adding other
semantic information like polarity, modality, attri-
bution, and quantities. StuffIE [33]°, another open
information system that aims to extract complex
information which is referred to as facets in this
work, uses syntactical dependency to tag facets or
relations in the sentence. Graphene [32] 7 uses 39
handcrafted rules to construct a discourse tree and
then obtain the triples from the sub-sentences of
the input sentences. These techniques are either
rule-based or use a pipeline of techniques to extract
the structure of a complex sentence. To the best
of our knowledge, ours is the first attempt at using
generative neural architectures to model complex
information extraction.

3 Problem Definition

We use the sentences from Table 1 for demonstra-
tion. We denote them by S. Our goal is to identify
from S:

"https://github.com/gabrielStanovsky/supervised-oie
“https://github.com/dair-iitd/openie6
3https://gate.d5.mpi-inf.mpg.de/ClausIEGate/ClausIEGate/
*https://github.com/uma-pi1/minie
Shttps://github.com/knowitall/ollie
®https://gitlab.inf.unibz.it/rprasojo/stuffie
https://github.com/Lambda-3/Graphene



e A set C' of all clauses in S. A clause refers
to an indivisible, atomic sentence in S. C
= {"it will be treated as a strike", "over
50 percent of a company’s workers, take
concerted, casual leave"} for the first sen-
tence in Table 1.

* A set COM P of complex sentences that are
obtained either by 7) combining N clauses us-
ing an N-ary relation, or, i7) by combining
subsets of C' and COM P using N-ary rela-
tion.

* A set R of N-ary relations that relate N
clauses or complex sentences and generate
a new complex sentence. In other words,
R,;: {CUCOMP}N — COM P, where
Rri € R. For S, R = {Rcondition}- The
output of Rcondition('it will be treated as
a strike", "over 50 percent of a company’s
workers, take concerted, casual leave")is S.

Three properties that should be satisfied by C,
COMP and R are:

 Correct: Every c € C, ¢ € COMP and
r € R should convey the same meaning as
expressed in S

* Non-redundant: C, R, and COM P should
not contain repeated information

* Complete: All information conveyed in the
sentence should be expressed by C, R, and
COMP

4 LeGen

We propose LeGen, an end-to-end generative
model to perform complex information extraction
from legal sentences. LeGen is based on the idea
of discourse trees which are defined in the next
subsection. We model it as a generation task, that
outputs discourse trees for a sentence.

The Discourse tree as proposed in Graphene
[5, 32] employs a top-down approach to break
longer text into smaller parts in contrast to the
bottom-up approach employed for RST trees. Sim-
plified sentences can not be decided beforehand be-
cause they’re not consistent and may need changes
(like rephrasing) depending on their specific sen-
tence structures. An example of Discourse Tree
structure is shown in Figure 1 (left). The leaf
nodes are the clauses (defined in Section 3, ‘Bal-
ance amount in the account of a deceased is higher

than 150,000 then’, “The nominee has to prove the
identity to claim the amount " and ‘Legal heir
has to prove the identity to claim the amount .”)
. Each non-leaf node represents a complex sen-
tence formed by combining the clauses represented
by its children nodes. They are combined using
the relation label on the non-leaf node, (SUB/-
CONDITION, CO/DISJUNCTION). Relations in
a discourse tree fall under two categories: co-
ordinations and sub-ordinations.

4.1 Discourse Tree

Discourse Tree originated from Rhetorical Struc-
ture Theory (RST) [28]. RST identifies the hierar-
chical structure of the text and the rhetorical rela-
tions between the text parts. Rhetorical relations
are split into classes of coordinates and subordi-
nates and can be mapped to the span of text or
words.

Co-ordinations. Coordinating sentences are a
type of sentence structure in which two or more
independent clauses are joined together using coor-
dinating conjunctions. These clauses are typically
of equal importance, and they are combined to cre-
ate a more complex and informative sentence. Co-
ordinating conjunctions are ‘and’,‘ or’ and ‘but’.

Sub-ordinations. Subordination sentences are a
type of sentence structure in which one main or
independent clause is combined with one or more
subordinate or dependent clauses. These clauses
are linked together to form a single sentence, with
the main clause expressing a complete thought,
while the subordinate clauses provide additional
information, clarification, or context. Some of the
subordinations are ‘while’, ‘because’, ‘if’, ‘when-
ever’, ‘since’ etc.

4.2 Generating Discourse Trees

Any existing rule-based approach can be used to
generate the discourse trees for sentences. Cur-
rently, Graphene [32] generates discourse trees
with good precision and recall. Graphene uses
a set of 39 hand-crafted rules to identify 19 re-
lations [S]. However, on analyzing these rules,
we observed redundancies and inconsistencies. )
For instance, it is very difficult to distinguish be-
tween BACKGROUND, ELABORATION, Or EXPLANATION re-
lations. 47) the rules proposed for identifying
TEMPORAL_BEFORE and TEMPORAL_AFTER relations from
the text are not accurate. 7i7) Does not identify
the date and named entities correctly . To ad-



If balance amount in the account of a deceased is higher than ¥150,000 then the nominee or legal heir has
to prove the identity to claim the amount.

SUB/CONDITION

Balance amount in the CO/DISJUNCTION

account of a deceased
is higher than \
150,000 then The nominee has to Legal heir has to
prove the identity

to claim the amount

prove the identity
to claim the amount

SUB/CONDITION ('Balance amount in the
account of a deceased is higher than
150,000 then .', CO/DISJUNCTION ('The
nominee has to prove the identity to
claim the amount .',6 'Legal heir has to
prove the identity to claim the amount

-"))

Figure 1: Discourse tree for an example law sentence (on the left). Corresponding linear encoding of the Discourse
tree (on the right). SUB and CO refer to subordination and coordination, respectively.

dress 7) and i), we merged BACKGROUND, ELABORATION,
and EXPLANATION into ELABORATION. We converted
TEMPORAL_BEFORE and TEMPORAL_AFTER into a single
TEMPORAL relation. We didn’t address iii), but we
show in Section 6 that LeGen is robust to these
issues. The final list of relations that were kept is
in the Appendix.

4.3 Encoding of Discourse Tree

Figure 1 shows how we convert a discourse tree of
any sentence into a sequence encoding. This allows
complex information extraction to be simplified by
expressing discourse trees as a sequence of text.
We view it as a language translation task where the
output language is the tree encoding. In the context
of a translation task, teacher forcing utilizes pairs
of text written in two different languages by influ-
encing the generated text based on the provided
input. During the training process, the encoder
processes text in one language, while the decoder
processes text in the other language and predicts
the next token for each position. In our method, we
convert an original input sentence, which includes
clauses and their relationships, into a discourse tree
that explicitly denotes those relationships.

We encode the discourse tree by doing a pre-
order traversal of the tree. Algorithm 1 discusses
our steps.

5 Experiments

5.1 Datasets
5.1.1 Training

We trained LeGen using 17k sentences from Penn
Tree Bank [29] dataset. We perform our experi-
ments on 32x2 cores AMD EPYC 7532, 1 TB of
memory, and 8x A100 SXM4 80GB GPU systems.
We train the models using BART-base (139 M),

Algorithm 1 Generating encoding £ for a Dis-
course Tree 7.
Input: Discourse Tree 7 with root oot
Output: Encoding, £
Append ‘root.label(’ to €
foreach child of root in T do
if child is a leaf then
| Append ‘child.label, to €
end
else
Generate encoding £’ of Discourse Sub-
Tree with child as root
Append &' to £

end

end

Append ‘)’ to £
return £

BART-small (70.5 M), T5-base (246 M), and T5-
small (77M) architectures. BART trained faster (2
hours on small and 2.5 hours on base). T5 took
considerably longer time (3 hours for small and 4
hours for base). We train it separately for 2 tasks:

Task 1: Identifying Sub-ordinations and Co-
ordinations. We encoded every sentence into a
discourse tree structure as described in Section 4.
We trained BART [25] and T5 [1] models for 30
epochs using cross-entropy loss with a learning
rate of e~ 5. We trained our models on 3 seeds and
report averaged results.

Task 2: Identifying Co-ordinations. In order to
test LeGen’s flexibility, we also separately trained
it as a coordinate boundary detection task [36]. The
purpose of this study was to test the competency of
BART and T5 models in splitting sentences over
state-of-the-art non generative techniques like Ope-



nlE6. We converted the OpenlE6 coordinate bound-
ary labels into a discourse tree and generated its
encoding. The non-leaf nodes in this tree repre-
sented only the coordination relation. We kept the
same hyperparameters that we used for the subordi-
nation task and obtained the best results for batch
size 3. We trained our model on 3 seeds and report
averaged results (Section 6).

5.1.2 Test

1) Indian Legal Dataset. There are Indian Legal
datasets such as the ILDC [27] for legal named en-
tity recognition, rhetorical role identification, and
court judgment prediction tasks from court tran-
scripts. There are non-Indian legal datasets such
as ECtHR [9] or Pile of Law [18] used to build
pre-trained language models for law. However, we
are unaware of any datasets that annotate individ-
ual legal sentences for information extraction. We
closed this research gap by creating an Indian Legal
Benchmark for information extraction by including
107 sentences from Wiki & on Labour Law °.

2) Penn Tree Bank. Penn Tree Bank [29] con-
sists of sentences from articles in the Wall Street
Journal. It is annotated with coordinate boundaries
(‘and’, ‘or’, ‘but’, comma-separated list) and the
text spans it connects. This test set containing 985
sentences was used to evaluate LeGen’s flexibility
in identifying co-ordinations.

5.2 Metrics
5.2.1 Metrics for Task 1

While discourse trees have been used to improve
downstream tasks such as text classification [14] or
open information extraction [32], we are unaware
of any metric used to evaluate them directly. So,
we evaluate the trees based on: 4) structure of the
tree and 7i) content of the tree, i.e. the relation
labels. For both, we performed a human evaluation
since there can be more than one correct tree for a
sentence.

Tree Structure Evaluation (TSE). We em-
ployed a strict evaluation technique, i.e. it was
marked as correct only if all the 3 requirements
cited in Section 3 were satisfied.

» Every node in the tree was correctly split. For
instance, a tree that splits sentence on a nondis-
tributive coordination like ‘between" — "The

8https://en.wikipedia.org/wiki/Main_Page
*https://en.wikipedia.org/wiki/Indian_labour_law

term ’industry’ infuses a contractual relation-
ship between the employer and the employee"
into "The term ‘ industry ’ infuses a contrac-
tual relationship between the employer" and
"The term ‘ industry ’ infuses a contractual
relationship between the employee" will be
marked as incorrect.

* Tree does not contain multiple nodes with the
same information

* All information in the sentence was conveyed
in the tree.

TSE reports the percentage of sentences that gen-
erated correct trees.

Tree Content Evaluation (TCE). To evaluate
the content of the tree, we asked the annotators to
mark each relation in the tree as correct/incorrect.
The annotators were briefed about the different
relations in the test set. A relation was marked
wrong if it could have been expressed using some
other relation or if it connected incorrect clauses.

5.2.2 Metrics for Task 2

We employed a mapping-based approach pro-
posed in CalmlE [36] to compare the clauses gener-
ated by our technique with the gold set. For every
conjunctive sentence, we evaluate it by matching
its collection of system-generated clauses with the
reference set. This involves establishing the most
optimal one-to-one correspondence between the
clauses in both sets. Subsequently, precision is de-
termined for each mapping by calculating the ratio
of shared words to the total words in the generated
sentence, while recall is calculated as the ratio of
shared words to the total words in the reference
sentence.

Let G = {G1,G2,G3...} be gold/reference
clauses each represented as a bag of words model,
ie. G; = {G¥, G G ...} where each G}’
denotes a token in a clause. Similarly let 7' =
{T1,T>,T5 ...} be clauses generated by a model
where T; = {T#, T2 T3 ...}. CalmIE per-
forms matching in a greedy fashion, however, this
type of matching is not optimal and might change
based on the order in which greedy matching is per-
formed. So, we perform matching to get the global
maximum. This problem of finding the global op-
timum from a distance or similarity matrix can be
treated as a linear sum assignment problem [10].
We match clauses from Gold Set G and Predicted



Set 1" to maximize the F1 score. The F1 score will
be computed using precision and recall metrics.

|GinT

p = precision(G;, T;) = T (1)
r = recall(Gi, T;) = 1G: AT 2)
|Gil
UG, Ty) = 2 3
1) D + 7

Let m(.) be matching function such that G;
matches with 7;,,(;y and conversely G,,,(;) matches
with T};. If |G|# |T|, then only k = min(|G|, |T'|)
matches are possible. Thus in such cases,
m(i) will not return valid value for all ¢ and
precision(Gi, Tr,y) and recall(Gi, Try(y) will
be zero.

Pexample = pTecision(G, T)

Kl “)
= m Zprecision(Gm(i),Ti)
i=1

Tezample = Tecall(G,T)

1 |G| 3)

= € Zprecision(Gi, Toni))
i=1

2pewampleremample
1 = (G, T) = 6
f cxample ( ) Pexample + Texample ( )

Please note that (4) to (6) represent scores for only
one example in the test set.

5.3 Baselines

Graphene. We used Graphene [32] as the com-
peting technique for Task 1.

OpenlE6. We used the Coordination Boundary
Detection Model released with OpenlE6 as our
baseline for Task 2.

6 Results

6.1 Taskl1

We asked 2 annotators (authors of the paper) to
evaluate the trees. Each tree was evaluated by 1
annotator according to the metrics described in
Section 5.2.1.

Inter-annotator Agreement. We sampled 50%
of the sentences annotated by Annotator 1 and
asked Annotator 2 to evaluate them. We obtained a
Cohen’s Kappa agreement value of 86.3, indicating
near-perfect agreement [3].

Table 2 shows the TSE, TCE, and the number
of clauses and relations generated in the discourse
trees by each of these 3 techniques. It is clear that

TSE TCE | #Relations
and Clauses
(c,1)
Graphene 0. 6168 | 0.9242 | (247, 377)
T5 - BASE 0.7076 | 0.9618 | (191, 349)
BART 0.6977 | 0.9210 | (183, 281)
BASE

Table 2: TSE and TCE results of Graphene, TS, and
BART, averaged over 3 seeds. The best values are in
bold. Second best are undelined.

Input

Clauses generated by
Graphene

Clauses generated by T5
BASE

The Factories Act 1948
and the Shops and
Establishment Act 1960
mandate 15 working days
of fully paid vacation
leave each year to

each employee with an
additional 7 fully paid
sick days.

1) This was with an
additional 7 fully paid
2) This was to each
employee

3) The Factories leave
each year sick days

4) Act 1948 mandate

15 working days of
fully paid vacation The
Factories

5) The Shops and
Establishment Act 1960
mandate 15 working days

1) This was to each
employee with an
additional 7 fully paid
sick days

2) The Factories Act 1948
mandate 15 working days
of fully paid vacation
leave each year

3) The Shops and
Establishment Act 1960
mandate 15 working days
of fully paid vacation
leave each year.

of fully paid vacation

The Factories

Table 3: Examples showing the superiority of genera-
tive architectures in identifying correct clauses. Their
strength also lies in accurate detection of named entities

the generative approach for discourse tree creation
outperforms Graphene. T5-Base performs the best
and beats Graphene by 9 pts with a TSE score of
70%. BART-Base hallucinates more and the reason
for its underperformance is the generation of terms
not present in the original sentence. Graphene un-
derperforms on sentences where domain-specific
named entities such as statutes, laws, or case names
are present, e.g. Shops and Establishment Act 1960
or The Factories Act 1948 (Table 3). Graphene also
cannot identify nondistributive coordination like
‘between’ and splits sentences on them. All these
issues are handled very well by generative mod-
els even though they were trained on Graphene’s
output.

While evaluating for TCE, we took into consid-
eration the fact that there could be multiple ways
of representing sentences with different relations.
There are situations, where models are able to split
the sentences but unable to identify the relations
and BART has made spelling mistakes in identi-
fying the relation. Although such scenarios were
rare in TS5, we came across them in Graphene and
BART.



Model OpenlE | T5-small | T5-base BART- | BART-
small base
Precision | 0.9803 0.9647 0.9747 0.8215 0.8369
Mapping based Approach | Recall 0.9845 0.9544 0.9730 0.7391 0.7574
F1-score | 0.9816 0.9571 0.9726 0.7682 0.7859

Table 4: Mapping based Scores for OpenlE6, TS5, and BART averaged over 3 seeds. The best values are in bold.

The second best is underlined.

Level | MappingBased |\ b | 15 base | TS-small | BART-base | BART-small | Count
Approach
Precision 0.9796 | 09632 | 09182 0.9755 0.9714
Level 0 | Recall 0.9816 | 09632 | 09182 0.9755 09714 | 163
FI Score 0.9816 | 09632 | 09182 0.9755 09714
Precision 0.9856 | 0.9800 | 0.9789 0.8240 0.8126
Level 1 | Recall 0.9866 | 0.9773 | 0.9669 0.7418 07287 | 716
F1 Score 0.9856 | 0.9781 | 09717 0.7720 0.7580
Precision 0.9465 | 09518 | 0.9428 0.7287 0.6789
Level 2 [ Recall 0.9737 | 0.9685 | 0.9348 0.5790 0.4900 98
F1 Score 0.9564 | 0.9567 | 0.9365 0.6321 0.5611
Precision 0.9354 | 0.9607 | 09144 0.5454 0.6330
Level 3 | Recall 0.9914 | 0.8823 | 08178 0.3574 0.3227 6
FI Score 0.9606 | 0.9168 | 0.8536 0.4252 04155
Precision 0.7975 | 0.9100 | 0.8848 0.7666 0.6772
Level 4 | Recall 1.0000 | 0.8950 | 0.8183 0.3480 0.3216 2
F1 Score 0.8814 | 0.9008 | 0.8416 0.4432 0.4334

Table 5: Level-wise scores aggregated across 3 seeds. The best values are in bold. The second best is underlined.

6.2 Task2

Table 4 shows our results. We obtained competent
results from the T5-base against OpenlE6. The
slight drop in the performance of T5-Base could
be attributed to ambiguous labels in the Penn Tree
Bank dataset. For instance, one split in the gold
for "He retired as senior vice president, finance
and administration, and chief financial officer of
the company Oct. 1" is "He retired as senior vice
president, finance Oct. 1", while TS generates "He
retired as senior vice president, finance, of the com-
pany Oct. 1". TS generates a better split but it gets
penalized because this is not captured in gold.

BART did not perform well as it hallucinated
while generating the output where it used words
that are not in the input. BART was also unable
to split all elements of comma-separated lists. The
same problem was observed for T5-small which
improved with T5-base.

We also evaluated the performance of our model
against sentences with different levels of complex-
ity. Conjunctive sentences are likely to have mul-
tiple conjunctions and thus produce complicated
coordination tree structures with greater height. We
evaluated models for sentences with different coor-
dination tree heights in the gold set (Table 5). In
the test and train set, at level 0, we have 163 and
2426 sentences, level 1 has 716 and 12958, level 2
has 98 and 1716, level 3 has 6 and 153, level 4 has

2 and 26 and level 5 has 0 and 1 sentences. Level
0 indicates that a sentence cannot be split into sim-
pler sentences. The model will generate NONE as
output for these sentences. We see a similar trend
with OpenlE®6 slightly outperforming the genera-
tive approach. One reason for this is the presence of
ambiguous labels in the test set for hierarchies with
multiple levels. On such sentences, even though TS
generates a better split, it is still penalized. BART
does well on identifying sentences that should not
be split, however, it hallucinates when sentences
become more complex.

7 Conclusion

We proposed an end-to-end generative legal infor-
mation extraction technique that can improve the
understanding of long and complex legal sentences.
We model this as complex information extraction.
We achieved this by learning the discourse tree of
the sentence using generative models like TS5 and
BART. We outperformed Graphene, a state-of-the-
art complex information extraction technique on
an Indian Legal Benchmark, and achieved compet-
itive results on the task of the coordinate bound-
ary detection technique. We plan to extend the
generative-based complex information extraction
for rhetorical role prediction and extend support
for Indian languages.



8 Limitations

* Generative models are prone to hallucinations.

* Systems running these models should have
the computational capacity to process large
models like T5 or BART.
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9 Appendix

9.1 Graphene Relations used for LeGen
training

1. SPATIAL : This relation is used to denote the
place of occurance of an event .

Eg: The Inter-state Migrant Workmen Act ’s
purpose was to protect workers whose ser-
vices are requisitioned outside their native
states in India .
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SUB/ELABORATION(’ The
Workmen Act ’s purpose was to protect workers
.7, SUB/SPATIAL(’This is in India

’s services are requisitioned outside their

Inter-state Migrant

’, "Workers

native states .’))

. ATTRIBUTION: This relation is used when
a statement is being made by some person or
institution.

Eg: But some militant SCI TV junk-holders
say that ’s not enough .

SUB/ATTRIBUTION(’This is what some
militant SCI TV junk-holders say
.7,”s not enough .”)

. CONTRAST: This relation is indicated by
the words “although” , “but”, “but now”, “de-

99 G

spite” , “even though” , “even when”, “except
when” , “however”, “instead” , “rather”, “still”
, “though” , “thus”, “until recently”, “while”

and “yet".

Eg: This can have its purposes at times , but
there ’s no reason to cloud the importance and
allure of Western concepts of freedom and
justice .

CO/CONTRAST (SUB/ELABORATION(’This is
at times .’,’This <can have its
purposes .’ ), ’'There ’s no reason
to cloud the importance and allure
of Western concepts of freedom and
justice .7)

Eg2: No one has worked out the players * av-
erage age , but most appear to be in their late
30s .

CO/CONTRAST(’No one has worked out
the players ’ average age .’,’ most
appear to be in their late 30s . ’)

. LIST : This is used to indicate conjunctions (
and’ or comma seperated words) between the
sentences

Eg: He believes in what he plays , and he
plays superbly .
CO/LIST(‘He believes in what he plays

’

.7, ‘He plays superbly .’)

. DISJUNCTION: This is used to show the
presence of ’OR’ in the sentences.
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Eg: The carpet division had 1988 sales of $
368.3 million , or almost 14 % of Armstrong
’s $ 2.68 billion total revenue .

CO/DISJUNCTION(’The carpet division
had 1988 sales of $ 368.3 million
.”,’The carpet division had 1988
sales of almost 14 % of Armstrong ’s
$ 2.68 billion total revenue .’)

. CAUSE: Indicates the presence of the word -

‘because’ or ‘since’.

Eg: Jaguar ’s own defenses against a hostile
bid are weakened , analysts add , because
fewer than 3 % of its shares are owned by
employees and management .

SUB/CAUSE(’Jaguar ’s own defenses
against a hostile bid are weakened
, analysts add .’,’Fewer than 3 % of
its shares are owned by employees and
management .’)

. CONDITION: When multiple sentences are

connected by phrase *if” ‘in case’,‘unless’ and
‘until’, CONDITION relationship phrase is
used to denote the connection between the
sentences.

Eg: Unless he closes the gap , Republicans
risk losing not only the governorship but also
the assembly next month .

SUB/CONDITION(’He closes the gap
.”,’Republicans risk losing not
only the governorship but also the
assembly next month .’)

. ELABORATION: Identified by the presence

"o

of words such as “more provocatively",“even

[LN73

before" ,* for example",“recently

"o

far" ,
REGEX:

"noce (LT3

;80" ,“s0
where" ,“whereby" and “whether" .

“Tsince (\\W(C *2\\W) ?) now”

Eg: Not one thing in the house is where it is
supposed to be , but the structure is fine .

CO/CONTRAST (SUB/ELABORATION(’Not one
thing in the house is .’,’It is
supposed to be .’ ), ’'The structure
is fine .7)



0.

10.

TEMPORAL : Denotes the time or date of
occurrence of the event.

Eg: These days he hustles to house-painting
jobs in his Chevy pickup before and after train-
ing with the Tropics .

SUB/TEMPORAL (’ These days he hustles
to house-painting jobs in his Chevy
pickup before and after .’,’These
days he is training with the Tropics

)

PURPOSE: This kind of relation is identified
by the presence f words such as “for" or “to".

Eg: But we can think of many reasons to stay
out for the foreseeable future and well beyond

SUB/PURPOSE (’But we can think of many
reasons .’,’This is to stay out
for the foreseeable future and well
beyond .’)
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