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Abstract

Intraparenchymal hemorrhage (IPH) is a critical and often fatal subtype of hemorrhagic
stroke, requiring rapid and accurate diagnosis on non-contrast computed tomography (NCCT)
scans for effective treatment. While deep learning (DL) models, more specifically using con-
volutional neural networks (CNNs), offer potential for automating IPH segmentation, their
real-world clinical utility is often limited by the lack of explicit data integration across
diverse hospital sites with varying imaging protocols. This study conducted a multi-site
benchmarking of four prominent CNN architectures: baseline U-Net, Attention U-Net, Fea-
ture Pyramid Network (FPN), and Trans U-Net, for IPH segmentation on a heterogeneous
dataset from 17 clinical sites. Models were rigorously evaluated using F-measure (a.k.a.,
Dice), Intersection over Union (IoU), and 95% Hausdorff Distance (dpg5). The advanced
CNN variants (Attention U-Net, FPN, Trans U-Net) significantly outperformed the base-
line U-Net in F-measure and IoU (e.g., FPN F-measure: 0.868 vs. U-Net: 0.819, p < 0.001),
with no significant difference among them. For boundary error, Attention U-Net and FPN
demonstrated a substantial reduction in dggs (42-50%) compared to the baseline, whereas
Trans U-Net showed improvement, but it was not significant. These models exhibited ro-
bust cross-site generalization across hemorrhage volumes, with minimal site-specific effects
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on performance. This study demonstrates that advanced CNN variants can be adopted for
IPH segmentation to standardize and potentially accelerate IPH diagnosis.

Keywords: stroke, intraparenchymal hemorrhage, artificial intelligence, medicine, com-
puted tomography.

1. Introduction

Stroke is a major cause of death and long-term disability globally. Each year, more than 12
million cases and over 7 million deaths are reported (Feigin et al., 2025). Among these cases,
hemorrhagic stroke is one of the deadliest types, as it causes a rupture of cerebral blood
vessels and subsequent intracranial bleeding. Although accounting for a smaller portion of
the stroke cases, this type is associated with a high fatality rate.

Non-contrast computed tomography (NCCT) is a medical imaging modality commonly
used to detect stroke. It not only provides rapid, accessible information on intracranial
hemorrhage (ICH) but also plays a critical role in emergency diagnosis and treatment plan-
ning. Fast detection of hemorrhage can positively salvage brain function and increase the
patient’s survival rate (Ahmed and Prakasam, 2025). This urgency, in a clinical setting,
can affect the time to diagnosis, potentially leading to delays or oversights.

Among the subtypes of ICH, intraparenchymal hemorrhage (IPH) represents a critical
and challenging pathology. IPH is characterized by bleeding in the brain tissue (~15% of
total stroke cases), which leads to a high mortality rate (with 30-day mortality rates of
40-50%) among the ICH subtypes (Roy et al., 2015). This mortality rate is nearly double
that of the fatality caused by ischemic stroke (Rothwell et al., 2004; Woo et al., 2022).
A baseline hematoma volume is one of the strongest independent predictors of mortality,
with patients with volumes > 30mL experiencing a mortality rate > 50% (Abulhasan
et al., 2023). This volume often drives therapeutic choices, such as selecting candidates for
minimally invasive evacuation or deciding on surgery after follow-up imaging (Polster et al.,
2021). Unlike other subtypes of ICH, like subdural or subarachnoid hemorrhage, where
surgical evacuation is primarily anatomically guided, IPH management often relies heavily
on precise volumetric quantification. However, accurately measuring IPH is challenging
due to factors such as irregular lesion boundaries, variable texture patterns, and proximity
to complex anatomical structures, which can affect measurements. These typically require
specialized, robust analytical tools to segment and measure these regions in different sites.

Artificial Intelligence (AI) techniques have accelerated stroke diagnosis by automating
manual tasks, such as detection and segmentation, while maintaining high accuracy rates.
Among AT types, convolutional neural networks (CNNs) automatically extract information
from images and are mainly used for classification tasks, such as the ASPECTSs score. For
semantic segmentation, CNN-based U-Net variants and their numerous adaptations are of-
ten adopted, as they build an encoder-decoder architecture that not only extracts features
but also reconstructs them in image space (Lin et al., 2025). These models have demon-
strated high confidence in distinguishing pathological tissue from healthy tissue (Duarte
et al., 2024). The advanced U-Net and its variants are continually improving, either by in-
tegrating attention mechanisms to delineate lesion boundaries more accurately or by using
fractal pyramid networks to capture fine-grained and global contextual details.
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One major challenge for clinical translation is domain shift across sites, which introduces
variability across scanner vendors, acquisition protocols, and site practices. Variability in
AT contexts can degrade model performance if not adequately tested in real-world clinical
settings. The literature often refers to models trained on curated datasets, yet lacks sys-
tematic, comparative validation of these architectures for IPH segmentation across multiple
clinical sites. Additionally, numerous studies have trained models on public data, addressing
multiple hemorrhage types simultaneously, rather than optimizing for the complexities of
IPH individually (Ahmed and Prakasam, 2025; Piao et al., 2023). The focus on architectural
novelty can also overshadow deeper investigation of IPH’s intrinsic features.

We propose a study focused on IPH segmentation across multiple sites. We benchmarked
four CNN architectures (U-Net, Attention U-Net, FPN, Trans U-Net) on a heterogeneous,
multi-site NCCT dataset and report F-measure, loU and df95. We evaluate generalizability
by assessing statistical values using several metrics.

The remainder of this paper is organized as follows. Section 2 reviews related work
relevant to the study. Section 3 details the materials, methods, and statistical definitions
employed. Section 4 presents the results, and Section 5 provides an analysis of these findings.
Finally, Section 6 outlines the conclusions and suggests directions for future research.

2. Related Work

The accurate and timely segmentation of intracranial hemorrhage on NCCT is essential for
acute stroke management, impacting diagnostic speed, treatment planning, and, ultimately,
patient outcomes (Ahmed and Prakasam, 2025). However, manual interpretation by radiolo-
gists can be time-consuming and is often subject to inter-observer variability (Inkeaw et al.,
2022). Thus, deep learning models can solve this by automating segmentation, thereby
reducing diagnostic delays and standardizing analysis (Piao et al., 2023).

In response to pressing clinical needs, researchers have concentrated on developing ad-
vanced segmentation architectures. Models such as the U-Net framework and its variants,
U-Net++, Attention U-Net, and ResU-Net, have demonstrated strong performance on cu-
rated public benchmarks (Lin et al., 2025). More recently, transformer-based models and
hybrid architectures, such as TransHarDNet, have been explored to capture long-range de-
pendencies (Piao et al., 2023) more effectively. These models consistently achieve high Dice
Similarity Coefficients, sometimes reaching 0.85 on their respective test sets (Ahmed and
Prakasam, 2025; Lin et al., 2025), highlighting the considerable potential of deep learning
for this task. Zhang et al.(Zhang et al., 2025) proposed a multi-task study with the focus
of understanding the use of DL for several hemorrhage applications.

However, this predictive performance is often obtained and validated using homogeneous
or publicly available datasets collected with standardized imaging protocols (Roy et al.,
2015). When implemented in real-world clinical settings, these models encounter a notable
domain shift, resulting in lower performance (Inkeaw et al., 2022). This shift is driven by
variations in scanner vendors, acquisition parameters (e.g., tube voltage and slice thickness),
and reconstruction kernels across hospitals. Although some studies have begun to address
this issue through approaches such as multi-window input optimization (Inkeaw et al.,
2022), a gap remains in the validation of segmentation models on large, heterogeneous,
multi-site datasets. The comparative analysis of how CNN variants can generalize across
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multiple clinical sites remains underexplored, despite its vital importance for real-world
applications.

This validation paper studies deep learning models for IPH segmentation using a multi-
site dataset characterized by significant protocol heterogeneity. The model was designed ex-
plicitly for segmenting parenchymal hemorrhage. Unlike existing studies, our work uniquely
quantifies the performance and generalization of this specialized model across a diverse,
multi-hospital private dataset, rather than simply developing a new architecture based on
public data or addressing a wide array of hemorrhage types. This approach provides a
crucial real-world evaluation of the challenges of Al deployment in stroke care, particu-
larly highlighting how different architectural strategies maintain performance across varied
clinical settings.

3. Materials and Methods

3.1. Dataset and Participant Demographics

The study utilized a multi-site dataset with IPH segmentation. In total, N = 239 subjects
were included from 17 clinical sites across Canada (labelled A-Q in accordance with our
ethics board) participating in the ACT Trial imaging collection (Menon et al., 2022). All
imaging data included manual ground-truth annotations for intraparenchymal hemorrhage
(IPH), along with descriptive information such as age, sex, and other factors. Table 1
summarizes the demographic and clinical characteristics of the study population.

ACT Trial Imaging Dataset. We used CT imaging data and corresponding hemorrhage
segmentation masks provided by the ACT Trial investigators (Menon et al., 2022). Site
identifiers were anonymized in accordance with ethical and data-sharing agreements. Hem-
orrhagic stroke diagnoses were confirmed by board-certified neurologists using standardized
clinical criteria. Ground-truth segmentation masks were generated using a semi-automated
workflow that combines algorithmic lesion proposals with expert manual correction and
review.

3.2. Data Preparation

To improve the quality of the NCCT scans, we applied skull stripping using SynthStrip,
adjusted to CT (Hoopes et al., 2022). All 3D volumes were standardized to dimensions that
are multiples of 64 through zero-padding. Each volume was split into 64 x 64 x 64 patches to
facilitate memory-efficient processing. To address class imbalance between hemorrhagic and
non-hemorrhagic voxels, we employed a selective patching strategy that retained patches
containing at least one hemorrhagic lesion voxel during training, validation, and testing.
Intensity normalization was carried out in two steps: (1) we cropped the intensity from
-30 to 100 Hounsfield units (HU); (2) we performed min-max normalization, mapping the
image intensities to the range [0.0,1.0].

3.3. Deep Learning Architectures

We implemented and compared four state-of-the-art CNN variants for IPH segmentation:
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Table 1: Demographic and clinical characteristics of the study population across the 17

anonymized clinical sites (A-Q). Data are presented as Mean + Standard Deviation
for Age (years) and IPH Volume (cm®). Sex is reported as the count of male
patients with the corresponding percentage in parentheses. The sample size (N)
for each site is also provided.

A B C D E
Age | 71.37 £ 15.00 59.00 £ 18.38 72.97 £ 13.74 78.50 £ 12.07 78.78 £ 12.62
Sex | 30 (55.6%) 2 (100.0%) 21 (52.5%) 4 (50.0%) 5 (55.6%)
Vol | 12.69 4+ 22.81 24.54 + 32.42 25.29 £+ 50.69 19.18 4+ 28.48  3.32 + 4.37
N 54 2 40 8 9
F G H 1 J
Age | 70.57 + 12.14 75.75 £ 11.57 74.17 £9.39 72.60 + 19.50 72.43 + 12.99
Sex 3 (42.9%) 3 (37.5%) 2 (33.3%) 2 (40.0%) 18 (64.3%)
Vol | 3.54 £3.09 17.05 + 36.22 10.17 £ 14.15 7.66 + 12.61  7.50 £+ 17.22
N 7 8 6 5 28
K L M N O
Age | 76.64 + 12.18 80.89 £ 11.89 84.50 + 6.81 73.58 £ 11.68 77.33 + 7.51
Sex 2 (18.2%) 7 (77.8%) 8 (50.0%) 12 (46.2%) 2 (66.7%)
Vol | 4.87 +5.42 34.84 + 40.85 18.71 £+ 32.98 12.25 + 2840 6.88 + 8.50
N 11 9 16 26 3
P Q Total
Age | 75.20 + 15.32 87.50 + 2.12  74.40 £+ 13.29
Sex 3 (60.0%) 2 (100.0%) 126 (52.71%)
Vol | 0.85 + 1.42 0.44 + 0.56  14.27 + 30.36
N 5 2 239
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1. Baseline U-Net: We implemented the original U-Net architecture (Ronneberger et al.,
2015) as our baseline model. This encoder-decoder network with skip connections
provides a robust foundation for medical image segmentation.

2. Attention U-Net: This architecture enhances the traditional U-Net by incorporating
attention gates in the skip connections (Oktay et al., 2018). The attention mechanisms
selectively emphasize relevant spatial features while suppressing irrelevant regions,
particularly beneficial for detecting small hemorrhagic lesions and precise boundary
delineation.

3. Feature Pyramid Network (FPN): The FPN architecture (Lin et al., 2017) builds
a multi-scale feature pyramid through top-down pathways and lateral connections.
This design enables effective feature extraction across multiple scales, which is advan-
tageous for detecting hemorrhagic lesions of varying sizes and shapes.

4. Trans U-Net: This architecture leverages a hybrid of a CNN+Transformer design
(Chen et al., 2021), combining U-Net local feature extraction and the Vision Trans-
former (ViT). The integration of ViT and U-Net yields improved global context for
IPH masks and is believed to enhance boundary delineation.

All architectures utilized a VGG16 backbone (Simonyan and Zisserman, 2014) for fea-
ture extraction in the encoder pathway, consistent with previous work demonstrating its
effectiveness for medical image segmentation tasks (Duarte et al., 2024).

3.4. Model Training and Evaluation

Model training was conducted for a maximum of 300 epochs with an initial learning rate
of 5 x 1074, We employed the Adam optimizer with standard parameters and reduced the
learning rate when the loss plateaued. For each architecture, we trained separate 2D models
using axial (2DAxi), coronal (2DCor), and sagittal (2DSag) projections, and obtained final
predictions by averaging across these projections (2.5D model).

Loss Function. To address the class imbalance between True and False elements in the
IPH masks, we used a composite loss function combining Dice Loss (DL, eq. 1) and Binary
Focal Loss (FL, eq. 2).

(1+8%)-TP )
(1+p8%)- TP+ p?-FN + FP

where 3 corresponds to a balance coefficient, TP, FP, and FN represent the true positive,
false positive, and false negative voxels, respectively.

DL =

FL=— GTa(l — PT) log(PT) —(1— GT)aPT"log(1 — PT) (2)

where GT is the ground-truth values, PT represents the predicted truth, a = 0.25 and
~v = 2.0 are values that were fine-tuned through a calibration process.

Performance Metrics. The class imbalance between IPH and non-IPH voxels rendered
accuracy an unsuitable performance metric, as the large number of true negatives (TN)
would disproportionately influence the results. To better evaluate model performance, we
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utilized the F-measure, intersection-over-union (IoU), and Hausdorff distance. The F-
measure, a.k.a. dice coefficient for binary segmentation, is a commonly adopted metric in
image segmentation:

P xR
P+R

which represents the harmonic mean of precision (P) and recall (R):

F=2x

3)

TP TP
p—_ " -
71 rp M B= 7p N

IoU quantifies the overlap between predictions and ground truth:

B TP 0
~ FP+ TP+ FN’

Throughout training, the model achieving the highest IoU value was retained as optimal.

IoU

The Hausdorff distance measures the separation between the predicted and ground-truth
IPH boundaries. For two point sets A and B representing these boundaries, the dggs is
defined as:

dp(z,y) = max{dap,dpa} = max {I;leaj‘( {gréilral{d(a, b)}} , max {géig{d(a, b)}}} (5)
where a and b represent elements of sets A and B, respectively, and d(a, b) is the Euclidean
distance between them. We used the 95" percentile of the Hausdorff distance distribution
(d9s) to assess performance. Superior performance is indicated by higher F-measure and
IoU values, and a lower dggs value.

Implementation Details. We ran experiments on a four-node cluster (8x Tesla V100
16GB GPUs; 754 GB total system RAM. To enable a fair comparison with other U-Net vari-
ants, each brain projection was trained independently in parallel, substantially reducing the
total training time. Model development was carried out using Python 3.6 in Jupyter Note-
book, and the resulting code was subsequently converted to Python scripts to enable cluster
execution. The full source code and Keras-based implementations are publicly available !.

3.5. Statistical Analysis

Five-fold cross-validation was used to evaluate all four U-Net models, and results are re-
ported as the mean + standard deviation. Throughout the analysis, appropriate tests were
performed to assess the validity of the model assumptions, including tests of residual nor-
mality. Significance level was set to o = 0.05 for all statistical tests. The R statistical
package (https://www.r-project.org/) was used.

To evaluate the effect of segmentation style on performance metrics PM (F-measure,
IoU, and dpgs), separate linear regression models were fitted for each segmentation style
to assess the relationship between performance metrics and covariates, including ground

1. https://github.com/KaueTND /ip-hemorrhagic-stroke-segmentation
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truth hemorrhage volume (IPH_vol), Age, Sex, and site variability (Sitename). The model
structure for each style was:

PM ~ IPH wol + Age + Sex + Sitename (6)

Subsequently, a one-way analysis of variance (ANOVA) was conducted to test for overall
differences in performance across the four segmentation styles (U-Net, Attention U-Net,
FPN, and Trans U-Net). Post-hoc pairwise comparisons were performed using t-tests with
Bonferroni correction to control for multiple comparisons.

4. Results

We defined four separate linear regression models for each segmentation style to evaluate
performance across multiple sites, while controlling for age, sex, and ground-truth hemor-
rhage volume (IPH_vol), and site was incorporated as a fixed effect.

For F-measure, the linear regression models revealed significant positive associations
between IPH_vol and performance across all styles (U-Net: 1.778 x 107%, p < 0.001;
Attention U-Net: 1.402 x 107%_ p < 0.001; FPN: 1.322 x 1079, p < 0.001; Trans U-Net:
1.416 x 1079 p < 0.001). One-way ANOVA demonstrated significant overall differences
between styles (F(3,952) = 6.889, p < 0.001), with post-hoc pairwise comparisons revealing
that the advanced styles significantly outperformed the baseline U-Net (p < 0.01). In
contrast, no significant differences were observed among the three advanced architectures
(p > 0.684). Table 2 groups the F-Measure values for each orientation across the CNN
variants. Figure 1 shows the IPH segmentation per orientation and CNN variant. In
addition, Figure 2 presents the IPH volumes per F-measure in each CNN variant.

The IoU results followed similar patterns, with IPH_vol showing strong positive as-
sociations in all regression models (U-Net: 2.523 x 107%, p < 0.001; Attention U-Net:
2.116 x 107%, p < 0.001; FPN: 2.011 x 1079, p < 0.001; Trans U-Net: 2.126 x 107%, p <
0.001). ANOVA confirmed significant style differences (F'(3,952) = 8.277, p < 0.001), with
the advanced styles demonstrating superior performance compared to baseline (p < 0.001)
and no significant differences among advanced styles (p > 0.684). Table 3 shows the IoU
values across orientation and CNN variants.

For dpgs, linear regression models showed significant negative associations between
IPH vol and boundary error across all styles (U-Net: —5.209 x 107%, p = 0.030; At-
tention U-Net: —4.642 x 1079, p = 0.020; FPN: —3.201 x 10~%, p = 0.052; Trans U-Net:
—6.274 x 107%, p = 0.022). ANOVA revealed significant overall differences (F(3,952) =
4.201, p = 0.006), with pairwise comparisons confirming that the advanced styles achieved
significantly lower boundary errors than the baseline (Attention U-Net vs U-Net: p = 0.040;
FPN vs U-Net: p = 0.009; Trans U-Net vs U-Net: p = 0.704), while no significant differ-
ence was found among advanced styles (p > 0.162). Table 4 groups the dpg5 values over
orientation and CNN variants.

Site-specific effects showed minimal consistent impact on model performance across the
regression models. Only isolated sites demonstrated marginal effects (i.e., Site F for F-
measure in U-Net: 0.118, p = 0.038 and Trans U-Net: 0.091, p = 0.072; Site N for dggs
in U-Net: 7.474, p = 0.004, FPN: 5.087, p = 0.004, and Trans U-Net: 9.511, p = 0.001),
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indicating robust generalization of all models across different acquisition sites and protocols.
Figure 3 measures the F-Measure grouped per clinical site and CNN variant.

5. Discussion

In this study, we compared and evaluated different CNN variants for IPH segmentation,
with a particular focus on generalizability across data from other sites. We evaluated three
metrics (F-Measure, IoU, dpg5) because they are the most relevant in the literature. We
conducted four independent linear regression analyses, followed by ANOVA comparisons,
and found that the advanced models (Attention U-Net, FPN, and Trans U-Net) signifi-
cantly outperformed the baseline U-Net across F-Measure and IoU metrics. For boundary
error (dgos), Attention U-Net and FPN showed significant improvement over baseline, while
Trans U-Net did not demonstrate a statistically significant reduction. This consistent per-
formance across different metrics indicates that advanced models tend to estimate the IPH
volume more accurately. This pattern is also well-identified in Tables 2-4. The 2DCor ori-
entation achieved higher F-Measure and IoU scores, whereas 2.5D achieved the lowest dggs,
indicating better alignment of the IPH boundary with the ground truth. These patterns
can also be highlighted in Figure 1, where there is an increasing number of FP and FN in
2DAxi, and fewer in 2DCor and 2.5D.

The Attention U-Net integrates attention blocks that adjust segmentations using high-
resolution features from the encoding layers (via skip connections). On the other hand,
FPN can capture multi-scale contextual information and identify texture patterns that the
Attention U-Net sometimes misses. Trans U-Net, with its transformer-based architecture,
is designed to capture long-range dependencies and may provide additional contextual in-
formation. In IPH segmentation, these types of models are suitable, as IPH often exhibits
irregular borders and heterogeneous intensities (Lin et al., 2025).

In our multi-site comparison across CNN variants, the advanced models (Attention U-
Net, FPN, and Trans U-Net) showed minimal significant differences in F-Measure and IoU,
indicating generalizability even when protocols and scanner vendors differ. For boundary
error (dpos), Trans U-Net did not show a significant difference compared to baseline, while
Attention U-Net and FPN did. This is of particular interest, as these models are often

Table 2: F-Measure for IPH Segmentation. Performance is compared across four CNN
variants (Attention U-Net, baseline U-Net, FPN, and Trans U-Net), evaluated on
axial (2DAxi), coronal (2DCor), sagittal (2DSag) projections, and their ensemble
(2.5D). Results are reported as Mean + Standard Deviation. The best model per
orientation is highlighted in bold.

Style Attention U-Net FPN Trans U-Net U-Net
Orientation

2DAxi 0.609+0.244 0.635+0.225 0.629+0.228 0.61740.221

2DCor 0.865+0.129 0.868+0.127 0.863+0.132 0.81940.153

2DSag 0.849+0.155 0.854+0.14 0.8474+0.145 0.811+0.164

2.5D 0.851+0.165 0.862+0.146 0.855+0.151 0.82340.164




DUARTE ET AL.

FPN Baseline U-Net Attention U-Net

Trans U-Net

Attention U-Net

Baseline U-Net

Trans U-Net

Figure 1: Qualitative comparison of IPH segmentation results across different CNN variants
and imaging orientations. Two patients (A-B) are shown, representing large,
small IPH volume, respectively. Rows 1-4 show Patient A (85-year-old male,
IPH volume: 144 cm?), rows 5-8 show Patient B (79-year-old female, IPH volume:
7.9 cm?), Each row group illustrates segmentations from axial, coronal, sagittal,
and 2.5D views using Attention U-Net, baseline U-Net, FPN, and Trans U-Net
models. F-Measure value is reported in the top left corner.

10
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Figure 2: Scatter plot of subject age (x-axis) and F-Measure (y-axis) for IPH segmentation.
Each point represents an individual subject, with the marker size corresponding
to the IPH volume (in mm?) computed from the model’s predicted segmentation
mask. Colours go from red (underestimated according to ground-truth) — green
(correctly labelled) — blue (overestimation compared to ground-truth).
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Figure 3: Boxplot comparison of F-Measure scores for IPH segmentation across the 17 clin-
ical sites (A-Q), stratified by CNN variant. N indicates the sample size per site.
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deployed in external sources where the protocol can vary drastically. On the other hand,
the baseline U-Net showed minimal site preferences, which did not affect F-Measure scores.

Although the models showed better performance with larger, more confluent lesions,
there was a drastic reduction in dggs with Attention U-Net and FPN compared to baseline
U-Net, along with better detection of smaller lesions. Although not statistically signifi-
cant, Trans U-Net performed well in regards of dpgs compared to baseline. There is a
consistent positive association between ground-truth IPH volume and segmentation per-
formance across all models, as indicated by F-Measure (p < 0.001) and IoU (p < 0.001).
While demonstrating significant negative associations with dpgs across all styles (U-Net:
p = 0.030; Attention U-Net: p = 0.020; FPN: p = 0.052; Trans U-Net: p = 0.022). This
consistent pattern indicates that all models perform better on larger IPH, which are gener-
ally easier to segment. However, the advanced models (Attention U-Net, FPN, and Trans
U-Net) showed higher F-Measure and IoU means when compared across the same patients.

The low dpgs values in Attention U-Net and FPN demonstrated consistent boundary
detection across IPH volumes, as evidenced by non-significant interaction terms (p > 0.05)
and strong main effects. This indicates that the boundary-precision advantages of Attention
U-Net, FPN, and Trans U-Net are maintained regardless of IPH burden, highlighting their
robust generalization across varying pathology loads in multi-site applications.

Our post-hoc analyses confirmed our findings regarding multi-site consistency. The
pairwise comparisons revealed no statistically significant differences among the advanced
models (Attention U-Net, FPN, and Trans U-Net) for F-measure and IoU (p > 0.684). For
drr95, there were no significant differences among the advanced models (p > 0.162), but
only Attention U-Net and FPN showed a significant improvement over the baseline U-Net
(p < 0.05). This improvement was noticeable when evaluating dpgs, showing a reduction of
42% and 50% in IPH boundary error for Attention U-Net and FPN, respectively. Accurate
boundary definition is key to differentiate healthy tissue from affected tissue, as well as
being essential for volume calculation (Roy et al., 2015).

Although the findings for site-specific analysis were promising, minimal site-specific
effects were observed in our linear regression models. We observed isolated sites showed
marginal effects (i.e., Site F for F-measure in baseline U-Net: p = 0.0389 and in Trans
U-Net: p = 0.0722; Site N for dpygs in U-Net: p = 0.004, FPN: p = 0.004, and Trans U-

Table 3: IoU for IPH Segmentation. Performance is compared across four CNN variants
(Attention U-Net, baseline U-Net, FPN and Trans U-Net), evaluated on ax-
ial (2DAxi), coronal (2DCor), sagittal (2DSag) projections, and their ensemble
(2.5D). Results are reported as Mean £ Standard Deviation. The best model per
orientation is highlighted in bold.

Style Attention U-Net FPN Trans U-Net U-Net
Orientation
2DAxi 0.479+0.236 0.502+0.225 0.4964+0.227 0.481+0.221
2DCor 0.784+0.164 0.785+0.161 0.7774+0.167 0.718+0.187
2DSag 0.762+0.182 0.767+0.173 0.7574+0.179 0.709+0.194
2.5D 0.767+0.192 0.779+0.176 0.77+0.182 0.726+0.194
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Net: p = 0.001). This indicates a potential room for improvement. Our multi-site validation
addresses a critical gap in previous segmentation studies, which were often limited to single-
institution or publicly available datasets (Inkeaw et al., 2022). The consistent performance
across sites suggests that the advanced architectures learn feature representations that are
robust to site-specific variations in imaging protocols, making them suitable for broader
clinical deployment.

When contextualized within the broader literature, our multi-site results demonstrate
competitive, if not superior, performance and generalizability. While (Inkeaw et al., 2022)
reported a median Dice coefficient of 0.37 for IPH segmentation (in multi ICH segmentation)
and (Lin et al., 2025) achieved Dice scores around 0.91 for cerebral contusion segmentation,
our FPN model achieved an F-measure of 0.868 (in Dice metric) while demonstrating robust
multi-site performance. The CNN variant efficiencies of models like FPN, Attention U-Net,
and Trans U-Net suggest a promising path toward developing solutions that are both highly
accurate and computationally feasible for real-time use in emergency settings across multiple
healthcare institutions (Piao et al., 2023).

6. Summary and Conclusions

In this work, we investigated the use of CNN variants for IPH segmentation, aligning with
current findings on the best techniques in the literature. In essence, we tested statistical
models to assess the best CNN variant in our experiments.

Our findings demonstrate that advanced deep learning architectures, specifically At-
tention U-Net, FPN, and Trans U-Net, significantly improve automated segmentation of
intraparenchymal hemorrhage in NCCT scans, as measured by F-Measure and IoU. For
boundary definition, Attention U-Net and FPN achieved substantially better performance
than the baseline U-Net. In contrast, Trans U-Net yielded comparable volumetric overlap
but did not yield a significant improvement in boundary precision. The most notable ben-
efits of the advanced models were observed in minor, more challenging hemorrhages. By
delivering more precise and reliable segmentation across a variety of sites in Canada, this
work shows the potential to optimize labor-intensive manual IPH segmentation, thereby

Table 4: dgg; for IPH Segmentation. Performance is compared across four CNN vari-
ants (Attention U-Net, baseline U-Net, FPN, and Trans U-Net), evaluated on
axial (2DAxi), coronal (2DCor), sagittal (2DSag) projections, and their ensemble
(2.5D). Results are reported as Mean + Standard Deviation. Values are in mm.
The best model per orientation is highlighted in bold.

Style Attention U-Net FPN Trans U-Net U-Net
Orientation
2DAxi 10.066+9.643  11.624+8.507 10.3714+8.964 11.465+9.336
2DCor 3.376+9.066 2.9164+7.464 4.855+12.558 5.862+11.051
2DSag 4.578+£11.038  4.203+10.113 5.5944+10.934 6.871£10.526
2.5D 1.64+4.974 1.5744+4.55 1.6154+4.837  2.54246.356
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reducing stroke care time. We plan to integrate these models into clinical workflows and
extend this work to segment and classify other ICH subtypes.

Despite these promising results, some limitations should be acknowledged. While the
advanced models excelled across most IPH volumes, segmenting very small or nascent bleeds
remains challenging. Future work could explore progressive resolution training or optimized
loss functions to improve sensitivity and reduce misclassifications of hemorrhage voxels. Ad-
ditionally, although our models demonstrated robust performance across multiple sites, fur-
ther validation on external datasets from diverse geographic and demographic populations
will be essential to confirm true generalizability.
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