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Abstract: Robots equipped with rich sensor suites can localize reliably in partially-
observable environments, but powering every sensor continuously is wasteful and
often infeasible. Belief-space planners address this by propagating pose-belief
covariance through analytic models and switching sensors heuristically–a brittle,
runtime-expensive approach. Data-driven approaches–including diffusion models–
learn multi-modal trajectories from demonstrations, but presuppose an accurate,
always-on state estimate. We address the largely open problem: for a given task
in a mapped environment, which minimal sensor subset must be active at each
location to maintain state uncertainty just low enough to complete the task? Our
key insight is that when a diffusion planner is explicitly conditioned on a pose-
belief raster and a sensor mask, the spread of its denoising trajectories yields a
calibrated, differentiable proxy for the expected localisation error. Building on
this insight, we present Belief-Conditioned One-Step Diffusion (B-COD), the
first planner that, in a 10 ms forward pass, returns a short-horizon trajectory, per-
waypoint aleatoric variances, and a proxy for localisation error–eliminating external
covariance rollouts. We show that this single proxy suffices for a soft-actor–critic to
choose sensors online, optimising energy while bounding pose-covariance growth.
We deploy B-COD in real-time marine trials on an unmanned surface vehicle and
show that it reduces sensing energy consumption while matching the goal-reach
performance of an always-on baseline. Project website: bcod-diffusion.github.io.
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1 Introduction

Autonomous robots performing navigation-related tasks routinely mount heterogeneous sensors, like
cameras, LiDARs, and GPS, because no single modality is reliable everywhere [1, 2, 3]. Keeping
every sensor powered, however, wastes energy, and can degrade performance by flooding the estimator
with irrelevant data [4, 5]. At the other extreme, indiscriminately toggling sensors is perilous: if
the robot drifts into a sensor-denied zone with the wrong sensors active, localisation uncertainty
can explode, leading to task failure [6, 7]. This paper, therefore, poses a precise question: given a
goal, can a robot generate the next short-horizon motion and, in real-time, decide the smallest set
of sensors that must stay on so that its localisation uncertainty is reduced just enough to reach the
goal—navigation with just-enough sensing.

Classical belief-space pipelines address the motion planning half of the problem: linearized covariance
propagation achieves excellent tracking when every sensor is active and the motion–measurement
models remain accurate [8, 9]. Yet these same pipelines unravel in harder conditions [10], where
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Figure 1: Overview of B-COD. Left: The belief module compresses the particle cloud and local map into a
belief raster that encodes mass, orientation, and covariance. Center: A one-step diffusion network consumes that
raster, the goal mask, and the current sensor flag to return a short-horizon trajectory and a calibrated CVaR risk
scalar. Right: SAC uses the scalar to toggle sensors in real time, spending energy only where required.

a single ill-chosen sensor subset can drive the pose estimate outside tolerance, causing subsequent
mission failure [11]. The complementary half–deciding which sensors to power–is often posed as a
scheduling problem that assigns an energy cost to every measurement [12]. The robot’s belief over
pose and map is continuous and high-dimensional, so the decision tree grows exponentially and is
impossible to traverse in real time [13]. Practical solvers collapse the tree into ad-hoc heuristics
[14], thereby ignoring the long-term value of information [15]. Reinforcement learning variants push
farther by embedding the sensor-activation bits into the action space and letting a policy learn when
to switch them [16, 17, 18]. However, such policies demand millions of episodes, delicate reward
tuning [19], and still require hand-engineered safety shields to keep pose error bounded [20]. Worse,
they optimize sensing and control on the same lattice but leave trajectory generation to a separate
planner, creating a brittle split that resurfaces whenever the environment changes [5, 12, 21].

In a departure from handcrafted motion models and data-hungry on-policy RL, diffusion-based
planners learn rich, multi-modal trajectory distributions directly from demonstrations and require only
supervised training [22, 23, 24]. Their appeal is clear: they avoid reward-shaping pitfalls, capture
alternate homotopies around obstacles, and can be conditioned on semantic maps with minimal
architectural fuss. Their Achilles’ heel, however, is that the denoising network is trained under the
premise that the robot’s pose is always known accurately and every sensor is live [25, 26].

A largely overlooked aspect of diffusion planners is that their iterative denoising process [27] produces
a full distribution of trajectories rather than a single path [22, 28]. Intuitively, the spread of that
distribution ought to widen when localisation drifts and contract when well observed—hinting that
diffusion might already encode clues about “how much sensing is enough.” Turning that intuition to
enable navigation with just-enough sensing is the central idea of this paper: we repurpose diffusion
to simultaneously produces a short-horizon path towards the goal and serve as a sensing oracle for a
small sensor-selection policy. Figure 1 presents an overview of our solution approach.

Statement of contributions: We introduce (i) Belief-Conditioned One-Step Diffusion (B-COD), a
diffusion planner that pairs short-horizon trajectory generation with an uncertainty proxy from its
own denoising spread, generated in one forward pass; (ii) we show that this proxy is enough to
enable a lightweight RL policy to toggle sensors online, yielding a real-time navigation pipeline
with just enough sensing; (iii) we validate the full system in real-time on an autonomous surface
vehicle in the context of marine autonomy, an underexplored, high-uncertainty domain, demonstrating
goal-reach rate of the always-on baseline while consuming less than half its energy; (iii-a) to spur
further research in this domain, we release the code, trained models, and the first open maritime
dataset of 50K belief-annotated navigation snippets with synchronised multi-modal sensor logs 1.

1A subset is available on the project website; the full dataset will be released after review.
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2 Related Works

Belief-Space Motion Planning: Early work cast motion planning under uncertainty as a POMDP,
but exact solvers scale poorly, motivating approximate methods [29, 8, 30]. Graph-based variants
propagate linearised covariances along lattice edges [31, 32, 33, 34, 35] or sample belief particles
through non-linear dynamics [36, 37, 38, 39]. Point-based POMDP planners [40, 41, 42, 43, 44, 45]
achieved impressive accuracy but remain slow for real-time use. Chance-constrained formulations
bound the probability of constraint violation [46, 47, 48, 49], while information-theoretic objectives
[50, 51, 52, 53] trade control cost with covariance growth. These pipelines assume all sensors remain
active and rely on expensive covariance roll-outs at every node–limitations B-COD sidesteps by
learning a differentiable proxy in one forward pass.

Resource-Aware Sensor Scheduling: Choosing which modalities to power has been framed as a
mixed-integer program over measurement actions [54, 55, 56, 57], a sub-modular maximisation of
expected information gain [58, 59, 60], or a value-of-information heuristic [61, 62, 63]. Sensor-
activation trees grow with horizon, so practical solvers rely on greedy switches [64, 65], rollout policy
iteration [66, 67], or coarse duty-cycling [68, 69]. RL approaches embed sensor bits into the action
space and learn policies offline [70, 71, 72, 73, 74, 75]. Energy-aware schemes [76, 77, 76] toggle
sensors based on heuristic. Unlike these decoupled strategies, B-COD couples trajectory generation
and sensor selection via a shared diffusion-derived uncertainty signal without handcrafted thresholds.

Learning-Based Trajectory Generators: Imitation-learning priors [78, 79, 80, 81, 82] capture multi-
modal behaviour but output a single trajectory. VAEs [82, 83, 84, 85, 86] model richer path distri-
butions, yet training requires tricks or annealing. Diffusion-based planners [87, 88, 22, 24, 89, 90]
have recently shown SOTA coverage over homotopies while retaining simple supervised losses. All,
however, assume perfect, always-on estimation. B-COD is the first to inject the robot’s pose-belief
raster into the denoiser, letting the spread of the samples act as a calibrated localisation-error proxy.

Joint Planning and Active Perception: Active SLAM couples view-planning with mapping updates but
focuses on map quality rather than energy [91, 92, 93]. Informative path planners [94, 95] optimise
mutual information over candidate trajectories while assuming fixed sensor payloads. Recent works
[96, 97] integrate learned priors with active perception yet they still separate motion generation from
modality selection, requiring auxiliary covariance estimators. By conditioning diffusion on belief
and letting an RL head act on the resulting uncertainty proxy, our framework realises just-enough
sensing–closing the loop between planning and active localisation with millisecond latency.

3 Methodology

Problem statement. Assume a robot operating in a workspace W ⊂ R2 whose obstacles and
semantic layers–lighting, sensor visibility–are known in advance through survey or GIS data, yielding
a coarse, static map M . The robot carries N sensors S = {s1, . . . , sN}. At decision epoch t the
robot’s pose is the element xt = (xt, yt, ψt) ∈ SE(2); its uncertainty is encoded by the belief density
bt(x) = p

(
xt = x | z0:t, a0:t

)
, where z0:t are past measurements and a0:t is the sensor-activation

vectors. Observations obey a known likelihood p(zt | xt, at). At each step, at ∈ {0, 1}N indicates
which sensors are powered, and the energy cost vector c = [c1, . . . , cN ]⊤ quantifies per-sensor
consumption. Together with a control sequence τt, the schedule {at}T−1

t=0 must steer the belief into
the goal set G while avoiding the obstacle region O. We measure localisation risk by the scalar
σ(bt) =

√
tr Σt where Σt is the pose covariance extracted from bt. Let η denote the user-specified

per-step risk budget and ε the tolerated per-step exceedance probability. The planning problem is

minimize Jenergy =

T−1∑
t=0

c⊤at subject to Pr
{
σ(bt) > η

}
≤ ε, xt /∈ O, xT ∈ G, ∀t, (1)

Our solution hinges on three capabilities: (i) a belief encoding that neural networks (NN) can
ingest; (ii) a planner that, conditioned on that belief, yields a trajectory and a measure of future pose
uncertainty; (iii) a policy that exploits that measure to enable minimal sensing task completion.
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3.1 Belief Raster Representation

Figure 2: Example belief raster from
our experiments. The channels are pro-
jected into a single HSV image: bright-
ness = probability mass, hue = head-
ing, desaturation = areas of higher po-
sitional spread. The teal = most likely
pose; the grey expresses growing 3σ
uncertainty, black denotes zero belief.

Any NN planner that consumes state uncertainty must see
a tensor of fixed shape [98], yet a Bayesian filter evolves
a belief whose support may swell/split over time [99]. We
therefore project the pose posterior into a five-channel image
Bt ∈ [0, 1]H×W×5 whose footprint adapts to the belief but is
resampled to a preset resolution before it enters the planner.
If the window exceeds the target lattice H ×W it is isotropi-
cally down-sampled, making runtime independent of how far
the robot’s uncertainty has spread. Each grid cell stores five
summary statistics that experiments show are sufficient: (i)
belief mass mu,v, a true probability derived by summing par-
ticle weights in the cell, (ii-iii) sine and cosine of yaw that
encodes the heading, averaged with the same weights and lin-
early re-mapped to [0, 1] so that all channels share a common
dynamic range, (iv) planar spread is compressed into the log-
determinant of the local positional covariance, (v) circular
variance records how concentrated the heading distribution is;
it equals zero for a unimodal orientation and approaches one as
yaw becomes ambiguous. Other moments were found to add negligible value (see Appendix). Bt
is translation-equivariant, orientation-aware, and compact enough to slot directly into downstream
convolutions, yet retaining exactly the information that governs localisation drift for small horizons.

3.2 Belief-Conditioned One-Step Diffusion (B-COD)

Having condensed pose uncertainty into an ego-centric image, we face two coupled decisions at
every control tick: what short motion should the robot execute next, and how large will the pose
error grow if it moves with only the currently powered sensors? B-COD answers this by learning the
conditional distribution pθ

(
τ
∣∣B, M, g, a

)
, where B is the ego-centric belief image from Sec. 3.1,

M the co-cropped semantic map slice, g a binary goal mask in the same frame, a ∈ {0, 1}N the
vector of powered sensors, and τ = (∆x1,∆y1,∆ψ1, . . . ,∆ψH) sequence of robot body-frame
incremental poses. We noticed that using increments, rather than global coordinates, lets B-COD
learn translation-invariant manoeuvres; as B-COD is re-invoked each second, these local segments
concatenate naturally into a consistent global path. The diffusion backbone parameterises, at every
waypoint, a diagonal Gaussian whose mean is the desired displacement and whose log-variance
σ̂k quantifies aleatoric uncertainty inherited from the training data. Drawing one standard normal
latent and passing it through the network therefore returns in a single forward pass (i) a trajectory
sample τ and (ii) the full vector of waypoint log-variances σ̂1:H . Resampling the latent injects fresh
noise and produces alternative, equally plausible plans without any extra cost beyond that single
inference–exactly the property that makes diffusion attractive for real-time, multi-modal navigation.

Conditioning and trajectory tokenisation. To generate a path that is feasible and sensor-aware,
the planner must jointly reason over: (i) where the robot might be, (ii) what the environment looks
like, and (iii) which modalities are currently online. The inputs that carry this context–belief, map
semantics, and goal–are concatenated into a tensor [B ∥M ∥ g]. Since navigation occurs locally,
encoding the entire global map is redundant and inefficient; thus, a generic spatial encoder (in our
case, ResNet) can extract spatially localized features that summarise nearby geometry and uncertainty
[100]. Additionally, because trajectories depend on the available sensors, an embedding of a is fused
with the spatial features to form a comprehensive context vector C. Conditioning on C ensures that
the planner avoids plans that would demand unavailable modalities. Finally, the planner outputs
trajectories as sequences of relative displacements rather than global poses. This representation makes
the prediction invariant to absolute coordinates, allowing the diffusion network to attend directly
to the local environment and sensor context vector C. This conditioning dynamically aligns each
waypoint with obstacles, environmental context, and real-time sensing capabilities.
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Diffusion teacher. A diffusion model can sample diverse trajectories, but running a hundred reverse
steps is prohibitive on embedded hardware [87]. We therefore follow the DDPM paradigm [27]:
teach a multi-step denoiser that is expressive–able to regenerate the multi-modal paths seen in
demonstration–and honest about its own pose uncertainty. The teacher adopts the cosine forward
process [101], τ̃t =

√
ᾱt τ +

√
1− ᾱt ϵ, ϵ∼N (0, I) with ᾱt = cos2(πt/2T ), because that schedule

keeps signal-to-noise high at early timesteps and has been shown to improve reconstruction quality on
long, structured sequences [101]. At reversal step t the network predicts both the injected noise and a
waypoint-wise log-variance–crucial, because how confident the network is about each displacement
becomes the proxy our scheduler relies on. The loss combines the DDPM noise-reconstruction term
with a diagonal Gaussian negative log-likelihood:

Lteach =
∥∥ϵθ(τ̃t, B,M, g, a, t)− ϵ

∥∥2
2
+ β

H∑
k=1

[
∥τk−µ̂θ,k∥2

eσ̂θ,k
+ σ̂θ,k

]
. (2)

The first term teaches the network to undo the forward corruption and reproduce the expert manoeuvre;
the second forces the predicted variance eσ̂k to match the empirical scatter of demonstrations at that
waypoint, yielding aleatoric errors that are calibrated by construction.

Consistency-model student. Even a perfectly trained teacher is unusable if their hundred reverse
steps exceed the control loop’s latency. Rather than prune steps heuristically–which degrades sample
quality[102]–we compress the reverse chain into a single network via consistency distillation [103].
A standard-normal latent ξ is pushed through the teacher to obtain a reference sample (τ ref, σ̂ref). A
student gψ is then optimised to match both the mean path and the uncertainty of that reference:

Lstu =
∥∥gµψ(ξ)− τ ref

∥∥2
2
+ λ KL

(
N
(
gµψ,Σψ

) ∥∥N(τ ref,Σref
))
, Σ = diag

(
eσ̂

)
. (3)

The first term preserves trajectory fidelity; the KL term transfers the teacher’s calibrated variances so
the risk proxy remains valid after compression. We ramp λ during training so that the student first
learns accurate means and only then assumes responsibility for matching dispersion–preventing the
early collapse of variance that can plague single-step models [102].

Uncertainty proxy for the scheduler. Passing the whole variance vector to the planner would explode
the state space; collapsing it to a naive average would hide the critical segments where error spikes.
We condense the vector into a tail–focused statistic, CVaR-95 [104]: uCVaR = 1

0.05H

∑
k∈top 5%

√
eσ̂k .

Intuitively, because the teacher is trained with a diagonal Gaussian NLL and the student matches
that distribution via the KL term, the CVaR bound transfers intact: on the training distribution the
one-sided 95th-percentile localisation error at each waypoint does not exceed uCVaR. Temporal
correlations can only render the statistic conservative, a property we deliberately preserve for safety.
Crucially, the scalar drops out of the planner’s existing variance head–no extra sampling or covariance
rollout is required–so it arrives alongside the candidate trajectory within the same forward pass.

3.3 Online sensor scheduling with a risk budget

At every decision epoch, B-COD delivers a short-horizon trajectory and uCVaR. The robot must now
answer the question: which subset of sensors should remain powered so the error budget is honoured
while energy is spent as sparingly as possible? We cast this as a Constrained Markov Decision
Process (CMDP) [105] with state st =

(
Bt, u

CVaR
t , dt, at−1

)
: belief raster, scalar risk forecast,

distance from the belief mean to the goal, and the previously active sensor mask. The primary cost is
instantaneous power draw rt = −c⊤at with per-sensor coefficients c ∈ RN>0. The indicator constraint
expresses safety gt = 1[uCVaR

t > ηmax]: incurs a penalty if the predicted localisation error exceeds
the defined threshold ηmax. Letting π denote any stationary policy, the optimisation objective is

min
π

lim sup
T→∞

1

T
Eπ

[T−1∑
t=0

rt

]
s.t. lim sup

T→∞

1

T
Eπ

[T−1∑
t=0

gt

]
≤ ϵ, (4)

where ϵ is the desired long-run rate of risk violations. We append the numerical features
(uCVaR
t , dt, at−1) to the encoded Bt from B-COD and feed the result to a lightweight policy head.
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Any constrained-RL can solve this CMDP; we instantiate it with a constrained Soft Actor–Critic
(SAC) [106, 107] because it is off-policy, data-efficient, and admits a simple dual-gradient update
on the Lagrange multiplier λ. The actor outputs relaxed Bernoulli probabilities thresholded to hard
on/off commands at execution time, while a pair of critic networks learns the Lagrangian Q-values.
The only hyperparameters exposed are the risk budget ηmax and the violation rate ϵ.

3.4 Engineering Choices and Implementation Recipe

Data generation: Alongside real-world data collection, we augment data from a custom Unity-
based simulator that instantiates ninety procedurally varied harbour scenes (≈ 200 m2). Each
world is rasterised at 0.25 m resolution into three semantic layers–obstacle occupancy, ambient
lighting, and sensor visibility–cropped into the ego frame alongside the belief raster. An A*+MPC
[108, 109] oracle drives from random starts to six-meter goal disks while seeing ground-truth pose.
Replaying every oracle trajectory sixteen times under forced sensor subsets and noise produces 8.3M
short-horizon snippets whose diversity teaches the B-COD both nominal and failure-case behaviour.

Training: The diffusion teacher is trained once on that corpus with the Eq. 2 loss; an exponential-
moving-average of the weights is retained as the final teacher. A single-step student is consistency
distilled training on 1M noise targets generated on-the-fly, giving a forward pass two orders of
magnitude faster yet matching its negative log-likelihood. Exporting the student through ONNX
[110] and TensorRT [111] (FP16, layer fusion) yields a ≈ 10 ms inference on the Jetson-class
hardware (Orin NX 16 GB [112]); belief rasterisation and actor inference raise the control-loop
budget to 15 ms (empirical results in Sec. 4). SAC learns the scheduling policy entirely in simulation.
A shared CNN [113] processes the belief image once; two MLPs serve as the lightweight policy head
and output Bernoulli logits and twin Q-values. Dual-gradient updates on the Lagrange multiplier
keep constraint violations near the user-specified budget. In real-time testing, the neural checkpoints
run unchanged. Only sensor-noise covariances are re-scaled from factory calibration data.

4 Experimental Results

Our evaluation targets a real-world, real-time scenario in which an autonomous surface vehicle
(ASV) must navigate an open-air lake previously unseen in training, to reach waypoint goals with
just-enough sensing while keeping the CVaR-95 localisation error below a user budget of 2 m. The
lake presents both natural and human-driven disturbances: winds, waves, fountains, and floating
buoys. The test platform is a SeaRobotics Surveyor ASV [114] with a differential-thrust propulsion
module and a heterogeneous sensor suite: a multi-beam LiDAR, day and night cameras, RTK-GPS,
MEMS IMU, and an EXO2 sonde. The platform exposes a velocity set-point interface; we run a
linear MPC (2 s horizon; inputs limited to the thrust envelope) that tracks an eight-waypoint segment
with mean cross-track error≤ 6 cm. Control inputs are augmented by a discrete mode flag that selects
the estimator configuration implied by the powered sensors. Sensor power draw differs by an order of
magnitude, so efficient scheduling has tangible impact on total mission energy (see Appendix).

4.1 Baselines

We benchmark B-COD against alternatives chosen to isolate each of our findings while sharing the
same low-level controller (see Appendix for hyperparameters). (i) Always-ON keeps every sensor
powered and sets the upper bound on task success. (ii) Greedy-OFF is a hand-tuned rule that asks
whether simple heuristics obviate learning: day camera disabled below 10 lux, night camera disabled
above 10 lux, LiDAR spun up if its previous sweep reported a return within 15 m, GPS + IMU always
on, EXO2 sonde enabled in high-interest water. The values are grid-searched on a held-out set. To
test whether a principled heuristic suffices, (iii) InfoGain-Greedy keeps every sensor off except the
one predicted by the analytic observation model to maximise single-step expected entropy reduction
of the Gaussian-mixture belief. (iv-v) Random-K controls sensing duty-cycle by sampling one or two
sensors, irrespective of context. To verify that the advantage stems from the risk proxy, we keep the
SAC unchanged and swap its inputs: (vi) σ-Mean feeds the actor the mean of B-COD’s waypoint
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standard deviations; (vii) Sample-Spread drops the variance head and estimates risk from the empirical
spread of 20 Monte-Carlo trajectory samples. Baselines (i)-(vii) keep the B-COD planner frozen. To
probe representation: (viii) No-Belief Raster trains the diffusion model on a single delta-pose channel
only. We benchmark against alternative planners: (ix) Pure-RL lets a constrained-SAC [115, 116]
learn both motion primitives and sensor toggles end-to-end and is trained for 50 M environment steps.
(x) DESPOT-Lite [117], runs a 5k-particle online POMDP search with analytic observation models.

4.2 Key Findings

Key Finding #1: B-COD+SAC delivers near-perfect task completion at less than half the sensing
cost of the Always-ON baseline. Table 1 summarizes performance over 50 laps. B-COD reaches
the goal on 97.9 % of attempts, yet spends only 42 % of the energy. Collisions remain at 0.9 %,
essentially identical to the Always-ON baseline. Heuristic scheduling cannot match this trade-off:
Greedy-OFF conserves energy (61 %) but sacrifices success (47 %). InfoGain-Greedy raises success
to 90 % yet violates risk eight times more often than B-COD. Random masks fare worse, proving
that local environment context–not just a lower duty cycle–is essential for task completion. Pure-RL
generates trajectories and schedules sensors from raw rasters; the high-dimensional action space
makes exploration sparse, and the policy converges to risk-averse dithering–only 55 % goals reached
and a 22 % collision rate. DESPOT-Lite, by contrast, evaluates a principled belief tree with analytic
models and therefore is able to plan accurately, but it expands hundreds of nodes; the resulting 0.5s
runtime renders it unusable in real-time on the vehicle.

Metric AON GOF IGG R1 R2 σM SS NB PRL DL B-COD

Goal-reach (%) ↑ 100.0 47.3 89.9 18.5 29.1 79.6 94.3 67.8 54.8 87.9 97.9
Collision (%) ↓ 0.5 22.3 6.1 34.5 30.1 12.4 4.7 17.4 22.1 4.2 0.9
CVaR violations (%) ↓ 0.1 15.8 4.3 28.6 22.8 9.1 5.2 13.2 18.3 1.9 0.5
Mean #sensors ↓ 5.0 3.19 2.65 1.0 2.0 2.99 2.56 4.05 3.48 5.0 2.08
Energy vs AON (%) ↓ 100.0 61.2 49.8 24.2 38.9 60.1 91.2 68.2 67.5 100 42.3
Runtime (ms) ↓ 14.9 14.7 26.8 13.6 13.7 14.4 84.1 14.1 12.1 565.3 14.3
Peak RAM (MB) ↓ 305 282 403 277 281 287 674 279 299 731 284

Table 1. Performance comparison. Keys – AON: Always-ON; GOF: Greedy-
OFF; IGG: InfoGain-Greedy; R1/R2: Random 1/2; σM: σ-Mean; SS: Sample-
Spread; NB: No-Belief Raster; PRL: Pure-RL; DL: DESPOT-Lite

r (m) IGG DL B-COD

25 7.5 ms 565 ms 9.8 ms
40 10.9 ms 1446 ms 9.7 ms
55 14.6 ms 2737 ms 9.6 ms
70 18.2 ms 4430 ms 10.7 ms
85 18.7 ms 6536 ms 10.4 ms
100 23.3 ms 9040 ms 10.9 ms

Table 2. Wall-clock latency vs.
radius r. Average of 5 runs.

Key Finding #2: B-COD’s variance is a calibrated, context-aware predictor of localisation error.
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Figure 3: Representative lap with B-COD. Obstacles (red circles), GPS denied and rich EXO2 zones are marked.
The lower panel plots B-COD’s predicted localisation error vs time alongside the sensor-activation traces (only
representative toggles are shown). Brief annotations indicate our interpretation that triggered the toggle.

The reliability curve (Figure 4) shows numerical calibration (6 % mean error). The reason be-
hind the bound relaxing follows directly from what the diffusion planner is told to care about:
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belief shape, active sensors, and local map geometry. Call-out B
(night lap, obstacle corridor): The semantic map reports obstacles–a
fountain and a floating buoy. Colliding here would be mission-
ending, so B-COD turns on LiDAR, night camera and IMU (high
energy). The planner now expects rich pose updates and knows
that centimeters of pose error matter; it shrinks the bound to 0.45
m, almost matching the 0.46 m ground truth drift. Call-out A (day
lap): Tens of meters separate the ASV from any hazard. With
only the IMU running (low energy), B-COD predicts pure dead-
reckoning growth yet also “knows” that a meter of drift will not
intersect anything. It therefore widens the bound to 1.85 m, closely
tracking the ground truth 2.0 m error. These results demonstrate that
uCVaR is numerically reliable and spatially discriminative, providing
the scheduler with the rich information needed to trade energy for
certainty. Figure 3 shows these risk swings along the full lap for
qualitative context.

Key Finding #3: B-COD stays within a 10 ± 1 ms envelope and out-scales analytic belief planners.
Table 2 sweeps the workspace radius from 25 m to 100 m (full lake sector). B-COD’s latency is
flat–10.3 ± 0.6 ms throughout—because the belief crop is always down-sampled and the UNet’s
receptive field is fixed; compute therefore scales with network width, not with world area. The
InfoGain-Greedy baseline must update an n-cell covariance grid; its cost grows Θ(R2)[15], reaching
23 ms at 100 m. DESPOT-Lite’s branching factor of the belief tree increases with visible free
space; runtime balloons to 9000 ms over the same sweep, far beyond what an embedded loop can
absorb. The takeaway is practical as well as theoretical: constant-time scaling lets B-COD replan
over lake-scale horizons without ever violating the real-time threshold, whereas analytic planners
become the computational bottleneck well before the map reaches lake-scale.

Key Finding #4: B-COD adapts online, re-allocating modalities to recover from faults.
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Figure 5: Scheduler response to a
forced LiDAR outage during a lap.

During a daytime lap, we manually disabled the LiDAR 30 s
before the ASV entered the narrow fountain corridor, which
demands typically sub-meter localisation. B-COD’s risk proxy
spiked from 0.6 m to 1.8 m as soon as the loss of range data was
reflected. The SA reacted on the next cycle: it re-enabled both
cameras and the EXO2 sonde, accepted the high energy penalty,
and drove risk down to 0.8 m. Once clear of the obstacle, the
proxy dropped naturally; the scheduler shut the extra modalities
off and returned to the energy-saving IMU-only sensor choice.
No heuristic was required–the planner’s calibrated variance alone
drove the correct, context-specific recovery sequence.

Ablations: Removing the belief raster (NB) deprives the planner of map semantics: goal-reach
collapses to 68 %, collisions triple, and the SAC reacts by keeping four sensors on. Replacing
CVaR with a naive waypoint average (σ-M) leaves the variance head intact but blurs risk peaks; the
policy over-compensates, averaging three sensors and burning 60% of Always-ON energy, while still
breaching the risk budget 9% of the time. Estimating risk from 20 Monte-Carlo samples (SS) restores
calibration but at the cost of high runtime.

5 Conclusion

B-COD demonstrates that a diffusion planner can double as a sensing oracle, enabling “just-enough”
sensing for navigation. B-COD couples (i) a belief raster, (ii) a one-step diffusion model conditioned
on belief and sensor flags that returns a short trajectory and a calibrated proxy, and (iii) a risk-
constrained scheduler that powers only the sensors needed to keep that risk below a user budget. On
hardware experiments B-COD reaches its goals with 98% success while cutting sensing energy by >
50 %, maintains variance calibration to 6 %, replans in 10 ms–far faster than analytic belief planners.
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6 Limitations

Although B-COD delivered strong real-world results–near-perfect goal completion, tight error cal-
ibration, and substantial energy savings–it still rests on some assumptions that limit immediate
deployment beyond the scenarios tested.

Domain-specific retraining: The sensor mask enters the network as a learned embedding whose
dimension and semantics are fixed at training time. Adding a new modality—or swapping a lidar
for a lower-power radar—requires collecting demonstrations and fine-tuning the entire model. A
more versatile alternative is to encode each sensor through a shared description (e.g., field-of-view,
expected information gain per joule) and learn the embedding once, allowing plug-and-play expansion
of the suite.

Dependence on a static semantic map: B-COD conditions on pre-loaded layers such as obstacle
occupancy and GNSS visibility. If construction alters the shoreline or a temporary stage blocks a
channel, the planner may route through stale free space. Coupling the raster with on-line semantic
SLAM or incremental map-updating would mitigate this brittleness and let the system react to novel
structures and transient occlusions.

Binary sensor model: The current scheduler flips each modality fully on or off. In reality many
sensors admit graded settings—reduced lidar scan rate, lower camera resolution, duty-cycled GPS
fixes—that offer finer energy/performance trade-offs. Extending the action space to multi-level or
continuous controls, possibly guided by differentiable power/quality curves, could unlock further
savings without compromising risk.

Calibration tied to training distribution: Variance honesty rests on the assumption that the demonstra-
tion data span the operating envelope. If the robot later encounters lighting, weather, or sensor faults
absent from the corpus, uCVaR may under-state true error. Techniques such as confidence-aware data
augmentation, out-of-distribution detectors, or post-deployment Bayesian recalibration would help
maintain reliability as conditions drift.

Addressing these limitations—expressive sensor descriptors, live map updates, multi-level energy
controls, and distribution-aware calibration—forms the next step toward a fully adaptive, task-agnostic
“just-enough sensing” navigation stack.
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Appendix: Implementation and Evaluation Details

Project resources
Website https://bcod-diffusion.github.io

Code repository https://github.com/bcod-diffusion/bcod

Dataset https://github.com/bcod-diffusion/dataset

The Appendix is organised as follows.

1. Implementation Recipes. Section 1.1 details the belief-rasterisation. Section 1.2 describes the
diffusion teacher UNet. Section 1.3 gives the single-step consistency student. Section 1.4 presents
the constrained-SAC schedule.

2. Experimental Set-up. Section 2.1 tabulates the six-sensor payload, update rates, noise models and
peak power draws used in all lake trials. Section 2.2 lists the hyperparameters that governs both
our method and every baseline.
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3. Open Maritime Dataset. Section 3.1 explains the real-to-simulation logging pipeline and the
Unity+ROS reconstruction process. Section 3.2 defines the 50,123 belief-annotated snippets,
their file structure and recommended train/val/test splits. Section 3.3 provides summary statistics
(lighting, obstacle density, belief spread) and dataloaders.

A Implementation Recipes

A.1 Belief Rasterization

Figure 6: Belief rasterization flowchart

The rasteriser runs as a stand-alone C++17 module on the ASV and is invoked once per high-level
tick. At each call the incoming estimator state consists of P = 500 weighted particles, each storing
position, yaw and, when available, the 2x2 planar covariance already maintained by the EKF; raw
particles simply carry an identity covariance. A single linear scan computes the weighted mean x̄, ȳ
and the full sample covariance Σxy . The square window is then anchored on (x̄, ȳ) and its side length
is set to

l = clip
(
⌈3max(σx, σy)⌉, 32, 96

)
,

where σx, σy are the principal standard deviations obtained from Σxy. For all lake trials this rule
contains at least 99.7% probability mass while keeping l ≤ 96. If l ≤ 64 the histogram is performed
directly into a l× l grid; otherwise we first bin into the larger lattice and apply a uniform average-pool
whose stride equals the integer ratio l/64. Down-sampling only occurs in open water when no
obstacles lie within 8 m, so aliasing does not affect subsequent collision checks.

As explained in the paper, for every occupied cell we accumulate five statistics. The mass channel
stores the true probability, already in [0, 1]. Orientation enters through the particle-weighted means
of sinψ and cosψ; after a linear map (x 7→ 0.5x + 0.5) both lie in the unit interval and avoid
discontinuities at ±π. Position uncertainty is condensed into λuv = log detΣ

(uv)
xy ; values below −6

(area exp(−6) ≈ 2.5 × 10−3 m2 ≈ 25 cm2) or above 0 are clipped and then mapped to [0, 1] by
x 7→ (x+6)/6. Circular variance vuv = 1−

√
s2uv + c2uv already satisfies the bound and requires no

scaling. Unoccupied cells receive (0, 0.5, 0.5, 0, 0) so the background is neutral to the convolutional
encoder. The entire procedure is O(P ); with P = 500 it consumes 0.93 ms on a single core (Jetson
Orin NX, -O3, no SIMD) and adds a worst-case 80× 80 = 0.006 ms LUT lookup for the clipping
maps.
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One fixed hyper-parameter controls the spatial resolution: with l ≤ 64 the cell width is w = l/64 m,
hence the nominal raster resolution is 0.25 m px−1 when l = 16 m and 0.50 m px−1 when l = 32 m.
These scales were chosen because they guarantee that, even at maximum speed (1 m s−1), the boat
traverses at most two pixels per control cycle, avoiding aliasing in the planner’s first convolutional
stride. All normalisation constants were computed once on a 40-minute validation log and kept
fixed for every run reported in the paper; no per-environment tuning is required. Gradients are never
propagated through the rasteriser, so its piece-wise linear maps and hard clipping cannot destabilise
network training.

A.1.1 Ablation study on raster statistics

We retain only five cell-wise moments because, for the horizons of interest, they are the smallest
set that still encodes(i) collision geometry, (ii) the growth rate of positional drift, and (iii) heading
ambiguity. Increasing the channel count widens every convolutional filter bank and inflates TensorRT
workspaces, while removing any moment discards information the scheduler needs to trade energy
for safety. Table 2 compares six variants against the full 5-channel raster on the day–night lake
benchmark. Each experiment reuses identical planner, scheduler and hyper-parameters; numbers are
the mean over 500 independent laps, with 95% confidence intervals below ±0.3 pp for all percentage
metrics.

Variant
(64×64 raster)

Channels
C

Goal-reach
↑

Collisions
↓

CVaR
viol.↓

Sensor

energy† ↓
Runtime

(ms)‡ ↓
Peak GPU

RAM (MB)⋆ ↓

Baseline (5 stats) 5 97.9 0.9 0.5 42 10.4 284
− log detΣ 4 95.2 3.5 3.0 46 10.2 283
− circular variance 4 94.8 4.7 3.8 47 10.2 283
− sine/ cosine yaw 3 91.6 7.3 5.4 52 10.1 282
+ Σxx Σyy ρxy 8 97.8 0.8 0.6 42 12.6 302
+ heading skew 6 97.8 0.9 0.5 43 11.0 290
+ particle count 6 98.0 0.9 0.6 43 10.9 289

Table 2: Influence of raster statistics on task performance. Arrows indicate preferable direction.
† Percentage of the sensor-only energy consumed by the Always-ON baseline (compute power is analysed
separately in App. B.1). ‡ Mean forward-pass latency of the diffusion model plus rasterisation; SAC adds a ≈
4.1 ms. ⋆ Peak memory measured with torch.cuda.max memory allocated after one control iteration.

Removing any of the five retained moments compromises safety. Without the log-determinant
channel the planner cannot detect anisotropic banana-shaped position uncertainty, so collisions
quadruple (0.9 % → 3.5 %) and the scheduler reacts by powering an extra sensor on 27 percent of
time-steps, raising energy from 42 % to 46 %. Eliminating the circular-variance channel makes
heading ambiguity invisible; both collisions and CVaR violations almost an order of magnitude
higher than baseline reflect episodes in which the boat enters a corridor mis-oriented and the SAC
has no early warning. Dropping the sine–cosine pair removes absolute orientation outright, slicing
goal-reach by six percentage points and forcing the policy into a high-power safety mode (52 %
sensor energy). Conversely, enriching the raster provides diminishing returns. Injecting the full planar
covariance tensor (+Σ ) shaves collisions by a mere 0.1 pp—well inside the confidence interval, yet
inflates TensorRT workspaces by 18MB and pushes inference to 12.6ms under moderate CPU load. A
sixth channel for heading skew or particle count produces statistically indistinguishable performance
while adding measurable memory and latency overhead.

A.2 Belief Conditioned One-Step Diffusion

A.2.1 Diffusion Teacher: full implementation details

The diffusion teacher is a conditional UNet trained with a cosine forward-process on the 8.3 million
short-horizon snippets described in the main paper. The encoder path corresponds to a 4-stage ResNet;
we simply extend it with symmetrical up-sampling to obtain the UNet. Fig. 7 summarizes the model
architecture.
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Figure 7: Model architecture: Diffusion Teacher

Input encoding and conditioning pathway. Each training example consists of a 64×64×C
raster, a goal mask of identical spatial size, a three-channel semantic-map slice, and the 8-bit
sensor-mask vector. The three spatial tensors are concatenated along the channel axis, giving
C = 5 (belief) + 3 (map) + 1 (goal) = 9. A single 3×3 convolution with 128 output channels and
stride 1 projects this 64×64×9 stack into a 128-channel feature map; this layer appears as the stem
conv row in Table 3. The binary sensor mask a ∈ 0, 1N is embedded by a learnable lookup table
into a 32-dimensional vector. After a ReLU this vector is broadcast spatially and added to every
feature plane produced by the stem. In practice the broadcast is implemented by first reshaping
the embedding to 1×1×32, repeating it to 64×64×32, concatenating along the channel axis, and
applying a 1×1 convolution back to 128 channels so that the subsequent residual blocks see the
fusion of raster and sensor context in a single tensor.

Timestep embedding. For the forward diffusion index t ∈ 1, . . . , T , with T = 1000, we adopt the
cosine ᾱ t schedule. A fixed sinusoidal positional-embedding layer converts t to a 256-dimensional
vector; a two-layer feed-forward network with SiLU activations then yields a 512-vector (γ t, β t).
At every residual block the feature map F is modulated by FiLM scaling: F ← F ⊙ (1 + γ t) + β t,
where ⊙ denotes channel-wise multiplication and the vectors are broadcast spatially. This scheme
injects the timestep signal without an extra concatenation and halves VRAM relative to the naı̈ve
(F |emb t) stack.

Residual blocks and self-attention. A ResBlk follows a standard Conv–GroupNorm–SiLU se-
quence, but with GroupNorm(32) to match NVIDIA TensorRT’s fused kernels. Each block carries
128, 256, or 512 channels as prescribed in the table below. The 32×32 and 16×16 resolutions retain
spatial self-attention: the feature map is reshaped to (B,HW,C), QKV projections compute eight-
head dot-product attention, the result is reshaped back, layer-normed, and fed through a two-layer
MLP before the residual add. At 8×8 resolution the attention head uses a causal-mask set to all ones
because we found sequence ordering irrelevant for such small tensors, yet leaving the softmax fully
dense reduces numerical instabilities during mixed-precision training.

Down- and up-sampling. Down-sampling is performed by 3×3 convolutions with stride 2 and
kernel-padding 1, which preserves the receptive-field parity of the original UNet++ backbone.
Up-sampling mirrors this with nearest-neighbour resize followed by a 3×3 stride-1 convolution.
Skip-connections concatenate the encoder feature map with the decoder input, doubling the channel
count at each merge; hence the decoder rows list twice the input channels relative to the corresponding
encoder levels.
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Bottleneck. At the 8×8 bottleneck the channel depth is temporarily doubled to 1024. A single
self-attention block with eight heads sits here, followed by a ResBlk, before channel width is reduced
back to 512 for decoding. Removing this bottleneck attention degraded mean-L2 path reconstruction
by 0.9 cm and uncoupled waypoint variances from the global geometry, so the compute cost was
judged worthwhile.

Output heads. After the last decoder block a 3×3 Conv+GroupNorm+SiLU returns a 64×64×128
tensor. Global average-pool collapses the spatial grid, yielding a 128-vector per batch element. Two
independent linear heads map this vector to the required outputs: the mean-head produces H × 3
scalars that are reshaped to (∆x,∆y,∆ψ) for each waypoint, while the log-var-head produces H
scalars that become σ̂ 1 : H . We fix H = 8 in all experiments.

Losses and optimisation. The training objective is the sum of the DDPM noise-reconstruction
term and the diagonal-Gaussian negative-log-likelihood term described in Eq. (2) of the paper, with
β = 0.05. Optimisation uses AdamW with β 1 = 0.9, β 2 = 0.999, weight-decay 1×10−4, and
gradient-clipping at an ℓ 2-norm of 1.0. The initial learning rate is 2×10−4 and follows a cosine
decay to zero over 300000 iterations; a 1000-step linear warm-up precedes the decay. Batches of
256 snippets are distributed across eight A100 GPUs (per-device micro-batch 32) using PyTorch
2.2’s DistributedDataParallel. Mixed-precision (FP16) is enabled with dynamic loss scaling;
a loss-scale overflow triggers an automatic orthogonal-projection of the gradient to the unit hyper-
sphere to avoid divergence. Training converges after 45 hours wall-clock; the final checkpoint is the
exponential moving average (EMA) of the weights with decay 0.9999.

Full layer specification. Table 3 lists every stage, its channel counts, the number of residual-
attention blocks, the resolution after the stage (assuming the canonical 64×64 input), and whether
the stage downsamples or upsamples.

Stage In C Out C Blocks Scale ↑ / ↓ Output size

Encoder
Stem conv 128 128 – ↓ 2 32×32
enc-1 128 128 ResBlk+SA ×2 – 32×32
enc-2 128 256 ResBlk+SA ×2 ↓ 2 16×16
enc-3 256 512 ResBlk+SA ×2 ↓ 2 8×8
enc-4 512 512 ResBlk+SA ×3 – 8×8
Bottleneck
bottleneck 512 1024 SA (8×8) – 8×8
Decoder
dec-4 1024 512 ResBlk+SA ×2 ↑ 2 16×16
dec-3 1024 256 ResBlk+SA ×2 ↑ 2 32×32
dec-2 512 128 ResBlk+SA ×2 – 32×32
dec-1 256 128 ResBlk+SA ×1 – 32×32
Heads
mean head 128 H×3 Linear – –
log-var head 128 H Linear – –

Table 3: UNet architecture of the diffusion teacher. All convolutions use reflection padding; GN = Group-
Norm(32); SA = multi-head self-attention, 8 heads; SiLU activation everywhere.

A.2.2 Consistency-model student: implementation details and training recipe

The single-step student network, denoted gψ, reproduces the teacher’s conditional trajectory distri-
bution while reducing inference latency by an order of magnitude. Unless explicitly noted, choices
are identical to the teacher’s (Section A.2.1) so that the two checkpoints can be swapped at test time
without touching any preprocessing code.

Input interface and conditioning pathway. The student consumes the same tensors as the teacher:
the 64× 64 raster–map–goal stack, the embedded sensor-mask vector and the sinusoidal diffusion-
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timestep embedding. To keep the network lightweight we halve the channel width throughout. A 3×3
convolution projects the 9 concatenated spatial channels to 64 feature planes. The 32-dimensional
sensor embedding is broadcast and added via a 1×1 convolution to the stem output; the FiLM
modulation with (γt, βt) derived from the timestep embedding is unchanged.

Backbone topology. Because the student must finish in under 10 ms on the Jetson Orin NX, it
uses a two-down / two-up UNet. After the stem, two residual blocks with 64 channels operate at
64×64 resolution; a stride-2 convolution downsamples to 32×32 where two residual blocks with 128
channels run, each augmented with eight-head self-attention. A second stride-2 convolution produces
the sole bottleneck at 16×16 and 256 channels; here a single residual block followed by multi-head
attention sits. Decoding mirrors this path: nearest-neighbour upsample by two, concatenate the skip,
apply two residual-attention blocks, upsample again, concatenate, and finish with one residual block.
Channel counts therefore follow the series 64 → 128 → 256 → 128 → 64. All convolutions use
GroupNorm(32) and SiLU; attention is identical to the teacher but run only at 32×32 and 16×16,
which empirical profiling showed to be the cheapest resolution that still preserved multi-modal
coverage.

Output heads. As with the teacher, global average pooling yields a 64-vector that feeds three linear
heads: an ϵ head and a mean head, each of size H×3, and a log-variance head of size H . The value
H = 8 is retained so that the student’s tensor shapes match the teacher’s exactly and downstream
checkpoints can be swapped without re-tracing TensorRT engines.

Consistency distillation objective. The teacher checkpoint is frozen. For every training step, a
fresh latent ξ ∼ N (0, I) is sampled; the teacher generates τ ref, σ̂ref, ϵ̂ref. The student is forced to map
the same latent and conditioning inputs directly to those references. The loss function is the sum of a
mean-squared error on the mean trajectory, an identical MSE on the predicted noise residual and an
analytically computed diagonal-Gaussian KL divergence betweenN (µ̂ψ,Σψ) andN (τ ref,Σref). The
scalar weight λ in front of the KL term is linearly annealed from 0 to 0.5 over the first 50 k iterations,
then held constant; this avoids early collapse of variances while still enforcing calibration in later
epochs.

Optimisation schedule. AdamW is again used but with a smaller learning rate, 1.5×10−4, and no
weight decay, as we found that the reduced model has lower capacity and benefits from unconstrained
norms. Training uses batches of 1024 latents (four A100-40 GB GPUs, micro-batch 256), runs for
200 k iterations and takes 13 hours wall-clock. All arithmetic is FP16 with dynamic loss scaling;
gradient clipping at an ℓ 2 norm of 0.5 prevents rare spikes when the teacher’s variance is near the
clipping floor. We maintain an EMA with decay 0.9997 and export the EMA weights.

Runtime and memory. The final FP16 ONNX graph is fed to TensorRT 10.0 with full layer fusion.
On the Orin NX in 25 W mode a forward pass, including FiLM modulation and the three heads,
clocks at 5.7± 0.2 ms and consumes 146 MB of GPU RAM; the accompanying rasterisation and
SAC inference raise the end-to-end control-loop budget to 9.9 ms, matching the numbers in Table 1
of the main text. Exact throughput is reproducible with the command line included in the artefact
repository; no hidden environment variables or compiler flags are required.

Stage In C Out C Blocks Scale Output size

Stem conv 64 64 – ↓2 32×32
enc-1 64 64 ResBlk+SA ×2 – 32×32
enc-2 64 128 ResBlk+SA ×2 ↓2 16×16
Bottleneck 128 256 ResBlk+SA ×1 – 16×16
dec-2 256 128 ResBlk+SA ×2 ↑2 32×32
dec-1 256 64 ResBlk+SA ×1 – 32×32
Heads 64 see text Linear – –

Table 4: UNet architecture of the single-step student. Symbols as in Table 3.
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A.3 Constrained SAC for online sensor scheduling: Implementation recipe

The constrained-SAC (C-SAC) controller is trained entirely in simulation, frozen, and then executed
on the ASV without modification.

State preprocessing. At control step t the diffusion planner supplies the 64×64×5 belief raster
Bt and the scalar CVaR proxy ut = uCVaR

t . We also compute the Euclidean distance dt between the
particle-filter mean and the goal, and retain the previous binary sensor mask at−1 ∈ {0, 1}N (here
N = 5). The spatial tensor passes through the same shared CNN encoder for actor and critics:

Conv(5→16, 3× 3, stride = 2) → SiLU

→ Conv(16→32, 3× 3, stride = 2) → SiLU

→ Conv(32→64, 3× 3, stride = 2) → SiLU → GlobalAvgPool

yielding a 64-dimensional feature vector ϕt. The numerical features are concatenated to form

zt =
[
ϕt ∥ ut ∥ dt ∥ at−1

]
∈ R64+1+1+5 = R71.

Normalisation: ut is divided by ηmax (so its nominal range is [0, 1]), the distance dt is divided by the
world-radius (100 m in simulation), and the mask at−1 is left as {0, 1} bits.

Actor network. The policy πθ(at | st) is parameterised by a two-layer MLP:

Linear(71→128) → SiLU → Linear(128→128) → SiLU → Linear(128→N).

The final layer outputs logits. During exploration each sensor’s action is sampled as ãt,n ∼
Bernoulli(σ(logitn)); during evaluation we hard-threshold at 0.5. The IMU line is forced to 1
by appending a +∞ bias to its logit, matching the always-on requirement in hardware.

Critic networks. Two independent Q-functionsQϕ1 , Qϕ2 share the CNN encoder but have separate
MLP heads identical in width to the actor (input 71 + 5 bits of proposed action). A single-layer value
network Vψ of width 128 supplies the baseline for automatic entropy tuning.

Objective and constraint handling. Let rt = −c⊤at (sensor-power cost, coefficients c taken from
factory current draw) and gt = 1[ut > ηmax]. We optimise the unconstrained Lagrangian

Lt(θ, ϕ, λ) = E(st,at)

[
rt + λ gt + α

(
− log πθ(at | st)

)]
,

with dual variable λ ≥ 0. Entropy weight α is tuned automatically towards a target entropy
−N log 0.5. The dual update is a simple projected gradient ascent:

λ ←
[
λ+ βλ

(
E[gt]− ϵ

)]
+
, βλ = 0.05.

We set ϵ = 0.02 (i.e. ≤2 % long-run CVaR violations) and ηmax = 2 m.

Optimisers and buffers. Actor, critics and value network use Adam with learning rate 3×10−4 and
(β1, β2) = (0.9, 0.999). No weight decay. A replay buffer of one million transitions is pre-allocated;
we collect 16 simulation environments in parallel, step each for five horizon steps, then perform 80
gradient updates (batch 256). Discount factor γ = 0.99, target-network Polyak τ = 0.005. Training
for 2.0M environment steps (≈ 20 CPU-hours on an 8-core desktop) suffices for convergence; an
early-stop rule halts once the seven-day rolling average of risk violations drops below ϵ.

Domain randomisation. During training we randomise wind drag (±30%), ambient light (0–60
kLux), sensor dropout intervals (exponential, mean 45s) and per-sensor white noise (scaled to twice
the empirical lake variance). This sweep was essential for zero-shot transfer to night-time hardware
runs.
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A.4 Ablation study on the risk metric

To study the effect of different risk metrics, we ran focused runs on Unity simulator (simulator details
in App. §.3)–all network weights were frozen, and only the scalar sent to the SAC was varied.

CVaR-90 CVaR-95 CVaR-99

Goal-reach ↑ 96.81 % 98.14 % 97.69 %
Risk-violations ↓ 1.61 % 0.57 % 0.43 %
Sensor energy vs. AON ↓ 41.07 % 44.01 % 48.11 %

All three statistics keep success above 95% and violations below the 2% CMDP target, confirming
that B-COD is robust to the exact tail metric. Qualitatively, we noticed that CVaR-99 makes SAC
react to every incipient drift spike, switching sensors on sooner and off later; this trims violations but
increases energy consumption. CVaR-90 increases budget breaches, because brief, locally harmless
yaw noise is being deemed safe. CVaR-95 sat on the Pareto knee-minimal energy with sub-1% risk
breaches.

B Additional experimental details

Figure 8: SeaRobotics Surveyor ASV in the operating environment with a differential-thrust propulsion module
and a heterogeneous sensor suite: a multi-beam LiDAR, day and night cameras, RTK-GPS, MEMS IMU, and an
EXO2 sonde

B.1 Sensor suite and power model

The autonomous surface vehicle carries six modalities and span more than two orders of magnitude
in power demand. Table 5 lists their static characteristics. Power figures are peak electrical draw
measured with a laboratory power meter at the nominal 24 V bus voltage; calibration noises enter
the particle filter and the InfoGain baseline unaltered. The inertial unit is considered always-on in
every experiment because its 0.1 W draw is dwarfed by the thrust module. Power consumption in the
results section of the paper refers only to the sensor column.

Sensor Update rate Range 1σ sensor noise Power (W)

Spinning LiDAR, 32-line 10 Hz 120 m 3 cm 16.0
Global-shutter RGB camera 20 Hz 80 m (day) 1 pixel (≈ 2 cm) 3.0
NIR-augmented mono camera 20 Hz 40 m (night) 1 pixel 5.0
Exo-conductivity/temperature sonde 2 Hz spot - (depth only) 1.2
RTK-capable GNSS receiver 5 Hz global 1.5 cm (RTK fix) 0.2
6-axis MEMS IMU (always on) 200 Hz n/a 0.02 rad/s (gyro) 0.1

Table 5: Sensor payload used in all trials. Ranges are conservative values in clear daylight; night performance
degrades as described in the text.
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B.2 Hyper-parameters of B-COD and the C-SAC scheduler

All diffusion-model constants are given in Apps.,A.2.1 and A.2.2. For completeness we repeat the
single value that materially affects on-board behaviour: the distance-to-goal scalar appended to the
SAC state is divided by the fixed world radius of 100 m. The risk budget is ηmax = 2 m and the
acceptable violation rate is ϵ = 0.02. No other quantity is tuned per run.

B.3 Baseline implementations

Every baseline re-uses the same EKF, particle filter, low-level thrust limits; only the sensor-selection
logic and, where relevant, the high-level planner differ.

Always-ON. All six modalities powered from take-off to shutdown; no parameters.

Greedy-OFF. A luxmeter attached to the mast provides the measured ambient light. If lux < 10
the day camera is disabled; if lux ≥ 10 the night camera is disabled. LiDAR is powered only if any
return in the previous sweep lay within 15 m of the boat’s estimated pose. The sonde is enabled
whenever the chlorophyll-a estimate exceeds 6, µg/L, an empirically determined threshold separating
routine from interesting water in the survey lake. The five constants (10, 10, 15 m, 6, µg/L, GPS
always on) were grid-searched on a held-out 30-lap sequence.

InfoGain-Greedy. At each 1 s decision instant the analytic observation model of the EKF is queried
under the six possible single-sensor activations. The sensor that maximises the expected reduction in
log-determinant of the 500-particle spatial covariance is selected; all others are switched off until the
next period.

Random-K. The scheduler samples a new mask every control step. Variant R1 draws exactly one
sensor (uniform over the five switchable modalities); variant R2 draws exactly two. The IMU remains
on.

σ-Mean and Sample-Spread. The C-SAC actor–critic architecture is fixed. In σ-Mean the scalar
risk input is 1

H

∑
k

√
eσ̂k . In Sample-Spread the diffusion planner returns 20 trajectory samples and

the input risk is the 95th percentile of the waypoint-wise Mahalanobis spread. No other change is
made.

No-Belief Raster. The planner receives a single additional channel containing ∆x,∆y,∆ψ; the
raster encoder is unmodified but observes zeros in place of the missing belief statistics.

Pure RL. A constrained SAC identical to the student’s C-SAC head controls both motion primitives
(discrete 16-heading lattice, step 1 m) and the sensor mask; state is the same 71-vector. Learning rate
3× 10−4, replay one million, target entropy −|A| log 0.5, dual step size 0.05. Training budget 50 M
environment steps (≈ 6 days on 32 vCPUs).

DESPOT-Lite. Online POMDP search with 5 k belief particles, tree depth 6 (≈ 6 s horizon), and
rollout policy equal to the Always-ON heuristic. Each internal node expands only |S|+1 actions (one
per singleton sensor subset plus the null set) to keep branching manageable. The planner terminates
early if the anytime bound width falls below 10% of the current best value or the 500 ms wall-clock
budget elapses.

C Open maritime navigation dataset

To catalyse follow-up work on uncertainty-aware, resource-bounded marine autonomy we publicly
release the 50k marine navigation corpus: 50,123 short-horizon navigation snippets whose every
frame is synchronised across pose belief, rasterised map slice, raw sensor packets and ground-truth
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trajectory. The dataset is hosted under a permissive CC-BY-4.0 licence at https://github.com/bcod-
diffusion/dataset and mirrored in the project repository. Currently a subset of this dataset has been
released publicly.

C.1 Collection pipeline

Figure 9: Screenshot of our Unity simulator.

Field logs. Twelve day-time and eight night-time sor-
ties were conducted on freshwater lake. The SeaRobotics
Surveyor ASV collected:

(i) 32-beam spinning LiDAR point clouds (10 Hz,
ROS/PCD);

(ii) RGB images (20 Hz, PNG);

(iii) Near-IR images under 850 nm active illumination
(20 Hz, PNG);

(iv) RTK-GNSS fixes (5 Hz, NMEA);

(v) Six-axis IMU messages (200 Hz, ROS/Imu);

(vi) Water-quality probe samples (2 Hz, CSV).

All topics share a chronologically consistent ROS /clock. Each log is accompanied by recordings of
wind and irradiance for domain-randomisation replay.

Real→sim transfer. Logs are imported into an in-house Unity 2022.3 + ROS 2 simulator that
reconstructs the shoreline mesh, static obstacles, bathymetry and approximate above-surface lighting.
Dynamic objects are re-instantiated with ground-truth trajectories. The simulator then re-flies the
ASV pose trace while rendering all sensors at original frame rates. Crucially, we also replay the
EKF/particle filter in lock-step, producing a time-aligned sequence of belief particle clouds; these
clouds are the source of the raster Bt and the CVaR proxy in each snippet.

C.2 Snippet definition

A snippet is a contiguous 1s window centred at time t0 and exported as

(i) B t.npz – 64 × 64 × 5 float16 raster at t0;

(ii) map slice.png – 64 × 64 × 3 semantic image;

(iii) goal mask.png – 64 × 64 binary;

(iv) sensor flag.npy – 5-bit uint8 vector active at t0;

(v) traj.npy – ground-truth (∆x,∆y,∆ψ)k=1..8;

(vi) sigma.npy – waypoint log-variances σ̂1..8;

(vii) meta.json – latitude/longitude, weather, clip ID.

Overlapping windows are sampled at 2 Hz, yielding 50123 snippets.

C.3 Statistics

(i) Modalities. 100 % contain LiDAR and IMU; day camera appears in 72 %, night camera in 28
%, GNSS in 64 %, sonde in 18 %.

(ii) Belief spread. Median planar 1σ = 0.38 m; 95th percentile = 2.1 m.

(iii) Lighting. Illumination spans 0.2–55 kLux; clips are evenly stratified into five bins for train-
ing/validation.

(iv) Obstacles. Each snippet is annotated with the minimum range to shoreline and to floating
hazards; mean 14.2 m, min 0.8 m.
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