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ABSTRACT

Graph neural networks (GNNs) have shown promise in learning the ground-state
electronic properties of molecules and crystalline materials, subverting compu-
tationally intensive density functional theory (DFT) calculations. Materials with
structural disorder, however, are more challenging to learn as they exhibit higher
complexity and a more extensive palette of local atomic environments, all of which
require large (10+ Å) cells to be accurately captured. In this work, we adapt effi-
cient equivariant GNN approaches to learn disordered materials’ electronic prop-
erties, represented by the Hamiltonian matrix (H). Since creating a large graph
corresponding to the whole structure of interest would be computationally pro-
hibitive, we introduce an augmented partitioning approach in which the graph
is sliced into multiple partitions, each augmented with masked virtual nodes and
edges. This method maintains correct atomic neighborhoods within a single mes-
sage passing layer, allowing for the network to learn the electronic properties of
amorphous HfO2 materials with 3,000 nodes (atoms), 500,000+ edges, and ∼28
million orbital interactions (non-zero entries of H).

1 INTRODUCTION

Predicting structure-property relationships in atomically resolved materials lends itself optimally
to graph-structured data. Graph Neural Networks (GNNs) have proven capable of learning these
relationships while constrained by their underlying symmetries (Veličković et al. (2018)). Trained
networks have been able to learn molecular- and atomic-level quantities (Wang et al. (2023)), cir-
cumventing otherwise computationally prohibitive simulations at the ab initio level. More recently,
GNNs have been adapted to predict electronic properties, described by a discretized ground-state
Hamiltonian matrix H . Rapid and accurate constructions of H can unlock in silico explorations of
the large design space of electronic materials (Klinkert et al. (2020)).

The matrix H can be decomposed into sub-matrices Hi,j that encode the coupling between the sets
of atomic orbitals located on atoms i and j. These coupling terms are a function of the identity and
relative coordinates of the local environment. Predicting such electronically resolved information
introduces additional challenges over atomically resolved quantities, as the output data is equivariant
under rotation. Existing work on electronic property prediction has mainly treated the cases of small
molecules (Zhong et al. (2023); Yu et al. (2023b); Bai et al. (2021)) and well-ordered materials (Li
et al. (2022); Gong et al. (2023); Wang et al. (2024a)). The graph representations of these structures
are fairly small - small molecules contain only a few atoms, and in crystalline materials all relevant
structural information can be captured within the smallest repeating unit cell.

Many applications, however, require the computation of the electronic properties of materials with
structural disorder, such as local or extended defects, or in an amorphous phase (Ducry et al. (2020);
Kaniselvan et al. (2023); Strand et al. (2018)). These materials typically contain a limited number
of atomic species, from 2 to 5, with quasi-random distributions. Accurate ab initio simulations of
the resulting disordered atomic structures are only possible if large unit cells composed of hundreds
to thousands of atoms are used (Repa & Fredin (2023)). As a consequence, prohibitively expensive
computations must be performed with a density functional theory (DFT) tool to obtain their elec-
tronic properties. The prospect of applying deep-learning solutions to handle such materials is thus
particularly attractive. To be of practical relevance, however, they should be able to generalize to
large scales.
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Here, we extend equivariant GNN approaches to learn and predict the electronic properties of ma-
terials in amorphous phases by fitting the sub-blocks of the ground-state Hamiltonian H in matrix
form. Our main contributions are:

• We develop an efficient GNN-based model for electronic property prediction, by combining
(1) the SO(2)-convolution approach detailed in Passaro & Zitnick (2023), (2) the equivari-
ant attention mechanism introduced in Liao et al. (2023), and (3) concepts from Gong et al.
(2023) and Wang et al. (2024a) to introduce learnable node/edge embeddings along with
basis transformation layer to pre-process the targets and map predictions to the Hamiltonian
output. We provide the code for this implementation in [the Supporting Materials].

• We propose an efficient augmented partitioning method that breaks down input graphs into
small pieces and corrects atomic environments with masked virtual nodes and edges. This
allows arbitrarily large graphs to be decomposed into independent partitions that can fit into
GPU memory during training without compromising the achievable testing accuracy. Our
approach enables the training and prediction of unfeasibly large systems including realistic
amorphous materials and heterostructures that can contain up to hundreds of thousands of
atoms in a unit cell.

We combine our model and augmented partitioning approach to treat a real example with practical
scientific relevance. Specifically, we consider hafnium dioxide (HfO2), one of the most technologi-
cally relevant amorphous oxides (Choi et al. (2011)). The theoretical study of defects and transport
properties in HfO2 is relevant to several research areas, from optimizing gate dielectrics for transis-
tors (Strand et al. (2018)) to developing new resistive-switching technologies enabling in-memory
computing (Kaniselvan et al. (2023)). With this, we achieve a prediction accuracy of 5.87 meV ,
matching the eigenvalues of H to within 0.87% relative L1 error, on structures with 3,000 atoms,
which require several (3.65) hours to compute using DFT. Our work advances applications of equiv-
ariant GNNs towards practical use cases in computational physics, chemistry, and materials science.

2 BACKGROUND & RELATED WORK
(1)

(2)

(3)

(4) (5)

Atomic graphOrbital basis

Hamiltonian matrix

rcut

Norb,2

N
orb,2

Norb,3N
orb,5

Orbital blocks

Figure 1: Schematic of the mapping be-
tween the atomic graph and the blocks of
the Hamiltonian matrix H in the localized
orbital basis of choice. Each orbital block
represents the couplings between atomic or-
bitals on the same atom (Hi,i, diagonal)
or between two different atoms within rcut
(Hi,j , off-diagonal).

The electronic properties of a material refer to its set of
energy levels (ε) and wavefunctions (ψ) that electrons
can occupy. They correspond to the eigenvalues and
eigenvectors of the Hamiltonian matrix H describing the
atomic system of interest. This quantity is a function of
the location (relative positions {ri}) and identity (atomic
numbers {Zi}) of all constituent atoms {i} (Hohenberg &
Kohn (1964)). Therefore, predicting the electronic prop-
erties consists of learning the mapping F : {ri, Zi} →
H between the atomic structure and the elements of the
corresponding Hamiltonian matrix (Fig. 1).

The entries of the ground-state Hamiltonian matrix H
are typically computed from first-principles with DFT
(Kohn & Sham (1965)). In several widely used codes,
the wavefunctions are expanded into a basis |φ⟩ of non-
orthogonal atomic orbitals localized around atomic posi-
tions, each built, for example, from contracted Gaussian
functions (Kühne et al. (2020); Neese (2011)). These or-
bitals transform like spherical harmonics under rotation
r̂ → r̂′: Y l

m(r̂′) =
∑

m′ Dl
mm′(R)Y l

m′(r̂). Here, Y l
m

is the spherical harmonic of degree l and order m ∈
{−l, . . . , l}. Dl

mm′(R) is the Wigner-D matrix of degree l corresponding to the rotation R, which
transforms the corresponding spherical harmonic. r̂ and r̂′ are normalized direction vectors.

The localized nature of the basis states leads to finite spatial overlaps between them. The resulting
Schrödinger equation at the core of DFT takes the form of a generalized eigenvalue problem: Hψ =

εSψ. Here, the Hamiltonian matrix H(N×N) has entries Hi,j = ⟨φi|Ĥ(r)|φj⟩ where Ĥ(r) is the
so-called Hamiltonian operator, while the Overlap matrix S(N×N) is made of Si,j = ⟨φi|φj⟩. They
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are both coarse-grained matrices of size N =
∑

kN
k
atoms · Nk

orb, where Natoms is the number
of atoms, Norb the number of orbitals per atom, and k indexes over the different atomic species
found in the system. Note that S reduces to the identity matrix in case of an orthogonal basis |φ⟩.
Otherwise, it can be directly computed from the basis as the problem’s physics does not influence it.

The Hamiltonian matrix can be decomposed into sub-matrices Hi,j of size (N i
orb × N j

orb), each
describing the interactions between all basis elements (orbitals) on atoms i and j. Diagonal blocks
(Hi,i) are the interactions between orbitals on the same atom. When represented on a local basis,
the matrix is near-sighted; the interactions between orbitals on different atoms decay exponentially
with increasing interatomic distance. Since an atomic orbital basis is used, the sub-matrices are
equivariant under rotation of the atomic bonds, with their transformation properties related by the
Wigner-D matrix.

2.1 CHALLENGES UNIQUE TO DISORDERED MATERIALS

Figure 2: Illustration of the difference between ordered (left)
and disordered materials (right), whose structural features
can only be captured by defining a large unit cell. In both
cases, the smallest repeating unit cell is delimited by a black
box, while the circles/lines correspond to atoms/bonds.

Computing the electronic properties of
disordered materials with DFT still re-
quires defining a repeating ‘unit cell’ and
using periodic boundaries to avoid dan-
gling bonds. This periodicity, however,
can alter the material’s amorphous na-
ture if the repeating unit cell is too small.
Atoms can interact with all their peri-
odic images, leading to non-physical phe-
nomena such as the formation of coherent
electronic states across cells. These phe-
nomena can be prevented by constructing
‘large-enough’ unit cells (12+ Å (Repa
& Fredin (2023)) to a few nanometers
(Ducry et al. (2020))) that better approx-
imate disorder. Generating the Hamilto-
nian matrix H of these systems with DFT involves tens to hundreds of self-consistent field (SCF)
loops, each requiring the diagonalization of an intermediate H . As this numerical operation scales
with O(N3

atoms), analyzing electronic properties for large amorphous systems (or different amor-
phous representations of the same material) is very often computationally unaffordable.

2.2 DEVELOPMENT OF MODELS FOR THE PREDICTION OF ELECTRONIC PROPERTIES

Only a few studies have attempted to directly predict the Hamiltonian matrix H rather than directly
fitting invariant quantities such as the total energy. The key is to constrain the solution space by
leveraging prior knowledge of physical symmetries, e.g., rotational equivariance of orbital blocks.

Several works leverage local structure descriptors containing sufficient detail about each atom’s en-
vironment. The mapping between these descriptors and the orbital blocks of the Hamiltonian was
then learned through Kernel Ridge Regression (Hegde & Bowen (2017)) or multilayer neural net-
works (Schütt et al. (2019); Gu et al. (2024)). Certain descriptors, such as Atomic Cluster Expansion
(ACE) (Drautz (2020)), can be extended to orbitally resolved data (Nigam et al. (2022)) and used
to predict the Hamiltonian matrix of crystalline materials (Zhang et al. (2022)). These approaches
achieved prediction accuracy of a fewmeV on small-molecule datasets. Rotational equivariance was
enforced through the descriptors (Zhang et al. (2022)) or data augmentation (Schütt et al. (2019)).
Initial GNN-based approaches, such as the network developed by Li et al. (2022), are intrinsically
invariant to the translation and permutation of the inputs. Information about the rotational equivari-
ance was incorporated by rotating to a pre-selected axis before training, which reduces the problem
to a rotationally invariant one.

In equivariant GNNs, the predicted Hamiltonian rotates along with the input (Yu et al. (2023b);
Zhang et al. (2024); Batatia et al. (2023); Gong et al. (2023)), which requires maintaining SO(3)-
equivariance within the model. This means that all network operations f acting on input embedding
xl of degree l must satisfy: f(Dl(R) · xl) = Dl(R) · f(xl). The networks are trained using
Message Passing (MP), where each MP layer works as follows: An atom i receives input messages
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from each neighboring source atom j. Each input message goes through convolution operations
that combine features with different l while preserving equivariance; a specific output embedding
xl3
ji of degree l3 can be computed through: xl3

ji =
∑

l1,l2
xl1
j ⊗

l3
l1,l2

hl1,l2,l3Y
l2(r̂ji). Here, r̂ji is a

normalized vector indicating the direction of the edge connecting the atoms j and i, and h is a set
of trainable weights. The sum runs over tensor products which take xj (a source input embedding
of degree l1) and Y l2 (a filter spherical harmonic embedding of degree l2) and produce the output
embedding:

(xl1
j ⊗

l3
l1,l2

Y l2(r̂ji))
l3
m3

=
∑

m1,m2
(xl1

j )m1
Cl3,m3

(l1,m1),(l2,m2)
hl1,l2,l3Y

l2
m2

(r̂ji),

where the Cl3,m3

(l1,m1),(l2,m2)
are the Clebsch-Gordan coefficients that are indexed by the order m and

degree l of the input, filter, and output embeddings. The combination of feature (x) and geometric
(r̂) information along each edge encodes both the identity and structure of the system. These ‘Tensor
Field Networks’ (TFNs) (Thomas et al. (2018)) achieve state-of-the-art accuracy on small molecule
(Yu et al. (2023b)) and crystalline (Gong et al. (2023)) datasets. However, they are also much more
computationally expensive. The network training scales withO(l6max), where lmax is the maximum
degree of the angular momentum considered. Fully, E(3)-equivariant networks are difficult to apply
beyond a few atoms (Zhang et al. (2024)).

Recently, the computational cost of training equivariant GNNs has been significantly reduced by
combining the benefits of data rotation and equivariant network operations. These approaches take
advantage of the fact that when edges are rotated to align with a fixed axis (y or z depending on con-
vention), the only non-zero spherical harmonic components are those of order m = 0. By keeping
track of the bond vectors and performing internal spherical rotations, complex SO(3) convolutions
can thus be reduced into SO(2) linear convolution operations (Passaro & Zitnick (2023)). Addition-
ally, under these conditions, the Clebsch-Gordan coefficients exhibit a predictable sparsity pattern
(non-zero only whenm3 =±m1). Altogether, the scaling reduces toO(l3max) (Wang et al. (2024a)),
and the network’s training speeds up, enabling the use of higher-order angular momenta (lmax) and
more parameters to capture finer, more complex details of the surrounding environment. An ad-
vanced SO(2) convolution network was developed by Passaro & Zitnick (2023) (eSCN)) and further
expanded by Liao et al. (2023) (EquiformerV2) with the inclusion of equivariant attention and sep-
arable activation layers. A subsequent implementation of this approach on Hamiltonians by Wang
et al. (2024a) achieved better performance on custom crystalline 2D-material datasets compared to
previous tensor field and invariant networks.

3 METHODS

We adapt the ‘EquiformerV2’ network by incorporating concepts from Gong et al. (2023) and Wang
et al. (2024a). In this section, we present an overview of the methods used to initialize the graph,
construct the network, and propose an efficient augmented partitioning approach to train it. Relevant
implementation details and ablation studies are presented in Section 4 and Appendices A, C, D.

3.1 NETWORK LAYOUT

Node Update 
Block

Edge Update 
Block

n0, e0 n1, e0

MP 1

Feedforward 
Network

…Feedforward 
Network

n1, e0 n1, e1

 | r |, Z

nN, eN…

MP 2

n1, e1

Figure 3: High-level overview of the network, illustrating the update of node features (nX ) and edge features
(eX ) after message passing layer X (MP X). Z refers to atomic numbers, while rij is the set of scalar distances
between atoms.

When constructing a given material’s graph, we can leverage the Hamiltonian’s near-sightedness
to only retain edges corresponding to atoms within a fixed interaction distance rcut, beyond which
the interactions are negligible. Orbitals located on different atoms can interact with each other over
distances of ∼10 Å, giving rise to specific off-diagonal blocks in the Hamiltonian matrix.
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The graph’s nodes/edges are initialized with an embedding of shape (Nn, (lmax + 1)2,
dsphere,n)/(Ne, (lmax + 1)2, dsphere,e), where Nn/e is the number of nodes/edges, dsphere,n/e
the channel dimension for embeddings, and lmax the maximum degree of the features. The l = 0
channels of the node embeddings are initialized with atomic numbers, while the l = 0 of the edge
embeddings are initialized with the scalar distance between the two connecting nodes, expanded in
the chosen basis, here Gaussian functions. All other components are initially set to 0. The orbital
blocks representing the interaction between atoms are flattened into 1D tensors to form the labels
for each node/edge during the supervised training process. They are then converted from uncoupled
to coupled basis using a Wigner-Eckart transformation (Appendix A.1).

During training, each MP layer updates the node, and then the edge representations. Within the
node update block, each node i receives messages from each of its neighbors j, consisting of the
concatenated embeddings ni, nj , and that of the edge eji, rotated to align with the z-axis. After
SO(2) convolutions are performed on the input messages, the resulting output messages are rotated
back to their original orientations and aggregated onto the node i to update its embedding ni. The
updated node embeddings are then used to update the edges through a similar process, without the
attention layer. Subsequently, the node embeddings in the next message-passing layer are updated
with the new edge embeddings. A high-level overview of the network is presented in Fig. 3, and
a more detailed outline can be found in Appendix A. During the inference phase, the output is
converted back to the uncoupled basis through a Wigner-Eckart layer (Appendix A.1) to reconstruct
the Hamiltonian matrix H.

Our network architecture is similar to that of EquiformerV2 and DeepH2. A particular difference
lies in the use of gate activation layers instead of the S2 activation layer of EquiformerV2. Although
the S2 layer allows for non-linearity to be introduced to higher-order features, achieving numer-
ically perfect equivariance requires a large grid size, making it computationally expensive when
implemented on large graphs (Passaro & Zitnick (2023)).

3.2 AUGMENTED PARTITIONING WITH MASKED VIRTUAL NODES/EDGES

labeled 
nodes

virtual 
nodes

slicet

periodic

periodic

i
j’

j

x

y

z

Figure 4: Illustration of how connectivity beyond
the partition boundaries is incorporated, using one-
way masked virtual edges (ej′→i) from masked virtual
nodes (j′) to the labeled nodes. Edges between nodes
within the partition are two-way (ej↔i). A set of edges
from labeled and virtual nodes is shown for a single
node (i) within the partition. The solid vertical lines
are the partition boundaries. Different colors represent
different atomic species.

Training GNN representations of the large
amorphous materials considered here incurs
high memory consumption and long compu-
tation times per epoch (Appendix G.2). The
dense connectivity of these graphs also leads
to heavy communication overhead in full-batch
distributed approaches (Wan et al. (2022)).

A variety of methods have been developed to
reduce the memory requirements and increase
the amount of parallelism during training of
large graphs (Besta & Hoefler (2024)). How-
ever, they do not cover the specificity of our
application. Much of previous work is con-
cerned with modifying connectivity to effec-
tively propagate long-range information, for ex-
ample, by dividing the graph into sub-graphs
and passing messages intra- and inter-subgraph
(Liao et al. (2018)), or introducing virtual
nodes to transfer messages over longer dis-
tances (Qian et al. (2024)). Such approaches are
unnecessary in our case since the graph is near-
sighted and long-range interactions are negligi-
ble (Appendix F.1).

Neighborhood sampling techniques such as ClusterGCN (Chiang et al. (2019)) represent an alter-
native, but they sacrifice the exact connectivity of the graph to enable computational efficiency and
scalability. As H is a function of the relative positions and species of all constituent atoms, directly
changing the representation of local atomic neighborhoods compromises the achievable accuracy.
Omitting any connections leads to misinformation and poor generalization, as the network tries to
fit to the target data while aggregating information through an incorrect/incomplete graph structure.
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Training of large GNNs for electronic property prediction thus necessitates new strategies to become
computationally feasible.

To enable efficient training of the graph while maintaining correct atomic environments and neigh-
boring edge connections, we introduce an augmented partitioning approach. A visual representation
of it is provided in Fig. 4. The graph is partitioned into slices along the x-axis (longest dimension),
and maintains periodic edges across the y- and z-boundaries. Each slice contains atoms and edges
within a fixed interval between x0 and x0 + tslice, where x0 and tslice are the starting x-coordinate
and length of the slice, respectively. Atoms outside of a given slice but present in the connectivity
lists of those within are represented by virtual nodes (Fig. 4 - dashed circles). They are connected
to the slice using one-way virtual edges (Fig. 4 - dashed lines). Details about the construction of
partitions are given in Appendix C.

Figure 5: (a) Example atomic structure of
a-HfO2, showing oxygen atoms in blue and
hafnium atoms in orange. The unit cell,
which is illustrated by the black dashed box,
has x-, y-, and z-dimensions of 53.876 Å ×
26.308 Å × 26.242 Å, respectively. A slice
(partition), characterized by a length tslice,
is also illustrated. (b) Distribution of the
maximum element of each block of H as
a function of interatomic distance, demon-
strating the near-sighted nature of orbital in-
teractions.

These virtual nodes/edges are initialized similarly to their
labeled counterparts with input atomic numbers and dis-
tances. However, their outputs are masked and omitted
from the loss computation during training, validation, and
inference. Our masking approach differs from the one
used in transductive learning schemes, where the objec-
tive is to learn the outputs of masked nodes/edges (Kipf
& Welling (2016)). Here, we do not attempt to learn or
predict their outputs. The purpose of masked nodes and
edges here is to inform each partition of its full connectiv-
ity and thus provide a much closer representation of the
graph topology. As the set of virtual connections used to
augment each graph corresponds only to the 1-hop neigh-
borhood, we include only 1 MP layer in the network.
During message passing, the network can then learn an
accurate and generalizable aggregation function when fit-
ting to the output values of the labeled nodes and edges.
Hence, the network trained on a batch of such slices can
predict the full graph of an unseen test structure.

3.3 A-HFO2 STRUCTURE CREATION

To generate sufficiently rich training data, existing
datasets typically sample molecules at various time steps
of molecular dynamics (MD) trajectories (Yu et al.
(2023a); Schütt et al. (2019); Christensen & lilienfeld
(2020)) or generate multiple small perturbations of the
atoms in a crystalline lattice (Li et al. (2022)). In the case
of amorphous crystals, we take advantage of the fact that
(1) almost each node has a different local atomic environ-
ment, and (2) the structure contains a large sampling of different motifs. A wide range of training
data can thus be captured within a single sample. We, therefore, generated a dataset of only three
unique amorphous HfO2 (a-HfO2) structures for training, validation, and testing, respectively. The
DFT-based Hamiltonian of each of these systems (HGT ) was computed with a single-ζ valence
(SZV) basis with 10 (4) Gaussian orbitals per Hf (O) atom. Details of the structure generation can
be found in Appendix F.1. A structure example is shown in Fig. 5.

Structure # atoms # orbitals # edges x [Å] y [Å] z [Å] nnzH

1-validation 3,000 18,000 527,348 52.876 26.308 26.242 28,625,310
2-training 3,000 18,000 533,364 52.346 26.237 26.293 28,943,862
3-testing 3,000 18,000 530,920 52.722 26.267 26.191 28,805,422

Table 1: Attributes of the three generated a-HfO2 structures: The [x, y, z] triplet defines the periodic unit cell
size. nnzH is the number of non-zero elements in the Hamiltonian, encompassing all orbital interactions.
Edges were defined according to an interaction distance of rcut = 8 Å.
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4 RESULTS

For fair comparisons in experiments where the quantity of training data varies, we used a ReduceL-
RonPlateau scheduler that tracks the validation loss per epoch and reduces the learning rate by a
fixed decay factor when no further decrease is detected. Training is stopped once a minimum learn-
ing rate is reached. Details on the values of the hyperparameters and the scheduler settings for
different experiments can be found in Appendix E.

When trained on the (Hi,j)α,β elements of H2O molecules from the MD17 dataset (Schütt et al.
(2019)), our network as detailed in Appendix A can achieve prediction accuracy within an order of
magnitude (100×10−6Eh (Eh = Hartree) vs. ∼10×10−6Eh) of state-of-the-start equivariant GNN
approaches, while using fewer layers (2 vs. 4-5) (Appendix B).

The treatment of the a-HfO2 structures is, however, more challenging. We test the model’s abil-
ity to generalize to different configurations of this system by predicting H of the third structure in
Table 1, which remains unseen during the training process. The augmented partitioning scheme
is only applied during training (on structure 2), while the H of the unseen structure as a single
graph, including all nodes and edges, is predicted during inference (structure 3). Errors are reported
separately for nodes (ϵn) and edges (ϵe) for a more complete analysis that distinguishes intra- and
inter-atomic orbital interactions, which have very different magnitudes. Considering the large num-
ber of different motifs in the disordered structure, we also report the standard deviation of the node
and edge errors (σn and σe) to provide information on the consistency of the predictions.

4.1 CUTOFF RADIUS AND CONNECTIVITY

We first explore the minimal graph connectivity that can be used by the network to accurately learn
relevant features. To do this we use the slice partition approach introduced in Section 3.2, using a
single slice of length tslice = 3 Å to train the network. Reducing the value of rcut below 8 Å no-
ticeably increases the error (ϵn/e), thus demonstrating the sensitivity of H to the exact connectivity
of the graph. Going from rcut = 8 Å to 10 Å , the prediction error begins to plateau, but the node
degree (which is proportional to the memory consumption of the network) grows by 1.7×. An rcut
of 8 Å also results in negligible changes to the eigenvalue spectra (Fig. 10 in Appendix F.1). We
thus set rcut=8 Å when defining graph edges for subsequent experiments. Note that ϵnode >> ϵedge
as the magnitude of the node labels is ∼100× larger than that of the edge labels.

rcut [Å] deg(n) deg(n)′ Epochs ϵn σn ϵe σe

4 20.99 10.81 13,816 4.14 0.00960 9.60 0.00105
6 74.23 27.78 14,071 3.79 0.00925 0.40 0.00074
8 177.09 51.17 18,245 3.76 0.00903 0.22 0.00050
10 346.03 81.25 22,463 3.76 0.00886 0.15 0.00040

Table 2: Prediction accuracy of the network with different rcut. Training was done with a single slice of length
tslice = 3 Å taken from structure 2 at x0 = 25 Å. The edge connectivity of the matrix is set by rcut. deg(n) is
the average node degree, and deg(n)′ the reduced node degree omitting virtual node neighbors. Note that for
this value of tslice, the majority of neighbors for the average node are virtual. ϵn and ϵe are the Mean Average
Error (MAE) for nodes/edges, respectively, and σn and σe are the corresponding standard deviations. All units
are in [×10−3Eh]. In all cases, one MP layer is used. The validation loss of the model is computed from a
slice of similar length, interaction distance, and starting location extracted from structure 1. The networks are
tested on an unseen full graph (structure 3) constructed with the same rcut.

4.2 ABLATION STUDIES OF THE TRAINING APPROACH

Next, we perform a study on the design features of the augmented partitioning approach introduced
in Section 3.2. In particular, we examine the influence of virtual nodes, one-way/two-way, and
one/two MP layers on the prediction accuracy. Table 3 compiles ablation studies of the three afore-
mentioned parameters, using 18 slices of length tslice = ∼3 Å that cover the full training structure
(structure 2).

Compared to training with raw partitions, the addition of virtual nodes and edges reduces both
ϵnode and ϵedge by over ∼50% when evaluated on the full test structure. Such an improvement is
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Edges # MP ϵn σn ϵe σe

n′ n 1 5.18 7.93 1.66 0.0026
n′ → n 1 2.29 5.09 0.20 0.0038
n′ ↔ n 1 2.38 5.26 0.23 0.0042

n′ → n 2 8.60 21.01 0.24 0.0043
n′ ↔ n 2 8.44 20.65 0.24 0.0041

Table 3: Ablation studies exploring the impact of
virtual nodes, one-way edges, and # of MP layers
on the prediction accuracy when tested on struc-
ture 3, using slices of length tslice = 3 Å from
structure 2 for training and of length tslice = 4 Å
(taken at x0 = 25 Å ) from structure 1 for vali-
dation. The first column indicates the edge direc-
tion between virtual (n′) and labeled (n) nodes.
n′ → n are one-way (incoming) edges, while
n′ ↔ n are two-way edges. Values are reported
in ϵn[mEh] and σn[µEh].

tslice [Å] Nt Ne Epochs ϵn σn ϵe σe

∼1 54 47,958 15,744 2.30 5.37 0.20 0.37
∼2 27 95,398 15,628 2.32 5.19 0.20 0.36
∼3 18 141,512 15,675 2.29 5.09 0.20 0.38
∼4 14 184,730 14,833 2.45 5.47 0.21 0.38
∼8 7 320,324 20,599 2.45 5.41 0.17 0.34
∼12 5 381,504 19,351 2.59 5.86 0.18 0.36
∼52 1 533,364 23,396 2.46 5.39 0.16 0.33

Table 4: Prediction accuracy when the network is trained
on differently-sized partitions of the same graph (struc-
ture 2), using 1 MP layer. Ne = # of slices, Ne = total #
of labeled edges. The total number of labeled nodes re-
mains constant. The number of slices is equal to ∼L/t,
where L = 52.346 Å is the full length of structure 2 used
for training. The validation set is a slice of length tslice =
4 Å starting at x0 = 25 Å from structure 1. The models
are tested on the full unseen structure (structure 3) and
values are reported in ϵn[mEh] and σn[µEh].

expected, as raw partitions are characterized by a large proportion of missing edges. We note that
the best performing case achieves an ϵn and ϵe of 2.29 ×10−3Eh and 0.20 ×10−3Eh, respectively,
using a single MP layer and one-way edges from virtual to labeled nodes (n′ → n). As tslice < rcut,
a one-hop neighborhood is sufficient to cover all nodes across a partition. This property renders a
single MP layer sufficient, considering the near-sightedness of the Hamiltonian. The single MP-
network’s performance is trivially unaffected by the use of one-way virtual edges rather than two
(n′ ↔ n); virtual nodes do not need to aggregate information as they are omitted from the loss.
The edges connecting the labeled to virtual nodes (n → n′) can thus be omitted to reduce memory
consumption. Using 2 MP layers with one layer of virtual nodes, however, degrades the performance
as the 2-hop neighborhood is not correctly represented. It should be emphasized that the full graph
with 2 MP layers does not fit into the memory of a single NVIDIA A100 GPU (requiring> 80 GiB).
Results with 2 MP layers are in Appendix D (under Table 9 ).

4.2.1 EFFECT OF AUGMENTED PARTITIONING ON PREDICTION ACCURACY

The augmented partitioning approach introduced in Section 3.2 allows for the subdivision of the
large graphs associated with the training of disordered materials by defining small slices (i.e., small
tslice) that can be treated sequentially on a single GPU or distributed across multiple GPUs and
processed independently in parallel. Intermediate quantities do not need to be communicated during
the forward/backward passes.

To establish that the network trained on augmented partitions does not suffer from loss of accu-
racy, we partition the same full graph into different numbers of slices with different thicknesses for
training. In each case, the total number of labeled atoms summed up across all the slices remains
the same (3,000), while the total number of labeled edges reduces with increasing partitions. From
Table 4 it can be seen that the prediction error is insensitive to partition size. Despite the different
divisions ranging from 5 (tslice =∼12 Å) to 54 (tslice =∼1 Å) slices, ϵn and ϵe remain very close to
the values obtained by training with the full graph (tslice = 52.346 Å). For small slices, the reduced
fraction of labeled connections along the x direction does not affect the accuracy as the remaining
data along the y and z directions is sufficient to train the network. The combined MAE loss from
all 3,000 atoms and 530,920 edges for the best performing case (tslice = ∼3 Å) is 0.2159 mEh, or
5.87 meV . This value is comparable to what a previous study obtained (2.2 meV ) using equivariant
GNNs for much smaller structures with ≤150 atoms per unit cell (Wang et al. (2024b)).

4.3 PERFORMANCE ON A-HFO2

To assess whether the prediction accuracy of the trained network is sufficient for practical appli-
cation, we assemble the full Hamiltonian of the a-HfO2 test structure using the network outputs
(Hpred), extract key quantities, and compare them with results obtained from the ground-truth
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Figure 6: (a) ϵn of the predicted node blocks (red dashed lines) plotted against the full distribution of entries
in the ground-truth Hamiltonian matrix (Hi,j)

GT
α,β . (b) Same as (a), but for ϵe of the predicted edge blocks.

(c) Eigenvalue spectra of the predicted (Hpred) and reference (HGT ) Hamiltonian matrices. The alpha value
indicates the scatter point transparency, such that the differences between the two scatter point sets can be
more clearly seen. (Hi,j)

pred is symmetrized before diagonalization with H = 1
2
(H + H†). The relative

L1/L2 errors in the eigenvalue spectra, computed as (∥(E⃗)pred − (E⃗)GT ∥2norm)/(∥(E⃗)GT ∥2norm) (norm =
1, 2) where E⃗ is the vector of eigenvalues, are also shown for all eigenvalues and the ones corresponding
to occupied states (below 0.305 Eh). The black dashed box indicates the bandgap, which is defined as the
difference between the first energy above and below the Fermi level.

Hamiltonian (HGT ) computed with DFT. In Fig. 6 we show the achieved ϵn and ϵe relative to
the magnitude of the HGT entries. We then compute the eigenvalue spectrum of Hpred and HGT

as well as the error distribution between them. The network used to create Hpred was trained with
18 partitions of length tslice =∼3 Å. We observe that both ϵn and ϵe are at least one order of magni-
tude lower than the average matrix element corresponding to the diagonal/off-diagonal blocks of the
Hamiltonian (black dashed line). This allows for the reconstructed Hpred to reproduce all eigen-
values of HGT within 0.87% relative L1 error. The error is 0.84% when eigenvalues of unoccupied
states above the cutoff 0.306 Eh are excluded. The remaining error is carried mostly by the largest
eigenvalues, and distributed around the edges of energy gaps (see Fig. 13 in Appendix H), which
correspond to regimes of stronger inter-atomic orbital coupling (Atkins & De Paula (2009)).

4.4 OTHER EXAMPLES

To further demonstrate the strength and robustness of the augmented partitioning approach , we
have conducted additional experiments on other datasets (found in Appendix I). There we showed
that the approach generalizes well to HfOx structures with differently distributed vacancies, and the
model achieves an even better prediction accuracy of 1.43 meV for amorphous PtGe, compared to
the 5.87 meV achieved for HfO2.

4.5 COMPUTATIONAL COST

Compared to a naive full-batch training of the graph, our method using just 8 augmented slices
results in a 6.5× speedup per epoch (0.38 vs. 2.5 s), and a 7.2× decrease in memory consumption
per rank (8.59 vs. 61.68 GiB). A more complete analysis is provided in Appendix G.2. This
scaling behavior is limited only by the overhead introduced by the virtual nodes/edges, and the
small computational load imbalance from partitioning. Further computational improvements could
be achieved by combining the augmentation approach with optimized graph partitioning algorithms
(Karypis & Kumar (1998)) while leveraging periodicity.

The extension of GNN-based predictions to large material systems could potentially save tremen-
dous amounts of computational time. While DFT calculations to obtain the HGT of small molecules
(e.g., H2O) take only a few seconds, the same operation for a-HfO2 structures made of 3,000 atoms
is computationally ∼100× heavier (∼0.04 vs. ∼3.65 node hours, see Appendix G). More im-
portantly, the GNN prediction unlocks the ability to consider much larger structures than the ones
considered here, the inference phase scaling with O(Natoms) while DFT calculations are limited to
O(N3

atoms). The model could also serve as an initial guess to DFT packages to reduce the number
of self-consistent field iterations that are required to obtain converged electron densities (Unke et al.
(2021)).
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5 CONCLUSION

We adapted equivariant GNNs to learn the electronic properties of amorphous materials, and intro-
duced an augmented partitioning approach to break down and train the large graphs encountered
when dealing with realistic structural disorder, without sacrificing accuracy. More generally, we
proposed a method to tackle the training of atomic systems that require large, highly connected, and
near-sighted graphs where a strictly local atomic environment is sufficient. The key is the addition of
virtual nodes and edges connected to relatively small partitions that mimic their neighborhood. The
method, demonstrated here on a-HfO2, can be straightforwardly applied to other disordered materi-
als, or adapted to learn their other rotationally-equivariant attributes such as vibrational properties,
e.g., phonon dispersions (Fang et al. (2024)).

The resulting networks capture relevant properties of a-HfO2 in sufficient detail to achieve few-meV
accuracy and reproduce features of practical relevance, such as the energy eigenvalues. However,
the sub-millielectronvolt range is not currently reached, contrary to what has been demonstrated
with small-molecule datasets (Yu et al. (2023b); Unke et al. (2021)). This shortcoming can most
likely be attributed to a combination of greater dataset complexity in amorphous compounds, coarser
resolution of the training data (ϵSCF = 1 × 10−6Eh), and limited network size. Note that the
augmented partitioning approach is also a general method that can also be adapted for use in other,
more expressive network architectures, since it is mainly applied during graph construction. Further
data generation, parameter optimization, and enabling of networks with increased expressiveness
will be the next steps.

5.1 OUTLOOK & APPLICATIONS

The ability to learn the electronic properties of complex disordered materials unlocks notable appli-
cations in computational physics, chemistry, and materials science. Several compounds are used in
their amorphous phase, as they often exhibit different properties from their crystalline equivalents.
For example, a-SiO2 as dielectric layer has been a key enabler of the metal-oxide-semiconductor
technology (Nekrashevich & Gritsenko (2014)), IGZO, thanks to its large electron mobility, serves
as channel of flexible transistors (Kamiya et al. (2010)), a-HfO2 allows for the (non-)volatile storage
of information, when placed between two metallic electrodes (Chan et al. (2008)), and GST can be
used to write/store data optically (Pirovano et al. (2004); Kolobov et al. (2004)). Downscaling of
materials also reveals structural effects similar to disorder, e.g., defects (Wilhelmer et al. (2022)),
strain Parton & Verheyen (2006), or grain boundaries (Weitz et al. (2009)). All of them require large
unit cells to be accurately described (Lany & Zunger (2008); Zhao et al. (2020)). Computationally
expensive DFT calculations represent a bottleneck towards investigating the electronic properties of
such systems in simulations. Recent advances in graph neural networks, combined with domain-
specific innovations to train them, will enable such explorations.
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chan. Atomistic insights on the full operation cycle of a hfo2-based resistive random access
memory cell from molecular dynamics. ACS Nano, 15(8):12945–12954, July 2021. ISSN 1936-
086X. doi: 10.1021/acsnano.1c01466. URL http://dx.doi.org/10.1021/acsnano.
1c01466.

Joost VandeVondele and Jürg Hutter. Gaussian basis sets for accurate calculations on molecular
systems in gas and condensed phases. J. Chem. Phys., 127(11):114105, 09 2007. ISSN 0021-
9606.
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Liwei Zhang, Berk Onat, Geneviève Dusson, Adam McSloy, G. Anand, Reinhard J. Maurer,
Christoph Ortner, and James R. Kermode. Equivariant analytical mapping of first principles
hamiltonians to accurate and transferable materials models. npj Computational Materials, 8(1),
July 2022. ISSN 2057-3960. doi: 10.1038/s41524-022-00843-2. URL http://dx.doi.
org/10.1038/s41524-022-00843-2.

Xin-Gang Zhao, Gustavo M. Dalpian, Zhi Wang, and Alex Zunger. Polymorphous nature of cubic
halide perovskites. Physical Review B, 101(15), April 2020. ISSN 2469-9969. doi: 10.1103/
physrevb.101.155137. URL http://dx.doi.org/10.1103/PhysRevB.101.155137.

Yang Zhong, Hongyu Yu, Mao Su, Xingao Gong, and Hongjun Xiang. Transferable equivariant
graph neural networks for the hamiltonians of molecules and solids. npj Computational Materials,
9(1), October 2023. ISSN 2057-3960. doi: 10.1038/s41524-023-01130-4. URL http://dx.
doi.org/10.1038/s41524-023-01130-4.

15

https://arxiv.org/abs/2306.04922
https://arxiv.org/abs/2306.04922
https://arxiv.org/abs/2403.09560
http://dx.doi.org/10.1038/s41524-022-00843-2
http://dx.doi.org/10.1038/s41524-022-00843-2
http://dx.doi.org/10.1103/PhysRevB.101.155137
http://dx.doi.org/10.1038/s41524-023-01130-4
http://dx.doi.org/10.1038/s41524-023-01130-4


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A NETWORK ARCHITECTURE
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Figure 7: The node embeddings after the message passing layer labeled X are denoted as nX , and the corre-
sponding edge features are eX . aij is the block of attention weights, Zi is the atomic number of atom i, and rij
is the scalar distance between atoms i and j. The input message to the update blocks consist of the concatenated
embeddings of source and target nodes j and i, along with their connecting edge eji. They are multiplied by a
set of weights generated from the radial function using a scalar embedding that consists of the atomic numbers
Zi and Zj concatenated with the edge distance |rji|

In this section, we provide further details on the architecture adapted from EquiformerV2 (Liao et al.
(2023)) and DeepH2 (Wang et al. (2024a)), in addition to the network initialization description in
Section 3.1.

During message passing, input messages in the form of node embeddings of size (Nn, (lmax + 1)2,
dsphere,n) and edge embeddings of size (Ne, (lmax +1)2, dsphere,n) from surrounding neighboring
source nodes are passed into the target node. Note that for our network, dsphere,n and dsphere,e are
set to the same value dsphere, known as the number of spherical channels.

Inside the node update block, the source and target atom embeddings are concatenated together with
the edge embeddings of their connecting edge to form an input message of size (Ne, (lmax + 1)2,
3dsphere). The message is multiplied by weights generated by the radial functions using scalar
embeddings (atomic numbers and distances), making it more receptive to small changes in environ-
ments. The dimension of these scalar embeddings are similarly set to dsphere.

Afterwards, the input message is rotated to align with the z axis through the rotation block. The ro-
tation block contains rotation matrices that were pre-computed using the normalized edge vectors of
every edge in the graph. The rotated message is reshaped into m major order for linear convolutions
to be performed for eachm = 0 tom = mmax with the number of l components for each m is given
by lmax −m+ 1. mmax and lmax (mmax ≤ lmax) are other hyperparameters that can be adjusted.
The convolutions produce an output embedding of size (ne, (lmax+1)2, dattn hidden), where atten-
tion hidden channels dattn hidden is another hyperparameter. The message is then fed through the
gate activation layer, which adds non-linearity while preserving equivariance by applying separate
non-linearities to the l = 0 and l > 0 components.

Next, the non-linear message is passed through a second convolution layer that produces an output
embedding size of (ne, (lmax+1)2, dattn value∗Nheads), which is then be reshaped into (ne, (lmax+
1)2, Nheads, dattn value). For each edge surrounding the target node, a set of dattn alpha attention
weights are then generated for each attention head, with the total number of heads being Nheads.
This is used to generate the output vector alpha, which is reshaped alongNheads and multiplied with
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the reshaped message embedding. Finally, the messages from neighboring are reshaped, rotated
back, and aggregated onto the target node, before being projected back into the shape (Nn, (lmax +
1)2, dsphere).

This is finally passed into a feed-forward network consisting of two linear layers that mixes features
of the same l together. The hidden dimensions used in the feed-forward network is given by the
hyperparameter dffn. The edge update block is similar to the node update block, except there
is only one convolution layer and no attention required. Between the blocks, layer normalisation is
also applied, and similar to EquiformerV2, we also normalised the l = 0 features separately from the
l > 0 features. The final predicted output is passed into the Wigner Eckart layer to be reconstructed
into Hamiltonian blocks.

A.1 WIGNER ECKART LAYER

Our implementation of this layer is similar to that found in Gong et al. (2023). A Hamiltonian block
representing the interaction between atom i and j consists can be split into different sub-blocks
representing interactions between orbital 1 of order l1 and orbital 2 of degree l2 as shown in Fig. 1.
Each block of size (2l1 +1)× (2l2 +1), is an equivariant tensor that comes from the tensor product
l1 ⊗ l2 for every pair of interacting orbitals in atom i and atom j. For example, an interaction block
between a p orbital (l = 1) and a d orbital (l = 2) has (2× 1 + 1)× (2× 2 + 1) = 3× 5 elements.
We refer to this form as the uncoupled basis representation of the Hamiltonian block.

Before training, the Wigner-Eckart layer converts the Hamiltonian data from uncoupled basis to
coupled basis using Clebsch Gordan coefficients.

l1 ⊗ l2 = |l1 − l2| ⊕ ...⊕ (l1 + l2)

l1⊗ l2 is now represented by a direct sum of coupled sub-spaces with order ranging from |l1− l2| to
(l1 + l2). This is repeated for every possible type of orbital interaction between the atoms, to obtain
the final direct sum of all the sub-spaces needed for the network to reconstruct the Hamiltonian.

The largest possible (l1 + l2) value determines the minimum lmax hyperparameter needed for the
embeddings of the equivariant model. In the case of HfO2 in this paper, which uses the SZV basis
set, the highest order orbital is the d orbital of Hf. This means that the largest possible (l1+l2) comes
from the interaction between two Hf d orbitals, and the lmax needs to be at least equal to (2+2) = 4.
This allows the predicted output of the model to be converted back into the full uncoupled basis using
the same layer, and reassembled into the full Hamiltonian matrix during inference.

A.2 LOSS COMPUTATION DURING TRAINING AND INFERENCE

For all experiments, a minor difference from the procedures reported in Yu et al. (2023b) and Schütt
et al. (2019) is that we use the Mean Squared Error (MSE) of the full target vectors in the coupled
space to compute the fitting and validation loss during training:

LMSE(xi, x̂i) =
1

N

N∑
i=1

(xi − x̂i)2

Where x and x̂ are the flattened targets (orbital blocks). These targets are padded with zeros to
ensure that those of different orbital interactions have the same dimensions. To avoid re-shaping
the predictions within every epoch, the loss computed during training includes this padding. This
is procedure was also used in DeepH E3 (Gong et al. (2023)). However, the final reported loss in
Table 6 uses the Mean Absolute Error (MAE) after converting the output and label tensors back into
uncoupled space and reconstructing the Hamiltonian blocks.

LMAE(xi, x̂i) =
1

N

N∑
i=1

|xi − x̂i|

The padding is omitted during the reconstruction process, and all the elements in the blocks where
the final MAE is computed from represent orbital interactions that exist in the label Hamiltonian.
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(a) (b) (c)

Figure 8: Training the MD17 Hamiltonian matrices of H2O molecules. (a) Elements of the hamiltonian matrix
for a sample H2O molecule in the dataset. (b) Fitting of the predicted elements of the Hamiltonian matrix
against the labels, after randomized downsampling to every 100 data points. Data points closer to the grey line
indicate better agreement. (c) Magnification of fit around [-1, 1].

B PERFORMANCE ON SMALL MOLECULES (H2O)

As our work combines and adapts existing methodology to a new, application-oriented dataset,
we first ensure that our adaptation of the networks introduced by Liao et al. (2023) and Wang
et al. (2024a) can achieve reasonable results on an existing dataset. We select the dataset of H2O
molecules in MD17 Schütt et al. (2019). The hyperparameters which determine the network size
are dsphere and dattn hidden (Table 8). In Table 5 we explore the effect of these parameters under
early-stopping conditions. We fix the number of MP layers to 2 in all cases, lower than was used
by similar equivariant GNNs (Unke et al. (2021), Yu et al. (2023b)). Channel dimensions of 32 and
above meet the loss defined for the stopping criteria, with larger dimensions reaching it in fewer
epochs.

We select a dimension of 64, and train the network under the conditions specified in Table 8. In Ta-
ble 6 we compare the final Mean Absolute Error (MAE) loss with similar networks in the literature.
Our implementation can achieve a prediction accuracy of ∼100 µEh, which is within an order of
magnitude of other equivariant networks while using a smaller network (#MP layers).

Dim. # Epochs Training Molecules Testing Molecules

ϵnode [×10−6Eh] ϵedge [×10−6Eh] ϵnode [×10−3Eh] ϵedge [×10−3Eh]

16/16 50,000* 0.20* 2.81* 0.1498* 0.4776*
32/32 10,847 0.54 0.43 0.1716 0.1866
64/64 6,761 0.36 0.32 0.1322 0.1534

128/128 2,015* 1.08* 1.01* 0.1878* 0.2776*

Table 5: Effect of the channel dimension used to train the network on H2O. For this study we remove 1499
molecules from the dataset (4999 total molecules), and use 500 for training (single-batch), 500 for validation,
and 499 for testing. For fair comparison between the different network sizes, the trainings were subject to an
early-stopping criteria of ϵMSE = 1 × 10−6 of the validation set loss. Training losses are reported in MSE
while testing losses are reported in MAE. The ‘*’ indicates that the error on the validation set did not reach the
stopping criteria, and training instead finished when lr=ϵMSE (128/128) or when the # epochs reached 50,000.

Network MAE H [meV ] MAE H [×10−6Eh]

PhiSNet 0.47 18
QHNet 0.29 11

This work 2.7 100

Table 6: Mean Absolute Error (MAE) for predicted Hamiltonian matrices reported for PhiSNet (Unke et al.
(2021)), and QHNet (Yu et al. (2023b)) on the MD17 H2O dataset, taken from the respective publications. The
result for our adapted EquiformerV2 network for electronic property prediction uses 500 molecules for testing,
500 for validation, 2500 for testing. Note that we use 2 layers, as opposed to PhiSNet (4) and QHnet (5).
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C AUGMENTING GRAPH PARTITIONS WITH VIRTUAL NODES

Below we detail the procedure to partition the full graph G, described by the set of vertices V and
edges E , into a set of slices {G1 . . . GN} which are augmented by virtual nodes and edges.

Algorithm 1: Augmented partitioning approach
1 Graph G(V, E) Slice location [x1 . . . xN ] Set of subgraphs {G1 . . . GN} Numbers labeled

nodes [nn1 . . . nnN ] Numbers labeled edges [ne1 . . . n
e
N ]

2 for i← 1 to N do
3 Vi← [];
4 nni = 0;
5 for v ∈ V do
6 if v.x ∈ [xi, xi+1] then
7 Vi.append(v);
8 nni += 1;
9 end

10 end
11 E i← [];
12 nei = 0;
13 for v1 ∈ Vi do
14 for v2 ∈ Vi do
15 if v1 → v2 ∈ E then
16 E i.append(v1 → v2);
17 nei += 1;
18 end
19 end
20 end
21 for v1 ∈ Vi do
22 for v2 ∈ V \ Vi do
23 if v2 → v1 ∈ E then
24 Vi.append(v2);
25 E i.append(v2 → v1);
26 end
27 end
28 end
29 Gi(Vi, E i);
30 end

The number of labeled nodes (nni ) and the number of labeled edges (nei ) are collected and passed
to the training functions, which then mask the remainder of the outputs (the virtual nodes and edge
outputs) while computing the loss.

D AUGMENTED PARTITION APPROACH WITH TWO MP LAYERS

tslice [Å] Nt # Epochs ϵnode σnode ϵedge σedge

∼2 27 16,437 8.24 21.35 0.24 0.39
∼3 28 13,461 8.60 21.01 0.24 0.43
∼4 14 14,089 6.34 15.06 0.24 0.38
∼6 9 11,670 4.46 11.50 0.24 0.39

Table 7: Ablation studies exploring the impact of slice length tslice on the prediction accuracy with 2 MP
layers. Values are reported in ϵn[mEh] and σn[µEh].

Using 2 MP layers rather than one heavily degrades ϵnode (Table 3). This occurs because each slice
is augmented with only one layer of virtual connections, so the network does not have a correct
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representation of the 2-hop neighborhood. Propagation of this incorrect information into the graph
thus results in a degraded ϵnode, which is more sensitive to the extended environment that ϵedge.
The error in this case minimally depends on the outgoing edge (albeit uniformly high). We note that
the error with 2 MP layers shows a dependence on tslice (Table 9) since larger slices require fewer
virtual connections outside the partition.

E HYPERPARAMETERS

We use the hyperparameters shown in Table 8 to train the H2O benchmark and custom HfO2 dataset.
The ReduceLRonPlaeau scheduler decreases the learning rate by the decay factor when it does not
detect a further decrease in validation loss within the decay patience tpatience. The threshold refers
to the sensitivity of the scheduler to changes in validation loss. Once the minimum learning rate is
reached, the training stops. The meaning of the hyperparameters are explained in Appendix A. Note
that weight decay is not implemented in our study for all cases.

Hyper-parameters HfO2/PtGe dataset MD17 dataset

Optimizer Adam Adam
Precision single (f32) double (f64)
Scheduler ReduceLROnPlateau ReduceLROnPlateau
Initial learning rate 1× 10−4 1× 10−4

Minimum learning rate 1× 10−5 1× 10−10

Decay patience tpatience 500 50
Decay factor 0.5 0.5
Threshold 1× 10−3 1× 10−5

Interaction distance (Å) 8.0 −
Maximum degree Lmax 4 4
Maximum order Mmax 4 4
Number of Message Passing Layers 1 2
Number of spherical channels dsphere 16 64

f
(L)
ij dimension dattn hidden 16 64

Number of attention heads Nh 2 2

f
(0)
ij dimension dattn alpha 16 32

Value dimension dattn value 16 32
Hidden dimension in feed forward networks dffn 64 64

Table 8: Hyper-parameters used for HfO2, PtGe and MD17 data.

E.1 HYPERPARAMETER STUDY

We conducted hyperparameter tuning by training using the full training structure (structure 2), di-
vided into 18 slices of ∼ 3 Å thickness. The validation slice used for the scheduler during training
was taken from the validation structure, and is centered at the location 26.5 Å. The rest of the hy-
perparameters follow the values in Table 8. Note that since we are tuning the hyperparameters, we
evaluate the trained models with different hyperparameters on the full validation structure (structure
1). The test structure remains unseen throughout this process.

From the table, it is clear that the hyperparameters dsphere , dattn value, dattn hidden and dattn alpha

can all be reduced to 16 with little tradeoff in accuracy. Cutting down on the number of parameters
allows us to drastically minimise the memory consumption, allowing large graphs to fit into GPU
memory during training.
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dsphere, dattn value, Parameters Epochs ϵn[mEh] σn ϵe[mEh] σe

dattn hidden dattn alpha

4 32 52,572 31,940 2.82 5.72 0.36 0.84
8 32 125,324 29,002 2.54 5.73 0.18 0.35

16 16 273,644 19,106 2.39 5.31 0.16 0.33
16 32 335,436 16,857 2.46 5.84 0.19 0.35
32 32 1,014,092 14,833 2.51 5.83 0.19 0.37
64 32 3,405,132 11,000 2.47 5.83 0.19 0.37

Table 9: Table of Hyperparameters, tested on the validation structure (structure 1)

F AMORPHOUS HAFNIUM DIOXIDE (A-HFO2) TRAINING DATA

F.1 DATASET GENERATION

Atomic structures corresponding to materials in the amorphous phase can be produced through melt-
quench Urquiza et al. (2021), seed-and-coordinate Youn et al. (2014), or ‘decorate and relax’ Tafen
& Drabold (2003) approaches. To accurately reproduce long-range structural disorder, the struc-
tures used must be large enough to avoid the creation of wavefunctions which repeat over periodic
boundaries.

The first step to computing the electronic properties of a-HfO2 is to generate the atomic structure
of the material in its amorphous phase. To accurately capture the structural motifs underlying this
phase and a realistic range of atomic coordination (eg, neighboring Oxygens for each Hafnium, and
vice versa), we start from the crystalline m-HfO2 phase and perform melt-quench processes using
Molecular Dynamics (MD), following a similar procedure as the ones described in Refs. Kaniselvan
et al. (2023); Urquiza et al. (2021). We generate 3 independent structures of a-HfO2 using the
QuantumATK toolkit Søren Smidstrup et al. (2020). As the first step, we run an NVT simulation
with the Langevin thermostat at 3000 K for 50 ps with a step size of 1 fs. We use the MTP-HfO2-
2022 potential, provided by the software. Next, we run an NPT simulation for 300 ps (and the same
1 fs step size), with an initial reservoir temperature of 3000K and a final temperature of 300K, for a
cooling rate of 9K/ps. Finally, we anneal structure evolve at 300K for 50 ps, using the same NVT
Langevin thermostat as for the melting.

We then perform a structural relaxation with CP2K code Kühne et al. (2020) to correct for any dis-
crepancies between the relaxed bond lengths attained with the force field used for MD, and those
obtained with DFT. Due to the computational cost of using a more complete DZVP basis set Vande-
Vondele & Hutter (2007), we use a simpler SZV basis VandeVondele & Hutter (2007) which uses 4
basis functions per Oxygen atom and 10 basis functions per Hafnium atom. The plane-wave cutoff
is set to 500 Ry, while a cutoff of 60 Ry is used for mapping the Gaussian-type orbitals onto the grid.
We use the PBE functional for the exchange-correlation energy Perdew et al. (1997). To accurately
capture the band gap of a-HfO2, we applied the Hubbard correction Anisimov et al. (1991) of U = 7
eV to the 3d orbital of Ti and the Hubbard correction of U = 10 eV to the 2p orbital of O.

F.2 ATOMIC BONDING ENVIRONMENTS IN THE AMORPHOUS PHASE

In Fig. 9 we plot the O-coordination of each Hf atom and the radial distribution function g(r) (where
r is inter-atomic distance) for each of the three structures. The distribution in the coordination and
dispersion of the peaks in g(r) indicates the amorphous nature of the three structures. Variations
between them appear as perturbations in these two quantities. To gain more insights on how different
are the structures, we additionally plot the spatially-resolved O-coordination of Hf atoms along
the longest, x coordinate for the three structures, as well as the distributions of outliers (Hf atoms
with very low and very high O-coordination) in three-dimensional space. It is evident that these
outliers are situated at different locations in different structures, demonstrating a significant degree
of dissimilarity among the structures.
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Figure 9: a) O-coordination of Hf atoms (number of O atoms bonding a Hf atom) for each of the generated
structures, showing a distribution around a coordination number of 6, and variation between the structures. b)
The radial distribution function (g(r) = dn(r)

dr
Vdomain

4πr2Natoms
), where n(r) is the number of atoms with distance

r between them for the structures 1-3. (c) Spatial distribution of coordination outliers (Hf atoms with O-
coordination equal to 8 or 4) for the three structures, which are an indicator of the uniqueness of the three
structures.

F.3 ENERGY EIGENVALUES

Due to the large cell sizes of the a-HfO2 structures, all necessary energetic information is contained
within the Γ point (where the wavevectors kx = ky = kz = 0). The energies at this location can be
computed by directly diagonalizing H. Amorphous a-HfO2 structures corresponding to a realistic
distribution of bond lengths should then produce an energy bandgap. We show the distribution of
energy eigenvalues for the three structures in Table 1 in Fig. 10, at different values of rcut. In the
second row, we zoom into the range of eigenvalues around the energy bandgap, which is defined by
the transition between occupied and unoccupied electronic states (the Fermi level EF = ∼ 0.3Eh in
all cases). Values of rcut ≥ 8Å create no noticeable difference on the eigenvalue spectra. Note that
the value of rcut =∞ corresponds to the case where no nonzero values were filtered from HGT .

G COMPUTE ENVIRONMENT AND RUNTIME COMPARISONS

The training is performed with PyTorch Distributed Data Parallel ( Li et al. (2020)), where the graph
partitions (slices) can be distributed between GPUs.

G.1 MEMORY CONSUMPTION OF THE FULL GRAPH

During the training of the full graph model, the peak memory consumption observed was 61.68 GiB
on a single NVIDIA A100 GPU. Most of the consumption does not stem from the network and the
structure but from the additional memory needed for the convolution operations.

G.2 COMPUTATIONAL IMPROVEMENT WITH PARTITIONING APPROACH

In Fig. 11, we show the decrease in time per epoch and resulting speedup when using the augmented
partitioning approach introduced in Section 3.2. Since the partitions are independent, the only
communication involved in every epoch is a collective to inform each GPU/rank of the loss of each
other rank. The time per epoch thus decreases uniformly with the number of slices (Nt) used.
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Structure 1 Structure 2 Structure 3

Structure 1 Structure 2 Structure 3

Eg Eg Eg

Figure 10: Eigenvalues of the ground-truth Hamiltonian matrix, showing (left) the full eigenvalue spectrum and
(right three) zoomed in around the bandgap, for the three structures, in the order of their appearance in Table 1.

Despite the independence of each batch and the minimal communication per epoch, the scaling is
not perfectly linear. The deviation from an ideal speedup can be attributed to two factors:

• Load imbalance: The partitioning approach was designed to leverage the periodicity in the
y- and z- direction within a straightforward implementation. However, it is not ideal in
terms of the number of cuts/number of virtual nodes/edges required, resulting in a slightly
different amount of work per rank which leads to an observable load imbalance at higher
Nt. This effect can be seen in the allocated memory per partition (Fig. 11(c)). We note
that the augmented partitioning method can be used with any standard graph-partitioning
algorithm.

• Computational overhead of the virtual nodes and edges: Individual nodes and edges of the
graph can be repeated in labeled and virtual node lists. Treating the replicas introduces
additional computational cost while training the network, which increases with Nt. This
overhead is maximum with the use of very small slices (largeNt), thus introducing a trade-
off between parallelism and time per epoch.

G.3 H2O VS HFO2 RUNTIMES

In Section 4.5, we make a comparison between the computational cost of computing the Hamil-
tonian for an H2O molecule and the HfO2 structure. However, the Hamiltonians for the H2O
molecules in the MD17 dataset were computed by Schütt et al. (2019) using different compute
infrastructure. To approximate the cost of generating such a dataset under the same computational
conditions, we set up CP2K simulations with a Double-ζ Valence Polarized (DZVP) basis, which in-
cludes a similar set of valence and polarization functions as the def2 SVP basis used with the ORCA
code (Neese (2011)) to generate the H2O Hamiltonians for the MD17 dataset. A minor difference
is that the def2 SVP basis includes an extra s-type orbital on Oxygen (14 total per Oxygen atom).
Under these conditions, the computation time per H2O molecule was 7s, when run on 12 nodes with
12-core Intel Xeon E5-2680 CPUs and NVIDIA P100 GPU (the Piz Daint supercomputer), resulting
in a total of 0.04 node hours. The HfO2 structures requires 3.65 node hours in the same compute
environment (but distributed to 27 nodes). The difference, omitting scaling behavior, is roughly
∼100×.
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Figure 11: (a) Time per epoch and (b) speedup resulting from the use of increasing numbers of slices Nt.
Median values are shown, while the error bands are one standard deviation. Experiments were run on NVIDIA
A100 GPUs with # ranks set to Nt. Measurements are only shown up to 8 slices/8 GPUs due to limitations in
available compute resources at the time of submission. The fill-between indicates the range in runtime over the
first 30 minutes of training. The dashed black line corresponds to the ideal speedup, in which case the use of
Nt slices would enable an Nt× speedup in the runtime per epoch. (c) Measured peak memory consumption
as a function of the number of partitions, where each bar corresponds to a different GPU. Variation in memory
consumption between GPUs at each individual value of Nt translates to load imbalance, which correlates with
the deviation from ideal scaling shown in (b).

H COMPARISONS BETWEEN DFT AND PREDICTED HAMILTONIANS

O Hf

s

s

p

p

d

O
H
f

Figure 12: Average ϵMAE between
(Hij)

GT and (Hij)
pred for specific

inter-atomic orbital coupling. The data
is shown in log scale to magnify asym-
metry in the error.

In Figure 12, we plot the MAE error as a function of different
interactions between the orbital basis of the a-HfO2 test struc-
ture. The data is plotted in log scale to magnify the asymmetry
resulting from the separate training of the two-way edges be-
tween labeled nodes in the graph.

In Fig. 13, we plot the comparison between Hpred and HGT

(as shown in the main text) for three separate cases: (1) us-
ing the upper triangle, (2) the lower triangle, and (3) the sym-
metrized Hpred. We also zoom in around the bandgap in the
second row. In all three cases, Hpred is unchanged, indicating
that the small asymmetry in the matrices caused by the exis-
tence of separate forward/backward edges between atoms has
a minimal effect. In the third row, we show the error in log
scale as a function of the eigenvalue index, sorted in the same
order as shown in the first row. The error is largest around the
band edges, where orbital coupling is most significant.
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Upper triangleLower triangle

Eg Eg

Upper triangleLower triangle

Upper triangle

Symmetrized

Eg

Symmetrized

Lower triangle Symmetrized

Figure 13: Comparison between HGT and Hpred, using the upper/lower triangle or symmeterized version of
Hpred. The center row shows the same plots zoomed in around the bandgap. The last row shows the difference
in the eigenvalue spectra. The structures appear in the order of Table 1.
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Structures Epochs
ϵn [mEh] σn [µEh] ϵe [mEh] σe [µEh] ϵtot [mEh] ϵtot [meV ]Training Testing

0 3 15675 2.29 5.09 0.20 0.38 0.22 5.87
0, 2 3 48356 2.22 4.99 0.12 0.25 0.13 3.55

Table 10: Comparison of models trained on one HfO2 structure (structure 2) vs two HfO2 structures (0 and 2).
Both are tested on a fully unseen structure (3), showing improved accuracy from 5.87 to 3.55 meV .

Oxygen vacancies
ϵn [mEh] σn [µEh] ϵe [mEh] σe [µEh]Training set Testing set

5% 5% 2.44 5.06 0.16 0.31
5% 10% 2.58 5.23 0.18 0.33
5% 15% 2.50 4.96 0.17 0.33
10% 5% 2.48 5.12 0.18 0.33
10% 10% 2.50 4.96 0.17 0.33
10% 15% 2.60 4.89 0.18 0.33
15% 5% 2.94 6.45 0.16 0.34
15% 10% 2.52 5.01 0.16 0.34
15% 15% 2.52 4.69 0.16 0.31

Table 11: HfO2 models trained and tested with different stoichiometry using augmented partitioning. 18 slices
of each structure, each 3 Å thick, was used for training. The training method is identical to the one used to
obtain Table 4. Models trained on vacancies 5%, 10 % and 15% vacancies are tested on test structures with
vacancies ranging from 5% to 15%.

I ADDITIONAL TESTS

I.1 USING TWO HFO2 STRUCTURES FOR TRAINING

While training on a single structure is sufficient to achieve the results in Fig. 6, increasing the
quantity of training data further leads to improved prediction accuracy. To demonstrate this, we
train using augmented partitioning on two structures, including structure 2 from Table 1 as well as
a newly generated structure ”0” of similar size (3000 atoms). Training was performed with 18 slices
of 3 Å thickness taken from both structures, validated on structure 1, and tested on structure 3. The
results are compared against the previous model trained on one structure in Table 10, showing that
the prediction accuracy can be improved from 5.87 meV to 3.55 meV by using 2× the number of
slices for training.

I.2 SUB-STOICHIOMETRIC HAFNIUM OXIDE

Amorphous HfO2 often exists in a sub-stoichiometric form (HfOx), which can be interpreted as the
presence of oxygen vacancies. In this section we evaluate whether our model can extend to train and
predict such defective structures.

To do this, we create a dataset for sub-stoichiometric HfOx structures by introducing randomly
distributed oxygen vacancies into the original, pristine HfO2 structures. The sub-stoichiometric
structures are generated for x = 1.9, 1.8, and 1.7 (corresponding to vacancy concentrations of 5%,
10%, and 15 %, respectively). Vacancies are treated as ghost atoms (atoms with no orbitals, but with
a basis set defined at their locations), to mitigate the basis set superposition error Senent & Wilson
(2001), a known problem related to localized basis sets. More precisely, by treating vacancies as
ghost atoms, one prevents the excessive borrowing of the basis sets from neighboring atoms by the
vacancy, which improves the accuracy of the predicted electronic properties. These ghost atoms are
assigned an atomic number of 0. The training and testing approach is similar to the one used to
obtain Table 4, except that now oxygen vacancies are considered. For all experiments, 18 slices (3
Åthick) were used.

The results are summarized in Table 11. The ϵn and ϵe values across different experiments lie within
a small range (2.50-2.90 mEh and 0.16-10.18 mEh respectively), showing that the network gen-
eralizes well to structures of different vacancies, regardless of which vacancy configuration it was
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Training method Oxygen vacancies
ϵn [mEh] σn [µEh] ϵe [mEh] σe [µEh]method Testing set

partitioned 5% 2.94 6.45 0.16 0.34
partitioned 10% 2.52 5.01 0.16 0.34
partitioned 15% 2.52 4.69 0.16 0.31

full 5% 2.96 6.07 0.19 0.38
full 10% 2.67 5.18 0.18 0.36
full 15% 2.64 4.83 0.17 0.35

Table 12: Comparison between full graph training and the augmented partitioning training using the same HfO2

structure with 15% vacancies. Models are tested on structures with vacancies ranging from 5% to 15%.

Material Cutoff
[
Å
]

ϵn [mEh] σn [µEh] ϵe [mEh] σe [µEh] ϵtot [mEh] ϵtot [meV ]

Crystalline HfO2 8 0.01 0.02 0.04 0.07 0.04 1.17
Amorphous HfO2 8 2.29 5.09 0.20 0.36 0.22 5.87
Amorphous PtGe 16 0.87 1.43 0.05 0.10 0.05 1.43

Table 13: Summary of models trained on crystalline HfO2, amorphous HfO2 and amorphous PtGe materials,
respectively. The HfO2 model was trained on different slices of the same crystalline structures. On the other
hand, the PtGe model was trained on a single 5 Å slice of structure 1 and tested on on a fully unseen structure
2.

trained on. To demonstrate that the augmented partitioning approach similarly does not affect ac-
curacy for sub-stoichiometric HfOx, we also perform full graph training using structure 2 with 15%
vacancies, and compare with the augmented partitioning approach in Table 12. The minimal dif-
ference in ϵn and ϵe values between full and partitioned approaches indicates that both approaches
generalize equally well to different stoichiometry. These values are also close to that of stoichio-
metric HfO2 in Table 4, demonstrating that the augmented partitioning approach can also be applied
even in the case of more realistic sub-stoichiometric structures.

I.3 CRYSTALLINE HAFNIUM OXIDE

Crystalline materials contain highly regular atomic environments, and are thus a natural extension of
this approach. Although such a large unit cell is not required for a crystal, we nevertheless generate
a single crystalline HfO2 structure (in its monoclinic phase) containing 3000 atoms for comparison.
The model was trained on a single slice taken from x = 0 Å, validated on a slice from x = 15 Å,
and tested on an unseen slice from x = 20 Å. Results in Table 13 show that a high accuracy close to
sub-meV can be achieved.

I.4 SECOND MATERIAL EXAMPLE: PTGE

Finally, we test if the model and training approach can be used for different material systems. We
consider the example of two amorphous PtGe structures, labelled 1 and 2, each containing 2688
atoms. These structures were similarly generated in CP2K. A larger cutoff radius of 16 Å was
chosen due to the larger spacing between atoms. The model was trained on a single 5 Å slice taken
from x = 10 Å and validated on another slice at x = 20 Å, both from structure 1. The trained model
was then tested on a full unseen structure (structure 2), with results shown in Table 13. The final
obtained error for all 2688 atoms and 2,148,055 edges is 1.43 meV , much lower than that of HfO2,
despite the lower amount of training data. This demonstrates the generalizability and robustness of

Cutoff
[
Å
]

ϵn [mEh] σn [µEh] ϵe [mEh] σe [µEh] ϵtot [mEh] ϵtot [meV ]

6 0.87 1.43 0.15 0.19 0.17 4.60
8 0.87 1.42 0.09 0.16 0.10 2.73
16 0.87 1.43 0.05 0.10 0.05 1.43

Table 14: Prediction accuracy of model on amorphous PtGe material with different rcut
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the augmented partitioning approach when applied to different material dataset with a much larger
cutoff radius.

We perform a similar study on the cutoff radius and connectivity of the PtGe, through both eigen-
value analysis and the convergence study of cutoff-radii, with results shown in Table 14 and Figure
14. Increasing the cutoff radius once again increases the overall prediction accuracy of the trained
model, with the improvement especially noticeable at the edges.

Figure 14: Atomic coordinates of the two amorphous PtGe structures.

J THEORETICAL JUSTIFICATION FOR AUGMENTED PARTITIONING
APPROACH

The augmented partitioning approach relies on the correction of the partitioned sub-graphs through
the introduction of virtual nodes and edges, such that partitioned training fully resembles full graph
training. Here, we provide the theoretical foundations upon which our approach is built.

We start by recalling the operation of a message passing neural network trained on a full graph.
During training, the nodes are updated through the aggregation of messages from connected neigh-
bors. More specifically, in the first layer of equivariant message passing networks, the n′i inputs to
the aggregation function are simply the atomic numbers Zi and Zj (embedded in a tensor) of atom
i and neighbor j, their scalar distances |rji| (expanded in the Gaussian basis), and the normalized
vector r̂ji indicating the orientation of the edges (embedded within the rotation and counter-rotation
operations)

n′i =
∑

j∈N (i)

Φj(Zi, Zj , |rji|, r̂ji). (1)

In Eq. (1),N (i) is the neighbor list of atom i and Φi is a learnable function that encompasses all the
operations of our equivariant network (convolution, gate activation, attention weights). The sum of
these functions over all neighbors represents the overall aggregation function that we aim to learn
using our equivariant network. It maps the inputs to the output node embedding ni’. Similarly, for
edges, the updated node embeddings e′ji fed into a learnable function Φji has the following form:

e′ji = Φji(n
′
i, n

′
j , |rji|, r̂ji). (2)

It maps the inputs consisting of the updated node embeddings to the edge embeddings. In our case,
due to the large unfeasible size of the graph, we have to partition it into slices for training. In
partitioned subgraphs, however, there are also connected neighbor nodes that lie outside of the par-
tition, meaning that some of the j terms in Eq. (1) are missing. Ignoring the contribution from these
nodes leads to incomplete/wrong aggregation. As a result, the wrong aggregation function would
be learned when fitting the final node output to the target Hamiltonian data (during minimization of
MSE loss). See the ablation study in Section 4 and Table 3) for more details.

This is why we introduced virtual nodes and edges. They account for the presence of connected
neighbors outside of the partition when computing the updated node embeddings for atoms situated
within the partition:
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Figure 15: Scatter plots showing the decay of MAE with increasing distance from different perturbations,
including (a) 0.1 Å translation of an O atom, (b) replacement of O atom with a vacancy, and (c) replacement
of O atom with Hf atom

n′i∈P =
∑

j∈N (i)∩j∈P

Φj(Zi, Zj , |rji|, r̂ji) +
∑

j∈N (i)∩j /∈P

Φj(Zi, Zj , |rji|, r̂ji), (3)

e′(i,j)∈P = Φji(n
′
i∈P , n

′
j∈P , |rji|, r̂ji), (4)

where P is defined as the set of atoms belonging to the partition. The virtual nodes and edges are
cast into the second summation on the right-hand-side of Eq. (3). They contain all necessary inputs
(Zi, Zj , |rji|, r̂ji ) needed to compute the aggregation function in the first layer of the network.
Therefore, for the case of nodes within the partition (ni∈P ), Eq. (3) is now equivalent to Eq. (1),
as they contain the same terms and inputs. By extension, since the edge embeddings within the
partition are only updated based on nodes within the partition (Eq. (4)), they are also correct, with
Eq. (4) being equivalent to Eq. (2) for all e(i,j)∈P . Overall, in the case of a single MP layer, the local
environment for nodes and edges within the partition is thus identical to that of the full graph. As
a consequence, the correct aggregation function, along with accurate predictions, are obtained from
training.

Note that throughout this process, the output embeddings of the virtual nodes and edges are not used
at all and remain completely masked during training - only their inputs (Zi, Zj , |rji|, r̂ji) are used
to inform the network. Their own local environment and outputs have, therefore, no influence on the
aggregation function learned, and do not need to be corrected.

K ANALYSIS OF PERTURBATION EFFECTS AT VARYING DISTANCES

To demonstrate the effects of long and short range perturbations in amorphous structures, we intro-
duce a single perturbation at one chosen location in the structure and measure the mean absolute
error of the onsite Hamiltonian blocks when compared to that of the unperturbed structure. The
types of perturbations introduced include single oxygen atom translation, oxygen vacancy, and sub-
stitution of an oxygen by a hafnium atom, which are plotted against distance from perturbation in
Fig. 15 (a), (b) and (c) respectively. In all cases, the effect of the perturbation rapidly decays with
increasing distance.

For the case of a 0.1 Å translation perturbation, the average onsite MAE at a distance of 8 Å away
is given by 0.15 mEh. Considering the average value of an onsite Hamiltonian block (63 mEh),
the perturbation only affects the matrix elements by 0.24% overall. Similarly, for vacancy and sub-
stitution perturbations, the matrix elements of atoms located 8 Å away only changed by 0.18% and
0.12% respectively. This implies that for our chosen cutoff of 8 Å , perturbations occurring outside
of the radius surrounding the atom have a negligible effect on its Hamiltonian matrix elements. This
also means that the electronic structure of that atom can be learned using information from the local
atomic environment.

This is also demonstrated through our study of sub-stoichiometric HfOx with randomly distributed
vacancies. Despite training on independent slices, we ensure that every atom within that slice is
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surrounded by a complete local environment with a radius of 8 Å through the use of virtual nodes
and edges. Any vacancies outside of that radius have a negligible effect on the atom, and are seen
and learned by other partitions. When multiple slices are trained together, the entire distribution
of perturbations are captured, allowing the model to generalize well to unseen structures with a
completely different distribution of vacancies and local atomic environments.
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