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ABSTRACT

Mathematical modeling is the process of understanding and predicting complex
real-world phenomena. Traditionally, it is a time-intensive effort reliant on deep hu-
man expertise and iterative refinement. Automating this intricate process, therefore,
offers the potential to significantly accelerate discovery and broaden the application
of mathematical modeling across diverse domains. Such automation, however,
must address inherent challenges, including fundamental modeling uncertainty, bal-
ancing multiple conflicting objectives, and incorporating subjective qualities into
assessing model utility. We approach this by conceptualizing mathematical model-
ing as a sequential decision-making problem under uncertainty. In response, we
introduce MATHMO, a novel adaptive search method designed to automatically navi-
gate the complex decisions in selecting mathematical frameworks, specifying model
formulations, and defining algorithmic procedures. Specifically, MATHMO employs
a principled bi-level search strategy—combining high-level exploration across
diverse frameworks and local intra-framework model refinements—Ieveraging
Large Language Models for exploration, surrogate evaluations, and incorporating
subjective preferences into the automated process. We demonstrate MATHMO’s
efficacy on diverse real-world tasks, where it successfully discovers Pareto-efficient
frontiers of models that balance varied objectives, including subjective criteria.

1 INTRODUCTION

Mathematical modeling is the art and science of translating complex real-world phenomena into
precise mathematical language, allowing us to represent, understand, and predict complex situations.
This capability is crucial in almost all aspects of life, from natural sciences and engineering to
economics and social systems (Turing, 1990; Sugihara and May, 1990; Banwarth-Kuhn and Sindi,
2020). Indeed, the ability to abstract complex realities into mathematical models is often considered
a key feature of intelligent civilization, enabling generalized problem-solving, knowledge transfer,
and accumulation of scientific understanding over time (Simon, 2019).

The time-consuming and expertise-driven nature of modeling, coupled with its inherent complexities,
makes its automation a highly appealing prospect. Automating this process could democratize access
to powerful analytical models and tools, efficiently exploring trade-offs between multiple models,
uncovering novel approaches or insights, and enhancing decision-making across diverse domains.

Several key characteristics distinguish the mathematical modeling process. Firstly, it is pursued in
the face of fundamental uncertainty: the optimal framework or model specification is often unknown
a priori, demanding iterative exploration involving building, testing, and refining models based
on feedback (Jakeman et al., 2006). Secondly, modeling frequently contends with multiple, often
conflicting, objectives (e.g., an optimization model’s solution quality versus runtime (Chandrasekaran
and Jordan, 2013)). Thus, the aim is typically not a single ‘best’ model, but a diverse frontier of models
representing different trade-offs for the human modeler to investigate. Lastly, subjective qualities like
interpretability and domain understanding further influence model utility beyond objective metrics
(Dirac, 1963), making it crucial for them to be captured in the automated modeling process.

We conceptualize automated mathematical modeling as a sequential decision-making problem. Here,
the modeler makes a series of choices: (1) the mathematical framework to employ, (2) the concrete
model specification including appropriate representations, parameterizations and assumptions, and
(3) the appropriate computational algorithms to obtain the desired outputs. The uncertainty lies in
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not knowing which modeling decisions will yield useful models, thus requiring a principled approach
of adaptive search that carefully balances exploration and exploitation given uncertainty.

In response, we introduce MATHMO, a novel method designed to automate key aspects of the mathe-
matical modeling pipeline. At a high level, our system takes a modeling problem description and
a set of objective functions, and discovers a set of models that represent efficient trade-offs among
these objectives. The adaptive search procedure in MATHMO operates under a bi-level structure. The
upper-level performs adaptive resource allocation across different mathematical frameworks, while
the low-level module initiates a local search mechanism to explore each framework’s model and
algorithm space. Crucial to this process are Large language models (LLMs), which are employed to
sample realizations from the search space and to perform surrogate evaluations to improve search effi-
ciency. Additionally, they are used as models of subjective evaluations, thus incorporating subjective
model preferences into the modeling pipeline. In each round, the generated model and its evaluations
are observed, informing and adapting the next iteration of modeling decisions.

Contributions. The primary contributions of this work are threefold: (1) We formally define auto-
mated mathematical modeling, conceptualizing it as a sequential decision-making problem under
uncertainty. (2) We present MATHMO, an adaptive search framework designed for this problem,
capable of efficient exploration, balancing multiple objectives, and incorporating subjective modeling
preferences. To the best of our knowledge, this is the first work to address this exciting problem
area. (3) We demonstrate the efficacy of MATHMO on four diverse real-world modeling tasks (two
prescriptive, two predictive), demonstrating its ability to discover Pareto-efficient frontiers of models.

2 PRELIMINARIES

2.1 FORMALISM

Mathematical modeling is primarily a declarative endeavor (Van Roy and Haridi, 2004). The core
cognitive task involves translating a problem p € P (potentially accompanied by a dataset D,,) into a
suitable formal representation, where the subsequent derivation of mathematical outputs is delegated
to computational tools. We formalize this process of representation and derivation as a sequential
decision-making problem under uncertainty (c.f. “Box’s Loop” (Box, 1979)):

1. Selecting a high-level approach or framework f € F, where the chosen framework encodes
foundational assumptions and provides access to specialized mathematical tools and techniques.

2. Specifying an exact model m € M(f) within this framework, which is a concrete mathematical
formulation representing the system under study.

3. Developing a computational or algorithmic procedure a € A(f, m) to this model to derive the
desired mathematical output o = a o m(D,) € O.

4. Evaluating the mathematical output or model characteristics to inform subsequent refinements.

This sequence of modeling decisions, denoted by (f, m, a), defines a structured search space 2 =
{(fym,a)| f € F(d),m € M(f),a € A(f,m)}. We evaluate each modeling outcome using
a vector of k € N objective functions, J(m,a) = [Ji(m,a),...,Tr(m,a)]T. For generality,
each objective J;(-, ) can depend on both the mathematical outputs o (e.g., solution optimality)
and characteristics of the model-output pair (e.g., runtime). The goal is then to identify modeling
decisions (f, m,a) € 2 that address the following multi-objective optimization problem:

minimize(. ,, oyeo J(m,a) = [Ji(m,a),...,Tu(m,a)]" (D)
As there typically does not exist a single model-algorithm pair that can minimize all objective
functions simultaneously, we are more interested in finding the Pareto optimal models, i.e., models
that cannot be improved in any of its objectives without degrading at least one. Mathematically, a

Pareto optimal pair (m, a) is non-dominated, where a pair (m, a) is said to dominate another pair
(m!,ad)ifVie k], Ti(m,a) < J;(m',a’) and 3i € [k], T;(m,a) < Ji(m/,a’) (Miettinen, 1999).

Key challenges. This problem definition emits several noteworthy challenges:

1. Efficient exploration under uncertainty. A defining hallmark of the mathematical modeling
process is the fundamental uncertainty. It involves making sequential choices (framework, model,
algorithm) with uncertain outcomes in an interconnected and complex space. Efficient exploration,
informed by prior beliefs and feedback, is thus crucial to navigating this search space.
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Figure 1: Overview of MATHMO. Given a modeling problem desciption, MAMO employs a bi-level
adaptive search strategy to identify a Pareto set of models presenting diverse trade-offs.

2. Fundamental trade-offs. Modeling inherently involves balancing conflicting objectives, such as
accuracy and interpretability. Different modeling frameworks (e.g., deep learning versus linear
models) often embody fundamentally distinct trade-off frontiers, necessitating exploration across
frameworks, beyond locally within a framework, to identify a set of Pareto efficient models.

3. Subjective qualities of models. Beyond objective metrics, subjective qualities like Occam’s
Razor, interpretability, or alignment with domain understanding are integral to a model’s utility.
Although mathematical proxies for these elusive qualities exist (e.g., sparsity, minimum description
length), they are typically framework-specific and not directly comparable.

2.2 RELATED WORKS

Our work builds upon and extends several lines of work:

AutoML. The field of AutoML aims to automate applying machine learning to real-world problems
(Thornton et al., 2013). This broad endeavor encompasses hyperparameter optimization (Snoek et al.,
2012; Li et al., 2018), neural architecture search (Zoph and Le, 2016; Pham et al., 2018), automated
feature engineering (Khurana et al., 2016), and discovering loss functions (Real et al., 2020) or
optimization algorithms (Chen et al., 2023b). Typically, these approaches predefine a custom search
space (sometimes referred to as a domain-specific language), and apply search techniques such as
Bayesian optimization, evolutionary algorithms, or bandit-based search (He et al., 2021). Our work
shares this automation goal but differs significantly in scope, focusing on constructing mathematical
models and their algorithmic procedures, navigating a more complex, open-ended search space than
the narrower, pre-defined search spaces targeted by conventional AutoML.

The advent of LLMs has presented new opportunities for automated search problems. These large-
scale pretrained models function as highly flexible generators, enabling search over problem spaces
expressible through natural language (Brown et al., 2020) and overcoming bottlenecks in representa-
tion and search. They have been employed as zeroth-order optimizers over numerical spaces (Yang
et al., 2024) (e.g., for hyperparameter optimization (Liu et al., 2024)). More strikingly, LLMs show
remarkable efficacy in symbolic and combinatorial domains, in search spaces of reward functions
(Ma et al., 2024), neural architectures (Chen et al., 2023a), symbolic expressions (Liu et al., 2025;
Shojaee et al., 2025), and algorithms (Romera-Paredes et al., 2024).

LLMs for mathematical formulations. Our work is most closely related to emerging research
using LLMs to generate mathematical formulations. Here, “formulation” means specifying a model
within a predefined framework. Instances include formulating statistical models (Li et al., 2024),
game-theoretic models (Mensfelt et al., 2024), dynamic systems (Holt et al., 2024), and convex
optimization models (Ahmaditeshnizi et al., 2024). These typically assume a known modeling ap-
proach. Our work generalizes this line of research by not assuming a predefined framework. Instead,
it automatically searches across diverse mathematical frameworks, removing a priori assumptions
and enabling efficient exploration of diverse trade-offs offered by fundamentally different frame-
works (e.g., metaheuristic optimization vs. convex optimization). Furthermore, our work uniquely
incorporates evaluation of subjective qualities, crucial to the modeling process.

3  PROPOSED FRAMEWORK

The space of potential mathematical models for any given problem is inherently vast and complex.
Navigating this nested, heterogeneous space with a flat exploration strategy is prone to inefficiencies.

It is more important to have beauty in one’s equations than to have them fit experiment”—Paul Dirac
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We propose an adaptive search framework that exploits structure in the modeling process to decompose
this complexity, with the aim of improving efficiency (Dempe, 2002).

3.1 BI-LEVEL ADAPTIVE SEARCH

Our approach is informed by key observations about mathematical modeling. Firstly, the set of viable
high-level modeling frameworks for a given problem is typically much smaller than the vast space
of concrete models and algorithmic instantiations. This allows for more readily applicable priors
on framework-level performance characteristics and suitability, for instance, incorporating coarse
priors on the trade-off between performance and interpretability for deep learning versus mechanistic
models. Secondly, performance variations between frameworks generally dominate those within
them. The fundamental trade-offs offered by an exact method (e.g., integer programming) versus an
approximate one (e.g., a metaheuristic) are typically more significant than those between different
formulations under the same integer programming paradigm.

Based on these insights, we introduce a bi-level separation in the search process. The upper-level
search explores different modeling frameworks, while the lower-level search focuses on discovering
effective model formulations and solver/algorithm designs within that chosen framework. This
bi-level separation, which mirrors the cognitive workflow often employed by human modelers, is
expected to confer several advantages. Explicitly separating framework-level decisions allows for
more effective exploration of model trade-offs. Different frameworks often populate distinct regions
of this frontier, and the bi-level formulation helps systematically identify such trade-offs. Furthermore,
modeling choices within a given framework tend to be structurally similar. This relative homogeneity
means that feedback from one model instance provides a stronger signal for guiding improvements to
related formulations within the same framework. For instance, insights from incorporating a logistic
growth term into one dynamical system model are more directly transferable to refining another
dynamical system’s parameters than to designing the neural architecture of a deep model.

3.2 FORMAL DESCRIPTION

Mirroring the sequential nature of modeling decisions, our framework is formalized as an adaptive
search process. The search proceeds in iterations indexed by t = 1,2,...,T. At each iteration ¢,
decisions are informed by the history of previously explored models and their evaluated performance.
LetS;—1 = {(m,aw,r))|t’ < t} denote this history, where, for notational simplicity, we represent
the objective value as 7 = J (my, ayr) € R¥. For the history within a particular framework f, we

define 5{71 C S;—1. The iterative process is decomposed into two nested levels:

Upper-level problem. At each iteration ¢, the upper-level decision involves selecting a modeling
framework f; € F(p). This selection is guided by past performance across all explored frameworks:

fo = argmax;cr(,y a(f;Si-1) @)

Here, « is a scalar utility function that estimates the potential value to explore framework f at time ¢,
given S;—1. This function, by quantifying preferences over frameworks, is crucial for managing the
exploration-exploitation trade-off (Jones et al., 1998; Srinivas et al., 2010). For instance, o might
prioritize frameworks that have recently yielded high-performing models (exploitation) or those less
explored that could unveil novel regions of the Pareto frontier (exploration).

Lower-level problem. Once a framework f; is selected by the upper level, the lower-level problem
focuses on identifying a new model pair (m¢, a;) within the space of M(f:) x A(f:,m). This local
exploration leverages the historical performance of evaluated pairs within the framework:

(e, ar) = argmax,, e rmx.a B (M, a; Slt) 3)

Here, 3y, is a framework-specific utility function that learns from evaluations of past pairs Stfil
explored within framework f; to estimate the potential value of a candidate pair (m, a). Together,
Equations (2) and (3) define an iterative loop that systematically explores the model space, leveraging
the bi-level structure to balance broad exploration across frameworks with focused refinement within
them. Once ( f;, m¢, a;) are obtained, they are then evaluated to obtain r;, and added to the history.
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4 MATHMO: AUTOMATED MATHEMATICAL MODELING WITH LLMS

In what follows, we describe the Automated Mathematical Modeler (MATHMO), our specific imple-
mentation of the adaptive search framework (for an algorithmic overview, see Section D.1).

4.1 LLM SEARCH OPERATORS

Conventional automated search methods typically necessitate a clearly defined search space and a
formal solution representation, often through a domain-specific language (DSL) (Hutter et al., 2011;
2019). The domain of general mathematical modeling, however, presents a significant challenge:
the space of potential mathematical objects is extraordinarily vast and diverse, rendering the a priori
definition of a comprehensive DSL or a fully structured search space practically infeasible.

To navigate this expansive and ill-defined landscape, MATHMO leverages Large Language Models
(LLMs) as core search operators. Modern LLMs, pre-trained on massive corpora of text and
code, encapsulate extensive knowledge across numerous domains, including mathematics, scientific
literature, and programming (Brown et al., 2020; Kaplan et al., 2020). This pre-training endows them
with strong implicit domain priors, which can be harnessed to guide the exploration of plausible
and potentially effective mathematical modeling choices, moving beyond the limitations of rigidly
defined search spaces. In MATHMO, LLMs fulfill two crucial roles in the bi-level search process:

1. Generative samplers. LLMs are employed to sample from the space of frameworks, as well as
model and algorithmic specifications. In our implementation, specific models and algorithms are
represented as executable Python code, while high-level frameworks are represented as textual
descriptions. Conditioned on the problem description p, LLMs are prompted to sample suitable
modeling frameworks, denoted as f ~ py(- | p). For a selected framework f, the LLM generates
specific model and algorithmic instantiations, i.e., (m, a) ~ py(-, - | p, f, S’), conditioned on the
problem, framework, and past examples belonging to that framework.

2. Surrogate models. LLMs also function as surrogate models to estimate the objective value of
proposed model-algorithm pairs and inform the utility functions to guide search. Specifically,
7 ~ psu((m,a) | p, f,ST), where the subscript SM is employed to denote the surrogate model.
Additionally, we also use LLMs as Surrogate Models Of Subjective Evaluations (MOSE). This
surrogate, i.e., # = puose((m, a) | p), predicts subjective quality scores (e.g., human-perceived
interpretability) based on model representation and output, which are integrated into the overall
evaluation, allowing subjective inductive biases to be incorporated into search.

The operation of LLMs in these roles relies on specific prompts. The details are provided in Section D,
but they follow a standard ‘““skeleton” structure, incorporating the problem description p, current
context (e.g., selected framework f, and history §), and the specific task for the LLM.

4.2 UPPER-LEVEL PROBLEM: FRAMEWORK SELECTION

The upper-level problem addresses the decision of which modeling framework f; to commit to for
an additional step of exploration. In MATHMO, we employ the Pareto Upper Confidence Bound
(Pareto-UCB) strategy to realize the framework selection utility a(f, St]:l) (Equation (2)). This
method navigates the inherent multi-objective trade-offs by identifying a frontier of frameworks that
are optimistically non-dominated, thus balancing the need to explore new avenues with exploiting
proven ones (Drugan and Nowe, 2013; Xu and Klabjan, 2023).

At the beginning of search (¢ = 0), an initial set of candidate frameworks is proposed by employing
the LLM-based sampler f ~ py(- | p). Each framework is initialized with an optimistic estimate
of its potential, by setting an infinite upper confidence bound (UCB) value. This ensures that
each framework is selected for at least one initial exploration cycle, providing data for subsequent,
more informed decisions. Specifically, for each framework f, the historical performance vectors
{re | (my, ap,7y) € S|} are used to estimate the empirical mean fiy € R and variance 6’/% € Rk
This is then used to calculate the UCB vector UCBy € R*, where each component is computed using

“Here ¢, 6 are used to denote the prompts that module that sampling distribution (Sumers et al., 2023).
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a formula that considers both the estimated mean and its uncertainty, encouraging exploration:

UCBy,; :17,f,j—|—c “4)

where fi ; and 6%  are the estimated mean and variance of objective j of framework f, Ny ;1 is
the number of times framework f has been evaluated, and N;_; is the total number of exploration
steps (across all frameworks). ¢ and d are hyperparameters that control the exploration bonus.

The set of UCB; vectors, one for each framework, is then used to identify a subset of the promising
frameworks. A framework f is considered part of the Pareto optimal set, if its UCB ¢ is non-dominated
(i.e., UCBy; > UCBy ;Vj € [kland 3 j € [k] : UCBy; > UCBy ; V f’, assuming maximization).
From this Pareto-UCB set, one framework is randomly selected to be explored in the next iteration.

4.3 LOWER-LEVEL PROBLEM: LOCAL EXPLORATION

Once the upper-level process selects a framework f;, the lower-level is concerned with performing
local exploration within the chosen framework to identify promising (my, a;) for subsequent eval-
uation. MATHMO achieves this through a three-stage process that involves first sampling candidate
pairs, performing surrogate evaluations, and finally selecting the most promising one based on these
predictions, in a process akin to Bayesian Optimization (Snoek et al., 2012; Liu et al., 2024).

First, a set of diverse candidate model-algorithm pairs are sampled, which we denote as S =
{(m®,a®) | i € [1]}, where each (), a®) ~ py (-, - | p, ft, Stfil). For each sampled candidate
pair, we then estimate its k-dimensional objective vector using LLMs as a surrogate model: 7#(*) =

peu(m@,a® | p, fi, Stfil), which provides a low-cost prediction of how each candidate might
perform if fully evaluated, with each of the k objectives estimated independently.

Given the predicted objectives, MATHMO performs selection based on maximizing the estimated
hypervolume (Guerreiro et al., 2020). Intuitively, a higher estimated hypervolume means the pair is
more likely to dominate a larger portion of the k-dimensional objective space, relative to a reference
point. Formally, Hv(ﬁz(i), a®; Tref), Where 7t € R¥ is the reference point. To account for potentially
different scales of the & objectives, the individual objective values are normalized to [0, 1] before
calculation, and rf is set as 15. The pair (my, a;) is then selected as the candidate that yields the
largest hypervolume: (my, a;) = argmax gz, ;e BV(1, @; Tref).

4.4 MOSE: SURROGATE MODEL OF SUBJECTIVE EVALUATIONS

Mathematical modeling is not solely guided by objective performance metrics; subjective qualities,
such as interpretability and alignment with domain knowledge, are crucial utility considerations for
human modelers. Indeed, models generally reflect how we conceptualize and understand complex
situations. Incorporating these aspects into an automated search is thus vital to ensure the generated
models are useful, amenable to further analysis, and capable of communicating valuable insights.
While framework-specific metrics like complexity or sparsity penalties can promote such qualities
(e.g., in symbolic or linear regression), they are often not transferable across different paradigms,
limiting their utility when the goal is to compare diverse models spanning multiple frameworks.

To address this, we introduce MOSE as a generalized, cross-framework mechanism for integrating
subjective criteria into model evaluation. We acknowledge that subjective qualities can be highly
observer-dependent; MOSE therefore aims not to capture perfect objectivity but to provide consistent
surrogate approximations. This approach is based on the observation that subjective qualities are
often more reliably expressed through comparative evaluations than absolute scores—an insight also
exploited in Reinforcement Learning from Human Feedback (Bradley and Terry, 1952; Christiano
et al., 2017). Furthermore, we leverage the ability of advanced LLMs to simulate human judgments,
enabling scalable preference elicitation without costly annotations, a technique proven effective in
domains like alignment and diversity search (Bai et al., 2022; Bradley et al., 2024).

To ensure comparability of subjective evaluations across diverse discovered models, MOSE employs
a predefined reference set of models, denoted as M. This set, generated at the start of the
search, remains fixed as a consistent frame of reference. When evaluating a new model m; on
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Figure 2: Pareto fronts and adaptive exploration. (Top) Pareto fronts of models produced by
MATHMO on TSP, JSS, Ecology, and Epidemiology tasks. (Bottom) Corresponding cumulative % of
exploration effort allocated to each modeling framework throughout the search process.

a specific subjective quality (e.g., interpretability), MOSE performs pairwise comparisons against
each reference model. Specifically, it predicts ‘1’ if the evaluated model is more preferable, and ‘0’
otherwise. The probabilities associated with these predictions are then averaged to obtain a score:

7= ﬁ > Puose (my = m; | p). By averaging over a fixed reference set, this approach yields a

consistent score in [0, 1], and mitigates potential sensitivities to the choice of reference baseline.

5 EXPERIMENTS

Research questions. In this section, we present an empirical evaluation of MATHMO. Our experiments
are designed to investigate the following research questions:

1. How does MATHMO perform on diverse, real-world tasks, particularly its ability to discover a range

of models that effectively navigate different trade-offs (Section 5.1).

What are the contributions of specific algorithmic design decisions within MATHMO to search

performance, as analyzed through controlled ablation studies (Section 5.2).

3. How effectively does MOSE capture and integrate subjective modeling preferences, such as
interpretability, into the automated modeling process (Section 5.3).

2.

Problems. To address these questions, we employ four distinct modeling problems, two prescrip-
tive and two predictive, each presenting unique challenges and trade-offs: Job Shop Scheduling
(JSS): This problem involves optimally scheduling jobs on machines, subject to precedence/resource
constraints. We investigate the trade-off between makespan (total completion time) and runtime,
using 10 instances of varying complexities (50-300 ops). Traveling Salesman (TSP): This NP-hard
problem seeks the shortest route visiting each location exactly once. We examine the trade-off
between route cost (total tour length) and runtime (time to find a tour), utilizing 10 instances
of diverse complexities (30-50 locations). Ecology: This involves understanding and predicting
population dynamics in ecological environments. We focus on the trade-off between predictive
performance (measured by RMSE on unseen data) and interpretability (assessed by MOSE). We use
a real-world two-species dataset. Epidemiology: The goal is to understand and simulate the spread
of infectious diseases. We investigate the trade-off between predictive performance (RMSE) and
interpretability, employing a real-world COVID-19 dataset from Italy.

In these problems, modeling trade-offs are crucial. For instance, operations managers might use
slower, more optimal models for long-term planning (JSS, TSP), yet rapid, near-optimal solutions
are invaluable for dynamic rescheduling or handling disruptions. Similarly, while ecologists and
epidemiologists need high predictive accuracy, model interpretability is vital for gaining scientific
insights into underlying mechanisms (e.g., population dynamics, disease transmission) and informing
effective interventions like conservation strategies or public health policies.

For all experiments, we run MATHMO for 20 iterations. This process starts with proposing an initial
set of 5 frameworks, and each model evaluation is subject to a time limit of 300 seconds. For MOSE,
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Table 1: Ablation study. Hypervolume performance and relative improvements achieved by MATHMO.

Ablations TSP JSS Ecology Epidemiology | % Improvement
MATHMO 0.998 0.994 0.992 0.967 -
MATHMORAN 0.972 0.948 0.992 0.939 2.552%
MATHMOFL AT 0.987 0.945 1.000 0.792 5.848%
MATHMONAIVE 0.977 0.973 0.894 0.713 10.096%
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Figure 3: Evaluation of MOSE. Correlation analysis of MOSE interpretability scores against structural
and functional complexity metrics on ecology task (Left) and epidemiology task (Right).

a reference set comprising 3 models is employed. We use gpt-40-2024-05-13 as the LLM.
Additional details on datasets/experimental setup are provided in Section F. Additional results. In the
interest of space, we provide additional analysis of our method in Section C, including comparisons
against baselines (Section C.1); sensitivity and robustness across runs (Section C.2); and insights on
upper-level selection dynamics and lower-level exploration (Sections and C.5).

5.1 PERFORMANCE ON DIVERSE TASKS

The performance of MATHMO across the four modeling tasks is visualized in Figure 2. Panel (Top)
of the figure displays the Pareto fronts of discovered models for each task, while panel (Bottom)
illustrates the corresponding framework exploration dynamics (cumulative effort allocation).

Frameworks dominate trade-offs. A consistent finding is that different modeling frameworks tend
to excel in different regions of the Pareto frontier, underscoring the importance of framework selection.
For the JSS and TSP tasks, exact methods such as mathematical optimization and constraint pro-
gramming yield solutions closer to optimality but incur significantly higher computational runtimes.
Conversely, metaheuristics and custom heuristics provide solutions with much faster runtimes, with
a trade-off in solution quality. This pattern extends to the Ecology and Epidemiology tasks. Here,
time-series forecasting methods like vector autoregression achieve strong predictive performance but
are assessed by MOSE as less interpretable. In contrast, frameworks such as dynamical systems (e.g.,
compartmental models) are considered more interpretable, though they exhibit higher RMSE.

Effective intra-framework refinement. MATHMO demonstrates effectively exploration within frame-
works to refine solutions along the Pareto front, for instance, refining solver heuristics on JSS/TSP and
redesigning simulated annealing-based metaheuristics. Similarly, for the Ecology and Epidemiology
tasks, when exploring within the dynamical systems framework, MATHMO proposes variations in
model specification (e.g., logistic growth terms, interaction terms) to improve predictive accuracy.

Adaptive exploration behavior. The framework exploration dynamics reveal adaptive search be-
havior, characteristic of UCB-family strategies. On JSS, TSP, and Epidemiology, we observe a clear
pattern of initial broad exploration followed by focused exploitation on frameworks that contribute
to the Pareto-UCB frontier. Interestingly, on the Ecology task, the exploration allocation remains
more evenly distributed among several distinct frameworks (time-series, dynamical systems, rule-
based models), which is consistent with the observation that these frameworks contribute unique,
non-dominated solutions to different regions of the Pareto frontier.

5.2 CONTROLLED ANALYSIS OF ALGORITHMIC COMPONENTS

Next, we turn to understanding the contribution of the design decisions of MATHMO. For these
purposes, we evaluate three ablations: (1) MATHMORaN, Where the Pareto-UCB framework selection
strategy is replaced with random selection. (2) MATHMOg at, Which collapses the bi-level search
into a flat search space, applying a globalized version of the local exploration mechanism. (3)
MATHMONAVE, Which omits the surrogate-guided local exploration, relying solely on direct sampling.
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The comparative performance of MATHMO and its ablated versions, as detailed by hypervolume in
Table |, reveals several key insights. The complete MATHMO generally achieves the best hypervolume,
with one notable exception on the Ecology problem, where MATHMOg ot (Without the bi-level struc-
ture) found Pareto-dominant solutions by concentrating its search on dynamical systems. Employing
random framework selection (MATHMORaN) resulted in an average hypervolume decrease of 2.5%,
underscoring the value of adaptive exploration at the framework level. The removal of bi-level
search structure had a more pronounced negative impact on model diversity; manual examination
indicated this ablation tended to overconcentrate (allocating 95% of exploration effort to metaheuris-
tics on JSP/TSP and 80% on ecology). MATHMOna1vE, Which relies on repeated LLM sampling,
exhibits the poorest performance overall. However, it interestingly achieved a better hypervolume
than MATHMOFpar on the JSS task, suggesting that even naive, broad sampling by the LLM could
sometimes provide better coverage of the Pareto frontier than an overly myopic flat search.

5.3 SUBJECTIVE QUALITY EVALUATIONS

In this final experimental section, we assess how well MOSE captures aspects of model interpretability.
Quantifying interpretability directly is challenging in the general sense, and the broader utility MOSE
lies in its generalizability across different frameworks and problems. Fortunately, for the time-series
problems in our benchmark, we can analyze MOSE’s scores against two commonly used proxy
complexity metrics: (/) structural complexity measured by the number of free parameters (fewer
parameters often correlate with more understandable models), and (2) functional complexity assessed
using permutation entropy of the model’s predicted time-series. Permutation entropy quantifies the
regularity and predictability of a time-series, with lower entropy suggesting simpler, more regular
dynamics, while higher entropy indicates more chaotic patterns (Bandt and Pompe, 2002).

Our analysis, with detailed correlations presented in Figure 3, yields several insights into MOSE’s
behavior. Firstly, MOSE scores tend to cluster by modeling framework (e.g., dynamical systems and
rule-based models consistently receive higher interpretability compared to autoregressive forecasting).
The scores exhibit a statistically significant negative correlation with structural complexity on both
tasks: Spearman correlation p = —0.678 (p = 1.31 x 10~®) for Epidemiology and p = —0.298
(p = 0.0318) for Ecology. The relationship with functional complexity appears more context-
dependent. A significant negative correlation is observed on Ecology (p = —0.261, p = 0.0313), but
almost no correlation is identified on Epidemiology. It is important to note that these proxy metrics
(parameter count and permutation entropy) are themselves indirect measures of interpretability and
are primarily employed here for analytical validation within these specific time-series contexts.

6 DISCUSSIONS

Automated mathematical modeling represents an exciting frontier in applying artificial intelligence
to complex social, scientific, and engineering problems. In this work, we advance this frontier by
characterizing the process as a sequential decision-making problem under uncertainty. We proposed a
novel adaptive search framework designed to navigate the complex modeling space, featuring mecha-
nisms capable of efficient exploration, balancing multiple objectives, and incorporating subjective
preferences. Our concrete instantiation, MATHMO, demonstrates the potential of leveraging LLMs as
versatile search operators within a structured bi-level search architecture. Empirical results across
real-world modeling tasks underscore MATHMO’s efficacy in discovering diverse frontiers of models,
providing decision-makers with a rich set of alternatives offering different trade-offs.

Future directions. This research opens numerous avenues for future exploration and enhancement.
Currently, the set of modeling frameworks is sampled and fixed at the beginning of the search. Future
work could explore dynamic framework generation, enabling the system to discover or construct
new modeling paradigms based on accumulated insights, rather than being confined to an initial set.
While designed with multi-objective scenarios in mind, the framework can naturally be applied to
single-objective modeling tasks, and further investigation could optimize its performance for such
cases. Beyond MOSE for subjective preferences, developing richer interactive mechanisms for human
experts to influence the search could significantly enhance outcomes. Lastly, the framework’s general
nature permits the development of more specialized utility functions and optimizations of LLMs as
samplers or surrogate models, potentially yielding further performance gains. We hope that MATHMO
and the proposed framework lay a useful foundation for future advancements in this domain.
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Figure 4: NHANES/SEER Pareto fronts. Pareto-efficient models discovered across AUROC-ECE
trade-offs.

A ADDITIONAL REBUTTAL RESULTS

A.1 ADDITIONAL DOMAINS: LARGE-SCALE MEDICAL RISK PREDICTION

We evaluate MATHMO on two further domains (NHANES and SEER) to demonstrate generality
beyond the tasks in Section

* NHANES (Akinbami et al., 2022): A national health survey containing 86, 000 records of demo-
graphic, behavioral, clinical, and environmental covariates, where the goal is to predict risk of
myocardial infarction.

* SEER (Ries et al., 1975): A population-level cancer registry containing 100, 000 patients with
incidence, demographic, and survival information, where the goal is to predict risk for breast
cancer.

These experiments are designed to evaluate: (1) they involve substantively different problem domains
than our earlier tasks, (2) evaluation is significantly more expensive due to training large-scale models,
and (3) they feature different objective trade-offs: here, discriminative performance (AUROC 7) and
probabilistic calibration (ECE ), which are central in clinical modeling. We also use a gpt 50 LLM
backbone to highlight that MATHMO is LLM-agnostic.

Analysis. Figure 4 illustrates that MATHMO consistently discovers diverse Pareto-efficient models
spanning supervised learners, Bayesian models, survival analysis, and ensemble methods. These
experiments show that MATHMO scales to high-cost real-world modeling settings and is able to
autonomously identify high-quality trade-offs across heterogenous modeling frameworks, reinforcing
generality beyond the initial set of domains.

A.2 COMPARISON TO AUTOML AND SOLVER BASELINES

In this subsection, we compare MATHMO discovered models with mature solvers (on TSP/JSSP) and
against AutoML baselines (on Ecology/Epidemiology).

Mature solvers. For TSP and JSSP, we benchmark against the highly optimized Concoxrde solver
(branch-and-cut) and OR-Tools CP-SAT. These solvers are framework-specific and require strong
manual modeling choices (variables, constraints, heuristics, tuning). In contrast, MATHMO automat-
ically generates models across heterogeneous frameworks, producing a full Pareto frontier rather
than a single optimized point. Including traditional solvers provides the strongest possible reference
point, ensuring that the solutions generated by MATHMO are sensible and well-grounded relative to
gold-standard human-engineered baselines.

Analysis. Tables 2 and 3 show that MATHMO attains competitive performance while simultaneously
exploring solutions across optimization, heuristics, and metaheuristics, which populate distinct regions
of the Pareto frontier. These comparisons validate that MATHMO produces reasonable solutions near
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Figure 5: SINDy vs. MATHMO. Pareto fronts on Ecology (left) and Epidemiology (right): MATHMO
dominates SINDy across accuracy and interpretability.

expert-tuned solvers, but with the added benefit of automatically discovering multiple qualitatively
different trade-offs, which solvers cannot provide.

Table 2: TSP baseline comparison. Concorde vs. MATHMO and other baselines.

Concorde

MATHMO

MEoH

FunSearch

(4.52, 0.0408)
(3.57,0.0140)
(4.60, 0.0243)
(5.11, 0.0305)
(4.24, 0.0405)

(4.59, 0.6769)
(3.57,0.1838)
(4.66, 0.6476)
(5.19, 0.1566)
(4.24,0.1805)

(5.18, 0.1254)
(3.70, 0.1307)
(4.89, 0.1286)
(5.66, 0.1307)
(5.83,0.1268)

(4.77,0.1316)
(3.90, 0.1289)
(4.89, 0.1265)
(5.40, 0.1418)
(4.48,0.1314)

Table 3: JSSP baseline comparison. OR-Tools vs. MATHMO and other baselines.

OR-Tools

(1039.00, 0.0599)
(1218.00, 0.2954)
(1235.00, 13.4015)
(1721.00, 0.6016)
(1888.00, 0.2975)

MATHMO

(1039.00, 0.0230)
(1421.00, 0.0246)
(1235.00, 15.9644)
(1721.00, 1.1240)
(2127.00, 0.0233)

MEoH

(1096.00, 0.0602)
(1503.00, 0.0640)
(1514.00, 0.0621)
(2175.00, 0.0615)
(2183.00, 0.0620)

FunSearch

(1039.00, 0.0536)
(1372.00, 0.1610)
(1644.00, 0.1747)
(1925.00, 0.1697)

(11487.00, 0.1949)

Comparison to SINDy. For the time-series tasks (Ecology and epidemiology), we compare against
SINDy (Brunton et al., 2016), a widely used symbolic regression technique to discover interpretable
and predictive mechanistic models. As SINDy requires users to choose a basis-function library
and sparsity threshold, it lends itself well to AutoML-based model selection. To keep budgets
comparable, we allocate SINDy a consistent search budget of 20 configurations (4 libraries x 5
sparsity thresholds), matching the per-framework iteration budget in MATHMO.

Analysis. Figure 5 shows that across both Ecology and Epidemiology, SINDy is entirely dominated:
its models occupy a narrow interpretability band, while MATHMO’s models span a richer set of trade-
offs through access to multiple modeling frameworks. Takeaway: MATHMO yields strictly better
Pareto fronts due to its ability to explore beyond a single symbolic regression paradigm.

A.3 ADDITIONAL EVALUATIONS OF MOSE

Sensitivity analysis. MOSE is used during search as a surrogate for subjective human preferences
(e.g., model interpretability). Surrogate stability is critical: if small changes to the reference set
M.f produced inconsistent preferences, MATHMO’s search could be noisy or unreliable. Therefore,
evaluating the sensitivity of MOSE directly addresses whether its interpretability judgments are robust.
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Figure 6: MOSE sensitivity. Interpretability score distributions across four reference sets (Mef).

Analysis. We compute MOSE scores for 20 models across four independently sampled reference sets.
The distributions in Figure 6 and correlations in Tables 4 and 5 show consistently high agreement
(r > 0.93). MOSE produces stable and consistent judgments across reference sets, indicating that it is
a reliable component for guiding subjective-objective trade-offs during search.

Human study. As MOSE is used to approximate human qualitative preferences, it is essential to verify
that its judgments align with human experts. The goal is not to perform a full-scale user study, but
to provide evidence that MOSE is directionally consistent with expert reasoning. We collect expert
pairwise interpretability judgments on 25 randomly sampled model pairs. For each pair, we record
the MOSE scores and the expert preference of interpretability.

Analysis. Agreement with MOSE is 79.2% for Ecology (Table 6) and 76.0% for Epidemiology
(Table 7). The high agreement rates indicate that MOSE captures meaningful subjective preferences
consistent with expert intuition, supporting its use as a scalable interpretability surrogate.

Table 4: Epidemiology - Correlations Between Reference Sets (M)

Reference Set Pair  Pearson r 1 (p-value)

3,2) 0.9695 (1.92e-12)
3, 1) 0.9801 (4.30e-14)
3.0) 0.9673 (3.61e-12)
@1 0.9892 (1.85¢-16)
(2,0) 0.9507 (1.36e-10)
(1,0) 0.9561 (4.87¢-11)

Table 5: Ecology - Correlations Between Reference Sets (M.f)

Reference Set Pair  Pearson 7 1 (p-value)

3,2) 0.9823 (1.53e-14)
3, 1) 0.9525 (9.87e-11)
3, 0) 0.9923 (8.84¢-18)
@2, 1) 0.9351 (1.54e-09)
2, 0) 0.9809 (3.06e-14)
(1,0) 0.9567 (4.36e-11)
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Table 6: Human interpretability judgments (Ecology). Pairwise expert preferences compared
against MOSE predictions for 25 model pairs. Agreement indicates whether MOSE selects the same
model as the human expert.

MOSE(A) MOSE(B) Expert Agree
0.403 0.673 B v
0.626 0.645 A X
0.600 0.675 B v
0.650 0.643 B X
0.403 0.679 B v
0.679 0.675 A v
0.626 0.687 B v
0.626 0.635 A X
0.563 0.687 B v
0.673 0.635 A v
0.626 0.650 B v
0.591 0.701 B v
0.655 0.614 A v
0.600 0.635 B v
0.600 0.638 B v
0.626 0.655 B v
0.679 0.650 B X
0.679 0.635 A v
0.673 0.638 A v
0.645 0.403 A v
0.687 0.635 A v
0.614 0.678 B v
0.403 0.701 A X
0.614 0.614 A v

Agreement Rate 19/24 (79.2%)
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Table 7: Human interpretability judgments (Epidemiology). Expert pairwise evaluations compared
against MOSE decisions for 25 model pairs. Agreement indicates whether MOSE matches expert
preference.

MOSE(A) MOSE(B) Expert Agree
0.464 0.578 B v
0.524 0.525 B v
0.601 0.500 A v
0.663 0.507 A v
0.464 0.662 B v
0.662 0.500 A v
0.524 0.540 A X
0.524 0.502 B X
0.390 0.540 B v
0.578 0.502 B X
0.524 0.663 B v
0.550 0.556 B v
0.658 0.548 A v
0.601 0.502 A v
0.601 0.551 A v
0.524 0.658 B v
0.662 0.663 A X
0.662 0.502 B X
0.578 0.551 A v
0.525 0.464 A v
0.556 0.540 A v
0.540 0.502 B X
0.548 0.488 A v
0.464 0.556 B v
0.555 0.548 A v

Agreement Rate 19/25 (76.0%)
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B ADDITIONAL DISCUSSIONS

In the following section of the appendix, we offer additional discussion to motivate the need for
automated mathematical modeling (MATHMO), reflecting the multi-objective trade-offs, variety of
frameworks, and role of subjective criteria inherent in real-world modeling. We then outline potential
enhancements to key components of the adaptive search framework.

B.1 REAL-WORLD MODELING: UNCERTAINTY, TRADE-OFFS, AND SUBJECTIVE CRITERIA
Table 8: Overview of problems. Illustrating multi-objective trade-offs, modeling diversity, uncer-

tainty, and subjective considerations.

Problem Objectives Modeling Approaches Uncertainty in Modeling Subjective Criteria
TSP > Journey cost, > Run- A ILP, A Metaheuristics, Instance size and structure affect per- -
time /\ Heuristics formance; solver behavior is unpre-
dictable
Job Shop ©> Makespan, > Run- A Constraint program- Solution quality and runtime -
Scheduling  time ming, A Metaheuristics, vary with problem characteristics;
A Heuristics method choice is non-obvious
Ecology > Predictive accuracy, A Differential equations, Complex, noisy dynamics; uncertain ~ Alignment with
> Interpretability A ARIMA, A Graphical ~model structure; missing or sparse  ecological knowledge
models data and interpretability
Epidemiology > Forecast accuracy, > /\ Compartmental mod- Highly sensitive to data quality and Interpretability  for
Interpretability els, A Statistical models, regime changes; difficult to validate  public health commu-
A Time-series models assumptions nication
Medical Di- > Accuracy, > Explain- A Deep learning, /A Variation in populations, equipment, Clinical trust and
agnosis ability, > Uncertainty Rule-based systems, A and labeling; generalization is uncer- alignment with expert
calibration Probabilistic models tain reasoning
Portfolio > Expected return, > A Classical finance mod- Financial time series are non- Transparency,  ex-
Optimiza- Risk, > Robustness els, A ML models (e.g., stationary; market conditions shift plainability, and risk
tion RNN5) unpredictably alignment
Drug Re- > Predictive accuracy, /A Mechanistic models, High patient variability; limited, ex- Regulatory approval
sponse > Biological inter- A Multi-omics ML, A pensive data; strong prior assump- and clinical inter-
Modeling pretability, > Safety Hybrid causal models tions needed pretability

This work addresses a relatively underexplored area: the automation of mathematical modeling under
real-world constraints. Our problem formulation and methodological framework are motivated by
three core challenges commonly encountered in practice: (1) uncertainty in modeling decisions—such
as which frameworks or assumptions are most appropriate; (2) multi-objective trade-offs between
competing criteria like accuracy, runtime, and interpretability; and (3) subjective, human-centric
considerations that are difficult to mathematically formalize but critical to real-world adoption.

Our analysis focuses on domains such as job-shop scheduling, vehicle routing, ecology, and epi-
demiology, each of which presents unique modeling challenges and trade-offs, such as optimality
versus runtime or predictive accuracy versus interpretability. However, these issues are far from
domain-specific. In the following discussion, we illustrate how similar concerns arise across a wide
range of modeling scenarios, further underscoring the importance of a general-purpose, flexible
approach to automated modeling. An overview of the discussion is summarized in Table

Medical diagnosis. The task of predicting diseases or conditions based on clinical data such as
medical images, lab results, or patient history.

1. Trade-offs: > Diagnostic accuracy (essential for minimizing missed or incorrect diagnoses) vs. >
explainability (clinicians need to understand model reasoning to trust and act on predictions) vs. >
uncertainty calibration (important for risk-aware decision-making, especially in borderline cases).

2. Possible modeling frameworks: A Deep learning (highly accurate, data-intensive, low inter-
pretability); A rule-based expert systems (e.g., risk scores; interpretable but often underperform,
and lack uncertainty handling); /A probabilistic models (capture uncertainty but require strong
assumptions and are harder to scale).

3. Subjective criteria: Clinicians value interpretability and alignment with domain knowledge—
understanding why a model makes a diagnosis is as important as the prediction itself.

4. Uncertainty in modeling: Variation in patient populations, medical instrumentation (e.g., imaging
devices), and comorbidities makes it unclear which modeling assumptions will generalize. Ground
truth labels may also be noisy or inconsistent across annotators.

Financial portfolio optimization. The process of allocating assets to maximize returns while
managing risk in dynamic market environments.
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1. Trade-offs: Expected return (central to investor objectives) vs. i risk (higher returns generally
entail higher volatility); > predictive performance (important for exploiting market inefficiencies)
vs. > robustness (models may overfit to past data and fail under new market regimes).

2. Possible modeling frameworks: A Classical financial models (e.g., Markowitz, Black-Litterman;
principled but sensitive to input estimation errors); /A machine learning models (e.g., RNNs;
flexible, can learn patterns, but require large, clean datasets and may overfit or lack robustness).

3. Uncertainty in modeling: Market dynamics are non-stationary and hard to forecast. Expected re-
turns, volatilities, and correlations shift over time, making it unclear which models or assumptions
will remain valid. A model that performs well in one regime/time horizon may fail in another.

Drug response modeling. Predicting how individual patients will respond to a given drug, often in
the context of personalized medicine or drug development.

1. Trade-offs: > Predictive accuracy (critical for identifying effective treatments) vs. > biological
interpretability (important for understanding mechanisms and gaining trust); > short-term efficacy
(desired for immediate outcomes) vs. long-term safety (essential for regulatory approval and
patient well-being).

2. Possible modeling frameworks: A Mechanistic models (e.g., PK/PD; grounded in biology,
interpretable, but slow and parameter-sensitive); /A multi-omics ML models (data-driven and
expressive, but opaque and difficult to validate); A hybrid models (e.g., causal or semi-mechanistic;
combine strengths, but sensitive to misspecification).

3. Subjective criteria: Interpretability and biological plausibility are crucial for clinical trust and
regulatory acceptance.

4. Uncertainty in modeling: High variability across patients (e.g., in genetics or metabolism)
complicates model generalization. Data is often limited, expensive to obtain, and ethically
constrained.

In all these examples, the goal is not to identify a single best model, but rather to present the human
user with a diverse set of viable modeling options—each representing different trade-offs across
relevant objectives such as accuracy, interpretability, robustness, and runtime. This is crucial because
the optimal modeling choice often depends on context-specific constraints, user preferences, and
shifting priorities. Framing this as a multi-objective optimization problem allows us to systematically
explore the space of trade-offs and approximate the Pareto frontier, enabling users to make informed
decisions based on their own criteria and operational needs.

B.2 ENHANCING COMPONENTS OF THE ADAPTIVE SEARCH FRAMEWORK

Our work presents a general framework for approaching automated mathematical modeling. Specifi-
cally, it decomposes the automated modeling process into a bi-level search: the upper level selects
among modeling frameworks while managing exploration—exploitation trade-offs, and the lower
level performs local search within each framework to identify high-performing model-algorithm
pairs. While our specific instantiation of this framework demonstrates effectiveness, we outline key
areas where individual components of this framework could be improved to enhance performance,
flexibility, and robustness.

B.2.1 UPPER-LEVEL UTILITY FUNCTION

We use Pareto-UCB to guide framework selection by approximating the Pareto frontier across multiple
objectives. This balances exploration and exploitation in a principled way. However:

1. Non-stationarity. Pareto-UCB assumes a stationary reward distribution, which is perhaps un-
tenable in our setting—modeling performance is expected to improve over time due to ongoing
low-level exploration. This results in a shifting reward distribution and suggests that a dynamic or
non-stationary approach may be more appropriate.

2. Independence assumption. Frameworks are currently treated as independent in the selection
problem, but in reality, their performance is often correlated (e.g., if model-based control methods
perform well, similar model-based RL might too). Ideally, inter-framework correlations and
structure are captured somehow, although modeling or learning this correlation a-priori remains
challenging.
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3. Alternative utility functions. Optimism-based acquisition strategies like Pareto-UCB presents
a strong initial approach, but Bayesian acquisition functions (e.g., entropy search) may better
capture uncertainty and trade-offs in this multi-objective setting and are worth investigating in
future work.

B.2.2 LOWER-LEVEL UTILITY FUNCTION

Our lower-level utility function relies on an LLM-based surrogate to estimate the objective perfor-
mance of candidate models, using expected hypervolume improvement as the acquisition criterion.

1. Surrogate models. Developing a surrogate model on this non-conventional search space (i.e.,
space of models expressed in natural language) is very challenging. While our work uses an
LLM-based surrogate model and demonstrated improved search efficiency as a result, this is a
fruitful area with open challenges in calibration and generalization.

2. Alternative search strategies. Other local search methods, such as evolutionary algorithms or
learned reinforcement learning-based search policies, could offer more robust and generalizable
exploration under uncertainty.

3. Framework-specific search policies. More interestingly, specialized framework-specific ex-
ploration strategies that exploit the structure unique to each framework could greatly improve
efficiency. For instance, leveraging the hierarchical structures in mathematical programming
(Astorga et al., 2024) or neural architecture search for deep learning models (Zoph and Le, 2016).
However, this requires engineering these framework-specific strategies beforehand.

B.2.3 LLM GENERATIVE SAMPLERS

LLMs are crucial for open-ended exploration in the space of frameworks, models, and algorithms.

1. Finetuned search operators. In our work we used general purpose LLMs as samplers, although
there is no principled reason this could not be improved with specific finetuned search operators.

2. Dynamic sampling. When it comes to framework sampling, our current approach samples and
fixes a set of frameworks at the beginning of search. Ideally, this could be improved with a
dynamic approach, which is less constraining, enables more efficient exploration budget allocation,
and encourages the emergence of hybrid or novel modeling paradigms.

B.2.4 LLM SURROGATE MODELS

LLMs, which operate directly on natural language inputs, offer a powerful alternative to traditional
surrogate models like Gaussian Processes that are limited to well-defined numerical feature spaces.
This flexibility enables surrogate modeling over open-ended model descriptions, expanding the
expressive range of the search process. However, LLM-based surrogates also come with notable
challenges. Their uncertainty estimates tend to be poorly calibrated (Ling et al., 2024), and their
outputs can be highly sensitive to prompt design and formatting (Xiang et al., 2024; Hwang et al.,
2025). Addressing these issues—through techniques such as prompt ensembling, temperature scaling,
and uncertainty-aware decoding—remains an important direction for improving both reliability and
performance in LLM-based surrogate evaluation.

B.2.5 MOSE: MODEL OF SUBJECTIVE EVALUATION

A general-purpose, cross-framework model of subjective evaluation introduces significant potential
for modeling human-like preferences in automated modeling pipelines. Our initial results showed
that MOSE scores are meaningfully correlated with structural and functional properties of candidate
models, suggesting alignment with domain-relevant heuristics. Nonetheless, the model remains in
an early stage and would benefit from further validation and tuning across diverse problem types.
Encouragingly, similar challenges have been tackled in reinforcement learning from human feedback
(RLHF), resulting in reliable and robust preference models (Christiano et al., 2017). In our setting,
MOSE could be further improved using paired preference labels gathered from domain experts,
enabling data-efficient finetuning and deeper alignment with subjective modeling criteria.
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C ADDITIONAL EMPIRICAL ANALYSES

In this section, we supplement our main empirical results with additional analyses that provide deeper
insight into the performance of MATHMO. We start by focusing on two aspects: (i) comparison against
strong baselines in automated heuristic design, and (ii) sensitivity and stability analyses of MATHMO
with respect to framework selection and initialization. Subsequently, we focus on the dynamics of
upper-level framework selection and lower-level model exploration.

C.1 COMPARISON AGAINST BASELINES

We benchmark MATHMO against two recent and representative systems: MEoH (Yao et al., 2025) and
FunSearch (Romera-Paredes et al., 2024). Both are state-of-the-art approaches in automated heuristic
design using large language models (LLMs). Specifically, MEoH addresses multi-objective search
using evolutionary operators and a dominance—dissimilarity mechanism for diversity maintenance,
while FunSearch employs genetic programming with an island-model evolutionary strategy, tailored
primarily for single-objective problems. Although neither method is designed for general-purpose,
cross-framework mathematical modeling, they provide strong points of reference for evaluating the
relative effectiveness of MATHMO.

Experimental setup. All methods are evaluated on four benchmark problems under a fixed budget
of 20 model—algorithm evaluations. For FunSearch, the multi-objective criteria are scalarized using
uniform weights to ensure a fair comparison. Table 9 summarizes the results.

Table 9: Performance comparison against baselines. Higher values are better.

Method TSP JSSP  Ecology Epidemiology
MEoH 0.9480  0.8587  0.8360 0.9054
FunSearch  0.9772  0.8130  0.6240 0.6628
MATHMO 0.9877 0.9655 0.9576 0.9793

MATHMO consistently outperforms both baselines across all domains. We attribute these gains to two
main factors:

* Cross-framework modeling. MATHMO explicitly searches over diverse modeling frame-
works (e.g., dynamical systems, symbolic regression, constraint programming), whereas
MEoH and FunSearch tend to restrict exploration to one or two frameworks. For example,
in the JSSP domain, MATHMO leveraged constraint programming frameworks, yielding
superior solutions not discovered by either baseline.

* Surrogate-guided search. MATHMO employs LLM-based surrogate models to guide candi-
date selection, improving sample efficiency and focusing evaluations on high-potential areas.
In contrast, MEoH and FunSearch rely exclusively on direct evaluation of evolved models.

C.2 SENSITIVITY ANALYSIS

We also conducted a post-hoc sensitivity analysis by measuring the average drop in hypervolume
(HV) when each framework is removed from the search space. Results are summarized below:

TSP: 7.38% (mathematical optimization), 7.20% (metaheuristics), 1.21% (heuristics)

JSSP: 2.16% (constraint programming), 1.29% (metaheuristics)

 Ecology: 16.71% (symbolic regression), 9.62% (time-series forecasting), 0.35% (rule-
based)

 Epidemiology: 15.00% (rule-based)

These results indicate that certain frameworks contribute uniquely to the Pareto frontier, while others
are progressively deprioritized by the Pareto-UCB mechanism.
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Table 10: Inter-run consistency on VRP (5 runs). HV denotes hypervolume.

Run

0

1 2

3

4

HV

0.989 0.974 0.980 0.989 0.987

Average HV: 0.984 + 0.005.

Table 11: Framework contributions to the Pareto frontier (percentage HV contribution).

Runtime ({)

Framework Run0O Runl Run2 Run3 Run 4
Heuristics 9.02% 2.00% 9.54% 8.78% 10.21%
Mathematical optimization 7.18% 1.82% 5.44% 6.87% 7.34%
Metaheuristics 0.33% — 0.14% 0.86% 0.23%
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Figure 7: Pareto front comparisons. Visualizations of the discovered Pareto fronts for MATHMO,
MATHMOEL AT, and MATHMONATVE. A denotes non-dominated models; —— traces the estimated Pareto
front; colors indicate distinct modeling frameworks. From top to bottom: TSP, JSS, Ecology,
Epidemiology.

To further assess robustness, we conducted experiments on the vehicle routing problem (VRP) with
multiple random initializations.

The results show that hypervolume remains stable across runs (0.984 £ 0.005), and framework
contributions to the Pareto frontier are consistent across different initializations.

C.3 COMPARISON OF DISCOVERED PARETO FRONTS

We begin by analyzing the quality of the discovered Pareto frontiers, as well as the rate of hypervolume
improvement. The Pareto front reflects the diversity and optimality of the trade-offs discovered during
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Figure 8: Hypervolume during search. Temporal progression of normalized hypervolume through-
out the search process for MATHMO and control variants: MATHMOgp ar and MATHMONavE. From left
to right: TSP, JSS, Ecology, Epidemiology.
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Figure 9: Upper-level framework selection. Comparison of hypervolume progression between two
upper-level selection strategies: MATHMO (adaptive) and MATHMOgraN (random). From left to right:
TSP, JSS, Ecology, Epidemiology.

search, while hypervolume progression captures the efficiency with which the method explores the
multi-objective space.

We compare MATHMO against two ablations: MATHMOFpar, Which removes the bi-level structure
and performs sequential sampling of model-algorithm pairs without adaptive framework selection;
and MATHMOnNa1vE, Which further removes the sequential aspect entirely, instead sampling a set of
model-algorithm pairs in parallel. For all three settings, we allow 20 iterations, with MATHMONAIVE
generating 20 parallel samples.

Discovered pareto fronts. In Figure 7, we compare the Pareto frontiers discovered by each method.
MATHMO consistently identifies the most complete and diverse set of Pareto-efficient solutions. For
instance, on TSP, it uncovers models that offer a range of trade-offs between journey cost and runtime.
In contrast, MATHMOg a1 explores fewer frameworks and, while it identifies some competitive models
in terms of journey cost, it fails to find low-runtime alternatives with modest sacrifices in optimality.
More generally, we observe that purely sequential approaches like MATHMOg a7 tend to focus locally
on just 1-2 frameworks, limiting their coverage of the multi-objective space and resulting in fewer
diverse trade-off solutions. This trend is also evident in Ecology and Epidemiology, where MATHMO
discovers broader and more densely populated Pareto fronts that dominate across both objectives. An
exception arises in JSS, where MATHMONavE discovers a Pareto front comparable to that of MATHMO.
This is likely due to favorable random coverage and the nature of the problem landscape, where
multiple high-performing models can be sampled without requiring adaptive search.

Search efficiency. Figure 8 shows the progression of normalized hypervolume across iterations. On
TSP, Ecology, and Epidemiology, MATHMO achieves faster gains in hypervolume compared to the
ablations, often requiring significantly fewer iterations to identify Pareto-efficient solutions. The case
of JSS is again an outlier: although MATHMONavE eventually achieves comparable hypervolume,
MATHMO reaches the same level in only 6 iterations, highlighting its superior sample efficiency.

C.4 INSIGHTS: UPPER-LEVEL FRAMEWORK SELECTION

We next examine the dynamics of upper-level framework selection, which in MATHMO is guided
by the Pareto-UCB utility function. To isolate its impact, we compare against a control ablation,
MATHMORAN, Which is identical to MATHMO except that it replaces utility-guided selection with
uniform random sampling over frameworks.
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Figure 10: Lower-level exploration efficiency. (Top) Relative hypervolume improvement as a
function of the number of model evaluations for MATHMO and RAN. (Bottom) NRMSE of surrogate
predictions over time. From left to right: TSP, JSS, Ecology, Epidemiology

Observations. Figure 9 shows the progression of normalized hypervolume across iterations. On
TSP, Ecology, and Epidemiology, we observe similar rates of improvement between MATHMO and
MATHMORaN during the initial ¢ < 6 iterations, reflecting the exploratory phase of the search. How-
ever, after this point, MATHMO exhibits a notably sustained increase in hypervolume, suggesting that
it effectively focuses its search budget on frameworks with greater potential for Pareto improvement.
This behavior illustrates the utility of guided upper-level selection: Pareto-UCB enables adaptive
resource allocation toward promising regions of the search space.

In contrast, on JSS, both methods converge to comparable hypervolume levels at similar rates. This
echoes the earlier observation in Pareto front comparisons, where MATHMONavE also performed
well. These results suggest that the effectiveness of upper-level selection may be problem-dependent.
For instance, in settings like JSS where the landscape is relatively flat or where good models are
distributed across many frameworks, random selection may suffice to find competitive solutions.

C.5 INSIGHTS: LOWER-LEVEL EXPLORATION EFFICIENCY

We now turn to the efficiency of local exploration, specifically how well the surrogate model guides
the selection of candidate model-algorithm pairs. To isolate this effect, we compare MATHMO against
a control variant, RAN, which is identical in every respect except that it selects a candidate at random
rather than using a surrogate to estimate and optimize objective performance.

To ensure a fair comparison, both methods are evaluated on the same historical set of models and the
same set of candidate proposals at each step. This setup, averaged over 5 random seeds, controls for
variation in the history and candidate pool, ensuring that any observed differences can be attributed
solely to the decision-making strategy, i.e., surrogate-guided versus random selection.

Local search efficiency. Figure 10 (Top) shows relative hypervolume improvement as a function
of the number of evaluated models. For each selected point, we compute the gain in hypervolume
relative to the historical set alone; a larger value indicates that the newly acquired model improved
the current Pareto front. Across all four benchmarks, TSP, JSS, Ecology, and Epidemiology, we
observe that MATHMO consistently achieves higher relative hypervolume gains. This indicates that
surrogate-guided selection is more effective at identifying models that advance the Pareto frontier,
leading to more sample-efficient exploration compared to random selection.

Surrogate model performance. To better understand the surrogate’s behavior, we also measure
its predictive accuracy in terms of normalized RMSE (NRMSE) on the candidate models, averaged
across the two objectives. In TSP, Ecology, and Epidemiology, we find that NRMSE decreases with
more historical data, suggesting that the LLM-based surrogate improves with more observations,
consistent with the observation in Liu et al. (2024) that LLM-based surrogate estimation generalizes
better with more context. In contrast, on JSS, surrogate accuracy worsens over time, with increasing
NRMSE across iterations. Manual inspection revealed a possible explanation: that the dominant
source of error lies in estimating runtime for metaheuristic algorithms—critical for identifying Pareto-
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improving trade-offs in this problem domain. These runtime behaviors are difficult to predict based
solely on surface-level descriptions, leading to poor surrogate performance. This likely explains why
both MATHMO and RAN achieve similar relative hypervolume improvements on JSS: as the surrogate
becomes less informative, its selection decisions approach random choice.

D ADDITIONAL TECHNICAL DETAILS
In this section of the Appendix, we provide additional details on the implementation of MATHMO.

D.1 ALGORITHM/PSEUDOCODE

Algorithm 1 Bi-level Adaptive Search Loop in MATHMO

1: Input: Problem description p, dataset D, number of iterations 7', number of frameworks F,
number of candidates L

2: Sample initial frameworks: f; ~ po(- | p), Vi € [F]

3: Initialize histories: 5\°) =), Vi € [F]

4: fort =1to T do

5: Upper-level: Compute utility: «o(f;) = Pareto-UCB( f;; S-(tfl)), Vi€ [F)

6.

7

8

Select framework: f, = argmax;, ¢  a(fi) '
Lower-level: Sample candidate pairs: (/m;,a;) ~ ps(-,- | p, f+, Sff*l)),Vj € [L]
Estimate objectives: 7; = psm(7;,a; | p, f*,Sit_l)) VjelL]

9:  Select candidate pair: (m("), ") = argmax,,, ,» ¢ ¢ HV(7}; rer)
10: Solve and evaluate to obtain 7{(”

11: Update history: Sy) — Sit_ U {(m®,a® O

12: end for

13: Output: Pareto set: P = Pareto (Uf;l Si(T)>

D.2 LLM SEARCH OPERATORS

To recap, MATHMO leverages LLMs as search operators, specifically for three distinct roles: sampling
realizations, surrogate evaluations of candidate models, and as a model of subjective evaluation
(MOSE).

1. Generative sampler [frameworks]. Conditioned on the problem description p, LLMs are
prompted to sample suitable modeling frameworks, which we denote as f ~ pg(- | p). Specifically,
the LLM is instructed to return proposed frameworks in a JSON structure containing two fields:
“modeling_framework” (string) and “framework_description”. The prompt skeleton and output
format are described in Figures 1| and 12 respectively. Note that the descriptions enclosed in { }
represent placeholder values that are populated dynamically at runtime.

2. Generative sampler [model and algorithm]. Conditioned on the problem description p, a
selected framework f, and a set of previously evaluated models within that framework S I the
LLM generates a new model-algorithm pair, (m, a) ~ py(, - | p, f, S7). The output is returned
in a JSON format with the fields: “model” (a Python code string), “dependencies” (a list of
package names), and “explanation” (a rationale for the design). Prompt details and output structure
are described in Figures |3 and

3. Surrogate evaluations [candidate model]. For each candidate model-algorithm pair (7, a),
LLMs are employed as surrogates to estimate multi-objective performance metrics, offering a
low-cost approximation. This approach is motivated by the unstructured nature of the input space,
which differs from traditional numerical or mixed-integer domains in Bayesian Optimization
(Snoek et al., 2012), and is supported by recent successes of LLM-based surrogates in language-
driven domains (Liu et al., 2024; Requeima et al., 2024). Each objective 7; € R for j €
[k] is estimated independently using the LLM, based on input (12, @, p, f,SY), where #; =
psu(m,a | p, f,87). Multiple predictions are sampled in parallel to construct an empirical
predictive distribution over the objectives. The prompt to achieve this is described in Figure
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4. MOSE Surrogate Model of Subjective Evaluations. LLMs also serve as a surrogate for subjective
human judgment, enabling a generalized, cross-framework assessment mechanism for qualitative
criteria. Prior work has demonstrated that LLMs can effectively model human preferences
in alignment, safety, and prose diversity tasks (Bai et al., 2022; Bradley et al., 2024). In our
framework, MOSE uses an LLM to predict whether a proposed model m; is subjectively preferred
over baseline models 1m,; € M.y, given a problem description p. This is formalized as pyosg (m: >
m; | p). A prediction of ‘1’ indicates that m; is subjectively superior. The associated token
probabilities are extracted. This process is repeated for each m; € M, where the preference
scores against each reference model are averaged to compute the final MOSE score. The prompt
structure depicted in Figure

You are an expert modeling assistant. Your task is to help the user
create a formal model to solve their problem.

**Task:xx You will receive a description of the problem and the
desired objective(s) of the model. Your job is to propose a
modeling framework that can be used to solve the problem. You
should also provide a detailed explanation of your proposed
framework, including any assumptions or constraints that you are
making.

**Problem description:xx
{GENERAL_PROBLEM_DESCRIPTION}

**Problem instance descriptions:xx
{INSTANCE_DESCRIPTION}

**xOutput format requirement:*x

- You must output your response as a single, valid JSON object.

— No other text should precede or follow the JSON. The JSON object
must strictly follow this structure:

{OUTPUT_FORMAT_REQUIREMENT }

Figure 11: Prompt structure for framework proposal.

"modeling_framework" (string): "concise terminology to generally
describe the modeling framework (e.g., mathematical
optimization, dynamical systems)",

"framework_description” (string): "high-level description of the
proposed modeling framework"

Figure 12: Output format for proposed frameworks.

D.3 ADAPTIVE SEARCH

Having detailed the implementation of LLM search operators in MATHMO, we nOw COVer various
implementation details of the adaptive search process. Subsequently, we tabulate the key hyperpa-
rameters and describe the computational resources.

Upper-level: framework selection. At the beginning of the search process (t = 0), an initial set
of w candidate frameworks is proposed independently using the LLM-based sampler f ~ pg(- | p).
Then in each iteration:

1. Compute statistics. For each framework, we compute summary statistics using the framework-

specific historical performance vectors {r; | (my, a;, ) € 87}, specifically the empirical mean
pif € R¥ and variance 0 € R¥.
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You are an expert modeling assistant. Your task is to help the user
create a formal model to solve their problem.

**Task:xx You will receive a description of the problem and the
desired objective(s) of the model. Your job is to return the
model that can generate the required output/solution in the
output format specified. The model you generate should belong to
the modeling framework specified.

**xProblem description:xx
{GENERAL_PROBLEM_DESCRIPTION}

**Problem instance descriptions:xx
{INSTANCE_DESCRIPTION}

**Chosen modeling framework:xx
{MODELING_FRAMEWORK}

**Output format requirements:*x*
{OUTPUT_FORMAT_REQUIREMENTS }

Figure 13: Prompt structure for model/algorithm proposal.

"model" (Python code): "complete Python code of the model and
algorithm generated to represent and solve the provided problem
"
"dependencies" (list): "list of external Python package dependency"
"model_explanation" (str): "detailed description of the generated
model and algorithm"

Figure 14: Output format for proposed model/algorithm.

2. Compute UCB. As our «(+, -) is implemented using the Pareto-UCB policy, we compute the UCB
vector UCBy € R* for each framework using Equation (2).

3. Identify Pareto set. Using the set of UCB vectors, the set of Pareto optimal (non-dominated)
frameworks is identified.

4. Selection. If there exists more than one framework in the Pareto-UCB set, one framework is
randomly selected to be explored next.

Lower-level: local exploration. In each iteration of lower-level exploration, the following steps
occur:

1. Proposal. A set of candidate model-algorithm pairs are sampled, denoted as S/ = {m®,a® | e
(1]}

2. Surrogate estimation. For each candidate pair, we obtain an estimated objective vector 7(*) =
pSM(' | m(Z)a d(1)7p7 fa Sf)

3. Selection. The pair (my, a;) that yields the largest estimated hypervolume improvement (m, a) =
arg Max ;, 2 &7 HV (7, @; Trer) is selected to undergo evaluation.

4. Evaluation. We execute the model and algorithm as a subprocess. If any errors occurred during
execution, the error trace is extracted and passed to the LLM to fix any mistakes and regenerate
the model. If the model still does not execute after 3 MAX_RETRIES, the process returns to the
proposal step. Note that there is also a 300 second TIMEOUT imposed on model execution. If the
model timeout, it is forcefully terminated.

5. Observe objectives. The objective vectors r € R¥ are obtained by evaluating the model and
generated outputs, and the triplet are added to the set of models S/ < S/ U (m, a,r) .
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You are an expert evaluation assistant. Your task is to help the user
evaluate models that were generated for a particular problem.

**Task:xx Your role is to help evaluate mathematical models designed
for a specific problem. You will be given:

— A description of the problem, the objective(s) the models are
intended to achieve,

— A history of previously generated models along with their
performance metrics,

- A candidate model for evaluation.

Based on this information, predict the likely performance of the new
candidate model.

**xProblem description:xx
{GENERAL_PROBLEM_DESCRIPTION}

**Problem instance descriptions:xx
{INSTANCE_DESCRIPTION}

**xHistory of proposed models:*x
{MODEL_HISTORY}

*xOutput format requirements:*x*
{OUTPUT_FORMAT_REQUIREMENTS }

Figure 15: Prompt structure for surrogate evaluations.

You are an expert at evaluating the subjective quality of models.
Your task is to assess the subjective quality of a model based on
its description against the baseline reference provided.

**Task:xx You will receive a target model description (in code) and a
baseline model description (also in code). Your job is to assess
the {CRITERION} of the target model compared to the baseline

reference. Provide a detailed assessment using the specified
output format.

**Subjective criterion assessed:xx
{CRITERION_DESCRIPTION}

*xImportant instructions:*x*

— Your assessment/explanation should be grounded in semantic meaning
of the target model and the baseline reference.

— The assessment should be based on your best intuition and semantic
understanding of the models.

— Then score the target model, returning 1 if the target model is
more {CRITERION_VALUE} than the baseline reference model, or 0 if

not.

**Target model:*x*
{TARGET_MODEL}

+**Baseline reference model: *x*
{BASELINE_REF}

Figure 16: Prompt structure for surrogate evaluations.

D.4 MISCELLANEOUS IMPLEMENTATION DETAILS

Key hyperparameters. We detail the hyperparameters for implementing MATHMO in Table
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LLM. We use gpt-40-2024-05-13 as the underlying LLM in all experiments.
Computer resources. We run all experiments on an AMD EPYC 7V13 64-Core Processor.

Code and reproducibility. The full implementation of MATHMO, along with the code necessary
to reproduce all key results, will be released on GitHub upon acceptance of the paper.

Table 12: Description of key hyperparameters.

Hyperparameter Description Value

w Number of frameworks 4

l Number of candidate model-algorithm pairs proposed in each iteration of local exploration 3

q Number of MC estimates for surrogate evaluations 3

(¢, d) Pareto-UCB exploration bonus hyperparameters (1,1) (default)

[Meet| Number of baseline models used in MOSE evaluations 3

T Number of search iterations 20

T LLM hyperparameter (sampling temperature) 0.7 (default)
LLM hyperparameter (top-p sampling) 0.9 (default)

TIMEOUT Max runtime (in seconds) allowed for each model-algorithm pair to execute 300

E ADDITIONAL EXPERIMENTAL DETAILS

In this section of the appendix, we will describe the datasets and metrics employed in our empirical
evaluations.

E.1 DATASETS

Traveling Salesman (TSP). The Traveling Salesman Problem (TSP) is a foundational combinatorial
optimization problem where the objective is to find the shortest possible route that visits a set of
cities exactly once and returns to the starting point. The two primary trade-offs in modeling TSP
are journey cost (total tour length) and runtime (solution time). Journey cost reflects the quality of
the solution and is crucial in applications like logistics and manufacturing, while runtime is vital in
scenarios requiring rapid decisions, such as dynamic routing. Common modeling techniques include:
(1) exact methods such as Integer Linear Programming (ILP), which guarantee globally optimal
solutions but scale poorly with problem size; (2) metaheuristic approaches like Genetic Algorithms,
which offer faster approximate solutions at the cost of optimality; and (3) domain-specific heuristics
such as nearest-neighbor or insertion algorithms, which are simple and computationally efficient
(Bellmore and Nemhauser, 1968). For our experiments, we generated 10 random Euclidean instances
with 30-50 cities each. Each instance was created by uniformly sampling city coordinates in a 2D
unit square, a standard method for generating synthetic TSP datasets.

Job Shop Scheduling (JSS). Job Shop Scheduling is a canonical operations research problem that
involves assigning a sequence of jobs to a set of machines, where each job consists of a series
of operations with specific processing requirements. The primary objectives are to minimize the
makespan (i.e., the total time required to complete all jobs) and to reduce runtime, which becomes
critical in dynamic or large-scale industrial systems. A lower makespan increases throughput,
directly impacting productivity, while efficient computation ensures that schedules can be adapted
in real time. (1) Constraint Programming (CP), which provides precise encodings but may struggle
with scalability; (2) metaheuristic methods such as Tabu Search or Simulated Annealing, which
balance exploration and exploitation to find high-quality solutions efficiently; and (3) greedy or
rule-based heuristics, which offer speed and interpretability at the cost of optimality (Xiong et al.,
2022). We use 10 well-known benchmark instances from Lawrance (1984), which are widely
adopted in the scheduling literature. These instances span 10 to 30 jobs, 5 to 10 machines, and 50
to 300 operations. The dataset is available through the open-source job_shop_1ib repository
(https://github.com/Pabloo22/job_shop_1lib).

Ecology. Ecological modeling seeks to understand and predict interactions among species and their
environments, often involving dynamic systems such as predator-prey relationships. A key modeling
trade-off in ecology lies between predictive performance—capturing future population dynamics
accurately—and interpretability, which is critical for gaining ecological insights and informing
conservation efforts. Common modeling approaches include: (1) differential equation systems
such as Lotka-Volterra models, which provide interpretable representations of species interactions;
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(2) classical time-series models like ARIMA, which are effective for short-term forecasts; and (3)
probabilistic graphical models, which capture structured uncertainty and latent ecological processes
(van den Berg et al., 2022). We use a dataset containing Hare-Lynx populations (Stenseth et al.,
1997), which records annual observations of the Snowshoe Hare and Canadian Lynx populations over
multiple decades.

Epidemiology. Epidemiological modeling focuses on understanding and forecasting the spread of
infectious diseases, often under constraints that demand both accurate prediction and clear inter-
pretability for public health decision-making. Predictive performance ensures that interventions can
be timed effectively, while interpretability allows stakeholders to understand transmission mecha-
nisms and policy implications. Common approaches include: (1) compartmental models (e.g., SIR,
SEIR), which capture the flow of individuals through disease states using differential equations;
(2) statistical models such as Poisson and negative binomial regressions, which model count data
under uncertainty; and (3) time-series forecasting techniques, including autoregressive and neural
models, for flexible temporal prediction (Xiang et al., 2021). For our experiments, we use COVID-19
time series data from Italy, sourced from the COVID-19 Data Repository by the Center for Systems
Science and Engineering (CSSE) at Johns Hopkins University (Dong et al., 2020). The dataset
contains daily counts of confirmed cases, deaths, and recoveries.

We note that in all our experiments, the dataset is provided as an input only at runtime—after the
model has been generated by the LLM. The LLMs themselves do not have access to the dataset
contents during model generation; they are only given high-level metadata, such as the number of
features, problem size (e.g., number of operations or cities), or time series length, to inform their
proposals.

E.2 METRICS

Hypervolume. The hypervolume (HV) metric quantifies the volume of the objective space that is
dominated by a set of solutions, relative to a fixed reference point. It serves as a standard measure in
multi-objective optimization, capturing both convergence and diversity of the solution set. Formally,
let R = ry,...,r, be a set of n k-dimensional objective vectors and let rf € R¥ be a reference
point that is dominated by all vectors in R. The hypervolume is defined as:

HV(Rv rref) = >\( U [’rl; Tref,l] X X [rka Tref,k:D (5)
reR

where \ denotes the Lebesgue measure in R¥. All objectives are first normalized to [0, 1], and we set
et = 1.1 to ensure it lies outside the normalized Pareto front. We compute hypervolume using the
pymoo library (Blank and Deb, 2020) (https://pypi.org/project/pymoo/).

Relative Hypervolume Improvement. To assess progress over time, we compute the relative

hypervolume improvement, which quantifies the gain in hypervolume relative to the best value

achieved at a previous timestep. Let HV; and HV,, denote the HV at iteration ¢ and ¢’, where ¢’ < t.
HV, — HVy

RHI; = — (6)
t/

We employ this metric to compare the impact of search strategies over the course of search.

Normalized RMSE. Root Mean Squared Error (RMSE) is a standard regression metric that measures
the average magnitude of prediction error. In our context, we use a normalized RMSE (NRMSE)
to account for scale differences across objectives. Given a set of ground-truth values {y;}? ; and
predictions {¢;}7_,, RMSE is defined as:

| =

RMSE =

- Z(yz — §i)? (N
i=1

‘We normalize this by the empirical range of the true values o, yielding:

RMSE

Oy

NRMSE =

®
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Permutation entropy. Permutation entropy (PE) is a model-free measure of complexity for time
series or ordered sequences, capturing the unpredictability of local ordering patterns. Given a
time series {x;}_,, the sequence is partitioned into overlapping windows of length d (embedding
dimension), and each window is mapped to a permutation pattern based on the relative ordering of its
elements. Let 7; denote the i-th unique pattern and p(7;) its empirical frequency. The PE is then

defined as:
Hy == p(m)logp(m) ©)

which is often normalized by log(d!) to yield a value in [0, 1]. We compute PE using the antropy
library (https://pypi.org/project/antropy/). This metric provides a lens into the
structural complexity of sequences produced by time-series models
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