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Abstract— Non-Rigid Structure-from-Motion (NRSfM) re-
constructs the time-varying 3D shape of a deforming object
from 2D point correspondences in monocular images. Despite
promising use-cases such as the grasping of deformable objects
and visual navigation in a non-rigid environment, NRSfM
has had limited applications in robotics due to a lack of
accuracy. To remedy this, we propose a new method which
boosts the accuracy of NRSfM using sparse surface normals.
Surface normal information is available from many sources,
including structured lighting, homography decomposition of
infinitesimal planes and shape priors. However, these sources
are not always available. We thus propose a widely available
new source of surface normals: the specularities. Our first
technical contribution is a method which detects specular
highlights and reconstructs the surface normals from it. It
assumes that the light source is approximately localised, which
is widely applicable in robotics applications such as endoscopy.
Our second technical contribution is an NRSfM method which
exploits a sparse surface normal set. For that, we propose
a novel convex formulation and a globally optimal solution
method. Experiments on photo-realistic synthetic data and real
household and medical data show that the proposed method
outperforms existing NRSfM methods.1 2 3

I. INTRODUCTION

NRSf M is a challenging problem that has been extensively
researched over the past two decades, leading to classical [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10] and deep-learning
based [11], [12], [13], [14], [15] methods. Unfortunately,
their accuracy remains inadequate for many practical appli-
cations. A concrete way to improve accuracy is to exploit
additional information from the image data, beyond the mere
2D point correspondences used by all NRSf M methods.

We propose to exploit the specularities, which are the
highlights formed by the reflection of the light sources
on the scene surface. The specularities are widespread in
many domains. The main advantage of using normals from
specularities is that they tend to occur at high surface
curvature points where the chances of the local surface
normal aligning with the viewing direction are higher [16],
giving a sparse normal set that is more informative about
the surface geometry than other surface normal sets. This
thus deals with highly folded deformable surfaces reflecting
a considerable number of small specularities. We propose a
novel method to exploit them. As with all NRSf M methods,

1Code and dataset: encov.ip.uca.fr/ab/code and datasets
2Supplementary video: tinyurl.com/nrsfmspecularyoutube
3This work was funded by the FET-Open grant 863146 Endomapper.

ours takes monocular images and 2D point correspondences
as inputs. It then follows two steps: step one reconstructs
independent surface normals from the images, and step two
includes these surface normals in NRSf M.

Our first technical contribution addresses step one. We
assume that the light source is approximately localised,
for instance in light-equipped robots, photographic setups,
mobile phones, and endoscopy. More formally, we introduce
the Close Light Camera (CLC) setup, which includes a
perspective camera and a point light source whose distance
from the camera is small against the scene-camera distance.
We propose a learning-based specularity detector and a
geometry-based surface normal reconstruction method.

Our second technical contribution addresses step two.
Existing NRSf M formulations and methods do not accom-
modate surface normal data. We thus propose a new for-
mulation and solution method. A bigger challenge that we
successfully address is to devise a convex formulation, which
can be efficiently solved with global optimality. Our normal-
boosted NRSf M method is general, as it is not bound to the
CLC setup and may exploit surface normals from arbitrary
sources. Figure 1 presents an overview of our proposed
pipeline.

We provide extensive experimental validation including
quantitative accuracy evaluation for synthetic data obtained
from Blender, including baseline comparison, and validation
on several real datasets.

II. EXISTING WORK

We review existing work on specular normal reconstruc-
tion and NRSf M.

A. Specular normal reconstruction

Specularities have traditionally been considered as a nui-
sance [17], both in classical and learning-based reconstruc-
tion methods. In single-image reconstruction, [18] shows the
important sensitivity of Shape-from-Shading (Sf S) to spec-
ularities and [19] shows that depth perception suffers high
uncertainty under specular reflection. In multi-image recon-
struction, [20] shows their detrimental effect on establishing
feature correspondences. The most common approach to deal
with specularities is thus to discard them, by estimating spec-
ular masks and inpainting before running the reconstruction
method. Owing to their omnipresence in contexts such as
endoscopy, some recent work however proposed to exploit



them. In particular, [21], [22] detects elliptical specular blobs
under the local planarity assumption and reconstruct the
surface normal by rectifying the ellipse to a circle. This
has strong limitations, as specularities tend to occur at high
curvature points, breaking the planarity assumption [23].
While [21] uses an explicit fixed intensity to choose the
isophotes, [22] uses a neural segmentation approach and
fits the isophote curve to each mask component.

B. Non-Rigid Structure-from-Motion

Classical NRSf M methods models the scene by either low-
rank shape bases [4], [3], [2] or by physics-based constraints
such as isometry [6], [7]. The main challenge of NRSf M
is its dependency on reliable point correspondences, which
are challenging to establish in many contexts. Mitigation
attempts were taken in physics-based NRSf M with shape
priors [24], [25]; these priors are however unavailable in
many cases. NRSf M from higher-order derivatives of the
point correspondences [5], [8], [26] suffer from similar
drawbacks. The performance of Deep NRSf M [11], whose
architecture is derived from a classical sparse coding al-
gorithm, also crucially depends on the point correspon-
dences. Additionally, learning-based NRSf M methods [13],
[27], [28] suffer from the domain-shift problem, making
them unsuited to many robotic applications. Any additional
available information should certainly be used to improve
accuracy. Surface normals are one such important additional
information. Unfortunately, none of the existing NRSf M
methods make provision for including this additional sparse
surface normal information.

III. METHODS

We first give our independent specular normal reconstruc-
tion method and then our normal-boosted NRSf M method.

A. Specularity detection and normal reconstruction

1) General points: We first formalise the CLC setup,
which, recall, hinges on the key assumptions that the camera
performs perspective projection and that the light source is
close to the camera. Our model of the CLC setup is thus a
perspective camera and a point light source located at the
camera centre [29]. We use an existing fully convolutional
neural network trained in a supervised manner to segment the
specularities [22]. We propose a new normal reconstruction
method, called the sightline-based reconstruction method,
which we combine with an existing isophote-based recon-
struction method to form a new combined reconstruction
method, illustrated in figure 2. Briefly, the isophote-based
reconstruction method [21] assumes that the specularity has
an elliptical shape in the image, which it recovers by ellipse
fitting and then uses the pose-from-circle method [30] to
reconstruct the normal.

2) Sightline-based normal reconstruction: In the CLC
setup, the lighting direction is collinear with the sightline,
which is the viewing direction of any scene point. In addition,
this is also the direction of perfect mirror reflection when
the surface normal is also collinear. Hence, the intuition we
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Fig. 1: Overview of the proposed normal-boosted NRSf M
pipeline. The inputs are n images of a deforming surface
under the CLC setup with m point correspondences. First,
we detect the specularities, with a count of li for image i ∈
[1, n], from which we reconstruct li surface normals. Second,
we reconstruct n 3D point clouds, of size mli for image
i ∈ [1, n], containing all input correspondences and normals.

exploit is that, at a strongly specular pixel, the surface normal
is given by the sightline, which can be directly estimated
from the pixel coordinates and the camera model.

Considering a single specular blob, which is a set of
connected pixels detected as specular by the neural network,
we propose to find the image point which has the highest
intensity, called the Brightest Point (BP). Unfortunately,
the camera generally saturates all over the specular blob
pixels, which thus all have the maximum possible intensity.
This makes the task of localising the BP difficult. We
propose a method in three steps. First, we detect a level-
set of the specular blob at some prescribed intensity value,
using the marching squares algorithm. The resulting curve is
named an isophote. The zero-intensity isophote is simply the
segmentation boundary. Second, we smooth the isophote to
cancel noise using a smoothing cubic B-spline, from which
we sample isophote with a high number of points, typically
1000 points. Third, we determine the BP coordinates (x0, y0)
as the median point of the isophote sample points. Given the
BP, the sightline can be trivially found from the perspective
camera model, giving the surface normal n ∈ S2 as n ∝
K−1(x0, y0, 1)

⊤, where S2 is the set of direction vectors in
3-space and K ∈ R3×3 holds the camera intrinsics.

3) Combined normal reconstruction: The existing
isophote-based method has the advantage of using a whole
isophote, bringing stability, but requires a locally flat
surface. In contrast, the proposed sightline-based method
does not require this hypothesis but only exploits a single
point. The pros and cons are shown in table I. We propose
a combined method exploiting the strength of both and
introducing additional tests, shown in figure 2.
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Fig. 2: Proposed specular normal reconstruction pipeline.

First, we perform an ellipticity test for each candidate
specular blob as filtering criterion. Formally, this uses a
simple thresholding of the residual error of ellipse fitting and
discard many unstable specular blobs. Second, we reject the
blobs whose elliptical approximation have large eccentricity,
i.e. close to 1, which are mainly due to neighbouring blobs
erroneously merged in the segmentation. Third, we run both
the isophote-based and sightline-based normal reconstruction
methods and filter results by reconstruction agreement. In
short, we only keep the normals whose estimate have an
angular difference lower than a threshold, which we choose
as 1 degree.

B. A convex method for normal-boosted NRSfM

We describe our normal-boosted NRSf M.
1) Problem setup: Given n images with m point corre-

spondences across the images, NRSf M reconstructs the 3D
position of these points. In the standard NRSf M setup, the
image points are denoted by their image coordinates {pi,j ∈
R2} for image i ∈ [1, n] and correspondence j ∈ [1,m].
Visibility is modelled by binary indicators {Vi,j ∈ {0, 1}},
where Vi,j = 1 if pi,j is visible and Vi,j = 0 otherwise.
Invisibility occurs when some points cannot be tracked owing
to occlusions or tracking failure. The corresponding unknown
3D points are denoted by {Pi,j ∈ R3}. The calibrated
perspective camera is modelled by its intrinsics parameters
in matrix K ∈ R3×3, with frames height H and width W
pixels respectively. To this standard setup, we add the sparse
surface normal information, modelled as {ni,r ∈ S2}. In this
notation, we have the image index i ∈ [1, n] and the normal
index r ∈ [1, li], where li is the normal count in image i.
These sparse normals may arise from various sources and
modalities. We denote as {pi,r ∈ R2} the image coordinates
at which these normals are given.

TABLE I: Pros and cons of the normal reconstruction meth-
ods, where BP stands for Brightest Points.

Method Pros Cons

Sightline-based • Low computational complexity • Difficulty to find the BP

Isophote-based [21] • No need for the BP • Slight increase of
computational complexity

• Handles occluded isophote • Assumes local planarity
and invisible BP • Difficulty to detect the isophote

Combined • High accuracy • Computational complexity
• Stability • Reduces the number

of reconstructed normals

2) Problem statement: The main difficulty of using the
normals is that NRSf M reconstructs sparse points, as op-
posed to a surface, whereas the notion of normal is neces-
sarily related to a surface. We give the key idea to tackle this
difficulty and then its formal implementation as a convex cost
function.
Key formulation idea. We introduce a piecewise planar
representation, similar to the commonly used surface mesh
representation. Our proposal however differs. Indeed, we
could straightforwardly triangulate the point correspondences
and force each prescribed normal to be collinear to the
normal of its containing triangle, expressed in terms of the
unknown 3D points. This, however, leads to a nonconvex
formulation, stemming from the cross-product required to
obtain the triangle’s normal from its vertices. We propose
instead to measure the orthogonality between each prescribed
normals and each of the three edges of its containing triangle.
This, fortunately, leads to a convex formulation. Let the
image point where the normal is prescribed be pi,r1 and
the containing triangle vertices be pi,j1 , pi,j2 and pi,j3 . The
formulation is illustrated in figure 3 and stated formally in
the next section.
Neighbourhood graphs. The proposed formulation requires
two pieces of information: 1) the association of correspon-
dences to form a graph-based neighbourhood structure, and
2) the association of correspondence pairs to prescribed nor-
mals. Point 1) can be solved as classically in NRSf M, using
the Nearest-Neighborhood Graph (NNG) already required in
NRSf M methods [6], [7]. The NNG is a graph connecting the
image points which are consistently close within the image
set, and thus likely to be close on the unknown reconstructed
surface. Point 2) however requires a new structure, which we
achieve as a modified NNG named the Nearest Surface-patch
Graph (NSpG). The NNG is denoted by N ∈ {0, 1}m×m

and computed using the method from [6], with kN number
of nearest neighbours sought for each image points. We have
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Fig. 3: Key idea to formulate normal-boosted NRSf M. For
a prescribed normal ni,r1 , we maximise the orthogonality of
each edge connecting its neighbouring keypoints. The figure
shows the case for three arbitrary points, (Pi,j1 ,Pi,j2 ,Pi,j3).
Our convex implementation maximises the orthogonality of
ni,r1 and the three edges, given as di,jx,jy = Pi,jx −
Pi,jy , (x, y) ∈ {1, 2, 3}, x > y. The proposed inner product
based cost function given in section III-B penalises deviation
from orthonormality. Importantly, it is convex and thus
globally solvable.



Nj,q = 1 if pi,j and pi,q are considered as neighbours, for
all i ∈ [1, n]. The per-image NSpG is derived by associating
{pi,r} to {pi,j} based on their consistent image proximity,
denoted by Si ∈ {0, 1}m×m×li . This has similarities to
the method for deriving the NNG, with the difference that
the NSpG is computed for each image separately as the
normals are not tracked across the images. Our precise
methods is given in algorithm 1. We have Si,j,q,r = 1 if
the neighbouring point-pairs (pi,j ,pi,q) are considered as
neighbours with the normal at pi,r for image i ∈ [1, n].

Algorithm 1 Computing the NSpG for image i

Input: Correspondences {pi,j}, normals {pi,r}, NNG N
Output: NSpG Si
Si ← 0m×m×li

∆← min(H,W )/λ ▷ λ is a tunable parameter
for r ∈ [1, li] do ▷ each prescribed normal in turn

for j ∈ [1,m] do ▷ each correspondence...
for q ∈ [1,m],Nj,q = 1 do ▷ ...and neighbours

if d(pi,r,pi,j) ≤ ∆ ∧ d(pi,r,pi,q) ≤ ∆ then
Si,j,q,r ← 1

Deformation model. We use a physics-based deformation
model, specifically the inextensible model [6], [7], which is
widely applicable to a broad category of surfaces. We denote
by {gj,q ∈ R} the unknown geodesic distances between Pi,j

and Pi,q for all i ∈ [1, n]. Using a discrete approximation of
the geodesic distance taken with inextensibility implies that
the Euclidean distance between Pi,j and Pi,q must be lower
or equal to gj,q across all images.
Parameterisation. The obvious method for parameterising
an NRSf M problem is to represent 3D points {Pi,j} by
their 3D coordinates. But this is an overparameterisation and
is not tractable. The 3D points are actually restricted along
the Sight-Line (SL), from the camera centre to the image
point on the retina, K−1pi,j . Hence, the 3D points can be
parameterised by just their depths along SL. We denote these
unknown depths by {δi,j ∈ R} and the known direction SL
directions as {qi,j ∈ S2}.
NRSfM without normals. We begin by recalling the
NRSf M with the isometric-inextensible model from [6]:

argmin
{δi,j},{gj,q}

−
n∑

i=1

m∑
j=1

Vi,jδi,j

s.t. Vi,jVi,qNj,q∥δi,jqi,j − δi,qqi,q∥ ≤ gj,q,Vi,jδi,j ≥ 0,∑
j

∑
q

Nj,qgj,q = 1, ∀ i ∈ [1, n], (j, q) ∈ [1,m].

(1)
The problem in eq. (1) is solved as a Second-Order Cone
Programming (SOCP). This formulation, from [6], has three
important aspects. Firstly, it has a cost that maximises the
depth of all points. Depth maximisation follows the Max-
imum Depth Heuristic (MDH) proposed in [31], favouring
a deeper solution to point depths to avoid convex-concave
ambiguities, a well-known problem in NRSf M. Secondly, it
has an inextensible-isometric constraint, which enforces the

[5] [4] [3] [2] [7] [6] Ours
Sparse 0.41 0.28 0.50 0.31 0.78 0.28 0.26
Dense 0.41 0.26 0.49 0.31 0.58 0.22 0.20

TABLE II: Comparison of our proposed method with state-
of-the-art approaches across two densities, sparse with m =
40 and dense with m = 80, repeated over 100 times, and
the mean Root Mean Square Error (RMSE) are reported
in the table above, all values in Arbitrary Units (au). The
corresponding error histograms are in fig. 4

deformation model of our choice. Thirdly, there is the nor-
malisation constraint which requires the geodesic distances to
sum to unity. This is required as both the geodesic distances
and point depths could otherwise freely scale while min-
imising and satisfying all costs and constraints respectively.
Equation (1) also includes a positive depth constraint to avoid
degenerate solutions.
Normal-boosted NRSfM. We introduce an extra cost term
to the formulation (1) to penalise the deviation of edges from
orthogonality to their nearest sparse normal in the NSpG:

argmin
{δi,j},{gj,q}

λS

n∑
i=1

m∑
j=1

m∑
q=1

li∑
r=1

Qi,j,q,r|⟨δi,jqi,j − δi,qqi,q,ni,r⟩|

−
n∑

i=1

m∑
j=1

Vi,jδi,j

s.t. Vi,jVi,qNj,q∥δi,jqi,j − δi,qqi,q∥ ≤ gj,q,Vi,jδi,j ≥ 0,∑
j

∑
q

Nj,qgj,q = 1, ∀ i ∈ [1, n], (j, q) ∈ [1,m],

(2)
where Qi,j,q,r = Vi,jVi,qNj,qSi,j,q,r. Importantly, this for-
mulation remains an SOCP, which is a convex problem, that
we solve by off-the-shelf solvers [32], [33].

IV. EXPERIMENTAL RESULTS

We present our experimental validation. We begin with
synthetic data. We compare our method with baseline
approaches using challenging deformations using the de-
formable paper model of [34]. We follow up by qualitative
evaluation on real data. The first dataset uses a handheld
mobile device with the flash-gun turned filming a deforming
paper. The second dataset is a colonoscopic video from the
EndoMapper [35] database.

A. Synthetic data

We begin with a brief description of our simulation setup
implemented in Blender followed by validation of, first,
the accuracy of estimation of normals from specularity,
and, second, the accuracy of normals boosted NRSf M, the
normals being obtained from both the simulated 3D model
and from actual specularities.
Blender simulation. We synthesise images using a wide-
angled perspective camera of 10 mm focal length with a



simulated spotlight light source collocated with the camera
center, the spotlight has a radius of 0.1 m and projected
to a 120◦ cone. A deforming surface is generated with
free-form deformation [36], the surface is imparted with a
strong ‘clearcoat’ to boost specular reflections. To generate
a realistic shading, we use the anisotropic principled Bidi-
rectional Reflectance Distribution Function (BSDF) model,
popularised by Disney [37], [38], mimicking real-world
specularities on the surface of the deforming object. The
generated surface has 10404 vertices and 20402 faces and
deforms over 250 frames. We implement a data-subsampler
that picks up n random frames from this sequence, where
n ≪ 250, and uses the projected vertices of the mesh to
generate m random tracks of correspondences across these
n frames, where m≪ 10404.

1) Evaluation of normal reconstruction from speculari-
ties: We evaluate both qualitatively and quantitatively, the
normal reconstruction method introduced in [21], [22] on
highly curved surfaces for which ground truth normals are
available (see Figure 5 for some qualitative results). Six
Blender simulated sequences with different spotlight diam-
eters have been used. Each sequence contains about 1400
specular blobs arbitrarily distributed across 250 images of the
deforming plane. The ratio of useful specular blobs leading
to accurate normal estimation for each sequence is given in
Figure 6c. From which we notice that increasing the spotlight
radius leads to a decrease of useful blobs which is mainly
due to an increase in number of merged elliptical blobs that
have been discarded by the first filter because of their large
eccentricity, as illustrated in Figure 2.

Despite the fact the illumination model did not follow the
Phong model, which was the baseline in [21], the obtained
results confirmed that specularities should be elliptical blobs
in the CLC setup. Furthermore, the distance between ellipse
centers and the isophote centroid (its median point) are too
close in the case of accurately estimated normals. A good
approximation of specularity’s brightest point could be one
of them.

An accurate estimation of a large number of useful nor-
mals follows. This set of normals is selected by ensuring
a good agreement between two different methods (with
an angular error less than 1◦), showing a high accuracy
compared to the ground truth. Figure 6 shows quantitative
results for the evaluation of normal estimation, defining the
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Fig. 4: Histogram of RMSE comparing our proposed ap-
proach to baseline methods over 100 repeated experiments,
the mean values are shown in table II.

Fig. 5: Evaluation of normal reconstruction from specular-
ities in synthetic data. Qualitative results for two different
poses are presented. 3D renderings show ground truth nor-
mals in red while the estimated normals are represented by
black dashed lines.
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Fig. 6: Quantitative evaluation of normal estimation error:
(a) histogram for angular difference in orientation for all the
sequences combined, (b) error bars for all the sequences, and
(c) ratios of useful specular blobs. The ratio is obtained by
dividing the number of useful blobs by the total number of
specular blobs (uniformly for all sequences).

ratio of useful specularites as the total number of detected
elliptical blobs divided by the total number of specular blobs
including saturated ones.

2) Evaluation of NRSfM reconstruction: First, we provide
an initial validation of our NRSf M method proposed in sec-
tion III-B. Using the Blender simulated data of a deforming
planar shape, as in section IV-A.1, we vary the number
of sampled feature correspondences m and the number of
sparse normals used s = li in our NRSf M, given that
li is held constant across all the frames. At this step, we
use synthetic normals available from the mesh model, not
restricting ourselves to normals from specularity, to better
characterise our reconstruction pipeline. The quantitative
results are shown in fig. 7, demonstrating that increasing s
indeed results in higher reconstruction accuracy, validating
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Fig. 7: Reconstruction accuracy. (a) and (b) show the effect
of increasing s for m = 11 and m = 91, (c) and (d) show
the effect of increasing m for s = 2 and s = 16.



our approach, the improvements being more pronounced
when correspondences are denser. This is intuitive since a
large number of sparse normals with few keypoints will
inevitably result in some incorrect assignment of NSpG
neighbours.

Next, we simulate challenging deformable surfaces by
following the paper model proposed in [34]. We simulate
deformable surfaces with two different densities of corre-
spondences, the sparse data with m = 40 and the dense
data with m = 80. The baseline is maintained uniformly at
n = 7 and all frames are assigned the same number of s = 7
specular normals, randomly assigned from the groundtruth
surface. The presence of accurate groundtruth allows us to
compare our method with baseline approaches, including
[5], [6], [2], [3], [4], and [7]. We repeat each randomised
experiment 100 times, the resulting histogram of RMSE,
expressed in terms of the au, is shown in fig. 4. The accuracy
of our proposed method is ahead of all other compared
methods, [4] and [6] being the closest competitors. But the
mean value of all the RMSE across the 100 experiments,
shown in table II, confirms our advantage over all methods.

B. Real data

We now present our results on real data. The real data
used by us do not have groundtruth, so we present qualitative
results and analysis.

1) Colonoscopy: We use an image sequence extracted
from the Endomapper Dataset [35], composed of 37 images
from [24], each of resolution 1248 × 1080. A total of
about 8000 elliptical specular blobs (and therefore useful
normals) were detected. An angular error less than 1◦

between the normals estimated using methods 1 and 2 is
obtained showing a very good agreement between the two
methods and confirming the correctness of these estimated
normals. We extracted 10 equally spaced imaged from this
dataset and upgraded the point correspondences to m = 84.
Combined with the estimated specular normals, then NRSf M
achieved good reconstruction accuracy in the region with
correspondences. The reconstructed 3D points are densified
with [39] and texturised, resulting in the qualitative images
of fig. 8. Qualitative comparison with baseline methods has
been presented for one randomly sampled frame in fig. 10,
our approach is the only one capable of recovering the
conical/trough shape of the visible segment of the colon.

2) Mobile phone data: A set of 13 images of a paper sheet
reflecting specularities is captured using a Samsung Galaxy
A14 mobile phone camera. Acquisitions are performed in
the dark with the flash gun activated. The paper sheet has
been deformed by hand with no constraints on the camera
viewing angles. A sparse set of 53 labeled keypoints are
tracked (semi-automatically, which is a standard practice in
non-robust NRSf M) throughout the entire sequence and then
used as input for the normal-boosted NRSf M. These land-
marks are reasonably evenly distributed across the deforming
plane surface. We give some qualitative results for the
reconstruction in figure 9. Qualitative comparison with two
other baseline methods has been presented for one randomly
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Fig. 8: Results from reconstruction of the colonoscopic
sequence. Note that the reconstructed patch becomes smaller
in the last two frames since the correspondences track a
smaller region of the colon. The blue markers are feature
correspondences, the black/red markers are specularity cen-
troids and the green lines are the edges of NSpG.

sampled frame in fig. 10, all the other baseline methods failed
to produce results on this dataset. The proposed method takes
2.01 seconds for solving NRSf M on this dataset, a small
increase over the 1.65 seconds taken by [6].
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Fig. 9: Reconstruction of the paper surface captured with
a handheld mobile device with flash gun turned on. The
approximate region of detected specularities are in green.

V. CONCLUSION

We presented a novel method which exploits prescribed
sparse normals in NRSf M. We show how such surface nor-
mals can be automatically obtained from specular highlights,
with mild hypotheses on the light source. Our experiments
show that the proposed method outperforms in synthetic
and real data. We plan to investigate the use of additional
prescribed normal sources and to develop deformable object
grasping. Eventually, our method forms a strong opportunity
to combine NRSf M and Sf S.

[6] [7] [4] [2] [5] Ours

[6] [7] Ours

Fig. 10: Comparison of our proposed NRSf M method with
baseline approaches over one randomly sampled frame from
the colonoscopy and mobile phone data
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