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Abstract
With the increasing application of machine learn-
ing and deep learning in drug discovery comes
the significant challenge of addressing censored
molecular property datasets. Pharmaceutical as-
says frequently generate censored data where mea-
surement limitations prevent recording exact val-
ues beyond predetermined thresholds. Standard
deep learning approaches struggle with this cen-
soring, often producing systematic prediction er-
rors even for in-distribution molecules. Building
on the established strengths of Chemprop and
the concept of bilinear transduction, we present
a method that integrates bilinear transduction
into Chemprop’s message-passing neural network.
This integration allows us to effectively lever-
age domain-specific structural relationships be-
tween molecules, addressing current limitations
in molecular property prediction. Our comprehen-
sive evaluation across multiple ADMET (absorp-
tion, distribution, metabolism, excretion, and tox-
icity) properties demonstrate that our method out-
performs standard D-MPNN baselines, with im-
provements exceeding 100% for heavily censored
datasets like CYP2C9 inhibition and CYP2D6 in-
hibition. This practical solution requires no addi-
tional experimental measurements while improv-
ing ADMET property prediction accuracy, partic-
ularly in the challenging high-censoring regimes
common in pharmaceutical research.

1. Introduction
Deep learning approaches have revolutionized molecule
property prediction in drug discovery (Cáceres et al., 2020;
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Hessler & Baringhaus, 2018; Shen & Nicolaou, 2019; Wal-
ters & Barzilay, 2021; Ferreira & Andricopulo, 2019), but a
significant challenge remains with censored datasets (Fig-
ure 6). Drug discovery is often hampered by censored la-
bels, where concentration levels fall outside the assay’s limit
of detection (Lind, 2010; Svensson et al., 2025; Sheridan
et al., 2020). A prime example is CYP3A4 inhibition as-
says, where approximately 60% of the data is censored due
to predefined concentration ranges. This extensive censor-
ing significantly impacts model performance, often result-
ing in systematic over- or under-prediction of molecules
near the threshold value when their true values lie outside
the censored region. Such errors dilute predictive capa-
bilities even for in-distribution molecules that should be
well-characterized by the model. Importantly, these cen-
sored labels contain valuable information that, when prop-
erly leveraged, can significantly improve the non-censored
region accuracy of predictive models (Svensson et al., 2025).

1.1. Limitations of Deep Learning Models on Censored
Data

With graph neural network models like Chemprop (Yang
et al., 2019), which employ a directed message passing neu-
ral network (D-MPNN) architecture to predict properties
from molecular graphs, the models tend to predict values
at or near the censoring threshold rather than the true in-
distribution value. A possible hypothesis for this behavior is
that the model learns to associate certain molecular features
with specific threshold values. However, removing censored
values is not an effective solution, as it eliminates impor-
tant examples for training and reduces overall performance
(Svensson et al., 2025).

1.2. Related Work

Recent advances in deep learning offer promising ap-
proaches to address this challenge. (Segal et al., 2025)
demonstrated that bilinear transduction—a method that
leverages analogical input-target relationships—can signifi-
cantly improve out-of-support (OOS) property prediction for
both materials and molecules. By reformulating the predic-
tion problem to learn from differences between compounds
rather than absolute properties, bilinear transduction poses a
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Figure 1. Bilinear transduction representation and implementation within Chemprop message-passing feature concatenation architecture.
The model handles three distinct molecular (atom & bond) transformation scenarios: (1) components present only in the query molecule
but absent in the anchor (elimination scenario, where anchor features are null and ∆ vector contains negative query features), (2)
components shared between molecules (preservation scenario, where anchor features are maintained and ∆ vector approaches zero), and
(3) components unique to the anchor molecule (formation scenario, where both anchor features and ∆ vector contain positive values). N
anchors are chosen and N models are trained, enabling effective property prediction through ensemble averaging of transformations.

potential method to address the challenge of in-distribution
prediction accuracy for ADMET properties.

Beyond single-molecule property prediction, other research
has explored models that take multiple molecular inputs to
predict a specific outcome, a strategy akin to our bilinear
transduction approach. For instance, Grambow (2020) devel-
oped a template-free deep learning model using a Directed
Message Passing Neural Network (D-MPNN) to predict
activation energies from both reactant and product graphs,
leveraging atomic difference fingerprints for reaction en-
coding. Similarly, Chung (2022) introduced DirectML, a
D-MPNN-based model that directly predicts solvation free
energy and enthalpy for a given solvent-solute pair. These
approaches highlight situations where models utilize explicit
relationships or transformations between molecular entities
to enhance predictive accuracy, providing context for our
method that learns from differences between anchor-query
pairs to predict a delta using a D-MPNN framework.

Previous work has been done in fixing the issue of data
censorship in machine learning (De Santi et al., 2025; Vock
et al., 2016; Dănăilă & Buiu, 2024). For example, the To-
bit model has been used as a foundation for Deep Tobit
Networks that leverage deep neural networks to capture
complex nonlinear patterns in censored data (Zhang et al.,
2021). However, these approaches generally still struggle
with datasets where more than 50% of values are censored.
Additionally, these methods focus on reducing prediction
bias, quantifying uncertainty, or on out-of-distribution pre-
diction rather than specifically improving in-distribution
accuracy, presenting an opportunity for this approach we
detail here.

1.3. Bilinear Transduction Approach

Bilinear transduction offers several advantages for handling
censored data in ADMET property prediction (Netanyahu
et al., 2023). By facilitating learning between anchor-query
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pairs, knowledge can be transferred across molecules, help-
ing to compensate for sparsity in specific properties. Specif-
ically, bilinear transduction operates on a foundation of rela-
tional reasoning rather than absolute value prediction. The
relationships between molecular structures and how they
transform property values can effectively circumvent the
inaccuracy introduced by the censoring boundaries. This ap-
proach can create a more robust representation space where
the model can learn the underlying property distribution
rather than memorization. This approach may also, in the
future, provide insights into which molecular features in-
fluence specific ADMET property changes, thus enhancing
model interpretability (Xu et al., 2019; Zhao et al., 2022).

Unlike previous bilinear transduction implementations that
function as standalone architectures, our novel approach
integrates bilinear transduction directly within Chemprop’s
message-passing framework at the feature concatenation
stage for both atoms and bonds, as illustrated in Figure 1.
By embedding this structure relationship framework within
Chemprop we maintain Chemprop’s strong molecular rep-
resentation learning capabilities while adding the ability
to effectively reason about property differences across cen-
sored datasets.

1.4. Main Findings

In this work, we propose a novel integration of bilinear
transduction within Chemprop. We focus on improving in-
distribution prediction accuracy for censored datasets. Our
main contributions are summarized as follows:

• We integrate bilinear transduction within the Chemprop
framework, creating an approach that leverages ana-
logical input-target relationships for molecule property
prediction.

• We demonstrate that our approach significantly im-
proves in-distribution prediction accuracy, particularly
for datasets with censored labels where measurement
limitations prevent recording exact values.

• We provide comprehensive evidence that while stan-
dard Chemprop models can handle small percentages
of censored data, they degrade significantly at ∼ 50%
censoring, predicting values clustered around the cen-
soring threshold even when true values lie well above.

• We evaluate our approach across multiple pharmaceu-
tical assays (including CYP enzymes, CaV 1.2, and
hERG MK499) and synthetic datasets to demonstrate
consistent performance improvements with our bilinear
transduction (BT) approach.

• We analyze the impact of different anchor selection
strategies, showing that performance improvement

plateaus around 8-10 anchor molecules while variance
continues to decrease with larger anchor sets.

2. Results
2.1. Performance of Bilinear Transduction

Table 1, 2, and 3 present the comparative performance of BT
model against Chemprop (D-MPNN) across various proper-
ties, levels of censorship, and dataset sizes. For the internal
datasets we employed temporal train/test splits (Cáceres
et al., 2020; Sheridan, 2013) and for the public datasets a
random split was used. More information about the assays
and datasets can be found in Table 4, 5, and 6. Our results
demonstrate that BT consistently outperforms D-MPNN
across both internal and public datasets.

2.1.1. INTERNAL DATA (NATURALLY CENSORED
ASSAYS)

The results shown in Table 1 show consistent improvements
in both R2 and RMSE metrics for CYP 3A4 when com-
paring the BT method to the D-MPNN method across all
three training dataset sizes. The largest absolute improve-
ment occurred in the 100k training dataset size, where R2

increased from 0.22 to 0.32. CYP 2D6 showed even more
substantial gains across all training sizes. The 50k training
size showed a notable improvement where R2 increased
from -0.02 to 0.19. CYP 2C9 had significant improvements
for the 100k and 225,026 training sizes, with R2 increasing
from 0.01 to 0.19 in the 100k training size. RMSE also
showed significant improvements across these properties.
CaV 1.2 showed improvement with the increased training
sizes for all three metrics. hERG MK499 showed modest
gains with comparable R2 values between the two methods.

2.1.2. INTERNAL DATA (SYNTHETIC CENSORED
ASSAYS)

When evaluated on synthetically censored datasets (Table 2),
BT showed consistent results with the largest absolute im-
provements observed at higher censoring levels (50th and
75th percentile). For rat P-gp across the three censoring
thresholds (25th, 50th, and 75th percentile), the BT method
yielded significantly better R2 values than the D-MPNN
method. At the 50th percentile, R2 increased from 0.18
with D-MPNN to 0.40 with BT. Rat Fu,p showed a simi-
lar pattern where improvements were most pronounced at
higher censoring thresholds. At the 75th percentile for rat
Fu,p, R2 increased from 0.27 to 0.43. For both assays, the
25th percentile threshold showed smaller absolute differ-
ences between models, with the 50th and 75th percentiles
demonstrating increasingly substantial improvements in per-
formance metrics.
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Table 1. Performance of Bilinear Transduction Models and Baselines on Naturally Censored Internal Datasets. Results are presented across
two metrics: R2 (higher is better) and RMSE (lower is better), with mean ± standard deviation shown for each. Bold values indicate
statistically significant better performance where one model outperforms the other greater than one standard deviation. Underlined values
indicate cases where performance is statistically equivalent (overlapping within standard deviation) or where differences are within
standard deviation ranges.

ASSAY TRAINING LABEL
R2 ↑ RMSE ↓

BT D-MPNN BT D-MPNN

CYP 3A4
50K 0.30±0.03 0.26±0.06 0.47±0.01 0.48±0.02

100K 0.32±0.04 0.22±0.04 0.46±0.01 0.49±0.01
224,593 0.40±0.04 0.29±0.07 0.43±0.01 0.47±0.02

CYP 2D6
50K 0.19±0.05 -0.02±0.06 0.45±0.01 0.51±0.02

100K 0.30±0.04 0.12±0.04 0.42±0.01 0.47±0.01
221,745 0.32±0.04 0.11±0.03 0.41±0.01 0.47±0.01

CYP 2C9
50K 0.08±0.03 -0.07±0.10 0.50±0.01 0.54±0.03

100K 0.19±0.04 0.01±0.04 0.47±0.01 0.52±0.01
225,026 0.24±0.06 0.05±0.06 0.46±0.02 0.51±0.02

CAV 1.2 50K 0.10±0.06 0.05±0.06 0.27±0.01 0.28±0.01
100K 0.11±0.05 -0.06±0.05 0.27±0.01 0.29±0.01

HERG MK499 50K 0.18±0.05 0.16±0.03 0.48±0.01 0.48±0.01
100K 0.23±0.04 0.25±0.04 0.46±0.01 0.46±0.01

Table 2. Performance of Bilinear Transduction Models and Baselines on Synthetically Censored Internal Datasets.

ASSAY TRAINING LABEL
R2 ↑ RMSE ↓

BT D-MPNN BT D-MPNN

P-GP, RAT
25TH 0.57±0.02 0.50±0.01 0.35±0.01 0.37±0.00
50TH 0.40±0.05 0.18±0.12 0.29±0.01 0.34±0.02
75TH -0.03±0.06 -0.50±0.26 0.22±0.01 0.26±0.02

RAT Fu,p

25TH 0.57±0.02 0.56±0.01 0.30±0.01 0.31±0.00
50TH 0.51±0.02 0.47±0.02 0.23±0.01 0.24±0.00
75TH 0.43±0.02 0.27±0.04 0.16±0.00 0.18±0.00

Table 3. Performance of Bilinear Transduction Models and Baselines on Censored Public Datasets.

ASSAY TRAINING LABEL
R2 ↑ RMSE ↓

BT D-MPNN BT D-MPNN

MS (HUMAN)
BASE 0.24±0.04 0.33±0.06 0.46±0.01 0.43±0.02
50TH 0.21±0.05 0.08±0.07 0.38±0.01 0.41±0.02
75TH 0.03±0.04 -0.06±0.02 0.29±0.01 0.30±0.00

MS (RAT)
BASE 0.48±0.02 0.48±0.02 0.46±0.01 0.46±0.01
50TH 0.14±0.04 0.09±0.02 0.35±0.01 0.36±0.00
75TH 0.06±0.02 -0.56±0.12 0.23±0.00 0.30±0.01

CYP 3A4 4,403 0.52±0.02 0.53±0.02 0.58±0.01 0.61±0.01
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2.1.3. PUBLIC DATA

The public datasets follow the same trend of improvement
(Table 3), though with smaller absolute differences, poten-
tially due to their smaller training dataset sizes. For the
microsomal stability (human and rat) datasets, BT generally
outperforms D-MPNN. For CYP 3A4, BT was found to be
around the same performance as D-MPNN although still
following a similar trend as the CYP 3A4 internal results.

2.1.4. PERFORMANCE ADVANTAGES IN HIGHLY
CENSORED DATA

All performance metrics for BT were found to be equal to
or better than D-MPNN. The most significant performance
gains were observed for CYP enzyme prediction tasks, par-
ticularly for CYP 2D6 and CYP 2C9, where improvements
exceeded 100% in some cases. The performance of BT
compared to D-MPNN on synthetically censored datasets
indicates that BT has the potential for outperformance in sce-
narios with extensive censoring. These results collectively
validate our hypothesis that leveraging analogical input-
target relationships through bilinear transduction improves
in-distribution prediction accuracy for censored ADMET
datasets.

2.2. Optimal Anchor Size

Our analysis of anchor ensemble sizes revealed that per-
formance metrics (R2 and RMSE) plateau around eight
anchors, suggesting this as an optimal number for practical
implementation of BT. Figure 2 shows the performance plot
for CYP 3A4 (internal). Other assays display a similar pat-
tern of results. While performance improvements became
negligible beyond this threshold, the variance in predictions
continued to decrease with larger anchor sets, indicating that
additional anchors still contribute to model stability even
when they no longer substantially improve accuracy. This
suggests there is a balance of computational efficiency and
predictive performance for drug discovery workflows.

2.3. Anchor Error Distribution

Analysis of the anchor error distributions showed how
prediction errors correlate between anchor molecules
(Kuncheva & Whitaker, 2003; Dietterich, 2000). Across the
assays the errors showed instances of high R2 (≈ 0.93) and
moderate R2 (≈ 0.81), as shown in Figure 3. The Tanimoto
similarities (TS) were compared between the anchor pairs
with high error R2 values and low error R2 values (Bajusz
et al., 2015). Overall, the TS between anchor pairs showed
little correlation with their error distribution similarity. Pairs
with highly similar error patterns (R2 > 0.92) had TS rang-
ing from 0.10 to 0.13, indicating that structural similarity
does not necessarily predict similar error patterns.

Figure 2. CYP 3A4 model performance metrics across varying
anchor ensemble sizes. The plots show individual metrics (top
to bottom): R2 and RMSE values as functions of anchor count.
Shaded regions represent standard deviation across sampled an-
chor combinations at each anchor count (up to 20 combinations
sampled).

3. Methods
3.1. Datasets

Ten total ADMET assay datasets were used to compare
model performance of Bilinear Transduction and D-MPNN
as listed in (Table 4, Table 5, Table 6). Among the ten
datasets, seven datasets were collected from internal data
from Merck & Co., Inc. (Rahway, NJ, USA). Among
the seven datasets, five are naturally censored datasets:
CYP 3A4, CYP 2D6, CYP 2C9, CaV 1.2, and hERG
MK499. The remaining two datasets are synthetically cen-
sored datasets where a synthetic threshold is imposed at
three levels (25th percentile, 50th percentile, and 75th per-
centile) for rat P-gp and rat Fu,p. Additionally, our methods
were tested on three datasets collected from the literature
(Kim et al., 2023; Fang et al., 2023): microsomal stability
(human), microsomal stability (rat), and CYP 3A4.

3.2. Bilinear Transduction

3.2.1. BILINEAR TRANSDUCTION REPRESENTATION

Bilinear transduction relies on reparametrizing the data into
a distribution of the differences. Given a set of molecule
structures (X) and ADMET properties (Y ), we typically
train a D-MPNN model (fθ : X → Y ). Bilinear transduc-
tion relies on the difference’s distribution instead. We can
reparametrize the problem as such. Let ∆X = {x1 − x2 |
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Figure 3. Heatmap of error distribution correlations between anchor molecules for CYP3A4 prediction. The color intensity represents the
R2 coefficient between prediction error distributions for each anchor pair, with darker blue indicating stronger correlation. Clusters of
highly correlated anchors (R2 > 0.90) suggest that groups of molecules produce similar error patterns despite structural differences.

x1, x2 ∈ X} where x2 is referred to as a query point and
x1 an anchor point.

3.2.2. BILINEAR TRANSDUCTION WITHIN CHEMPROP
ARCHITECTURE

The bilinear transduction mechanism is integrated into the
feature concatenation process for both atoms and bonds.
Each molecular component possesses a distinct feature vec-
tor representation. For this concatenation procedure, we
combine the anchor feature vector with a difference (∆)
vector that encodes the transformation between molecules
(Heid & Green, 2022).

This representation handles three distinct scenarios: For
components present exclusively in the query (reactant) but
absent in the anchor (product), the anchor feature vector is
null while the ∆ vector contains negative values equal to the
query component’s features, representing elimination. For

components shared between anchor and query molecules,
the representation preserves the anchor features while the ∆
vector approaches zero, indicating preservation. For com-
ponents unique to the anchor molecule, both the anchor
feature vector and the ∆ vector contain positive values de-
rived from the anchor component, signifying formation of
new structural elements.

3.2.3. BILINEAR TRANSDUCTION IMPLEMENTATION

Under the reparameterization discussed in Section 3.2.1
and representation concatenation discussed in Section 3.2.2,
we will train n = 20 predictors of the form: fθi :
(x1,∆X2,1i) → ∆Y2,1i . To obtain the final prediction
ADMET property (ŷi) for a given compound (xi) we ob-
tain ŷi = x1 − ˆ∆x2,1i for each predictor. Finally, we take
1
n

∑n
i=1 ŷi to obtain the final prediction. The anchors were

chosen randomly from the training set and the same anchors
were used for the test set.
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Figure 4. (Left) Molecular structures of anchor pairs with highly similar error distributions for Public CYP 3A4. This table displays the
five anchor pairs exhibiting the highest error correlation coefficients (R2 > 0.92) in CYP3A4 inhibition prediction. For each pair, the
molecular structures, Tanimoto similarity coefficient (TS), and R2 value for error correlation are presented. (Right) Molecular structures
of anchor pairs with highly dissimilar error distributions for Public CYP 3A4. This table displays the five anchor pairs exhibiting the
highest error correlation coefficients (R2 < 0.82) in CYP3A4 inhibition prediction.

3.2.4. BASELINE D-MPNN IMPLEMENTATION

For our comparative analysis, we implemented the directed
message passing neural network (D-MPNN) as described
in the original Chemprop architecture (Yang et al., 2019).
We trained each model using a 2-fold cross-validation ap-
proach with 2 ensemble members per fold, resulting in 4
total model predictions per molecule. The predicted value
for each test compound was calculated by averaging the 4
individual predictions, and the standard deviation was deter-
mined by computing performance metrics independently for
each prediction (Kuncheva & Whitaker, 2003; Dietterich,
2000). Hyperparameters for the D-MPNN implementation
are detailed in Table 7.

4. Discussion
4.1. Predictive Performance of Bilinear Transduction

Leveraging information from analogical input-target rela-
tionships via bilinear transduction (BT) significantly im-
proves the prediction of ADMET property values for in-
distribution molecules of censored datasets. While standard

Chemprop models exhibit a degree of robustness to low
levels of censoring, their predictive accuracy deteriorates
considerably as the percentage of censored data increases.
This is exemplified in the synthetically censored datasets
where Chemprop’s performance degrades significantly once
50% of the dataset is censored (Figure 14, Figure 15). We
also notice this pattern in the hERG MK499 assay, which
has a relatively low censoring rate (19%), showed similar
performance between Chemprop and BT.

Under extreme censored scenarios Chemprop tends to pro-
duce predictions clustered around the censoring threshold
as seen in the CYP 2C9 (Figure 5), CYP 2D6 (Figure 7),
and P-gp rat (50th percentile) parity plots (Figure 8), failing
to accurately capture the true range of property values. In
contrast, the BT model exhibits the ability to discern the
underlying structure-property relationships and remains ro-
bust to high levels of censoring. By explicitly modeling
these analogical relationships, BT appears to capture a more
nuanced understanding of the data compared to standard
Chemprop models.
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Figure 5. Parity plots for CYP 2C9 inhibition predictions
(n=100k).(Top) D-MPNN baseline. (Bottom) BT model with
20 anchors. Red points highlight identical molecules in both plots
that D-MPNN clusters near the censoring threshold (4.3003), while
BT distributes these same compounds more accurately relative to
their true values. This demonstrates BT’s superior performance in
handling censored data compared to the baseline approach.

4.2. Impact of Anchor Set Characteristics

The size and diversity of anchors chosen can influence the
consistency and performance of the BT model. Increasing
the number of anchor molecules led to a notable decrease
in the variance of predictive performance across different
anchor sets decreased. This highlights the importance of
a sufficiently large and diverse set of anchors to provide
a robust representation of the data’s underlying structure
and analogical relationships. However, we also observed a
plateau in performance gains around 8-10 anchors across
the tested assays (Figure 2). This suggests a point of di-
minishing returns, where adding more anchors does not
significantly contribute to further improvements in predic-
tive accuracy. This finding has practical implications for the
efficient implementation of BT, indicating that a carefully
selected set of around 10 anchors may offer a good balance
between computational cost and predictive performance.

4.3. Influence of Anchor Error Correlations

To further understand the influence of the chosen anchor
set, the relationship between the error distribution of indi-
vidual anchors and the predictive performance of the BT
model was examined (Figure 3). Our analysis of error cor-

relations between different anchors did not reveal a signifi-
cant correlation with predictive performance. While some
anchors exhibited highly correlated prediction errors, and
others showed lower correlations, the overall predictive ac-
curacy achieved using the most and least correlated sets of
5 anchors was comparable. This suggests that the individ-
ual error patterns of anchors, while potentially informative
about the model’s learning process, do not directly dictate
the overall predictive power of the BT approach.

Additionally, the average Tanimoto similarity between each
pair of anchors of the top 5 most similar error correlations
and top 5 most dissimilar error correlations was low, ranging
from 0.11 to 0.15, indicating the similar errors generated
by two anchors isn’t necessarily related to their structural
similarity. Instead, it appears that the collective information
captured by the set of anchors, regardless of their individual
error correlations, appears to be the primary driver of the
observed performance improvements.

4.4. Future Directions

We aim to enhance our bilinear transduction approach by
developing a multi-anchor learning framework. This frame-
work will leverage multiple anchor molecules during train-
ing, moving beyond the current model’s separate training
for each anchor. This could help improve computational ef-
ficiency as well as allow for cross-anchor information gains.
Additionally, it would be interesting to extend our approach
to non-censored ADMET properties and other modalities
within the chemical and biological domains.

4.5. Limitations

Bilinear transduction has shown usefulness in improving
censored ADMET property prediction, but there are some ar-
eas that can be further explored in future work. For instance,
the BT method currently requires additional computational
resources due to the need to train a separate model for each
anchor molecule, suggesting an opportunity for optimiza-
tion in future iterations. Additionally, while the method
improves predictions for highly censored datasets, there
is still an overall challenge in these scenarios where over-
all predictive power could be further strengthened. Future
research could also investigate methods to enhance the inter-
pretability of molecular features that correspond to ADMET
property changes, as current analyses show limited corre-
lation between structural similarities and error distribution
patterns. Furthermore, exploring ways to maximize perfor-
mance gains on smaller datasets could also be a valuable
direction, as the method’s absolute improvements were less
pronounced in these cases.
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Impact Statement
Improving the prediction of ADMET properties, particularly
for heavily censored datasets commonly seen in pharmaceu-
tical research, will empower drug discovery teams to more
accurately assess drug candidates, leading to better selection
and potentially faster development of effective therapeutics.
We have developed an approach integrated within an ex-
isting model architecture that significantly enhances the
performance of ADMET property prediction in the presence
of censoring, offering a practical solution without requiring
additional experimental data.
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A. Further details on Data
A.1. Data

A.1.1. INTERNAL DATA

Six left-censored assays were collected as listed in Table 4: CYP enzyme inhibition (3A4, 2D6, 2C9, and 2C8), CaV 1.2,
and hERG MK499. These assays have a naturally occurring censored region due to measurement limitations. Additionally,
we used datasets that were not censored. We impose an artificial threshold at different percentiles (25th, 50th, 75th) on
the following: rat P-gp and rat Fu,p (Table 5). These datasets allow us to analyze the performance of the BT method
on real-world applications and how varying levels of censoring relates to the performance of BT and D-MPNN models.
Additionally, all train/test splits were done temporally (Sheridan, 2013).

A.1.2. PUBLIC DATA

Two left-censored assays were obtained from Biogen-Polaris (Fang et al., 2023): microsomal stability (human) and
microsomal stability (Rat). Only 30% of both assays were censored and we didn’t see much difference between the two
method’s performances so we also impose artificial thresholds at the 50th and 75th percentile (Table 6). One public CYP
3A4 inhibition assay was obtained (Kim et al., 2023). Additionally, all train/test splits were done randomly.

B. Further details on Methods
B.1. Model Parameters for D-MPNN & BT

All BT and D-MPNN models were built on Chemprop architecture (Yang et al., 2019). Chemprop’s default hyperparameters
were used besides the hyperparameters listed in Table 7.

B.2. Anchor Selection & Aggregation

B.2.1. TRAINING PHASE ANCHOR SELECTION

During training, we employed a random sampling strategy. A set of 20 molecules was sampled from the in-distribution
training dataset to serve as the anchor molecules. For each selected anchor molecule, anchor-query pairs were constructed
for the in-distribution training set given to each anchor model.

B.2.2. INFERENCE PHASE

During inference on test molecules, each anchor model was used to predict the property difference (delta value) for each
anchor-query (test) molecule pair. Given that the property value of the anchor molecule is a known value (as it was selected
from the training set), the predicted property value for the test molecule can be derived by adding the predicted delta value
to the known anchor property value.

C. Supplemental Figures & Tables
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Figure 6. Histogram of the CYP 3A4 Inhibition data. The plot demonstrates the characteristic left-censoring present in the assay, where
values lower than the detection limit are not precisely measured.

(a) BT Model (b) D-MPNN Model

Figure 7. Parity plots for CYP 2D6 inhibition predictions (n=100k). (Left) BT model with 20 anchors. (Right) D-MPNN baseline. Red
points highlight identical molecules in both plots that D-MPNN clusters near the censoring threshold (4.3003), while BT distributes these
same compounds more accurately relative to their true values. This demonstrates BT’s superior performance in handling censored data
compared to the baseline approach.
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(a) BT Model (b) D-MPNN Model

Figure 8. Parity plots for P-gp, rat (50th percentile) predictions (n=27,810). (Left) BT model with 20 anchors. (Right) D-MPNN baseline.
Red points highlight identical molecules in both plots that D-MPNN clusters near the censoring threshold (0.65595), while BT distributes
these same compounds more accurately relative to their true values. This demonstrates BT’s superior performance in handling censored
data compared to the baseline approach.

Figure 9. CYP 2D6 model performance metrics across varying anchor ensemble sizes. The plots show individual metrics (top to bottom):
R2 and RMSE values as functions of anchor count. Shaded regions represent standard deviation across sampled anchor combinations at
each anchor count (up to 20 combinations sampled).
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Figure 10. CYP 2C9 model performance metrics across varying anchor ensemble sizes. The plots show individual metrics (top to bottom):
R2 and RMSE values as functions of anchor count. Shaded regions represent standard deviation across sampled anchor combinations at
each anchor count (up to 20 combinations sampled).

Table 4. Internal (Naturally Censored) Dataset Information.

PROPERTY TRAINING LABEL TRAIN SIZE TEST SIZE DESCRIPTION UNITS

CYP3A4
50K 20,714

623 CYP3A4 INHIBITION IC50 − log10(M)100K 41,450
224,593 92,940

CYP2D6
50K 15,576

466 CYP2D6 INHIBITION IC50 − log10(M)100K 31,247
221,745 68,918

CYP2C9
50K 29,751

1,347 CYP2C9 INHIBITION IC50 − log10(M)100K 59,245
225,026 133,132

CAV 1.2 50K 30,850 652 IC50 ON A CA ION CHANNEL − log10(M)100K 61,800

HERG MK499 50K 40,576 1,583 HERG CHANNEL IC50 THROUGH
DISPLACEMENT OF MK-499 − log10(M)100K 80,826
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Figure 11. Heatmap of error distribution correlations between anchor molecules for CYP3A4 prediction. The color intensity represents
the R2 coefficient between prediction error distributions for each anchor pair, with darker blue indicating stronger correlation. Clusters of
highly correlated anchors (R2 > 0.90) suggest that groups of molecules produce similar error patterns despite structural differences.

Table 5. Internal (Synthetically Censored) Dataset Information.

PROPERTY TRAINING LABEL TRAIN SIZE TEST SIZE DESCRIPTION UNITS

PGP, RAT
25TH 20,857 577

RAT BA:AB EFFLUX RATIO − log10(BA : AB ratio)50TH 13,905 356
75TH 6,953 188

RAT Fu,p

25TH 40,440 2,164 FRACTION OF UNBOUND DRUG IN
PLASMA

− log10(fraction)50TH 26,964 1,620
75TH 13,477 894
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Figure 12. Heatmap of error distribution correlations between anchor molecules for CYP2D6 prediction. The color intensity represents
the R2 coefficient between prediction error distributions for each anchor pair, with darker blue indicating stronger correlation. Clusters of
highly correlated anchors (R2 > 0.90) suggest that groups of molecules produce similar error patterns despite structural differences.

Table 6. Public Dataset Information

ASSAY TRAINING
LABEL

TRAIN
SIZE

TEST
SIZE

DESCRIPTION UNITS DATA SOURCE

MICROSOMAL
STABILITY
(HUMAN)

BASE 1,715 414 HUMAN LIVER MICROSOMAL
STABILITY REPORTED AS INTRINSIC
CLEARANCE

log10(ML/MIN/KG)
FANG ET
AL.(2023)50TH 1,244 299

75TH 633 139

MICROSOMAL
STABILITY
(RAT)

BASE 2,168 540 RAT MICROSOMAL STABILITY
REPORTED AS INTRINSIC CLEARANCE

log10(ML/MIN/KG)
FANG ET
AL.(2023)50TH 1,210 317

75TH 610 154

CYP3A4 4,403 3,344 841 CYP3A4 INHIBITION IC50 − log10(nM) KIM ET AL.(2023)
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Figure 13. Heatmap of error distribution correlations between anchor molecules for CYP2C9 prediction. The color intensity represents
the R2 coefficient between prediction error distributions for each anchor pair, with darker blue indicating stronger correlation. Clusters of
highly correlated anchors (R2 > 0.90) suggest that groups of molecules produce similar error patterns despite structural differences.

Figure 14. Performance comparison of BT and D-MPNN models across censoring levels for internal synthetically censored datasets. The
plot shows R2 scores for Bilinear Transduction (BT, blue) and Directed Message Passing Neural Network (D-MPNN, orange) models
on synthetically censored datasets at 25%, 50%, and 75% censoring thresholds. Dashed lines represent P-gp, rat data, while solid lines
represent rat Fu,p data.
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Figure 15. Performance comparison of BT and D-MPNN models across censoring levels for public synthetically censored datasets. The
plot shows R2 scores for Bilinear Transduction (BT, blue) and Directed Message Passing Neural Network (D-MPNN, orange) models on
synthetically censored datasets at 25%, 50%, and 75% censoring thresholds. Dashed lines represent human microsomal stability data,
while solid lines represent rat microsomal stability data.

Table 7. Hyperparameter Information. The hyperparameters employed in this work are adopted from (Adrian et al., 2024)

HYPERPARAMETER VALUE

MPN DEPTH 4
MPN HIDDEN SIZE 600
FFN NUMBER OF LAYERS 4
FFN HIDDEN SIZE 1300
DROPOUT 0
AGGREGATION NORM
NUMBER OF FOLDS (TRAINING/VALIDATION SPLIT SEED) 2
ENSEMBLE SIZE (PARAMETER INITIALIZATION SEED) 2
EPOCHS 60
NUMBER OF ANCHORS (BT ONLY) 20
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Table 8. Performance of Bilinear Transduction Models and Baselines on Naturally Censored Internal Datasets. Results are presented
across three metrics: R2 (higher is better), MAE (lower is better), and RMSE (lower is better), with mean ± standard deviation shown for
each. Bold values indicate statistically significant better performance where one model outperforms the other greater than one standard
deviation. Underlined values indicate cases where performance is statistically equivalent (overlapping within standard deviation) or where
differences are within standard deviation ranges.

ASSAY TRAINING LABEL
R2 ↑ MAE ↓ RMSE ↓

BT D-MPNN BT D-MPNN BT D-MPNN

CYP 3A4
50K 0.30±0.03 0.26±0.06 0.35±0.01 0.35±0.01 0.47±0.01 0.48±0.02

100K 0.32±0.04 0.22±0.04 0.34±0.01 0.35±0.01 0.46±0.01 0.49±0.01
224,593 0.40±0.04 0.29±0.07 0.33±0.01 0.34±0.01 0.43±0.01 0.47±0.02

CYP 2D6
50K 0.19±0.05 -0.02±0.06 0.32±0.01 0.35±0.01 0.45±0.01 0.51±0.02

100K 0.30±0.04 0.12±0.04 0.31±0.01 0.34±0.00 0.42±0.01 0.47±0.01
221,745 0.32±0.04 0.11±0.03 0.30±0.01 0.33±0.01 0.41±0.01 0.47±0.01

CYP 2C9
50K 0.08±0.03 -0.07±0.10 0.37±0.01 0.40±0.02 0.50±0.01 0.54±0.03

100K 0.19±0.04 0.01±0.04 0.35±0.01 0.39±0.01 0.47±0.01 0.52±0.01
225,026 0.24±0.06 0.05±0.06 0.34±0.02 0.38±0.01 0.46±0.02 0.51±0.02

CAV 1.2 50K 0.10±0.06 0.05±0.06 0.21±0.01 0.21±0.01 0.27±0.01 0.28±0.01
100K 0.11±0.05 -0.06±0.05 0.20±0.00 0.22±0.01 0.27±0.01 0.29±0.01

HERG MK499 50K 0.18±0.05 0.16±0.03 0.37±0.01 0.36±0.01 0.48±0.01 0.48±0.01
100K 0.23±0.04 0.25±0.04 0.36±0.01 0.34±0.01 0.46±0.01 0.46±0.01

Table 9. Performance of Bilinear Transduction Models and Baselines on Synthetically Censored Internal Datasets.

ASSAY TRAINING LABEL
R2 ↑ MAE ↓ RMSE ↓

BT D-MPNN BT D-MPNN BT D-MPNN

P-GP, RAT
25TH 0.57±0.02 0.50±0.01 0.26±0.01 0.28±0.00 0.35±0.01 0.37±0.00
50TH 0.40±0.05 0.18±0.12 0.23±0.01 0.27±0.02 0.29±0.01 0.34±0.02
75TH -0.03±0.06 -0.50±0.26 0.17±0.01 0.21±0.02 0.22±0.01 0.26±0.02

RAT Fu,p

25TH 0.57±0.02 0.56±0.01 0.22±0.01 0.22±0.00 0.30±0.01 0.31±0.00
50TH 0.51±0.02 0.47±0.02 0.18±0.00 0.18±0.00 0.23±0.01 0.24±0.00
75TH 0.43±0.02 0.27±0.04 0.12±0.00 0.13±0.00 0.16±0.00 0.18±0.00

Table 10. Performance of Bilinear Transduction Models and Baselines on Censored Public Datasets.

ASSAY TRAINING LABEL
R2 ↑ MAE ↓ RMSE ↓

BT D-MPNN BT D-MPNN BT D-MPNN

MS (HUMAN)
BASE 0.24±0.04 0.33±0.06 0.36±0.01 0.33±0.02 0.46±0.01 0.43±0.02
50TH 0.21±0.05 0.08±0.07 0.31±0.01 0.32±0.01 0.38±0.01 0.41±0.02
75TH 0.03±0.04 -0.06±0.02 0.24±0.00 0.23±0.00 0.29±0.01 0.30±0.00

MS (RAT)
BASE 0.48±0.02 0.48±0.02 0.36±0.01 0.36±0.01 0.46±0.01 0.46±0.01
50TH 0.14±0.04 0.09±0.02 0.30±0.01 0.28±0.00 0.35±0.01 0.36±0.00
75TH 0.06±0.02 -0.56±0.12 0.19±0.00 0.24±0.01 0.23±0.00 0.30±0.01

CYP 3A4 4,403 0.52±0.02 0.53±0.02 0.43±0.01 0.44±0.01 0.58±0.01 0.61±0.01

19


