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Abstract

Designing biological sequences with desired properties is an impactful research
problem with various application scenarios such as protein engineering, anti-body
design, and drug discovery. Machine learning algorithms could be applied either
to fit the property landscape with supervised learning or generatively propose
reasonable candidates to reduce wet lab efforts. From the learning perspective, the
key challenges lie in the sharp property landscape, i.e. several mutations could dra-
matically change the protein property and the large biological sequence space. In
this paper, we propose annealed sequence optimization (ANSO) and aim to simul-
taneously take the two main challenges into account by a paired surrogate model
training paradigm and sequence sampling procedure. The extensive experiments
on a series of protein sequence design tasks have demonstrated the effectiveness
over several advanced baselines.

1 Introduction

Protein engineering strives to identify protein variants with superior or new biological functions,
including enhanced fluorescence intensity [1], improved enzyme activity [2], and increased therapeutic
efficacy [8]. Protein functions are encoded in their amino acid sequences, and this information is
revealed through the spontaneous folding of the polypeptide chain into its specific three-dimensional
structure [4, 16, 9]. It is believed that the proteins lie in a compact manifold in the large sequence
space, i.e., 20∥L∥. The protein fitness landscape, introduced by [22], has illuminated the constraints
governing the distribution of protein sequences and enables us to optimize proteins for specific
functions through sequence design and engineering.

From this perspective, directed evolution has become a favored method for optimizing protein
sequences. By creating a multitude of variants and selecting those that demonstrate the highest fitness,
this innovative technique mimics the natural process of evolution. With sufficient large enough
cycle steps, the directed evolution is capable to gain desired proteins. However, the process requires
extensive wet-lab validations which makes its utility limited. Recent advancements have sparked
interest in using machine learning techniques to reduce the burden of laboratory experiments in
directed evolution. It has been demonstrated the potential of such methods to significantly enhance
protein engineering and generate innovative applications for this field.

Machine learning techniques for optimizing protein sequences encompass various theoretical frame-
works, including Bayesian Optimization, Model-based Optimization, and Reinforcement Learning.
However, these methods generally consist of two key components: the proxy module, which serves
as a surrogate model for the fitness landscape to evaluate the candidate proposals, and the pro-
posal/exploration module, which concerns how to generate novel candidates. In the task-specific
scenario of protein sequence optimization, there are correspondingly key challenges for both two
modules. On one hand, the protein fitness space is known to be sparse and sharp in the vast sequence
space, i.e. a few mutations on the amino-acid could lead to a dramatic change in the fitness score. On
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the other hand, the large sequence space makes it hard to search exhaustively. Besides, the intrinsic
constraint requires the exploration lies in the relative compact protein manifolds, e.g. sequences with
high mutation counts are laborious to synthesize for mass production.

In this paper, regarding the above-mentioned challenges, we propose annealed protein sequence
optimization (ANSO). The proposed method aims to simultaneously take the two main challenges
into account through a paired surrogate model training paradigm and sequence sampling procedure.
Specifically, the proxy/surrogate module adopts a ’divide-and-conquer’ strategy, i.e. decomposing the
fitness landscape learning as several sub-classification tasks, to address the direct learning difficulty of
the sharp and sparse protein fitness landscape. With the above-designed proxy module, we naturally
designed an annealed sampling method, which utilizes intermediate guidance for climbing in the
protein fitness landscape which leads to a stable and fast uphill path to the desired protein sequence
domains. We conduct extensive empirical experiments to delve deeply into the property of protein
optimization. Also, we demonstrate that the proposed ANSO could stably outperform several strong
baselines on the eight benchmarked protein optimization tasks.

2 Methodology

2.1 Likelihood-free formulation of Surrogate Model

The surrogate model tends to fit the protein landscape and serves as the scoring function to distinguish
different candidates. It is important to make the surrogate model take the uncertainty of fitness
estimation into account from either the generalization perspective or the expected utility perspective.
Under the probabilistic framework, fitting the protein landscape could be formatted as either a
regression or a classification task. While taking uncertainty into account, the regression-based
methods usually need to specify an inductive bias on the output space, e.g., Gaussian hypothesis,
which could limit the expressiveness of the surrogate model. Hence, the classification formulation
is then applied to tradeoff the exploration and exploitation in the surrogate model. A widely used
approach is to define a conditional likelihood function [17]:

P (S | x) =
{
1, f(x) ≥ λ

0, f(x) < λ
(1)

(f denotes the oracle fitness function.) And estimating such a conditional likelihood function is
essentially a classification problem, which leads to a more general and natural interpretation of the
density ratio estimation perspective:

Lθ = E(x,y)∼PdataPθ(S|x) = E(x,y)∼Pdatau(y; τ) logC(x) + u(y; τ) log(1− C(x)) (2)

Here u(y; τ) := I(y − τ > 0). And we task this a step further such an objective is equivalent to a
density ratio estimation objective under some proper scoring rule [19]:

E(x,y)∼Pdatau(y; τ) logC(x)+u(y; τ) log(1−C(x)) = E(x,y)∼Pdata

P (x|f(x) > λ)

P (x|f(x) < λ)
∗
Nf(x)>λ

Nf(x)<λ
(3)

Note the above objective does not involve the explicit parameterization of the likelihood function, we
refer to the above parameterization as a likelihood-free formulation.

2.2 On the Difficulty of Likelihood-free Surrogate Estimation

The density estimation perspective provides a convenient tool to help us deeply understand the
challenges of fitting a likelihood-free surrogate model in the protein sequence optimization tasks. We
provide the statistics of fitness scores in the Green Fluorescent Protein (avGFP) dataset, where the
goal is to design sequences with higher log-fluorescence intensity values, in Fig. 1. In this task, we
are interested in providing a more accurate surrogate estimation of the domains with fitness scores
upon the wild type, i.e. the red line which could be actually seen as the outliers. As shown in this case,
from the density ratio estimation perspective(Eq. 3), the two distributions could be far away from each
other which could lead to a challenging ratio estimation task [13]. To tackle this challenge, we could
borrow the spirit of ’divide-and-conquer’ by the telescoping density ratio estimation technique [13].

p0(x)

pm(x)
=

p0(x)

p1(x)

p1(x)

p2(x)
. . .

pm−2(x)

pm−1(x)

pm−1(x)

pm(x)
(4)
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Figure 1: The statistics of the fitness score on the avGFP dataset. The red dash line stands for the
wild type.

The construction of the conditional distribution in our setting, i.e., pm(x) = p(x|f(x) > λm)),
naturally provides a convenient way to construct such distribution, by slicing the distribution with
different λ0, · · · , λm.

2.3 Annealed Sampling

Intuitively, the proposed surrogate model training implies a bridge from the initial distribution to
the top-scored distribution which we are interested in. To obtain the candidate from the estimated
distribution, we could sample following the bridge and which results in a sampling procedure similar
to the Annealed Importance Sampling [11]. With an estimated density ratio function as:

r(x;θ) =

m−1∏
k=0

rk (x;θk) ≈
m−1∏
k=0

pk(x)

pk+1(x)
=

p0(x)

pm(x)
(5)

We tend to sample from the distribution pθ0 which is implied by pm and r(x; θ). And procedure will
be decomposed as the following sampling chain:

pm → pθm−1 → pθm−2 → · · · → pθ0 (6)

Note for each pθk, we obtain samples from it by sampling from pθk+1rk(θk).

In practice, the imbalanced proportion of the empirical samples from the intermediate distributions,
e.g., the limited number of samples from the top-5% distribution, imposes a great challenge in
accurately estimating the density ratio. Therefore, we propose to construct the intermediate targets by
ensembling the estimated density ratio function r(x; θ).

p̂θn = pm(x)

m−1∏
k=0

rk(x; θ)
γn
k (7)

where γn
k is a parameter that trade-off the effect of density ratio estimator from different timestep. A

special case is γi
0 = · · · = γi

m−1 for every timestep i, in this case, we essentially construct a single
intermediate target, and as shown in the experiment we found this special case holds advantages in
the offline settings.

2.3.1 A Mask-predicted Proposal

To conduct sampling, we choose a mask-predicted proposal to generate candidate protein sequences
and use a Metropolis Hastings test to make sure the samples follow the intermediate distribution.
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The proposal is trained by the pseudo-likelihood objective on the protein sequence to constrain the
candidate still lie in the general protein distribution:

Lϕ = Ex∼pdata −
1

N

N−1∑
i=0

log qϕ(xi|x−i) (8)

The whole sampling algorithm with MH-test is demonstrated in Algorithm. 1.

Algorithm 1 Sampling Algorithm of ANSO
1: Input: current protein sequence x = (x0, · · · , xN ), estimated density ratio rθ, proposal qϕ
2: uniform sample i = ⌊rand(N + 1)⌋.
3: get proposal x̂i according to qϕ(·|x−i)

4: compute A = min
{
1,

rθ(x̂)qϕ(xi|x−i)
rθ(x)qϕ(x̂i|x−i)

}
5: if rand(0, 1) < A then
6: xi = x̂i

7: else
8: xi = xi

9: end if

3 Experiments

Following [12], we evaluate our method on the following eight protein engineering benchmarks with
both the online and offline settings:
(1) Green Fluorescent Protein (avGFP)[15]. (2) Adeno-Associated Viruses (AAV) [3]. (3) TEM-1
β-Lactamase (TEM) [5]. (4) Ubiquitination Factor Ube4b (E4B) [18]. (5) Aliphatic Amide
Hydrolase (AMIE) [21]. (6) Levoglucosan Kinase (LGK) [7]. (7) Poly(A)-binding Protein (Pab1)
[10]. (8) SUMO E2 Conjugase (UBE2I) [20].

We compare the proposed method with several strong baselines following [12]. We conduct experi-
ments in both online and offline settings and design various algorithmic variants. The results could be
found in Tab. 1. It should be noted that in all experiments, we have standardized the telescope size to
3 and generated the intermediate distribution by choosing the highest 10%, 30%, and 50% of the data
points. The mask proposal is initialized by the ESM model following [17]. More implementation
details could be found in appendix A.

Table 1: Maximum fitness scores of all models on eight protein datasets. The best performance in
each task for the online and offline settings are bolded respectively.

Method / Task avGFP AAV TEM E4B AMIE LGK Pab1 UBE2I

ANSO (offline) 3.44 5.61 0.72 2.59 0.15 0.01 0.77 2.89
ANSO (offline regression) 3.71 5.62 0.30 5.39 0.21 0.03 0.65 2.69
ANSO (offline w/o ESM) 3.23 0.89 0.01 1.13 0.15 -0.01 0.62 2.94

ANSO (online) 3.63 6.59 0.01 2.44 0.22 0.02 1.00 2.98
ANSO (online w/o mh) 3.79 7.59 0.03 3.87 0.19 0.01 1.41 2.84

PEX 3.12 4.45 0.27 1.21 0.16 0.04 1.23 2.97
AdaLead 1.88 3.58 0.15 1.94 0.16 0.04 1.25 2.96

DyNA PPO 1.86 -3.33 0.02 -0.23 -2.15 -0.52 0.49 2.08
DbAS 1.90 2.24 0.09 0.61 -0.61 -0.03 0.96 2.90
CbAS 2.08 2.22 0.09 0.47 -0.51 0.04 0.83 2.93

Wildtype 1.34 -10.06 0.00 -2.70 -8.37 -1.71 0.02 -0.22

From the above results, we could find the proposed methods, with different implementation strategies,
could considerably improve upon advanced baselines on all optimization tasks with different variants.
Due to the data shift between different tasks, the model with the same configuration shows huge
dynamics among the tasks. And we also have a single configuration that improves on 5 of the 8 tasks.
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We can also draw interesting observations when comparing the algorithmic variants. For the offline
setting, we note that the classification mechanism and the pretrained proposal module all have a
great impact on the empirical performance. For the online setting, we find that the MH sampling
module actually impairs performance in some tasks. We hypothesize that the iterative exploration
mechanism in the online setting is beneficial for reducing uncertainty in estimating the protein
landscape. However, adopting the MH sampling procedure tends to prioritize exploitation, potentially
limiting the scope of exploration and thus leading to performance drop. We leave further investigations
as future work.

4 Conclusion

Our paper introduces ANSO, a pioneering framework that leverages intermediate density ratio
estimation tasks to enhance protein sequence design. By using this approach, we are able to improve
surrogate model training and facilitate an annealed sampling procedure that leads to better results.
Our density ratio perspective is highly flexible and holds promise for even broader objectives, which
we plan to explore in future research.

A Experimental Setting and Implementation Details

For the offline setting, we create 128 sample chains in total. For each chain, we sample 2 steps
after a 15-step burn-in stage (5 for each proxy). Hence, 256 new protein sequences are proposed
and evaluated in this setting. For the online setting, we base our implementation on the PEX [12]
codebase. 10 rounds of optimization are conducted, with 100 new sequences proposed for each round.
We adopt the MuFacNet proposed in [12] as the proxy architecture. For the training of the proxy
model in the online and offline settings, we set the learning rate as 1e-3 and 1e-4, respectively, and
use the Adam optimizer [6] to optimize the Binary Cross Entropy loss. We stop training when the
loss fails to decrease for 10 epochs. Note that less new sequences are evaluated in the offline setting
(256 v.s. 1000), but the training of the offline proxy requires the entire labeled dataset. The two
settings are therefore not directly comparable but we show the results of both settings in table 1 to
intuitively compare their empirical performance.

For computational efficiency, the qϕ(·|x−i) term in Algorithm. 1 is neglected in implementation.
We use the 6-layer ESM-1b model [14] as the proposal model. Both online and offline algorithms
take approximately 1 hour to run on a Linux server with 1 Nvidia GeForce RTX 3090 GPU. All
experiments are repeated for 40 times in the online settings and 3 times in the offline settings.
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