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Abstract

News recommendation is essential for online001
news applications. Existing news recommen-002
dation approaches typically adopt a two-tower003
encoder framework, facing two potential lim-004
itations. First, in news encoder tower, single005
candidate news encoding suffers from an insuf-006
ficient semantic information problem. Second,007
existing graph learning models for news rec-008
ommendation are promising but lack effective009
news-user interaction modeling, which causes010
the graph modeling suboptimal. To overcome011
these limitations, we propose dual-interactive012
graph attention networks (DIGAT) consisting013
of news- and user-graph channels. In the news-014
graph channel, we use a semantic-augmented015
graph to enrich the semantics of the single can-016
didate news by incorporating the semantic in-017
formation of relevant news. In the user-graph018
channel, we utilize a news-topic graph to pre-019
cisely model user interests. Most importantly,020
we design a dual-graph interaction mechanism021
to model effective feature interaction between022
the news and user graphs, which facilitates023
accurate news-user representation matching.024
Experiment results on the benchmark dataset025
MIND show that DIGAT outperforms the ex-026
isting news recommendation methods. Further027
ablation studies and analyses validate the effec-028
tiveness of semantic-augmented graph encod-029
ing and dual-graph interaction.030

1 Introduction031

News recommendation is an important technique to032

provide people with the news, which satisfies their033

personalized reading interests (Okura et al., 2017;034

Wu et al., 2020). Effective news recommendation035

systems require both accurate textual modeling on036

news content (Wang et al., 2018; Wu et al., 2019d;037

Wang et al., 2020) and personal-interest modeling038

on user behavior (Hu et al., 2020b; Qi et al., 2021c).039

In consequence, most neural news recommendation040

models (An et al., 2019; Wu et al., 2019a,b,c,d; Ge041

et al., 2020; Qi et al., 2021a,b,c) adopt a two-tower042
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Figure 1: The common two-tower encoder framework
for news recommendation.

encoder framework to learn fine-grained news and 043

user representations, as illustrated in Figure 1. 044

Though it is promising, there are still two poten- 045

tial limitations in the two-tower encoder framework. 046

First, in news encoder tower, single candidate news 047

encoding suffers from an insufficient semantic in- 048

formation problem. Unlike long-term items in 049

common recommendation (e.g., E-commerce prod- 050

uct recommendation), the candidate news items in 051

news recommendation are short-term and lack suf- 052

ficient user-clicks. In the real-world setting, news 053

recommendation systems usually handle the latest 054

news, where existing user-click interactions are al- 055

ways not available1. Hence, it is intractable to use 056

existing user-click interactions to enrich candidate 057

news information. On the other hand, compared to 058

abundant click history in user encoder tower, the 059

single candidate news may not contain sufficient 060

semantic information for accurate news-user rep- 061

resentation matching in the click prediction stage. 062

Prior studies (Wu et al., 2019a,c; Qi et al., 2021c) 063

pointed out that users were usually interested in 064

certain news topics (e.g., Sports topic). Empiri- 065

cally, the text of single candidate news does not 066

contain enough syntactic and semantic information 067

to accurately match user interest in a news topic. 068

Second, previous studies generally follow two 069

research directions to model user history, i.e., se- 070

1From the viewpoint of experimental dataset, most candi-
date news in test data does not appear in training user history.
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quence and graph modeling. Formulating user his-071

tory as a sequence of user’s clicked news is a more072

prevalent direction, based on which time-sequential073

models (Okura et al., 2017; An et al., 2019; Qi et al.,074

2021b) and attentive models (Zhu et al., 2019; Wu075

et al., 2019a,b,d; Qi et al., 2021a,c) are proposed.076

Graph modeling is proved effective for recommen-077

dation systems (Chen et al., 2020). Ge et al. (2020)078

and Hu et al. (2020b) formulate news and users079

jointly in a bipartite graph to model news-user in-080

teraction. However, most candidate news in test081

data has no existing interaction with users, which082

can only be treated as isolated nodes and causes the083

bipartite graph modeling degenerate. Recent works084

formulate user history as heterogeneous graphs and085

employ advanced graph learning methods to extract086

the user-graph representations (Hu et al., 2020a;087

Wu et al., 2021). These works focus on how to088

extract fine-grained representations from the user-089

graph side, but neglect the necessary feature inter-090

action between candidate news and user-graphs.091

In this work, we propose Dual-Interactive Graph092

ATtention networks (DIGAT) to address the afore-093

mentioned limitations. DIGAT consists of the094

news- and user-graph channels to encode the can-095

didate news and user history, respectively. In the096

news-graph channel, we encode the single candi-097

date news with the semantic-augmented graphs098

(SAG) to enrich its semantic representation. In099

SAG, the original candidate news is regarded as100

the root node, while the semantic-relevant news101

is regarded as the extended node to augment the102

semantics of the candidate news. We integrate the103

local and global contexts of SAG as the semantic-104

augmented candidate news representations.105

In the user-graph channel, motivated by Hu et al.106

(2020a) and Wu et al. (2021), we model user his-107

tory with a news-topic graph to encode multi-levels108

of user interests. Most importantly, we design a109

dual-graph interaction module to learn news- and110

user-graph representations with effective feature111

interaction. Different from the individual graph112

attention network (Veličković et al., 2018), DIGAT113

updates news and user graph embeddings with the114

interactive attention mechanism. Particularly, in115

each layer of the dual-graph, the user (news) graph116

context is incorporated into its dual news (user)117

graph embedding learning iteratively.118

Extensive experiments on the benchmark dataset119

MIND (Wu et al., 2020) show that DIGAT signifi-120

cantly outperforms the existing news recommenda-121

tion methods. Further ablation studies and analyses 122

confirm that semantic-augmented graph encoding 123

and dual-graph interaction can substantially im- 124

prove news recommendation performance. 125

2 Related Work 126

Personalized news recommendation is important to 127

online news services (Okura et al., 2017; Yi et al., 128

2021). Existing news recommendation methods 129

typically employ the two-tower encoder framework 130

to learn news and user representations (Wang et al., 131

2018; Zhu et al., 2019; An et al., 2019; Wu et al., 132

2019a,b,d; Wang et al., 2020; Qi et al., 2021a,b,c; 133

Wu et al., 2021). For example, An et al. (2019) used 134

a CNN network to extract textual representation 135

from news titles, and used a GRU network to learn 136

short-term user interests combined with long-term 137

user embeddings. The matching probabilities be- 138

tween candidate news and users are computed over 139

the learned news and user representations. Wu et al. 140

(2019d) utilized multi-head self-attention networks 141

to learn informative news and user representations 142

from news titles and user clicked history. These 143

methods regarded the single candidate news as the 144

input to news encoder, which may not contain suffi- 145

cient semantics to represent a user-interested news 146

topic. Different from these methods, we encode the 147

candidate news with semantic-augmented graphs to 148

enrich its semantic representations. More recently, 149

graph-based methods were proposed for news rec- 150

ommendation (Ge et al., 2020; Hu et al., 2020a,b; 151

Wu et al., 2021). For example, Wu et al. (2021) 152

proposed a heterogeneous graph pooling method to 153

learn accurate user interest representations. How- 154

ever, feature interaction between candidate news 155

and users is inadequate or neglected in these meth- 156

ods. In contrast, our approach models effective 157

feature interaction between news and user graphs 158

for accurate news-user representation matching. 159

3 Approach 160

Problem Formulation. Denote the clicked-news 161

history of a user u as Hu = [n1, n2, ..., n|H|], con- 162

taining |H| clicked news items. For the news n, its 163

textual content consists of a sequence of |T | words 164

as Tn = [w1, w2, ..., w|T |]. Based on Hu and Tn, 165

the goal of news recommendation is to predict the 166

score ŝn,u, which indicates the probability of the 167

user u clicking the candidate news ncan. The rec- 168

ommendation result is generated by ranking the 169

user-click scores of multiple candidate news items. 170
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3.1 News Semantic Representation171

We introduce how to extract semantic representa-172

tion from news content text Tn = [w1, w2, ..., w|T |].173

Our news encoder first maps the news word to-174

kens into word embeddings En = [e1, e2, ..., e|T |].175

Then, we utilize a convolutional neural network176

Conv(·) to extract the local semantic features of177

the news word embeddings En. Finally, we em-178

ploy an attention network fatt(·) to aggregate the179

global semantic news representation as h:180

h = fatt

(
σ
(
Conv([e1, e2, ..., e|T |])

))
(1)181

, where σ is ReLU activation and h ∈ Rd (d is the182

number of CNN feature maps). The attention func-183

tion fatt(·) is implemented by a feed-forward net-184

work in our experiments. It is worth noting that the185

CNN news encoder can be easily replaced by any186

other textual encoders, e.g., Transformer2 (Vaswani187

et al., 2017), or pretrained language encoders, e.g.,188

BERT (Devlin et al., 2019).189

3.2 News Graph Encoding Channel190

In this section, we will explain the news semantic-191

augmented graph (SAG) construction and graph192

context learning. Our motivation is to retrieve193

semantic-relevant news from training corpus and194

construct a semantic-augmented graph to enrich195

the semantics of the original candidate news.196

3.2.1 News Graph Construction197

Semantic-relevant News Retrieval. Pretrained198

language models (PLM) have achieved remarkable199

performance (Reimers and Gurevych, 2019; Song200

et al., 2020) on semantic textual similarity (STS)201

benchmark. Motivated by Lewis et al. (2020), we202

utilize a PLM φ(·) to retrieve semantic-relevant203

news from the training news corpus to augment204

the semantics of the single candidate news3. In the205

retrieval process, the semantic similarity score si,j206

of news ni and nj (corresponding texts Ti and Tj)207

is computed by the similarity function sim(·, ·):208

si,j = sim
(
ni, nj

)
= cosine

(
φ(Ti), φ(Tj)

)
(2)209

Semantic-augmented Graph. For the original210

candidate news ncan, we initialize it as the root211

node v0 of the semantic-augmented news graphGn.212

2We empirically find that performance of the CNN encoder
is slightly better than Transformer in our DIGAT framework.

3Specifically, we use pretrained mpnet-base-v2 (Song et al.,
2020) in https://www.sbert.net/docs/pretrained_models.html
to retrieve semantic-relevant news texts under cosine distance.

We build Gn by repeatedly extending semantic- 213

relevant neighboring nodes to existing nodes ofGn. 214

Specifically, in each graph construction step, for 215

an existing node vi (correspoding news Ni) of Gn, 216

M news documents {Nj}Mj=1 are retrieved from 217

the training news corpus with the highest semantic 218

similarity scores {si,j}Mj=1. We extend the nodes 219

{vj}Mj=1 as neighboring nodes to the node vi by 220

adding bidirectional edge {ei,j}Mj=1 between them. 221

To heuristically discover semantic-relevant news 222

in higher-order relation, we repeatedly extend the 223

semantic-relevant news nodes within K hops from 224

the root node. The scale of news graph Gn is ap- 225

proximated to beO(MK). Detailed SAG construc- 226

tion and examples are provided be in Appendix A. 227

3.2.2 News Graph Context Extraction 228

Given an SAG Gn generated from the candidate 229

news node v0 withN semantic-relevant news nodes 230

{vi}Ni=1, we use the semantic news encoder (de- 231

scribed in Section 3.1) to extract their semantic rep- 232

resentations as hn,0 ∈ Rd and {hn,i}Ni=1 ∈ RN×d. 233

We aim to extract the graph context cn ∈ Rd, 234

which augments the semantics of the candidate 235

news ncan by aggregating the information of Gn. 236

We consider the original semantics of the candidate 237

news preserved in the root node v0 and regard the 238

local graph context as hLn = hn,0 ∈ Rd. Besides, 239

we employ an attention module to aggregate the 240

global graph context hGn ∈ Rd from the semantic- 241

relevant news nodes to encode the overall semantic 242

information of Gn. In the attention module, we 243

regard the root node embedding hn,0 as the query 244

and the semantic-relevant news node embeddings 245

{hn,i}Ni=1 as the key-value pairs. 246

ei =
(hn,0WQ

n )(hn,iWK
n )T√

d
(3) 247

αi = softmax(ei) =
exp(ei)∑N
j=1 exp(ej)

(4) 248

hGn =

N∑
i=1

αihn,i (5) 249

, where WQ
n ∈ Rd×d and WK

n ∈ Rd×d are parame- 250

ter matrices. We concatenate the local and global 251

graph contexts and employ a feed-forward network 252

to learn the news graph context cn. 253

cn = σ
(
Wn[hLn ;hGn ] + bn

)
(6) 254

, where Wn ∈ Rd×2d and bn ∈ Rd are learnable 255

parameters. Above parameters are shared among 256

different graph layers described in Section 3.4. 257
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3.3 User Graph Encoding Channel258

In this section, we will explain the user graph con-259

struction and graph context learning.260

3.3.1 User Graph Construction261

Motivated by Hu et al. (2020a) and Wu et al. (2021),262

we model user history with graph structure to en-263

code multi-levels of user interests. We build a het-264

erogeneous user graph Gu containing news nodes265

and topic nodes: (1) For a user’s historical clicked266

news Hu = [n1, n2, ..., n|H|], we treat it as a set of267

historical news nodes for news-level user interest268

representation. (2) For the clicked news nj , it is269

pertaining to a certain news topic4 T (i). We treat270

the clicked news topics as historical topic nodes for271

topic-level user interest representation.272

To capture the interaction among news and top-273

ics, we introduce three types of edges:274

News-News Edge. News nodes with the same275

topic category (e.g., Sports) are fully connected.276

In this way, we can capture the relatedness among277

clicked news with news-level interaction.278

News-Topic Edge. We model the interaction279

between clicked news and topics by connecting280

news nodes to their corresponding topic nodes.281

Topic-Topic Edge. Topic nodes are fully con-282

nected. In this way, we can capture the overall user283

interests with topic-level interaction.284

3.3.2 User Graph Context Extraction285

Given the user history Hu = [n1, n2, ..., n|H|],286

we employ the semantic news encoder (described287

in Section 3.1) to learn the historical news em-288

beddings hnu = [hnu,1, h
n
u,2, ..., h

n
u,|H|] ∈ R|H|×d.289

Given |T (·)| topics indicated by the clicked news,290

the topic nodes are embedded into learnable embed-291

dings htu = [htu,1, h
t
u,2, ..., h

t
u,|T (·)|] ∈ R|T (·)|×d.292

The user graph embeddings are as hu = [hnu, h
t
u].293

Following Qi et al. (2021c), we extract the graph294

context cu ∈ Rd in a hierarchical way. First, we295

employ an attention module to learn the topic rep-296

resentation h̃u,T (i) ∈ Rd of the topic T (i). The297

topic-attention module regards the news graph con-298

text cn as the query and the news embeddings299

{hnu,j}nj∈T (i) of topic T (i) as the key-value pairs.300

h̃u,T (i) = Attention
(
cn, {hnu,j}, {hnu,j}

)
(7)301

Then, we employ another attention module to ex-302

tract the user graph context cu ∈ Rd. The user-303

attention module regards the news graph context304

4For example, in the MIND (Wu et al., 2020) dataset, each
news has a topic category (e.g., Sports and Entertainment).
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Figure 2: The overall architecture of DIGAT.

cn as the query and the learned topic representa- 305

tions {h̃u,T (i)}
|T (·)|
i=1 as the key-value pairs. 306

cu = Attention
(
cn, {h̃u,T (i)}, {h̃u,T (i)}

)
(8) 307

Attention(·, ·, ·) in Eq. (7) and (8) denotes the stan- 308

dard attention module with Query/Key/Value. We 309

implement Attention(·, ·, ·) as scaled dot-product 310

attention (Vaswani et al., 2017) in our experiments. 311

3.4 Dual-Graph Interaction 312

In news graph Gn, node embeddings {hn,i}|Gn|
i=0 313

contain the information of augmented candidate 314

news semantics. In user graph Gu, node embed- 315

dings {hu,i}|Gu|
i=0 contain the information of user his- 316

tory. We learn informative news and user graph em- 317

beddings by aggregating neighboring node informa- 318

tion with stacked graph attention layers (Veličković 319

et al., 2018). Most importantly, our dual-graph in- 320

teraction model aims at facilitating effective feature 321

interaction between the news and user graphs. By 322

effective dual-graph feature interaction, accurate 323

news-user representation matching can be achieved. 324

In the dual-graph interaction, the (l+1)-layer news 325

node embeddings h(l+1)
n is updated based on the 326

l-layer news node embeddings h(l)n and user graph 327

context c(l)u jointly (vice versa to update the user 328

node embeddings h(l+1)
u ), as illustrated in Figure 2. 329

We illustrate the news node embedding update 330

process for example. We first perform a linear trans- 331

formation on the l-layer news node embedding h(l)n,i 332

to derive higher-level graph features ĥn,i: 333

ĥn,i = Ŵ
l
nh

(l)
n,i + b̂

l
n, (9) 334

where Ŵ
l
n ∈ Rd×d and b̂

l
n ∈ Rd are learnable. 335

In order to learn news node embeddings inter- 336

acting with user graph, we integrate the user graph 337
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context c(l)u into news graph attention computation.338

For news node i and node j ∈ N n
i (where N n

i is339

the neighborhood of node i), we incorporate user340

graph context c(l)u into computing the attention key341

vectorKi,j . We use a feed-forward network FFN(l)
n342

to compute Ki,j based on the fused information of343

c
(l)
u , ĥn,i and ĥn,j . The news graph attention coeffi-344

cient αi,j is computed aware of user graph context.345

Ki,j = FFN(l)
n

([
c(l)u ; ĥn,i; ĥn,j

])
(10)346

αi,j =
exp
(

LeakyReLU
(
aTnKi,j

))
∑

k∈Nn
i

exp
(

LeakyReLU
(
aTnKi,k

)) (11)347

, where aTn is a learnable attention weight vector.348

Finally, we aggregate the neighboring node embed-349

dings with attention coefficient αi,j , followed by350

ReLU activation. Residual connection is applied to351

mitigate gradient vanishing in deep graph layers.352

h
(l+1)
n,i = ReLU

( ∑
j∈Nn

i

αi,j ĥn,j

)
+ h

(l)
n,i (12)353

The news and user graph contexts c(l)n and c(l)u354

are extracted from the l-layer graph node embed-355

dings as described in Section 3.2.2 and 3.3.2. We356

summarize Eq. (9) to (12) as the news node embed-357

ding update function Φ
(l)
n :358

h
(l+1)
n,i = Φ(l)

n

(
c(l)u , h

(l)
n,i,
{
h
(l)
n,j

}
j∈Nn

i

)
(13)359

Similarly, the user node embedding update func-360

tion is formulated as Φ
(l)
u :361

h
(l+1)
u,i = Φ(l)

u

(
c(l)n , h

(l)
u,i,
{
h
(l)
u,j

}
j∈Nu

i

)
(14)362

The dual-graph interaction can be viewed as363

an iterative process that performs (1) user graph364

context-aware attention to update news node em-365

beddings and (2) news graph context-aware atten-366

tion to update user node embeddings. We model367

the dual interaction with L stacked layers. The final368

layers of news and user graph contexts cLn and cLu369

are adopted as news and user graph representations370

rn and ru, which refine the news and user graph in-371

formation with deep feature interaction. Algorithm372

1 illustrates the dual-graph interaction process.373

3.5 Click Prediction and Model Training374

With the news and user graph representations rn375

and ru, our model aims to predict the matching376

score ŝn,u, which signals how likely user u will377

Algorithm 1 News-User Graph Interaction

Input: news node embeddings h0n = {h0n,i}
|Gn|
i=0 ,

user node embeddings h0u = {h0u,i}
|Gu|
i=0 ,

number of dual-graph layers L.
Output: news graph representation rn and user

graph representation ru.
1: Initialize c0n from h0n with Eq. (3) - (6).
2: Initialize c0u from h0u with Eq. (7) - (8).
3: for l = 0, 1, ..., L− 1 do
4: Update the (l + 1)-layer news node embed-

dings h(l+1)
n with Eq. (13).

5: Update the (l + 1)-layer user node embed-
dings h(l+1)

u with Eq. (14).
6: Update the (l+ 1)-layer news graph context

c
(l+1)
n with Eq. (3) - (6).

7: Update the (l+ 1)-layer user graph context
c
(l+1)
u with Eq. (7) - (8).

8: end for
9: rn = cLn and ru = cLu .

10: return rn, ru

click news n. Motivated by An et al. (2019), we 378

compute the news-user representation matching 379

score by dot product as ŝn,u = rTn ru. 380

Following Wu et al. (2019b,d), we use nega- 381

tive sampling approach to train our model. For 382

the user behavior that user u had clicked news ni, 383

we compute the click matching score as ŝ+i for 384

ni and u. Besides, we randomly sample S non- 385

clicked news [n1, n2, ..., nS ] from the user’s behav- 386

ior log and compute the negative matching scores 387

as [ŝ−i,1, ŝ
−
i,2, ..., ŝ

−
i,S ]. We optimize the NCE loss L 388

over the training dataset D in model training. 389

L = −
|D|∑
i=1

log
exp(ŝ+i )

exp(ŝ+i ) +
∑S

j=1 exp(ŝ−i,j)
(15) 390

4 Experiments 391

4.1 Dataset and Experiment Settings 392

We conduct experiments on the real-world bench- 393

mark dataset MIND (Wu et al., 2020). MIND is 394

constructed from anonymized user behavior logs of 395

Microsoft News with two versions of MIND-large 396

and MIND-small. MIND-large contains 1 million 397

anonymized users with user-click impression logs 398

of 6 weeks from October 12 to November 22, 2019. 399

The training and dev sets contain the impression 400

logs of the first 5 weeks, and the last week impres- 401

sion logs are reserved for test. MIND-small consists 402
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MIND-small MIND-large
# Method AUC MRR nDCG@5 nDCG@10 AUC MRR nDCG@5 nDCG@10
1 GRU 61.51 27.46 30.11 36.61 65.42 31.24 33.76 39.47
2 DKN 62.90 28.37 30.99 37.41 64.07 30.42 32.92 38.66
3 NAML 66.12 31.53 34.88 41.09 66.46 32.75 35.66 41.40
4 NPA 64.65 30.01 33.14 39.47 65.92 32.07 34.72 40.37
5 LSTUR 65.87 30.78 33.95 40.15 67.08 32.36 35.15 40.93
6 NRMS 65.63 30.96 34.13 40.52 67.66 33.25 36.28 41.98
7 FIM 65.34 30.64 33.61 40.16 67.87 33.46 36.53 42.21
8 HieRec 67.83 32.78 36.31 42.49 69.03 33.89 37.08 43.01
9 GERL 65.27 30.10 32.93 39.48 68.10 33.41 36.34 42.03
10 GNewsRec 65.54 30.27 33.29 39.80 68.15 33.45 36.43 42.10
11 User-as-Graph† – – – – 69.23 34.14 37.21 43.04

DIGAT 68.39 33.08 36.71 42.92 69.96 34.78 38.05 43.76

Table 1: Evaluation results of all methods. Experiments of baseline #1 to #10 and DIGAT are conducted 10
times on MIND-small and 5 times on MIND-large, respectively. We report the average performance. †Results of
User-as-Graph are directly copied from the previous works (Wu et al., 2021).

of 50000 users, which are randomly sampled from403

MIND-large with the impression logs.404

Following previous works (Wang et al., 2020;405

Qi et al., 2021c), we use news titles with the maxi-406

mum length of 32 words for news textual encoding.407

The user history includes 50 news items they have408

recently clicked. The news word embeddings are409

300-dimensional and initialized from the pretrained410

Glove embeddings (Pennington et al., 2014). Fol-411

lowing An et al. (2019), we set the number of neg-412

ative news samples S to be 4. For our model pa-413

rameters, the number of CNN feature maps d is414

set as 400. The number of neighboring nodes M415

and hops K are 5 and 2, respectively. We set the416

number of dual-graph interaction layers as L = 4.417

We use Adam optimizer (Kingma and Ba, 2015)418

with the learning rate of 1e-4 to train our model.419

Following Wu et al. (2020), we employ the recom-420

mendation ranking metrics AUC, MRR, nDCG@5421

and nDCG@10 to evaluate model performance.422

4.2 Compared Methods423

We compare our model with the state-of-the-art424

news recommendation methods: (1) GRU (Okura425

et al., 2017), learning user representations from a426

sequence of clicked news with a GRU network; (2)427

DKN (Wang et al., 2018), using a knowledge-aware428

CNN to learn news representations from both news429

texts and knowledge entities; (3) NAML (Wu et al.,430

2019a), learning news representations from news431

titles, bodies, categories and subcategories with432

multi-view attention networks; (4) NPA (Wu et al.,433

2019b), encoding news and user representations434

with personalized attention networks; (5) LSTUR435

(An et al., 2019), jointly modeling long-term user436

embeddings and short-term user interests learned 437

by a GRU network; (6) NRMS (Wu et al., 2019d) 438

encoding informative news and user representa- 439

tions with multi-head self-attention networks; (7) 440

FIM (Wang et al., 2020), encoding news content 441

with dilated convolutional networks and modeling 442

user interest matching with 3-D convolutional net- 443

works; (8) HieRec (Qi et al., 2021c), modeling user 444

interests in a three-level hierarchy and performing 445

multi-grained matching between candidate news 446

and hierarchical user interest representations. 447

We also compare our model with competitive 448

graph-based methods: (9) GERL (Ge et al., 2020), 449

modeling the news-user relatedness with a bipartite 450

graph, which enhances news and user representa- 451

tions by aggregating neighboring node information; 452

(10) GNewsRec (Hu et al., 2020a), using graph 453

neural networks (GNN) (Hamilton et al., 2017) to 454

encode long-term user interests from a user-news- 455

topic graph; (11) User-as-Graph (Wu et al., 2021), 456

utilizing a heterogeneous graph pooling method 457

to extract user representations from personalized 458

heterogeneous behavior graphs. 459

4.3 Main Experiment Results 460

In Table 1, we present the main experiment results. 461

We can observe that DIGAT significantly outper- 462

forms the general two-tower encoder methods (i.e., 463

methods #1 to #8) on the both datasets. This is 464

because even though some baselines use topic cate- 465

gories or knowledge entities to enrich news infor- 466

mation (e.g., HieRec learns news representations 467

from both news texts and knowledge entities), the 468

information entailed in single candidate news may 469

be still insufficient. In contrast, DIGAT can sub- 470
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AUC MRR nDCG@5 nDCG@10
w/o SA 67.57 32.38 35.81 42.10
TF-IDF SA 67.76 32.61 36.14 42.39
SA-Seq 68.05 32.75 36.41 42.62
DIGAT 68.39 33.08 36.71 42.92

Table 2: Experiment results of SAG modeling variants.

stantially enrich the semantic information of the471

single candidate news by SAG modeling, which472

provides more accurate candidate news signals to473

match user interests. Besides, DIGAT significantly474

outperforms three graph-based baselines. We find475

that GERL is hard to model news-user interaction476

in test data, as most candidate news items in test477

data are fresh and have no click-interaction with478

users. Differently, DIGAT models news and users479

with dual graph channels instead of a joint bipar-480

tite graph, which circumvents this cold news issue.481

Compared to GNewsRec and User-as-Graph, DI-482

GAT performs more effective feature interaction be-483

tween the news and user graphs, which can enhance484

more accurate news-user representation matching.485

4.4 Effectiveness of SAG Modeling486

We examine the effectiveness of SAG modeling487

from three perspectives: (1) To examine the effec-488

tiveness of semantic-augmentation (SA) strategy,489

we remove SAG from our model and instead learn490

single candidate news representation (w/o SA). (2)491

To inspect the function of PLM φ(·) in SAG con-492

struction (see Section 3.2.1), we conduct controlled493

experiments by replacing φ(·) with TF-IDF feature494

extractor (TF-IDF SA). (3) To examine the effec-495

tiveness of graph-based SA, we conduct controlled496

experiments by organizing the semantic-relevant497

news in a sequential form and extracting the news498

sequence context similar to Eq. (3)-(6) (SA-Seq).499

The experiments in this section and following sec-500

tions are conducted on MIND-small.501

Table 2 shows the experiment results. We can502

see that abandoning the SA strategy (w/o SA) leads503

to the largest performance drop, as TF-IDF SA and504

SA-Seq also yield better performance than w/o SA.505

This validates the effectiveness of SA strategy to506

enrich candidate news semantics and further en-507

hance news recommendation. TF-IDF SA under-508

performs our original approach significantly. We in-509

fer that the TF-IDF features can only evaluate news510

similarity at the syntactic level, which may not be511

able to accurately retrieve semantic-relevant news512

for SAG construction. In contrast, PLM can accu-513
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Figure 3: Ablation results on dual-graph interaction.

rately evaluate news similarity at the semantic level 514

and help retrieve more relevant news to enhance 515

SAG modeling. Besides, SA-Seq is suboptimal 516

compared to the original graph-based SA. This is 517

because the graph-based SA method can accurately 518

model the relatedness among the candidate news 519

and semantic-relevant news with multi-neighbor 520

and multi-hop graph structure, which further im- 521

proves the effectiveness of SA strategy. 522

4.5 Ablation Study on Graph Interaction 523

To examine the effectiveness of dual-graph inter- 524

action, we design the following ablation experi- 525

ments: (1) w/o Interaction. We employ the vanilla 526

graph attention networks (GAT) (Veličković et al., 527

2018) to learn news and user graph embeddings, re- 528

spectively, without interaction between dual graphs. 529

(2) News Graph w/o Inter. The news graph em- 530

bedding update layers are replaced with vanilla 531

GAT layers. Concretely, Eq. (13) is modified into 532

h
(l+1)
n,i = Φ̄

(l)
n

(
h
(l)
n,i, {h

(l)
n,j}j∈Nn

i

)
, where Φ̄

(l)
n is the 533

standard GAT graph embedding update function 534

without feature interaction with user graph context. 535

(3) User Graph w/o Inter. Similar to (2), we re- 536

place the user graph embedding update layers with 537

vanilla GAT layers. 538

Figure 3 shows the performance of the ablation 539

models. We can see that w/o Interaction underper- 540

forms the other three models with graph interaction 541

modeling. It indicates that feature interaction be- 542

tween candidate news and users is necessary to 543

enhance news recommendation. Besides, we can 544

observe that removing user graph interaction (User 545

Graph w/o Inter) leads to more performance drop 546

than News Graph w/o Inter, which implies that 547

user graph interaction may contribute more to our 548

model. Moreover, DIGAT surpasses the two single 549

7



Figure 4: DIGAT performance with different M and K settings of SAG.

graph interaction ablations by a significant margin,550

validating the effectiveness of modeling dual-graph551

interaction in a deep and iterative manner.552

4.6 Analysis on SAG Parameters553

We investigate two key parameters of SAG, i.e., the554

number of node neighborsM and hopsK. Figure 4555

shows the influence of different M and K settings.556

As shown in Figure 4(a), DIGAT performance557

continues rising as M increases from 1 to 5. This558

is because with more semantic-relevant news incor-559

porated, SAG can leverage more fine-grained se-560

mantic information to enhance the candidate news561

representations. It can be observed that the model562

performance slightly declines when M > 5. The563

reason could be twofold. First, as the scale of564

SAG grows larger, it becomes more challenging565

for our model to distill the global graph context of566

SAG (see Section 3.2.2). Second, as M becomes567

too large, it is inevitable to retrieve more noisy568

news in the SAG construction process, which may569

hurt the SAG modeling. From Figure 4(b), we find570

that K = 2 is the optimal hop setting. This may be571

because two hops of SAG can heuristically capture572

more useful semantic-relevant news information573

than simple one-hop modeling, while higher-hop574

extension may introduce too much irrelevant news575

and interfere with accurate semantic augmentation576

for candidate news. In general, we select M = 5577

and K = 2 on our SAG construction5.578

4.7 The Number of Dual-Graph Layers579

We study the influence of the number of dual-graph580

layers L on DIGAT. The results are presented in581

Figure 5. We can see that the model performance582

first keeps increasing and reaches a peak at L = 4.583

5The SAG construction (M = 5 and K = 2) on MIND-
large can be finished in 15 minutes on Intel(R) Xeon(R) Gold
6226R CPU @ 2.90 GHz with Nvidia V100 GPU.

67.90

68.10

68.30

68.50

AU
C
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42.25

42.50
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43.00
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Figure 5: DIGAT performance with different numbers
of dual-graph layers L.

It suggests that deep feature interaction between 584

news and user graphs is useful to improve recom- 585

mendation performance, as it can model news and 586

user representation matching in a more fine-grained 587

way. We can also observe that further increasing 588

L hurts the model performance. It may be caused 589

by the unstable gradient in training the deep dual- 590

graph architecture, as we empirically find that gra- 591

dient clipping (Pascanu et al., 2013) is indispens- 592

able to successfully train DIGAT when the dual- 593

graph layers are too deep (i.e., L = 6, 7). 594

5 Conclusion 595

In this work, we present a dual-graph interaction 596

framework for news recommendation. In our ap- 597

proach, a graph enhanced semantic-augmentation 598

strategy is employed to enrich the semantic infor- 599

mation of candidate news. Moreover, we design 600

a dual-graph interaction mechanism to achieve ef- 601

fective feature interaction between news and user 602

graphs, facilitating more accurate news and user 603

representation matching. Our approach advances 604

the state-of-the-art news recommendation methods 605

on the MIND benchmark dataset. Extensive ex- 606

periments and further analysis validate that SAG 607

modeling and dual-graph interaction can effectively 608

improve news recommendation performance. 609
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Algorithm 2 SAG Construction Procedure
Input: candidate news n0, training news corpus

{NT }, node neighbors M and hops K.
Output: semantic-augmented graph Gn

1: Regard n0 as the root node v0 of SAG.
2: Initialize graph node set V ← {v0} and edge

setE ← {}. Define parent node set P ← {v0}
and node-hop counter hop[v0] = 0.
// Graph extension process

3: while P 6= ∅ do
4: Pop a node vi from P , then P = P \ {vi}
5: Retrieve M news {nj}Mj=1 from the news

corpus {NT } with the M highest semantic
similarity scores {si,j}Mj=1 as nodes {vj}Mj=1

6: for j = 1, 2, ...,M do
7: if vj 6∈ V then
8: V = V ∪ {vj}
9: hop[vj ] = hop[vi] + 1

10: if hop[vj ] < K then
11: P = P ∪ {vj}
12: end if
13: end if
14: if edge ei,j 6∈ E then
15: E = E ∪ {ei,j}
16: end if
17: end for
18: end while
19: Gn = {V,E}.
20: return Gn

A Semantic-augmented Graph817

Construction and Examples818

Algorithm 2 illustrates the procedure of semantic-819

augmented graph (SAG) construction. First of all,820

the SAG Gn is initialized from the root node v0,821

which represents the original candidate news n0.822

The graph construction is performed by repeat-823

edly extending semantic-relevant neighboring news824

nodes to existing nodes in Gn. In the graph ex-825

tension process (line 3 to 18 in Algorithm 2), for826

an existing node vi (corresponding to news ni)827

in Gn, we retrieve M news documents {nj}Mj=1828

from the training news corpus6 {NT } with the M829

highest similarity scores {si,j}Mj=1. The similar-830

ity score si,j of news ni and nj is evaluated by a831

PLM φ(·) with Eq. (2). We treat the retrieved news832

{nj}Mj=1 as news nodes {vj}Mj=1. For each node833

vj , we extend it to Gn as a neighboring node of vi834

6In our experiments, we utilize news in the train/news.tsv
data file of MIND dataset to construct the news corpus.

by adding bidirectional edge ei,j between vi and 835

vj . To heuristically explore higher-order semantic- 836

relevant news, news nodes in SAG are extended 837

from the root node v0 within K hops at most. 838

SAG Examples. Figure 6 demonstrates an ex- 839

ample of SAG instance for the candidate news n0 840

“Should the NFL be able to fine players for criti- 841

cizing officiating”. Interestingly, from Figure 6(b), 842

we can see that there are many similar news items 843

in SAG regarding a specific event or person (i.e., 844

“NFL” and “fine players”) from different perspec- 845

tives. These semantic-relevant news documents 846

can be finely retrieved with the help of PLM and 847

substantially enrich the semantic information of the 848

original candidate news. 849

News Clustering Phenomenon. From the ex- 850

ample SAG shown in Figure 6(a), we find that 851

there exist many cyclic sub-graphs, revealing the 852

news clustering phenomenon in the semantic space. 853

This cyclic graph structure indicates the presence of 854

similar news clusters at different levels of granular- 855

ity, coinciding with the previous research (Altuncu 856

et al., 2018). It also justifies the motivation of our 857

work. By augmenting the semantic-relevant infor- 858

mation, SAG is capable of capturing robust and 859

informative representations of the candidate news. 860
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n1 n0

n6

n5
n2 n4

n3

(a) (b)

News Title Neighbors

n0
Should the NFL be able to fine players for 
criticizing officiating?

[1,2,3,4,5]

n1
NFL sending message with multiple fines for 
criticizing referees

[0,6]

n2
NFL cracks down on criticizing refs with fines
for Baker Mayfield, Clay Matthews

[0,7]

n3
NFL cracks down on internal dissent over 
officiating

[0,6,8]

n4 NFL fines Baker Mayfield for stating the 
obvious

[0,8]

n5
Biggest blown call of season may prove NFL
officials are wrecking new pass interference 
rule

[0,7]

n6
Mayfield fined after comments on officiating 
following loss to seahawks

[1,3]

·······

n7

n8

Figure 6: An example of SAG (M = 5 andK = 2) constructed from news n0 in MIND-large (news ID: N124534):
(a) A subgraph of the example SAG including root node n0 and semantic-relevant news node ni (i = 1, 2, ..., 8);
(b) News in SAG and the corresponding title texts. For brevity, we only present an SAG subgraph of news nodes.
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