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Abstract

The need for matrix decompositions (inverses) is often named as a major impediment to
scaling Gaussian process (GP) models, even in efficient approximations. To address this,
Van der Wilk et al. (2020) introduced a variational lower bound that can be computed
without these costly operations. We improve this bound by 1) simplifying it by removing
the need for iterative procedures, and 2) making it more numerically stable. While these
improvements do not result in a procedure that is faster in wall-clock time than existing
variational bounds, they are likely to be necessary steps along the way.

1. Introduction

Gaussian processes (GPs) (Rasmussen and Williams, 2006) are distributions on functions
with many properties that make them convenient for Bayesian modelling. In particular,
their nonparametric properties improve uncertainty estimation and simplify hyperparameter
tuning. Variational approximations (Titsias, 2009) were originally introduced to address the
O(N3) computational cost of manipulating GPs when considering N datapoints. However,
these approximations also enabled Gaussian processes to be used in much more sophisticated
models. Deep Gaussian Processes (DGPs) in particular are intriguing as they present a way
to merge the benefits of GPs with Neural Networks (NNs). While DGPs can be seen as direct
Bayesian analogues of deep NNs (Dutordoir et al., 2021), DGPs are still not a convenient
way to perform Bayesian Deep Learning. One contributing factor to this, is the high cost
of each training iteration, despite the development of minibatching (Hensman et al., 2013).
One cause is the need to compute an M x M matrix inverse and determinant, making
the cost for each layer O(M?3 + BM?), where M is analogous to the number of neurons
in a layer and B is the minibatch size. These matrix operations are costly and limit the
effectiveness of minibatching for speeding up each training iteration. In addition, these
matrix operations are serial and require high-precision floating point operations, which is
poorly suited to modern day hardware. It therefore seems likely that these operations will
need to be removed for Deep Gaussian Processes to truly scale.

We investigate variational approximations that do not require the computation of costly
matrix operations at every iteration. Van der Wilk et al. (2020) introduced such an “inverse-
free” approximation, which could be computed without performing matrix decompositions
or inverses to completion, while also being a drop-in replacement for schemes based on
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Hensman et al. (2013) (e.g. Salimbeni and Deisenroth (2017) for DGPs). We make the
inverse-free bound 1) less cumbersome, by removing iterative procedures, and 2) more
numerically stable. While issues with training still prevent a wall-clock speed-up, we believe
our improvements are necessary steps on the way.

2. Variational Inference for Gaussian Process Models

For the sake of brevity, we consider the simplest possible model to introduce our new bound.
We aim to learn some function f : X — R in a Bayesian manner by placing a GP prior on
f(-), and observing data y € RY through some arbitrary pointwise factorised likelihood:

N
f() ~ g,P(O? k(- /)) ) Y‘f H yn‘f Xn (1)

2.1. Marginal Parameterisation

Variational inference for GPs' decouples the size of matrix inverses from the dataset size
(Titsias, 2009), allows minibatching (Hensman et al., 2013), and addresses non-conjugacy
(Hensman et al., 2015). The approximation introduces a set of tractable approximate
posteriors by conditioning the prior on M inducing variables u € RM e.g. observations
f(Z) for the M inputs collected in Z € XM and specifying the marginal distribution on u
as ¢(u) = N(u;m, S). This results in the approximate posterior for arbitrary inputs X*:

A(F(X7)) = / p(f(X*[w)g(u)du
=N(f(X*); kwKgm, K. —koKgoke + kaKoaSKokas) ,  (2)

where the subscripts of K matrices determine its elements as e.g. [Kuul;; = Covlu;, u;] =
k(zi,zj). The KL between approximation and posterior (Matthews et al., 2016) can be
minimised by maximising the ELBO (Hensman et al., 2013, 2015):

N

Low =Y Ey(pixnllog pynlf(xn))] — KL[g(u)||p(w)] , (3)
n=1
KLlg(w)llp(w)] = 5 ( Tr(KG1S) + mKhm — M +logKu| — loglS]) . (4)

2.2. Likelihood Parameterisation

While the former parameterisation is the most common, it is numerically unstable as Ky
can be arbitrarily badly conditioned (e.g. singular for repeated inducing inputs). Panos
et al. (2018) noted this in passing, and suggested using the likelihood parameterisation:

SN (u; 3, Z)p(u)du

= N(u§ Kuu(Kuu+2)_1y7 Kuu_Kuu(Kuu+2)_1Kuu ) . (5)

=Kyup=m :(K;&-}-Z*l)*lzs

1. See Van der Wilk (2019) for a gentle introduction, or Matthews (2017) for a rigorous discussion.
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This can simply be seen as a straightforward reparameterisation of ¢(u) = N (u;m, S) (note
the equalities to m, S above)?, but with the matrix operations now performed on Kyy + X:

Q(f(xn)) = N(f(xn)7 knuﬂa k;nn - knu(Kuu + ZJ)_lkun) s (6)
KL[g(u)|[p(u)] = %(_ Tr((Kuu =+ 2)71Kuu) + 1" Kyapr + log|Kuu + 2| — 10g|2‘) - (7

This has one big advantage: by enforcing a small minimum diagonal term in 3, we only
need to decompose matrices with lower bounded minimum eigenvalues. In the marginal
parameterisation, this is typically ensured in an ad-hoc manner by adding “jitter” to Kyy
directly. In the likelihood parameterisation, numerical stability is ensured through a well-
defined variational parameter. If it has to be constrained to be larger than what is optimal
because of limited floating-point precision, this is penalised in the ELBO, in a manner that
is unified with all other properties of the approximation. Typically though, the uncertainty
on u will be many times larger than jitter matrices, leading to much more stable inverses.?
This improved numerical stability is even more crucial for inverse-free variational bounds.

3. Improved Inverse-Free Variational Bounds for Gaussian Processes

3.1. Inverse-Free Marginal Parameterisation

Van der Wilk et al. (2020) noted that substituting an over-estimate of the predictive variance
of eq. (2) into the ELBO calculation resulted in a further lower bound to Lsy, for concave
log-likelihoods. This allows further inverses to be removed by bounding k,,u K. kun using

(an — Kyikun) Kaa (an — Kgikun) > 0 (8)
— knn - knuK;&kun < knn + a;Kuuan - 23-:Lkun ) (9)

with equality when a, = K ku,. In principle, this could lead to a method where one a,
per datapoint would be optimised alongside with the existing variational parameters. To
avoid adding a parameter for each datapoint, we can reparameterise a,, = Tky,,, where T €
RM*M is now a free matrix which takes T = K} when optimised to a maximum. Van der
Wilk et al. (2020) suggested to optimise T along with the other variational parameters.

Herein lies the problem of numerical stability of this parameterisation: As the condition-
ing of Ky, worsens, entries in K} tend to infinity. Gradient-based optimisers (e.g. Adam)
have limited step sizes and cannot be expected to successfully recover such solutions.

The second problem of using this parameterisation lies in the log-determinants that
need to be computed for the KL term (eq. (4)). These terms were not removed by the
reparameterisation, and are equally costly as inverses. The same Cholesky decomposition
that is often used for computing the inverse is used for computing log-determinant terms.

To still obtain an inverse-free method, this is addressed by using randomly truncated
Conjugate Gradients (CG) to compute unbiased estimates of the gradient of the log-
determinant (Filippone and Engler, 2015). To avoid needing to run M iterations of CG and

2. Bui et al. (2017) discuss this to unify variational and EP methods, and note that it works by specifying
variational parameters more as data that is combined with the prior by Bayes rule. The approximation
would be exact if the “variational” data and observation noise ¥, 3 would match the real data.

3. This is interesting, because it links the statistical precision from our inference (i.e. the uncertainty we
have) to how much numerical precision we need (i.e. to invert the matrix successfully).
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ending back at the O(M?3) computational cost, T was used as a preconditioner, which at
least would ensure convergence within a single CG iteration at the optimal value T = K.
This procedure is cumbersome as it introduces nested iterations: one inner loop for running
CG to compute the bound, and an outer loop for optimising all the parameters. This is
difficult to implement, and slow to run.

3.2. Deriving the Inverse-Free Likelihood Parameterisation

Applying the same inverse-free trick in the likelihood parameterisation solves both problems
of the former approach. We begin in the same way: by lower-bounding the predictive
variance and introducing T, only we do so in the likelihood parameterisation of eq. (6):

knn - knu(Kuu + 2)_1kun § knn + knuT(Kuu + z])r]:‘kun - 2knur]:‘kun (10)

In this case, equality will be obtained when T = (Kyy + 2)71, which is much more numer-
ically stable, as discussed in section 2.2.

Next, our goal is to remove log-determinant terms from the KL[g(u)||p(u)] computation.
Our likelihood parameterisation allows us to derive an upper bound to the KL without ma-
trix decompositions. We start by considering whether the upper bound on the predictive
variance in eq. (10) could have been obtained by a particular choice of variational distri-
bution g(u). We find this by equating the upper bound in eq. (10), with the predictive
variance term in the marginal parameterisation from eq. (2), and solving for S:

Enn + Knu T(Kuu + 2)Tkun — 2knuTkun = knn — KnuKgikun + KnuK g SKiku,  (11)

u

We find the S that results in our upper bounded predictive variance in two forms:

S = Kuu - Kuu(2T - T(Kuu + Z)T)I<uu (12)
- Kuu - Kuu(Kuu + 2])_1I<uu+
Kuu(T — (Kuu + 2) ) (Kuu + 2T — (Kuu + 2) HKuu - (13)
=A>0

We obtain one compact form, and one form that shows that it is equivalent to the likelihood
parameterisation, but with an additional PSD term added.

We now find KL[g(u)||p(u)] for our new inverse-free parameterisation by substituting in
egs. (12) and (13) and m = Ky, p from eq. (5) into eq. (4):

KL = - (Te(KulS) + u"Kuupe — M + log[Ku| — log]s|)

N =N =

(Tr(KH&S) + 1 Kuupp — M + log|Kuu| — 10g[Kuu — Kuu(Kuu + 2) ' Kuu + A})
(14)
By using the fact that log|A + A| > log|A| if A, A are PSD, we can bound the KL:

1 _ _
KL < §<Tr(Ku&S) + U Kuupt — M+ 10g K| — 10g|Kuu — Kuu (Ko + %) lKuuD
1
= 5 (Tr(K0iS) + 1 Kuts = M + og| K + | — log| )
1
- §<Tr((T(Kuu + )T - 2T)Kyu) + 1" Kuupt + log|Kuu + 3| — 1ogyz\) . (15)
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Simply by reparameterisation, the inverse in the trace from eq. (7) has been removed. Now,
we apply the bound log|A| < Tr(A —1I) to remove the final problematic log| Ky, + | term:

log Ko + 3| = log] (Ko + £)T|  log|T| (16)
<Tr(Kyu + 2)T —I) —log|T|. (17)

By applying the bound to (Kyy + X)T, we ensure that equality holds when T = (Kyuy +
3)~!, at which point we recover the original likelihood parameterisation.

3.3. Summarising the Inverse-Free Likelihood Parameterisation

Through our derivation, we obtained a marginal likelihood bound for a GP model that 1)
is more numerically stable, and 2) does not require iterative procedures for computing the
KL. It can be obtained in two steps. First, we use egs. (6) and (12) to reparameterise the
approximate posterior, which also implies an inverse-free predictive distribution:

q(u) = N(u; Kuupt, Kuou — Kuu(2T — T(Kuu + E)T)Kuu> : (18)
~——
m S

Qiﬂp(f(xn)) = N(f(xn)» knuﬂa knn + knuT(Kuu + 2)Tkun - 2knuTkun) (19)

Next, we remove matrix decompositions by applying additional bounds to the KL:

N
Litp = Y Eg (7)) 108 2(yn | f (x))] = KL[g(w)|[p(w)], (20)

n=1

KLlg(w)[p(w)] < 5 ( Tr{(T(Kun + DT ~ 21K +
1 K gupt + Tr[(Kyy + )T — 1) — log|T| — 1og\z\) . (1)

Training now requires optimising T along with the existing variational parameters p, 33. To
ensure the final log determinants are efficiently computable, we parameterise T and X using
their Cholesky decompositions. We note that when T is optimised to its optimal value of
(Kuu +X) 71, the predictive variance and KL bounds are both equalities. This implies that
if optimisation is successful, no performance is lost by using this inverse-free bound.

4. Results

To test the behaviour of the method, we train a GP regression model with the original SVGP
bound, and the our inverse free bound (RSVGP). To train the model, we follow the common
procedure of using autodiff for finding gradients, and Adam to perform optimisation. We
note that our new RSVGP bound was significantly easier to implement than that of van der
Wilk et al. (2020), because the latter required custom gradient ops with CG inner loops.

Figure 1 shows a fit on a toy 1D dataset, together with a plot of the ELBO objective
with time. We see that the approximations are all very similar, indicating that the inverse
free bound is behaving similarly to the commonly used SVGP approximation (Hensman
et al., 2013). However, even for this simple example, we note that our inverse-free method
takes more iterations to converge than the existing SVGP.
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Significant problems arise with training when running RSVGP on the more realistic
kin40nm UCI dataset (fig. 2). We notice that hyperparameters converge much more slowly
for RSVGP than SVGP, which leads to poor performance. In particular, there is very
strange behaviour of the hyperparameters moving in the correct direction, to only reverse
direction suddenly. This is reflected by a metric of how good the variational parameter
T approximates (Kuyy + )71, It seems that very sudden changes in the quality of the
approximation occur, which significantly hinders optimisation.

100

—— SVGP (marginal)
\ SVGP (lik)
EY \ —— RSVGP (iflp)

80

ELBO

-1 0 1 2 3 4 5 6 7 0 10 20 30 40 50
Iterations (x100)

Figure 1: Fit on 1D “snelson” dataset, with optimisation traces of the ELBO.
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Figure 2: Optimisation of SVGP and RSVGP on kin4dOnm UCI dataset. Left: variance
hyperparameter, right: a measure of the quality of the variational matrix T .

5. Discussion

We introduced a new and more convenient lower bound on the GP marginal likelihood that
does not require matrix decompositions to compute. While our method works on simple
examples, its optimisation behaviour on more realistic datasets is currently not acceptable
for a practically useful method. The existence of these bounds hints at exciting possibilities,
but significant optimisation challenges do need to be overcome. One ray of hope, is that
currently the most naive optimisation procedure is being used. Perhaps a more tailored
approach is needed.
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