
Deep Principal Support Vector Machines
for Nonlinear Sufficient Dimension Reduction

YinFeng Chen∗ 1 Jin Liu 2 Rui Qiu∗ 3

Abstract

The normal vectors obtained from the support
vector machine (SVM) method offer the potential
to achieve sufficient dimension reduction in both
classification and regression scenarios. Motivated
by it, we in this paper introduce a unified frame-
work for nonlinear sufficient dimension reduction
based on classification ensemble. Kernel princi-
pal SVM, which leverages the reproducing kernel
Hilbert space, can almost be regarded as a special
case of this framework, and we generalize it by us-
ing a neural network function class for more flex-
ible deep nonlinear reduction. We theoretically
prove its unbiasedness with respect to the central
σ-field and provide a nonasymptotic upper bound
for the estimation error. Simulations and real data
analysis demonstrate the considerable competi-
tiveness of the proposed method, especially under
heavy data contamination, large sample sizes, and
complex inputs.

1. Introduction
With the advent of the big data era, high-dimensional data
have become increasingly common across diverse scientific
domains. To this end, sufficient dimension reduction (SDR)
techniques are developed to extract low-dimensional rep-
resentations of data while preserving as much information
as possible. These representations serve to facilitate both
visualization and downstream tasks of data analysis. Let
X ∈ Rp be the predictor variables of dimension p, and
Y ∈ R be the response variable. The classical linear SDR
method aims to find a p× d(d < p) matrix η such that the

*Equal contribution 1School of Mathematics and Statistics,
Xi’an Jiaotong University, Xi’an, China 2School of Data Science,
The Chinese University of Hong Kong (Shenzhen), Shenzhen,
China 3School of Mathematical Sciences, Peking University, Bei-
jing, China. Correspondence to: Rui Qiu <rqiu@pku.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

following conditional independence holds:

Y ⊥⊥ X|ηTX, (1)

where ⊥⊥ stands for statistical independence. The iden-
tifiable parameter in (1) is the subspace spanned by the
columns of η, rather than η itself, referred to as the suffi-
cient dimension reduction subspace. Under mild conditions
(see Cook (1998); Yin et al. (2008)), the intersection of all
such spaces is also a sufficient dimension reduction sub-
space and is called the central subspace, denoted by SY |X .
Representative methods of linear SDR include sliced inverse
regression (SIR) (Li, 1991), sliced average variance estimate
(SAVE) (Cook & Weisberg, 1991), directional regression
(DR) (Li & Wang, 2007), minimum average variance esti-
mation (MAVE) (Xia et al., 2002), and so on. We refer to
Ma & Zhu (2013) for an extensive survey on linear SDR.

Sometimes due to complex regression relationships, linear
combinations of predictor variables often fail to achieve
effective SDR. To address this limitation, a nonlinear exten-
sion of the linear SDR, as formulated in Cook (2007), is
considered to seek any function f(X) : Rp 7→ Rd such that

Y ⊥⊥ X|f(X). (2)

The kernel trick stands out as the most popular approach to
extend linear SDR to nonlinear SDR, and related works in-
clude Wu (2008), Yeh et al. (2009), among others. Recently,
Lee et al. (2013) proposed a rigorous SDR framework based
on σ-fileds, which integrates both linear and nonlinear SDR
into a unified system. They define the SDR problem as
seeking a sub σ-field G of σ(X) such that

Y ⊥⊥ X|G . (3)

Similar to the linear scenario, the intersection of all sub
σ-fields satisfying relation (3) still conforms to (3) under
mild conditions. This minimal sub σ-field is then called
the central σ-field and denoted by GY |X . Definitions of (1)
and (2) can be seamlessly integrated into this framework
by considering G as σ(ηTX) and σ(f(X)), respectively.
Compared to the linear case, the development of nonlin-
ear SDR methods is relatively limited. As the nonlinear
counterparts of SIR and SAVE, Lee et al. (2013) introduced

1

Deep principal support vector machines

the generalized sliced inverse regression (GSIR) and gener-
alized sliced average variance estimator (GSAVE). These
methods may struggle with large samples and complex input
structures.

The rapid development of machine learning has sparked
interest in incorporating machine learning techniques into
traditional dimension reduction, such as k-means inverse
regression (Setodji & Cook, 2004), principal support vector
machines (Li et al., 2011), and dimension reduction forests
(Loyal et al., 2022). In particular, deep neural networks
have attracted the attention of many researchers due to their
powerful feature extraction capabilities. A prominent repre-
sentative of deep unsupervised dimension reduction is the
auto-encoder models with bottleneck structures in represen-
tation learning (Hinton & Salakhutdinov, 2006). Inspired by
the mechanism of generative adversarial networks (GANs),
Zheng et al. (2022) trained two deep neural networks ad-
versarially and proposed a mutual information-based suf-
ficient representation learning approach. Further, to avoid
estimating the ratio of the joint density and the marginal
densities, Huang et al. (2024) replaced mutual information
with distance covariance and established the consistency of
the proposal but not the rate of convergence. However, their
strategy for limiting the distribution of sufficient representa-
tion distinguished itself from the central σ-filed framework
used in our paper. Recently, Chen et al. (2024) proposed
GMDDNet for nonlinear SDR, which combines the gener-
alized martingale difference divergence criteria with neural
networks. In addition, Kapla et al. (2022) introduced a two-
stage SDR estimation utilizing a neural network instead of
local linear smoothing typically employed in MAVE (Xia
et al., 2002). However, it remains a linear method.

This paper will introduce a new nonlinear SDR method
based on classification ensembles within the standard statis-
tical framework established by (3). Our contribution lies in
the following aspects:

1. Our nonlinear SDR methods can be applied to a broad
range of function classes. Among them, the neural
network approximator shows significant promise. This
deep method demonstrates flexibility in handling large
samples and diverse input types including images and
text. Importantly, it is robust for regression and clas-
sification tasks, particularly suited for data with many
outliers. Our deep method does not require additional
special design of network structures such as bottleneck
and generative adversarial structures.

2. We rigorously establish the unbiasedness of optimal
solutions to the proposed objective function, indicat-
ing that they belong to the central class. Under the
assumption concerning the covering number of func-
tion classes, the upper bound of the estimation error

is given. Encouragingly, the assumption can be satis-
fied by Vapnik-Chervonenkis (VC) classes, with neural
networks being a representative example. As a result,
we derive a specific convergence rate tailored to the
neural network class, showcasing its optimality up to a
polynomial order of log n when compared against the
minimax rate of nonparametric regression.

3. The structure order determination method from classi-
cal sufficient dimension reduction can be easily applied
to our method, which is not the case for other neural
network-based methods.

Notations: For any vector x, ∥x∥r and ∥x∥∞ represent the
lr and supremum norm of x, respectively. Let L2 (PX)
be the space of square-integrable measurable functions
with respect to the measure PX of X . For any function
f ∈ L2 (PX), we define ∥f∥L2(PX) =

{
E|f(X)|2

}1/2
and ∥f∥∞ = supx |f(x)| as the L2(PX) norm and supre-
mum norm of f , respectively. The ϵ-covering number of a
set A with respect to the metric d is denoted by N(ϵ, A, d).

2. Preliminaries
To better elucidate our nonlinear SDR method and related
theories, we first provide a detailed introduction to the frame-
work of nonlinear SDR. Deep nonlinear SDR is the focus of
this paper, for which we will briefly describe the structure
of neural networks.

2.1. Nonlinear SDR

Let (Ω,F , P) denote a probability space, and let (ΩX ,BX),
(ΩY ,BY) and (ΩXY ,BXY) represent measurable spaces
where ΩX ⊂ Rp, ΩY ⊂ Rq and ΩXY ⊂ Rp+q . By default,
ΩXY = ΩX × ΩY and BXY = BX × BY . Let X , Y ,
and (X,Y) be random vectors taking values in ΩX , ΩY ,
and ΩXY , respectively, with distributions PX , PY , and
PXY . The σ-filed generated by X is σ(X) = X−1(BX).
The conditional distribution of X given Y is denoted by
PX|Y (·|·) : BX × ΩY → R. We consider the following
nonlinear SDR problem

Y ⊥⊥ X|f0(X), (4)

where f0(·) is a Rd-valued function (d < p). That is to
say, at least d functions of p-dimensional X are needed to
fully capture the relationship between Y and X . Here, we
assume the structural dimension d is known for simplic-
ity. Obviously, f0 is unidentifiable since we can substitute
f0 with any one-to-one function of it, without altering the
conditional independence (4). In fact, this conditional inde-
pendence relies solely on the σ-field generated by f0(X),
which is unique under very mild assumptions (Lee et al.,
2013). Without loss of generality, we may always assume

2

Deep principal support vector machines

Assumption. The family of probability measures
{PX|Y (·|y) : y ∈ Ω} is dominated by a σ-finite measure.
Then there exists a unique minimal sufficient σ-field (or
central σ-field) GY |X such that

Y ⊥⊥ X|GY |X .

Moreover, f0 in (4) satisfies

E(f0(X)) = 0,Var(f0(X)) = Id,

and
σ(f0(X)) = GY |X .

We introduce some examples to build intuition in Appendix
A.1. Even though the central σ-field is identifiable, it can
be quite abstract to handle. Following Lee et al. (2013),
let MY |X be the central class corresponding to the central
σ-field σ(f0(X)). This class is the collection of all square-
integrable and σ(f0(X))-measurable functions. Equiva-
lently, MY |X is a subset of L2(PX) containing all elements
that can be expressed as a function of f0. To introduce
the concept of unbiasedness for nonlinear SDR, we first re-
view the unbiasedness in linear SDR. The central subspace
SY |X = Span(η) can be viewed as a member of the param-
eter space that encompasses all d-dimensional subspaces of
Rp. Let Pn be the empirical distribution of an i.i.d. sample
{(X1, Y1), . . . , (Xn, Yn)} from the distribution PXY . T is
a mapping from all possible distributions of (X,Y) to Rp×d.
If Span[T (PXY)] ⊆ SY |X , we call T (Pn) is an unbiased
estimator of SY |X . This is equivalent to the inner product
of X and any column vector of T (PXY) being measurable
with respect to σ(ηTX). From this perspective, we can
easily generalize the concept of unbiasedness to nonlinear
SDR:

Definition 2.1. A function f(X) from L2(PX) is unbiased
for the central σ-field GY |X if f(X) ∈ MY |X . Such a
function is called an SDR function.

Unbiasedness is the most fundamental requirement for SDR
estimators. It ensures that the information extracted by
each SDR function solely originates from the regression
relationship between X and Y .

2.2. Deep neural network

We now briefly introduce the feedforward neural networks
with the rectified linear unit (ReLU) activation function.
Specifically, the feedforward neural network can be repre-
sented as

f(x) =WL ◦ σ ◦WL−1 ◦ σ ◦ · · · ◦ σ ◦W1 ◦ σ ◦W0(x),

where x ∈ Rp,Wi(x) = ωix + bi denotes an affine trans-
formation with the weight matrix ωi ∈ Rki+1×ki and inter-
cept vector bi ∈ Rki+1 , for i = 0, 1, . . . ,L. The function

σ(x) = max{x, 0} is the ReLU activation function ap-
plied element-wise. Here, k0 and kL+1 are the input and
output dimensions, respectively. And ki, i = 1, 2, . . . ,L
stands for the number of neurons (width) in the ith hid-
den layer. The depth of a network, denoted by L, refers to
the number of hidden layers, while its width denotes the
maximum width, N = max{k1, k2, . . . , kL}, among the
hidden layers. Moreover, the size of a network can be fur-
ther characterized by two quantities: the total number of
neurons U =

∑L
i=1 ki, and the total number of parameters

S =
∑L
i=0 ki+1 · (ki + 1). As the most widely used func-

tion class, neural networks will serve as the main estimator
for the nonlinear SDR functions in our methods.

3. Motivation and Methodology
In this section, we introduce a new nonlinear SDR method
based on the principal support vector machines (PSVM)
proposed by Li et al. (2011). Then we give a reliable strat-
egy for determining the structure dimension d in practical
applications.

3.1. Sample estimation for nonlinear SDR

When the response Y ∈ {−1, 1} is binary, Li et al. (2011)
observed that the normal vectors of the hyperplane learned
by support vector machines (SVM) align with the directions
forming the SDR subspace. Therefore these normal vectors
can be naturally leveraged to construct the SDR subspace.
Specifically, given training data Dn = {(Xi, Yi)}ni=1, Li
et al. (2011) demonstrated the validity of the following
objective function for linear SDR

min
(ψ,t)∈Rp×R

λ

n

n∑
i=1

[
1− Yi

{
ψ⊤(Xi − En(X)

)
− t
}]+

+Varn(ψ
⊤X), (5)

where λ is a hyperparameter, En(·) and Varn(·) denotes
the empirical mean and variance, and [x]+ = max{x, 0}
is the hinge loss function. In particular, Li et al. (2011)
proposed combining these normal vectors through principal
component analysis to form the basis of the SDR subspace.
Zhou & Zhu (2016) then introduced the principal minimax
support vector machines formulation

min
(ψ,t)∈Rp×R

λ∥ψ∥1 + c∗ψTψ +Varn(ψ
⊤X)

+
C

n

n∑
i=1

{
1− Yi

(
ψTXi + t

)}+
,

where λ,C are hyperparameters and c∗ is a special number.
Additionally, Shin et al. (2017) proposed

min
(ψ,t)∈Rp×R

ψ⊤ψ +
λ

n

n∑
i=1

wπ (Yi)
{
1− Yi

(
ψ⊤Xi + t

)}+
,

3

Deep principal support vector machines

where λ is a hyperparameter and wπ (Yi) = 1− π if Yi = 1
and π otherwise.

The kernel trick or reproducing kernel Hilbert space (RKHS)
provides an effective approach for extending linear SDR
methods to their nonlinear counterparts. However, finding
a suitable kernel for non-vector input remains challenging.
For example, when dealing with tensor-valued input such
as images, the conventional kernel trick often requires flat-
tening tensors, which inevitably results in information loss.
In contrast, neural networks show remarkable flexibility in
handling diverse data types. Moreover, the computational
burden of neural networks is typically lower than that of the
kernel trick when handling large samples. Given that the
kernel trick frequently involves inverting an n × n kernel
matrix, the computational cost O(n3) becomes formidable
for large n.

Motivated by the superiority of neural networks over the
kernel trick and the validity of normal vectors from SVM in
linear SDR, we combine (5) with a general functional class
Fn (e.g., neural networks) and a general loss ρ to achieve
nonlinear SDR. Specifically, let Ỹ be the binarization of Y ,
then we define an objective function

Ln(f, t)

=λVarn(f(X)) + λt2

+
1

n

n∑
i=1

ρ
(
−Ỹi

{
f(Xi)− En(f(X))− t

})
(6)

=
2λ

n(n− 1)

∑
1≤i<j≤n

{
f(Xi)− f(Xj)

}2
+ 2t2

2

+
1

n

n∑
i=1

ρ

(
− Ỹi

{
f(Xi)−

1

n

n∑
j=1

f(Xj)− t

})
,

where t ∈ R, f is a member of Fn and ρ is any non-
decreasing convex loss function. Particularly, ρ(x) =
max{1 + x, 0} corresponds to the hinge loss in (5). Here
we follow the slicing techniques proposed in Li et al. (2011)
to discretize Y into the binary Ỹ . One, which we call “left
versus right (LVR)”, repeatedly divides the data Dn into two
groups according to a set of cutting points for the response.
The other, which we call “one versus another (OVA)” , par-
titions Dn into several slices and pairs up all possible slices.
Below we summarize the the algorithm process:

1. (LVR) Let qr, r = 1, . . . , h − 1, be h − 1 cutting
points. For example, they can be equally spaced sample
percentiles of {Y1, . . . , Yn}. For 1 ≤ r ≤ h− 1, set

Ỹ ri = I(Yi > qr)− I(Yi ≤ qr).

Over Fn×R, (f̂r, t̂r) is the minimizer of Ln(f, t) with
Ỹi replaced by Ỹ ri .

1′. (OVA) In addition to the above {qr}h−1
r=1 , let q0 =

min{Y1, . . . , Yn} and qh = max{Y1, . . . , Yn}. For
each (r, s) satisfying 1 ≤ r < s ≤ h, set

Ỹ rsi = I(qs−1 < Yi ≤ qs)− I(qr−1 < Yi ≤ qr).

Over Fn × R, (f̂rs, t̂rs) is the minimizer of Ln(f, t)
with Ỹi replaced by Ỹ rsi .

2. Let v1, . . . ,vd be the d leading eigenvectors of either
one of the matrices M with entries

Mij =

n∑
k=1

f̂i(Xk)f̂j(Xk),

where f̂i is the minimizer from different dividing
schemes (1 ≤ i, j ≤ h − 1 for LVR and 1 ≤ i, j ≤
h(h − 1)/2 for OVA). Then the ith (1 ≤ i ≤ d) non-
linear SDR function is∑

j

vij f̂j ,

where vij is the jth entry of l-dimensional vi (l = h−1
for LVR and l = h(h− 1)/2 for OVA).

Li et al. (2011) empirically demonstrated that LVR works
best when the response is a continuous variable and OVA
works best when the response is categorical.

3.2. Estimation of structure dimension.

Determining the structural dimension d is a critical aspect
of SDR. Here we employ the ladle method proposed by Luo
& Li (2016). This method utilizes not only the eigenvalue
information of the matrix M but also its eigenvectors to
determine the structure dimension. Let Bk = (v1, . . . ,vk)
and (λ1, . . . , λk) respectively denote the l × k matrix com-
prising the first k eigenvectors of M and the vector compris-
ing the first k eigenvalues of M . Utilizing bootstrapping,
we sample n instances with replacement from a dataset of
size n. With these n samples, we re-implement Bk, denot-
ing its ith instance as B∗

k,i. This bootstrapping procedure
is repeated n times to generate multiple bootstrap samples.
To measure the disparity between Bk and its bootstrapped
counterpart, we define the following function:

f0n(k) =

{
0, k = 0,

n−1
∑n
i=1{1− |det(BTk B∗

k,i)|}, k = 1, . . . , l.

We then normalize f0n(k) as follows

fn(k) =
f0n(k)

1 +
∑rl
i=0 f

0
n(i)

,

4

Deep principal support vector machines

where rl = l − 1 if l ≤ 10, rl = ⌊l/ log l⌋ if l > 10, and
⌊a⌋ denotes the largest integer not exceeding a. The impact
of eigenvalues is quantified by the function

gn(k) =
λ2k+1

1 +
∑rl
i=0 λ

2
i+1

, for k = 0, 1, . . . , rl.

Finally, the ladle method determines the dimension d using
the formula

d̂ = argmin
k=0,...,rl

{fn(k) + gn(k)}.

4. Theoretical Results
For nonlinear SDR, our primary objective is to identify
functions within the central class MY |X . The population
form of (6) is defined as

L(f, t) =λVar(f(X)) + λt2

+ E
[
ρ
(
− Ỹ

{
f(X)− E(f(X))− t

})]
,

(7)

where t ∈ R, f belongs to a function class F , and ρ repre-
sents any nondecreasing convex loss function. The follow-
ing theorem shows that it can achieve effective nonlinear
SDR.

Theorem 4.1. Suppose that

1. F is a dense subset of L2(PX),

2. Y ⊥⊥ X|f0(X).

If (f∗, t∗) minimizes (7) over F ×R, then f∗(X) ∈ MY |X .

Linear SDR methods typically rely on the linear conditional
mean assumption concerning E

(
X|η⊤X

)
to ensure unbi-

asedness (Li, 1991; Li & Dong, 2009). Remarkably, for
the nonlinear method proposed here, such stringent con-
ditions are unnecessary. The first condition of Theorem
4.1 can be satisfied by continuous function class, RKHS
with a Gaussian kernel, or L2(PX) itself. In general, we
usually choose F = L2(PX) directly for population opti-
mization. By Definition 2.1, Theorem 4.1 establishes the
validity of our nonlinear SDR method (7) since the optimal
solution f∗ is unbiased. In other words, we can conclude
that σ(f∗(X)) ⊆ σ(f0(X)). The significance of Theorem
4.1 lies in its transformation of an abstract nonlinear SDR
problem into a specific and solvable optimization problem
(7). It is essential to emphasize that our goal is to iden-
tify functions that capture as many nonlinear relationships
between Y and X as possible, rather than approximating
specific predetermined functions, such as f0.

More generally, given some function class Fn, below we
prove that the sample optimization (6) over Fn×R can con-
verge to the population optimization (7) over L2(PX)× R

at a certain convergence rate. Before stating the results, we
need the following assumptions. Let (f∗, t∗) be a minimizer
of L(f, t) over L2(PX)× R.
Assumption 4.2. There exists an absolute constant B > 1
such that ∥f∗∥∞ ≤ B and ∥f∥∞ ≤ B for any f ∈ Fn.
Assumption 4.3. f∗ is β-Hölder continuous, i.e., |f∗(x1)−
f∗(x2)| ≤ Lhld∥x1 − x2∥β for any x1, x2 ∈ [0, 1]p, where
Lhld is some positive constant.
Assumption 4.4. Nondecreasing convex loss function ρ :
R 7→ R+ is Lipschitz continuous with Lipschitz constant
Llip, i.e., |ρ(x)− ρ(y)| ≤ Llip∥x− y∥ for any x, y ∈ R.
Assumption 4.5. There exist an universal constant C and a
parameter V depending on Fn such that

logN(ϵ,Fn, ∥ · ∥L2(Q)) ≤ CV
{
1 + log(1/ϵ)

}
,

where Q refers to PX and Pn, the empirical probability
measure of X .

Assumption 4.2 states that the ground-truth function f∗ and
neural networks are bounded. The parameter β in Assump-
tion 4.3 characterizes the smoothness or regularity of f∗.
A higher value of β indicates greater smoothness, which
generally facilitates more accurate approximation. The con-
vergence rate of our estimator is jointly determined by β
and the input dimension p; see Corollary 4.7 for details.
Assumption 4.2 and 4.3 are common requirements in many
existing works (Györfi et al., 2002; Schmidt-Hieber, 2020;
Farrell et al., 2021). Assumption 4.4, crucial for deriving
the convergence result, is satisfied by common loss func-
tions such as hinge loss and Huber loss. Regarding the
assumption 4.5, this upper bound always holds for any VC
class Fn with the parameter V being its VC dimension (see
Theorem 2.6.7 in Vaart & Wellner (1996)), such as splines,
RKHS with a polynomial kernel, and deep neural network
class. The parameter V is a measure of the size (capacity,
complexity, or expressive power) of a hypothesis class Fn,
which is relative to the trade-off between statistical error and
approximation error of our estimator. Classes with larger
V have stronger approximation capabilities but also carry a
higher risk of overfitting.

When ρ(x) = max{1 + x, 0}, optimizing (6) over RKHS
and R is similar to kernel principal SVM (Li et al., 2011).
Flexibility in the optimization range is another advantage
over classical SDR methods.
Theorem 4.6. Let (f̂ , t̂) be the minimizer of Ln(f, t) over
Fn × R and (f∗, t∗) be the minimizer of L(f, t) over
L2(PX) × R. Let δ > 0. Under the assumptions 4.2,
4.4 and 4.5, if n ≥ V , the following inequality holds with
probability at least 1− 4δ

L(f̂ , t̂)− L(f∗, t∗) =

O
(
V

n
log

n

V
+ inf
f∈Fn

∥f − f∗∥∞ +
log(1/δ)

n

)
.

5

Deep principal support vector machines

Now we focus on the neural network class. By Theorem
2.6.7 in Vaart & Wellner (1996) and Theorem 7 in Bartlett
et al. (2019), the log covering number of the ReLU-activated
neural network class Fn with respect to L2(Q) norm for
any probability measure Q can be bounded by

logN
(
ϵ,Fn, ∥ · ∥L2(Q)

)
≤ K1 ·VC(Fn)

{
1 + log(1/ϵ)

}
≤ K2 · SL log(S)

{
1 + log(1/ϵ)

}
,

where K1,K2 are two universal constants, VC(Fn) is the
VC dimension of the neural network class, L is the depth
of networks, and S is the total number of network param-
eters. Hence the neural network class satisfies the assump-
tion 4.5 with V ≤ SL log(S). Concerning the approxima-
tion error, β-Hölder continuous function f∗ can be effec-
tively approximated by ReLU networks. Specifically, con-
sidering ReLU neural network class Fn with width N =
3p+3 max

(
p⌊N1/p⌋, N+1

)
and depth L = 12L+14+2p,

Theorem 1.1 in Shen (2020) tells that

inf
f∈Fn

∥f − f∗∥∞ = O
(
(NL)−

2β
p

)
.

Here N and L stand for arbitrary positive constants deter-
mining the width N and the depth L of neural networks,
respectively. With these preparations, we have the follow-
ing result on the function class of width-fixed ReLU neural
networks.
Corollary 4.7. For any arbitrary N ∈ N+, consider
Fn as the scalar-valued ReLU neural network class with
width N = 3p+3 max

(
p⌊N1/p⌋, N + 1

)
and depth L =

12n
p

2(p+2β) +14+2p. Let δ > 0. Under the assumption 4.2,
4.3 and 4.4, if n ≥ SL log(S), the following result holds
with probability at least 1− 4δ

L(f̂ , t̂)− L(f∗, t∗) = O
(
n−

2β
p+2β

{
1 + log(1/δ)

}
log n

)
.

Further,

∥f̂ − f∗∥2L2(PX) = O
(
n−

2β
p+2β

{
1 + log(1/δ)

}
log n

)
.

Stone (1982) proved the minimax rate n−
2β

p+2β for nonpara-
metric regression under the Hölder continuous assumption.
Remarkably, our nonlinear SDR method, leveraging deep
neural networks, achieves this optimal rate up to log n. The-
orem 4.1 shows that f∗ is a nonlinear SDR function, while
Corollary 4.7 demonstrates the convergence of f̂ to f∗,
thereby ensuring the rationality of the first step of nonlinear
SDR algorithm process in section 3.1. Regarding the way of
aggregating the optimal solutions from all different dividing
schemes, the second step of the algorithm process is inspired
by the kernel PSVM (Li et al., 2011). As in that work, we
do not delve into the theoretical justification behind it here.
In particular, we call our nonlinear SDR method optimized
over neural networks with ρ(x) = max{1 + x, 0} the deep
principal support vector machines (DPSVM).

5. Numerical Experiments
We evaluate the finite sample performance of the proposed
DPSVM method on synthetic data. For comparison, we
consider six other nonlinear dimension reduction methods:
kernel principal support vector machine (KPSVM) with
Gaussian kernel (Li et al., 2011), generalized sliced in-
verse regression (GSIR) (Lee et al., 2013), kernel sliced
inverse regression (KSIR) (Yeh et al., 2009), deep dimen-
sion reduction (DDR) (Huang et al., 2024), deep sufficient
representation learning (DSRL) (Zheng et al., 2022) and
GMDDNet (Chen et al., 2024). KPSVM and DSRL are im-
plemented based on the algorithm described in the original
paper. GSIR and KSIR can be implemented by R package
nsdr and MAVE, respectively. DDR and GMDDNet are
implemented using the source code provided by the original
authors. More details on the computer configuration and
hyperparameters are provided in the Appendix.

Throughout the simulation, we set the training sample size
n = 500 and the input dimension p = 10. We first gener-
ate the intermediate response H from the following three
models:

A : H =4X1/(0.1 +X2
2) + ϵ;

B : H =sin
(
(X2

1 +X2
2)π/10

)
+X2

1 + ϵ;

C : H = log(0.1 +X2
1 +X2

2)
√
X2

1 +X2
2 + ϵ,

where the noise ϵ is independent ofX and follows a standard
t-distribution with degree of freedom 4. Then we generate a
random variable B ∈ {0, 1} by Bernoulli distribution with
success probability pr = 0.1. Then we acquire the final
response Y = 10H if B = 1 and Y = H otherwise. This
design makes Y an outlier with probability pr, increasing
the difficulty of nonlinear dimension reduction. Addition-
ally, three different distributional scenarios for the predictor
vector X = (X1, . . . , Xp)

⊤ are involved:

I : X ∼ N(0p, Ip),

II : X ∼ t4(0p, Ip),

III : X ∼ t4(0p,Sp),

where Ip is the p × p identity matrix, Sp is a p × p ma-
trix with entry Sij = 0.5|i−j|, and N(A,B) is a mul-
tivariate normal distribution with mean A and covari-
ance B, and tk(A,B) is a multivariate t-distribution with
mean A, covariance B and degree of freedom k. The
true nonlinear SDR functions f∗ for the model A,B,C
are 4X1/(0.1 + X2

2), sin
(
(X2

1 + X2
2)π/10

)
+ X2

1 and
log(0.1 +X2

1 +X2
2)
√
X2

1 +X2
2 , respectively. The struc-

ture dimension is assumed to be known as 1. We use the em-
pirical distance correlation DRn

(
f∗(X), f̂(X)

)
developed

in Szkely et al. (2007) to reflect the merit of the estimated
dimension reduction function. The detailed formulation of

6

Deep principal support vector machines

empirical distance correlation is given in the Appendix. In
brief, A higher distance correlation indicates more accuracy
in extracting nonlinear information. The average distance
correlations (with standard deviations in parentheses) over
100 simulation runs are shown in Table 1. Our method out-
performs other methods in seven of the nine settings. This
suggests that our approach is more robust to outliers, largely
due to the process of bisecting response values (LVR or
OVA step in our algorithm).

Table 1. Average distance correlations (standard deviations) of dif-
ferent methods for all settings over 100 simulation runs. Bold-
faced numbers indicate the best performers.

Setting DPSVM KPSVM GSIR KSIR DDR DSRL GMDDNet

A-I 0.80(0.01) 0.77(0.01) 0.75(0.01) 0.75(0.02) 0.63(0.10) 0.76(0.00) 0.76(0.01)
A-II 0.74(0.02) 0.69(0.03) 0.73(0.01) 0.68(0.04) 0.57(0.08) 0.67(0.02) 0.68(0.00)
A-III 0.77(0.02) 0.72(0.03) 0.72(0.01) 0.68(0.04) 0.60(0.09) 0.70(0.00) 0.69(0.02)
B-I 0.75(0.05) 0.56(0.22) 0.44(0.06) 0.15(0.27) 0.45(0.17) 0.68(0.17) 0.57(0.14)
B-II 0.71(0.05) 0.59(0.10) 0.55(0.04) 0.28(0.18) 0.55(0.13) 0.44(0.01) 0.48(0.17)
B-III 0.75(0.05) 0.61(0.12) 0.57(0.04) 0.27(0.14) 0.58(0.11) 0.87(0.02) 0.56(0.18)
C-I 0.76(0.04) 0.71(0.15) 0.58(0.05) 0.20(0.29) 0.54(0.17) 0.69(0.19) 0.79(0.02)
C-II 0.78(0.04) 0.73(0.06) 0.70(0.03) 0.35(0.11) 0.62(0.12) 0.78(0.14) 0.59(0.15)
C-III 0.81(0.03) 0.76(0.03) 0.72(0.02) 0.35(0.16) 0.68(0.11) 0.89(0.07) 0.61(0.19)

MNIST database. The MNIST dataset contains 60, 000
training images and 10, 000 testing images of hand-written
digits. Here, we take DPSVM and DDR as the representa-
tives of deep methods for 2D visualization. LeNet (Lecun
et al., 1998) is used as the basic neural network structure
for both DPSVM and DDR. The ladle method in section
3.2 gives the structural dimension estimation d̂ = 9. Then
we train DPSVM and DDR respectively to obtain nine es-
timated dimension reduction functions. Finally, we train
the logistic regression on training images with correspond-
ing nine-dimensional representations of original features
and get the classification accuracy result on testing images.
The accuracy is 0.9862 and 0.9883 for DPSVM and DDR,
respectively. As a reference, the accuracy of direct LeNet
using the original features is 0.9899. The closeness of the
results suggests that both our method and DDR are effec-
tive in extracting nonlinear information from the regression
relationship. Lastly, we plot the projections of the original
features along the first two estimated dimension reduction
directions of DPSVM and DDR to compare visualization
effects (see Figure 2). It appears that DPSVM exhibits
stronger discriminant power compared to DDR, as the points
for each class cluster more distinctly.

Other datasets. The datasets1 involved are Communities
and Crime (CRIME) for regression tasks; Connectionist
Bench Sonar (SONAR), Optical Recognition of Handwritten
Digits (OPTDIGITS), Breast Cancer Wisconsin (WDBC)
for additional classification tasks. For each dataset, we ran-
domly split the data, using 2/3 for the training set and 1/3
for the testing set. Different nonlinear dimension reduction

1All the datasets are downloaded from UCI machine learning
repository

DPSVM with LeNet DDR with LeNet

Figure 1. 2D visualization of MNIST using DPSVM and DDR.

DPSVM with LeNet DDR with LeNet

Figure 2. 2D visualization of CRIME using DPSVM and DDR.

methods are applied to the training set to extract a low-
dimensional representation. Then, we fit either linear regres-
sion or logistic regression to the representation, depending
on whether it is a regression task or a classification task. The
mean square error for regression and classification accuracy
for classification are calculated on the testing set. To reduce
randomness, we repeat the above splitting-extraction-fitting
process 100 times. The KSIR method consistently incurs
errors on the OPTDIGITS dataset across all 100 repetitions,
so its result is excluded from the plot. Note that the y-axis
of the first three plots represents accuracy (higher values are
better), while the y-axis of the last plot represents the mean
square error (lower values are better). Our method shows
comparable performance across all datasets, highlighting its
competitiveness. Additionally, we present a 2D visualiza-
tion comparing our approach with the DDR method on the
CRIME dataset. The results indicate that our method yields
more visually coherent representations.

6. Conclusions and Limitations
In this paper, we present a new approach to nonlinear suffi-
cient dimension reduction that avoids the issues associated
with generalized eigendecomposition of n × n matrices
in conventional methods. The approach includes kernel
principle SVM (Li et al., 2011) and extends it by incorporat-
ing neural networks for more flexible deep nonlinear SDR,
particularly beneficial for severe data contamination, large
samples and complex inputs. The fusion of deep learning
with nonlinear SDR brings new energy to the SDR field.
From a theoretical standpoint, we provide guarantees of un-

7

Deep principal support vector machines

SONAR OPTDIGITS

WDBC CRIME

Figure 3. Performance of different methods on different datasets

biasedness with respect to the central σ-field and establish
strong convergence rates for estimation error. Numerical
simulations and real data analysis demonstrate the excep-
tional performance of our method.

The limitation of our method is its speed. For real-valued
Y , we must first discretize Y into binary variables. Typi-
cally, we perform this discretization 10 times with different
split schemes and fit neural networks on each discretization.
Additionally, discretizing a scalar Y is typically based on
quantiles, but calculating quantiles for multivariate Y is
challenging and requires more effort.

Acknowledgements
We thank all the anonymous reviewers for their helpful
comments and suggestions. Yinfeng Chen is supported
by the National Key R&D Program of China (Grant No.
2023YFA1008700 and 2023YFA1008703). Rui Qiu is sup-
ported by the Postdoctoral Fellowship Program and China
Postdoctoral Science Foundation (Grant No.2024M760060).
Jin Liu is supported by the National Natural Science Foun-
dation of China (Grant No. 12371283), University Devel-
opment Fund (Grant No. UDF01003033) from The Chi-
nese University of Hong Kong, Shenzhen, the Program
for Guangdong Introducing Innovative and Entrepreneurial
Teams (Grant No. 2023ZT10X044), Shenzhen Science
and Technology Program (Shenzhen Key Laboratory Grant
No. ZDSYS20230626091302006), the Guangdong Provin-
cial Key Laboratory of Mathematical Foundations for
Artificial Intelligence (Grant No. 2023B1212010001),
Shenzhen Stability Science Program and Shenzhen Fun-
damental Research Program (General Program) (Grant
No.JCYJ20240813113518024).

Impact Statement
This paper presents work whose goal is to advance the field
of sufficient dimension reduction. There are many potential
societal consequences of our work, none which we feel must
be specifically highlighted here.

References
Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A.

Nearly-tight vc-dimension and pseudodimension bounds
for piecewise linear neural networks. Journal of Machine
Learning Research, 20(63):1–17, 2019.

Blanchard, G., Bousquet, O., and Massart, P. Statistical per-
formance of support vector machines. Annals of Statistics,
36(2):489 – 531, 2008.

Chen, Y., Jiao, Y., Qiu, R., and Yu, Z. Deep nonlinear
sufficient dimension reduction. Annals of Statistics, 52
(3):1201 – 1226, 2024.

Clémençon, S., Lugosi, G., and Vayatis, N. Ranking and em-
pirical minimization of U-statistics. Annals of Statistics,
36(2):844 – 874, 2008.

Cook, R. D. Principal hessian directions revisited. Journal
of the American Statistical Association, 93(441):84–94,
1998.

Cook, R. D. Fisher lecture: Dimension reduction in regres-
sion. Statistical Science, 22(1):1–26, 2007.

Cook, R. D. and Weisberg, S. Discussion of sliced inverse
regression for dimension reduction. Journal of the Amer-
ican Statistical Association, 86(414):328–332, 1991.

Farrell, M. H., Liang, T., and Misra, S. Deep neural net-
works for estimation and inference. Econometrica, 89(1):
181–213, 2021.

Györfi, L., Kohler, M., Krzyzak, A., Walk, H., et al.
A distribution-free theory of nonparametric regression.
Springer, 2002.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the di-
mensionality of data with neural networks. Science, 313
(5786):504–507, 2006.

Huang, J., Jiao, Y., Liao, X., Liu, J., and Yu, Z. Deep di-
mension reduction for supervised representation learning.
IEEE Transactions on Information Theory, 2024.

Kapla, D., Fertl, L., and Bura, E. Fusing sufficient di-
mension reduction with neural networks. Computational
Statistics & Data Analysis, 168:107390, 2022.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

8

Deep principal support vector machines

Lee, K.-Y., Li, B., and Chiaromonte, F. A general theory for
nonlinear sufficient dimension reduction: Formulation
and estimation. Annals of Statistics, 41(1):221 – 249,
2013.

Li, B. and Dong, Y. Dimension reduction for nonelliptically
distributed predictors. Annals of Statistics, 37(3):1272–
1298, 2009.

Li, B. and Wang, S. On directional regression for dimension
reduction. Journal of the American Statistical Associa-
tion, 102(479):997–1008, 2007.

Li, B., Artemiou, A., and Li, L. Principal support vector
machines for linear and nonlinear sufficient dimension
reduction. Annals of Statistics, 39(6):3182–3210, 2011.

Li, K.-C. Sliced inverse regression for dimension reduction.
Journal of the American Statistical Association, 86(414):
316–327, 1991.

Loyal, J. D., Zhu, R., Cui, Y., and Zhang, X. Dimension
reduction forests: local variable importance using struc-
tured random forests. Journal of Computational and
Graphical Statistics, 31(4):1104–1113, 2022.

Luo, W. and Li, B. Combining eigenvalues and variation of
eigenvectors for order determination. Biometrika, 103(4):
875–887, 2016.

Ma, Y. and Zhu, L. A review on dimension reduction.
International Statistical Review, 81(1):134–150, 2013.

Massart, P. Concentration inequalities and model selection.
Springer Verlag, 2003.

Schmidt-Hieber, J. Nonparametric regression using deep
neural networks with relu activation function. Annals of
Statistics, 48(4):18751897, 2020.

Setodji, C. M. and Cook, R. D. K-means inverse regression.
Technometrics, 46(4):421–429, 2004.

Shen, Z. Deep network approximation characterized by
number of neurons. Communications in Computational
Physics, 28(5):1768–1811, 2020.

Shin, S. J., Wu, Y., Zhang, H. H., and Liu, Y. Principal
weighted support vector machines for sufficient dimen-
sion reduction in binary classification. Biometrika, 104
(1):67–81, 2017.

Stone, C. J. Optimal global rates of convergence for nonpara-
metric regression. Annals of Statistics, 10(4):1040–1053,
1982.

Szkely, G. J., Rizzo, M. L., and Bakirov, N. K. Measur-
ing and testing dependence by correlation of distances.
Annals of Statistics, 35(6):2769 – 2794, 2007.

Vaart, A. W. and Wellner, J. A. Weak convergence and
empirical processes. Springer, 1996.

Wu, H.-M. Kernel sliced inverse regression with applica-
tions to classification. Journal of Computational and
Graphical Statistics, 17(3):590–610, 2008.

Xia, Y., Tong, H., Li, W. K., and Zhu, L.-X. An adaptive
estimation of dimension reduction space. Journal of the
Royal Statistical Society: Series B (Statistical Methodol-
ogy), 64(3):363–410, 2002.

Yeh, Y.-R., Huang, S.-Y., and Lee, Y.-J. Nonlinear dimen-
sion reduction with kernel sliced inverse regression. IEEE
Transactions on Knowledge and Data Engineering, 21
(11):1590–1603, 2009.

Yin, X., Li, B., and Cook, R. D. Successive direction ex-
traction for estimating the central subspace in a multiple-
index regression. Journal of Multivariate Analysis, 99(8):
1733–1757, 2008.

Zheng, S., Lin, Y., and Huang, J. Deep sufficient repre-
sentation learning via mutual information, 2022. URL
https://arxiv.org/abs/2207.10772.

Zhou, J. and Zhu, L. Principal minimax support vector
machine for sufficient dimension reduction with contami-
nated data. Computational statistics & data analysis, 94:
33–48, 2016.

9

https://arxiv.org/abs/2207.10772

Deep principal support vector machines

A. Additional materials
A.1. Illustrative examples

To illustrate the motivation behind sufficient dimension reduction (SDR), we present two simple examples.

EXAMPLE 1: CLASSIFICATION PROBLEM

Consider the classification problem:
Y = 1

(
X2

1 +X2
2 − 1 + ε > 0

)
,

where X1, X2 ∼ N (0, 1) and ε ∼ N (0, 0.2). Then, the normalized SDR function is given by

f0(X) =
X2

1 +X2
2

2
− 1.

Here, a linear transformation is applied to ensure E(f0(X)) = 0, Var(f0(X)) = 1.

EXAMPLE 2: MULTIVARIATE REGRESSION PROBLEM

Now, consider a multivariate regression problem where Y ∈ R2:

Y1 = sin(X1 +X2
2) + ε1, Y2 = cos(X3X4) + ε2,

where X1, X2, X3, X4 ∼ N (0, 1) and ε1, ε2 ∼ N (0, 0.2). In this case, the normalized SDR function is

f0(X) =

(
a0 sin(X1 +X2

2) + b0
a1 cos(X3X4) + b1

)
,

where ai and bi, i = 1, 2, are introduced to ensure E(f0(X)) = 0, Var(f0(X)) = I2.

EXAMPLE 3: GENERAL FORMULATION FOR REGRESSION

More generally, we consider the model
Y = g(f0(X)) + ε,

where f0 : Rp → Rd and g : Rd → Rq. Our goal is to identify the low-dimensional nonlinear representation f0(X). In
this general setting, traditional linear sufficient dimension reduction breaks down.

A.2. Definition of empirical distance correlation

The empirical distance covariance between two random vectors Y, Y ′ is defined as

DCn
(
Y, Y ′) = (n

4

)−1 ∑
1≤π1 ̸=π2 ̸=π3 ̸=π4≤n

h
((
Yπ1

, Y ′
π1

)
,
(
Yπ2

, Y ′
π2

)
,
(
Yπ3

, Y ′
π3

)
,
(
Yπ4

, Y ′
π4

))
,

where {Yi}ni=1, {Y ′
i }ni=1 are the samples of Y and Y ′, and

h ((Y1, Y
′
1) , . . . , (Y4, Y

′
4)) =

1

24

∑
1≤i ̸=j ̸=k ̸=l≤4

(
∥Yi − Yj∥2

∥∥Y ′
i − Y ′

j

∥∥
2

− 2 ∥Yi − Yj∥2 ∥Y
′
i − Y ′

k∥2 + ∥Yi − Yj∥2 ∥Y
′
k − Y ′

l ∥2
)
.

Then the empirical distance correlation is defined as

DRn
(
Y, Y ′) = DCn

(
Y, Y ′)√

DCn
(
Y, Y

)√
DCn

(
Y ′, Y ′

) . (8)

A.3. Simulations for large p

Since neural networks require more data to fit overparameterized models, we set the sample size to n = 5000 for p = 100.
The results, shown in Table 2, indicate that our method remains competitive under this configuration.

10

Deep principal support vector machines

Table 2. Average distance correlations (standard deviations) of different methods for all settings over 100 simulation runs. Bold-faced
numbers indicate the best performers.

Setting DPSVM KPSVM GSIR KSIR DDR DSRL GMDDNet

A-I 0.77(0.01) 0.72(0.01) 0.74(0.01) 0.76(0.01) 0.55(0.05) 0.67(0.05) 0.61(0.06)
A-II 0.73(0.01) 0.65(0.01) 0.71(0.01) 0.68(0.01) 0.50(0.04) 0.62(0.05) 0.62(0.04)
A-III 0.75(0.01) 0.65(0.01) 0.63(0.01) 0.69(0.01) 0.51(0.06) 0.68(0.03) 0.65(0.03)
B-I 0.70(0.03) 0.45(0.03) 0.06(0.01) nan(nan) 0.42(0.05) 0.69(0.05) 0.47(0.08)
B-II 0.67(0.03) 0.39(0.03) 0.45(0.03) 0.25(0.19) 0.53(0.09) 0.67(0.04) 0.64(0.06)
B-III 0.68(0.04) 0.41(0.02) 0.45(0.02) 0.35(0.25) 0.54(0.11) 0.69(0.02) 0.63(0.06)
C-I 0.71(0.04) 0.58(0.02) 0.08(0.02) 0.48(0.64) 0.38(0.14) 0.55(0.24) 0.53(0.14)
C-II 0.64(0.16) 0.54(0.02) 0.59(0.02) 0.26(0.05) 0.63(0.04) 0.75(0.03) 0.70(0.06)
C-III 0.73(0.02) 0.59(0.01) 0.55(0.01) 0.25(0.05) 0.61(0.09) 0.73(0.03) 0.71(0.02)

A.4. Analysis of the computational complexity

Let n, p,L, and N represent the sample size, input dimension, number of hidden layers, and maximum width of the hidden
layers, respectively. Let the batch size and training epochs be b and t, respectively. The computation overhead of each
iteration is primarily attributed to calculating the gradient of that batch. This computation overhead is O(bLmax{p,N}2).
Considering that we need to update n/b batches for each epoch, the total complexity of each binarization is

O(ntLmax{p,N}2).

Additionally, using the LVR procedure involves h binarizations. After performing h binarizations, we need to construct the
h× h matrix based on the inner product of two h× n matrices and compute its eigendecomposition. These two operations
require O(h2n) and O(h3) computations, respectively. Therefore, the final computational cost is

O(hntLmax{p,N}2 + h2n+ h3).

In contrast, deep methods without binarization incur a slightly better computational cost,

O(ntLmax{p,N}2).

The primary computational complexity of GSIR/PSVM stems from the inversion of an n× n matrix, which is O(n3) for
the naive inversion algorithm. When comparing this with the complexity O

(
hntLmax{p,N}2

)
, it is evident that the

computational advantage of neural networks becomes apparent only when n exceeds a certain threshold. Otherwise, the
computational overhead of gradient evaluation becomes more expensive.

The above conclusion is validated by empirical evaluation in Figure 4. Here, deepsvm represents our proposed method,
psvm corresponds to KPSVM, and deepsdr refers to DDR. The other names correspond to their respective original methods
as indicated.

A.5. Computer configuration and network architecture

All the experiments are run on a computer with 80 Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz CPU and 251 GB
memory. The batch size and epoch number are set as 100 and the optimizer is set as adam with default parameters. This
network structure follows an expansion-contraction pattern, a reverse pattern of the bottleneck structure in auto-encoders.
The initial increase in width is to map the original features to a higher-dimensional space, similar to the kernel trick used in a
reproducing kernel Hilbert space. The subsequent decreasing width is employed to perform dimension reduction, ultimately
obtaining a low-dimensional embedding. The default network is a feedforward ReLU network with hidden dimensions

2D1 , 2D1+1, 2D1 , 2D1−1, . . . , 16, 1,

where D1 = ⌊log2 p⌋ + 1 and p is the input dimension. Our method performs well with a simple feedforward network,
so we did not explore more complex architectures. Specifically, we generate a default neural network with the following
Python code.

11

Deep principal support vector machines

Figure 4. Computational time comparison of different methods.

def generate_default_net(input_dim, first_hidden_width=None, last_hidden_width=16,
increase_count=2, output_dim=1):

if first_hidden_width is None:
first_hidden_width = 2 ** (int(np.log2(input_dim)) + 1)

net = nn.Sequential()
net.append(nn.Linear(input_dim, first_hidden_width))
net.append(nn.ReLU())
next_width = first_hidden_width
for i in range(increase_count - 1):

net.append(nn.Linear(next_width, next_width * 2))
net.append(nn.ReLU())
next_width = next_width * 2

for i in range(increase_count - 1):
net.append(nn.Linear(next_width, next_width // 2))
net.append(nn.ReLU())
next_width = next_width // 2

if last_hidden_width is not None:
while(next_width // 2 >= last_hidden_width):

net.append(nn.Linear(next_width, next_width // 2))
net.append(nn.ReLU())
next_width = next_width // 2

net.append(nn.Linear(next_width, output_dim))
return net

A.6. Sensitivity analysis with different hyperparameters

To evaluate the robustness of our method, we conduct a sensitivity analysis on various hyperparameters: binarization count,
λ, learning rate, and neural network structure. The results are presented in Table 3. DPSVM is not sensitive to the number
of binarizations. The learning rate should be chosen suitably small to ensure optimal performance. As shown in Table 3,
smaller values of λ lead to improved performance, as it shifts the focus toward dimension reduction rather than variance
constraints. Specifically, λ should range from 0.01 to 0.1. Different configurations of hidden layers and widths of neural
networks have the most significant impact on performance in settings B and C. Four different structures I–IV are generated
by the code

generate_default_net(10, last_hidden_width=16, increase_count=2) # default
generate_default_net(10, last_hidden_width=8, increase_count=2)
generate_default_net(10, last_hidden_width=16, increase_count=3)
generate_default_net(10, first_hidden_width=32, last_hidden_width=32, increase_count=2)

12

Deep principal support vector machines

The optimal configuration uses the default network (Setting I), 10 binarizations to balance performance and computational
cost, λ = 0.01, and a learning rate of 0.001, chosen by cross-validation.

Setting 5 10 15 20

A-I 0.80(0.01) 0.81(0.01) 0.81(0.01) 0.82(0.02)
A-II 0.74(0.01) 0.73(0.02) 0.73(0.01) 0.74(0.02)
A-III 0.76(0.01) 0.77(0.01) 0.77(0.01) 0.77(0.02)
B-I 0.73(0.04) 0.73(0.05) 0.74(0.04) 0.73(0.04)
B-II 0.71(0.04) 0.70(0.03) 0.72(0.04) 0.70(0.05)
B-III 0.74(0.05) 0.75(0.06) 0.76(0.05) 0.75(0.05)
C-I 0.75(0.04) 0.76(0.02) 0.79(0.03) 0.78(0.03)
C-II 0.77(0.02) 0.77(0.03) 0.77(0.05) 0.78(0.04)
C-III 0.80(0.03) 0.82(0.03) 0.81(0.03) 0.81(0.02)

Setting 0.01 0.1 1 10

A-I 0.79(0.02) 0.81(0.01) 0.78(0.02) 0.46(0.08)
A-II 0.72(0.02) 0.75(0.02) 0.70(0.02) 0.32(0.08)
A-III 0.75(0.03) 0.76(0.02) 0.72(0.02) 0.34(0.09)
B-I 0.76(0.03) 0.74(0.05) 0.68(0.07) 0.31(0.06)
B-II 0.76(0.03) 0.71(0.04) 0.61(0.08) 0.27(0.07)
B-III 0.79(0.03) 0.75(0.03) 0.68(0.05) 0.34(0.07)
C-I 0.77(0.07) 0.76(0.04) 0.71(0.03) 0.36(0.08)
C-II 0.82(0.02) 0.78(0.04) 0.72(0.04) 0.36(0.07)
C-III 0.84(0.03) 0.81(0.03) 0.76(0.04) 0.39(0.08)

Sensitivity analysis with a different number of binarizations. Sensitivity analysis with a different λ.

Setting 0.001 0.01 0.1 1

A-I 0.81(0.01) 0.82(0.01) 0.64(0.12) 0.09(0.05)
A-II 0.74(0.02) 0.78(0.01) 0.59(0.11) 0.07(0.03)
A-III 0.76(0.03) 0.80(0.01) 0.61(0.14) 0.09(0.06)
B-I 0.75(0.06) 0.68(0.04) 0.56(0.16) 0.07(0.02)
B-II 0.72(0.05) 0.65(0.04) 0.60(0.08) 0.08(0.04)
B-III 0.74(0.04) 0.67(0.04) 0.60(0.13) 0.11(0.08)
C-I 0.77(0.03) 0.69(0.04) 0.51(0.21) 0.09(0.06)
C-II 0.78(0.03) 0.74(0.05) 0.60(0.15) 0.09(0.04)
C-III 0.80(0.03) 0.77(0.04) 0.61(0.17) 0.07(0.04)

Setting I II III IV

A-I 0.79(0.01) 0.80(0.02) 0.81(0.02) 0.80(0.03)
A-II 0.74(0.02) 0.74(0.03) 0.75(0.01) 0.74(0.02)
A-III 0.78(0.01) 0.77(0.02) 0.79(0.02) 0.76(0.03)
B-I 0.74(0.03) 0.54(0.04) 0.59(0.05) 0.57(0.05)
B-II 0.72(0.03) 0.54(0.05) 0.52(0.05) 0.54(0.05)
B-III 0.77(0.02) 0.63(0.03) 0.58(0.03) 0.60(0.03)
C-I 0.75(0.04) 0.62(0.06) 0.63(0.04) 0.60(0.06)
C-II 0.77(0.04) 0.66(0.05) 0.63(0.04) 0.64(0.04)
C-III 0.82(0.02) 0.69(0.02) 0.64(0.03) 0.67(0.04)

Sensitivity analysis with a different learning rate. Sensitivity analysis with a different network.

Table 3. Results of sensitivity analysis with different hyperparameters

B. Proofs
Lemma B.1. Under the assumption 4.4, for each t ∈ R, the function f 7→ L(f, t) is continuous with respect to the L2(PX)
norm.

Proof. The proof follows the same idea as Lemma 1 in Li et al. (2011). For any f1, f2 ∈ L2(PX), the following inequality
holds ∣∣L(f1, t)− L(f2, t)

∣∣ ≤λ∣∣Var(f1(X))−Var(f2(X))
∣∣

+ E
∣∣ρ(−Ỹ {f1(X)− E(f1(X))− t

})
− ρ
(
−Ỹ
{
f2(X)− E(f2(X))− t

})∣∣.
By Cauchy-Schwarz inequality,∣∣Var(f1(X))−Var(f2(X))

∣∣
=
∣∣Var(f1(X)− f2(X) + f2(X))−Var(f2(X))

∣∣
≤
∣∣Var(f1(X)− f2(X))

∣∣+ 2
∣∣Var(f1(X)− f2(X))Var(f2(X))

∣∣1/2
≤∥f1(X)− f2(X)∥2L2(PX) + 2∥f1(X)− f2(X)∥L2(PX)∥f2(X)∥L2(PX).

By Lipschitz continuity of ρ,

E
∣∣ρ(−Ỹ {f1(X)− E(f1(X))− t

})
− ρ
(
−Ỹ
{
f2(X)− E(f2(X))− t

})∣∣
≤Llip · E

∣∣Ỹ {f1(X)− E(f1(X))− f2(X) + E(f2(X))
}∣∣

≤2Llip · E
∣∣f1(X)− f2(X)

∣∣
13

Deep principal support vector machines

≤2Llip · ∥f1(X)− f2(X)∥L2(PX).

Then we can conclude that the function f 7→ L(f, t) is continuous with respect to the L2(PX) norm.

Proof of Theorem 4.1. Without loss of generality, we assume E(f(X)) = 0. Note that

Eρ
(
−Ỹ
{
f(X)− t

})
= E

(
E
[
ρ
(
−Ỹ
{
f(X)− t

})∣∣Y,f0(X)
])
.

By Jensen inequality and conditional independence Y ⊥⊥ X|f0(X),

E
(
E
[
ρ
(
−Ỹ
{
f(X)− t

})∣∣Y,f0(X)
])

≥ E
(
ρ
(
E
[
− Ỹ

{
f(X)− t

}∣∣Y,f0(X)
]))

= E
(
ρ
(
− Ỹ

{
E
[
f(X)|f0(X)

]
− t
}))

.
(9)

Now apply the law of total variance, then we get

Var(f(X)) = Var
[
E
(
f(X)|f0(X)

)]
+ E

[
Var

(
f(X)|f0(X)

)]
≥ Var

[
E
(
f(X)|f0(X)

)]
. (10)

Combining (9) and (10), we have

L(f, t) ≥ λVar
[
E
(
f(X)|f0(X)

)]
+ λt2 + E

[
ρ
(
− Ỹ

{
E
[
f(X)|f0(X)

]
− t
})]

= L
(
E
(
f(X)|f0(X)

)
, t
)
.

The equality in (10) holds when

E
[
Var

(
f(X)|f0(X)

)]
= 0 a.s.

which holds if and only if there is a version of f that is measurable with respect to σ{f0(X)}. Therefore, if
E
[
Var

(
f(X)|f0(X)

)]
> 0 or f is not measurable with respect to σ{f0(X)}, then

L(f, t) > L(g, t)

where g(X) = E [f(X)|f0(X)] is a function in L2(PX). And F is dense in L2(PX), so we can find a function gf such
that

∥gf − g∥L2(PX) ≤ ϵ

for all ϵ > 0. By Lemma B.1 and the arbitrariness of ϵ, we find gf ∈ F such that

L(f, t) > L(gf , t),

which concludes that any function that is not measurable with respect to σ{f0(X)} can’t be the minimizer.

Proof of Theorem 4.6. To facilitate theoretical analysis, we define an intermediate quantity

L̃n(f, t) =λVarn(f(X)) + λt2 +
1

n

n∑
i=1

ρ
(
−Ỹi

{
f(Xi)− E(f(X))− t

})
(11)

=
2λ

n(n− 1)

∑
1≤i<j≤n

{
f(Xi)− f(Xj)

}2
+ 2t2

2

+
1

n

n∑
i=1

ρ
(
−Ỹi

{
f(Xi)− Ef(X)− t

})
=

2

n(n− 1)

∑
1≤i<j≤n

hf,t(Zi, Zj),

14

Deep principal support vector machines

where hf,t(Zi, Zj) = λt2+
λ{f(Xi)−f(Xj)}2

2 +
ρ(−Ỹi{f(Xi)−E(f(X))−t})+ρ(−Ỹj{f(Xj)−E(f(X))−t})

2 is a symmetric kernel
and Zi = (Xi, Ỹi).

Define qf,t(Zi, Zj) = hf,t(Zi, Zj)− hf∗,t∗(Zi, Zj), where (f∗, t∗) is the optimal solution of L(f, t) over L2(PX)× R.
Now we consider

Λ̃n(f, t) = L̃n(f, t)− L̃n(f
∗, t∗) =

2

n(n− 1)

∑
1≤i<j≤n

qf,t(Zi, Zj).

It’s obvious that the expectation of Λ̃n(f, t) is the excess risk Λ(f, t) = L(f, t)− L(f∗, t∗).

Given the conditional kernel

q0,f,t =

∫
qf,t(z1, z2)dP (z1)dP (z2) = Λ(f, t),

q1,f,t(z1) =

∫
qf,t(z1, z2)dP (z2),

q2,f,t(z1, z2) = qf,t(z1, z2),

then the Hoeffding decomposition of Λ̃n(f, t) is

Λ̃n(f, t) =q0,f,t +
2

n

n∑
i=1

{
q1,f,t(Zi)− q0,f,t

}
+

1

n(n− 1)

∑
1≤i ̸=j≤n

{
q2(Zi, Zj)− q1,f,t(Zi)− q1,f,t(Zj) + q0,f,t

}
(12)

:=A1,n(f, t) +A2,n(f, t)

where A1,n(f, t) = q0,f,t +
2
n

∑n
i=1

{
q1,f,t(Zi)− q0,f,t

}
= 2

n

∑n
i=1 q1,f,t(Zi)− Λ(f, t) and A2,n(f, t) is the third term.

Noting that A1,n(f, t) is an independent sum, let a new loss function

ℓ(f, t, Z) = 2q1,f,t(Z)− Λ(f, t).

Now we consider a new objective function

vn(f, t) = A1,n(f, t) =
1

n

n∑
i=1

ℓ(f, t, Zi)

whose minimizer over Fn × R is denoted by (fℓ, tℓ) and centered empirical form is

v̄n(f, t) =
1

n

n∑
i=1

ℓ(f, t, Zi)− Λ(f, t).

Step 1: Loss gap.

The sample estimator (f̂ , t̂) is obtained by minimizing Ln, while our convergence analysis turns to the independent sum
vn(f, t). We should derive the loss gap between vn(f̂ , t̂) and vn(fℓ, tℓ) at first. Let the minimizer of L̃n be (f̃ , t̃), then

0 ≤ L̃n(f̂ , t̂)− L̃n(f̃ , t̃) =
(
L̃n(f̂ , t̂)− Ln(f̂ , t̂)

)
+
(
Ln(f̂ , t̂)− L̃n(f̃ , t̃)

)
:= D1 +D2.

The term D2 can be bounded by

D2 = Ln(f̂ , t̂)− Ln(f̃ , t̃) + Ln(f̃ , t̃)− L̃n(f̃ , t̃)

≤ Ln(f̃ , t̃)− L̃n(f̃ , t̃)

15

Deep principal support vector machines

≤
∣∣Ln(f̃ , t̃)− L̃n(f̃ , t̃)

∣∣
≤ En

∣∣∣ρ(−Ỹ {f̃(X)− En(f̃(X))− t
})

− ρ
(
−Ỹ
{
f̃(X)− E(f̃(X))− t

})∣∣∣
≤ Llip ·

∣∣En(f̃(X))− E(f̃(X))
∣∣.

Noting that f̃ is bounded by B, by Hoeffding’s inequality, with probability at least 1− exp(− 2nδ2

B2) it holds that

Llip ·
∣∣En(f̃(X))− E(f̃(X))

∣∣ ≤ Llipδ,

Or equivalently,

D2 ≤ LlipB

√
log(1/δ)

2n

with probability at least 1− δ. And D1 can be bounded by the same logic. Therefore, with probability at least 1− 2δ,

∣∣L̃n(f̂ , t̂)− L̃n(f̃ , t̃)
∣∣ ≤ 2LlipB

√
log(1/δ)

2n
.

Therefore with probability at least 1− 2δ, we have

L̃n(f̂ , t̂)− L̃n(f
∗, t∗)− 2LlipB

√
log(1/δ)

2n
≤ L̃n(f̃ , t̃)− L̃n(f

∗, t∗),

which implies

Λ̃n(f̂ , t̂)− 2LlipB

√
log(1/δ)

2n
≤ Λ̃n(f̃ , t̃) ≤ Λ̃n(fℓ, tℓ)

since (f̃ , t̃) is also the minimizer of Λ̃n(f, t). With Λ̃n(f, t) = A1,n(f, t) +A2,n(f, t), we further have

A1,n(f̂ , t̂)−A1,n(fℓ, tℓ) ≤ 2LlipB

√
log(1/δ)

2n
+A2,n(fℓ, tℓ)−A2,n(f̂ , t̂). (13)

Additionally, by corollary 6 in Clémençon et al. (2008), with probability at least 1− δ it holds that

sup
f∈Fn

∣∣A2,n(f)
∣∣ ≤ C

(
V/n+ (log 1/δ)/n

)
, (14)

where C is a constant and V is defined in Assumption 4.5.

Combining (13) and (14), it holds that with probability at least 1− 3δ

A1,n(f̂ , t̂)−A1,n(fℓ, tℓ) ≤ 2LlipB

√
log(1/δ)

2n
+ 2C

(
V/n+ (log 1/δ)/n

)
.

Choosing δ small enough so that log(1/δ)
2n ≥ 1, then we can conclude that with probability at least 1− 3δ,

vn(f̂ , t̂)− vn(fℓ, tℓ) ≤ O(V/n+ (log 1/δ)/n).

Step 2: Pseudo-metric.

Define the pseudo-metric as dp((f1, t1), (f2, t2)) = C1(∥f1 − f2∥L2(PX) + |t1 − t2|), where the universal constant C1 will
be determined later to satisfy some properties. Since

q1,f,t(Z) =λt
2 +

λ{f(X)− E(f(X))}2

2
+
ρ
(
− Ỹ {f(X)− E(f(X))− t}

)
2

16

Deep principal support vector machines

+
Eρ
(
− Ỹ {f(X)− E(f(X))− t}

)
2

,

we have

Var
[
ℓ(f1, t1, Z)− ℓ(f2, t2, Z)

]
=Var

[
2q1,f1,t1(Z)− 2q1,f2,t2(Z)

]
=Var

[
2λ
{
f1(X)− E(f1(X))

}2
+ 2λt21 + ρ(−Ỹ

{
f1(X)− E(f1(X))− t1

}
)

− 2λ
{
f2(X)− E(f2(X))

}2 − 2λt22 − ρ(−Ỹ
{
f2(X)− E(f2(X))− t2

}
)
]
.

Noting that f1, f2 is bounded by B, Var
[
λ
{
f1(X)− E(f1(X))

}2 − λ
{
f2(X)− E(f2(X))

}2]
can be bounded by

λ2E
[{
f1(X)− E(f1(X)) + f2(X)− E(f2(X))

}2{
f1(X)− E(f1(X))− f2(X) + E(f2(X))

}2]
≤32B2λ2

[
E
{
f1(X)− f2(X)

}2
+
{
E(f1(X))− E(f2(X))

}2]
≤64B2λ2∥f1 − f2∥2L2(PX).

With Lipschitz continuity of ρ, the remaining term can be bounded similarly by

2Llip
2(∥f1 − f2∥2L2(PX) + |t1 − t2|2)

Let C1 = 2Llip
2 + 64B2λ2. Then

Var
[
ℓ(f1, t1, Z)− ℓ(f2, t2, Z)

]
≤ d2p((f1, t1), (f2, t2)).

The following deduction is still valid if the zero mean assumption doesn’t hold. We can just replace f and f∗ by f̄ = f−Ef
and f̄∗ = f∗ − Ef∗, respectively. With loss of generality, we assume E(f∗(X)) = 0 here. Let f be any function such that
E(f(X)) = 0 and t be any constant, then

L(f, t)− L(f∗, t∗)

=λ
{
Var(f(X)) + t2

}
− λ

{
Var(f∗(X)) + t∗2

}
+ Eρ

(
−Ỹ
{
f(X)− t

})
− Eρ

(
−Ỹ
{
f∗(X)− t∗

})
=λE

{
f(X)− f∗(X)

}2
+ λ|t− t∗|2 + λE

[
2
{
f(X)− f∗(X)

}
f∗(X)

]
+ 2t∗(t− t∗)

+ Eρ
(
−Ỹ
{
f(X)− t

})
− Eρ

(
−Ỹ
{
f∗(X)− t∗

})
=λE

{
f(X)− f∗(X)

}2
+ λ|t− t∗|2 +A

≥λE
{
f(X)− f∗(X)

}2
+ λ|t− t∗|2

=λ∥f − f∗∥2L2(PX) + λ|t− t∗|2,

if
A = λE

[
2
{
f(X)− f∗(X)

}
f∗(X)

]
+ 2t∗(t− t∗) + Eρ

(
−Ỹ
{
f(X)− t

})
− Eρ

(
−Ỹ
{
f∗(X)− t∗

})
≥ 0.

(15)

Now we prove the condition (15) by contradiction. Let’s assume A < 0. By convexity of loss function ρ, the following
holds for any 0 ≤ c ≤ 1,

L(cf + (1− c)f∗, ct+ (1− c)t∗)− L(f∗, t∗)

≤λc2
[
E
{
f(X)− f∗(X)

}2
+ |t− t∗|2

]
+ λcE

[
2
{
f(X)− f∗(X)

}
f∗(X)

]
+ 2λct∗(t− t∗)

+ cEρ
(
−Ỹ
{
f(X)− t

})
− cEρ

(
−Ỹ
{
f∗(X)− t∗

})
=λc2(E

{
f(X)− f∗(X)

}2
+ |t− t∗|2) + cA.

17

Deep principal support vector machines

The root of λc2(E
{
f(X)− f∗(X)

}2
+ |t− t∗|2) + cA is

0 or
−2A

2λ
[
E{f(X)− f∗(X)}2 + |t− t∗|2

] > 0.

Therefore for some small 0 < c < 1, it holds that

L(cf + (1− c)f∗, ct+ (1− c)t∗) < L(f∗, t∗),

which contradicts with the fact that (f∗, t∗) is the minimizer.

Therefore, we get the lower bound of L(f, t)− L(f∗, t∗)

dp((f1, t1), (f2, t2)) ≤
C1

λ

√
L(f, t)− L(f∗, t∗) := w(

√
L(f, t)− L(f∗, t∗)),

which implies that w(x) = C1

λ x is a linear function of x.

Step 3: ϕ bound

Next we need to find a function ϕ : [0,∞) 7→ [0,∞) with the property

√
nW (σ) =

√
nE

[
sup

f∈Fn,t∈R,d2p((f,t),(f∗
n,t

∗))≤σ2

vn(f, t)− vn(f
∗
n, t

∗)

]
≤ ϕ(σ),

where f∗n = argminf∈Fn
L(f, t). Applying Lemma 6.10 in Blanchard et al. (2008), we get

√
nW (σ)

≤C(
∫ σ

0

√
logN(δ, {ℓ(f, t)− ℓ(f∗n, t

∗) : f ∈ Fn, t ∈ R, d2p((f∗n, t∗), (f, t)) ≤ σ2}, ∥ · ∥∞)dδ

+
logN(σ, {ℓ(f, t)− ℓ(f∗n, t

∗) : f ∈ Fn, t ∈ R, d2p((f∗n, t∗), (f, t)) ≤ σ2}, ∥ · ∥∞)
√
n

)

≤C(
∫ σ

0

√
logN(δ, {f − f∗n + t− t∗ : f ∈ Fn, t ∈ R, d2p((f∗n, t∗), (f, t)) ≤ σ2}, ∥ · ∥∞)dδ

+
logN(σ, {f − f∗n + t− t∗ : f ∈ Fn, t ∈ R, d2p((f∗n, t∗), (f, t)) ≤ σ2}, ∥ · ∥∞)

√
n

)

(By Lipschitz continuous condition)

≤C(
∫ σ

0

√
log(B/δ) +H∞(δ)dδ +

log(B/δ) +H∞(σ)√
n

)

≤C(ξ(σ) + (ξ(σ))2

σ2
√
n

)(By ξ(x) ≥ x
√
H∞(x))(assume V > B)

:=ϕ(σ),

where H∞(δ) = logN(δ,Fn, ∥ · ∥∞) and ξ(x) =
∫ x
0

√
H∞(δ)dδ ≤ C(

√
V x+

√
V
∫ x
0
log(1/δ)dδ).

Denote x∗ the solution of equation ξ(x) =
√
nx2 and σ∗ = cx∗ for a suitable choice of constant c ≥ 2C > 2, Since

x−1ξ(x) is a decreasing function, it holds that

ξ(σ∗) = ξ(cx∗) ≤ cξ(x∗) = c
√
nx2∗ =

√
nσ2

∗/c.

Plugging this into ϕ(σ) yields

ϕ(σ∗) ≤ (
C

c
+
C

c2
)
√
nσ2

∗ ≤
√
nσ2

∗,

18

Deep principal support vector machines

which implies that ϕ(σ∗)/σ2
∗ ≤

√
n. And ϕ(x)/x and therefore ϕ(x)/x2 is non-increasing function, which conclude that cx∗

the upper bound for the solution of equation ϕ(σ)/σ2 =
√
n. Let the solution of C(

√
V x+

√
V
∫ x
0
log(1/δ)dδ) =

√
nx2

be x∗. Similarly,

ξ(x∗)/x
2
∗ ≤ C(

√
V x+

√
V

∫ x

0

log(1/δ)dδ)/x2 ≤
√
n,

which implies x∗ is a upper bound of the solution of ξ(x) =
√
nx2 with the non-increasing property of ξ(x)/x2.

Define the non-increasing function g(x) =
∫ x
0

√
log(1/ϵ)dϵ

x with property g(1) ≈ 0.88 > 1/2. Therefore,g(x) > 1/2

and
√
V
x ≤ 2 ∗

√
V g(x)
x for x ∈ (0, 1). With the same logic as in the last paragraph the solution of the equation of

C(
√
V g(x)
x +

√
V
x) =

√
n is upper bounded by that of 3C

√
V g(x)
x =

√
n. Finally, the solution of equation ϕ(x) =

√
nx2 is

upper bounded by the solutions

3C

√
V g(x)

x
=

√
n.

For arbitrary 0 < α < 1, we have∫ x∗

0

√
log 1/ϵdϵ/x2∗ =

∫ x∗
0

√
log 1/ϵdϵ

x1−α∗

C

x1+α∗
=

√
n

V
.

It’s easy to verify that limx→0

∫ x
0

√
log(1/ϵ)dϵ

x1−α = 0 and it’s a bounded by some constant C. Therefore, we can bound x∗ by√
n

V
=

∫ x∗
0

√
log 1/ϵdϵ

x1−α∗

1

x1+α∗
≤ C2

x1+α∗
⇐⇒ x2∗ ≤

(
V

n

)1− α
1+α

=

(
V

n

)1−γ

,

where γ = α
1+α is an arbitrary number in (0, 1/2).

Therefore, the upper bound of solution of ϕ(w(ϵ∗)) = ϕ(ϵ∗) =
√
nϵ2∗ is

ϵ2∗ = C2

(
V

n

)1−γ

,

where γ is arbitrary number in (0, 1/2).

Step 4: Final result

Combine all the results above and Theorem 8.3 in Massart (2003), we can conclude that with probability at least 1− 4δ,

L(f̂ , t̂)− L(f∗, t∗)

≤O

((
V

n

)1−γ

+
V

n
+

log(1/δ)

n
+ 2 inf

f∈Fn,t∈R

{
L(f, t)− L(f∗, t∗)

}
+

1 ∧
(
V
n

)1−γ
(Vn)

1−γ
log(1/δ)

n

)

≤O

((
V

n

)1−γ

+ 2 inf
f∈Fn

{
L(f, t∗)− L(f∗, t∗)

}
+

log(1/δ)

n

)

≤O

((
V

n

)1−γ

+ inf
f∈Fn

∥f − f∗∥2∞ +
log(1/δ)

n

)
.

Note that the above bound holds for all γ ∈ (0, 1/2) and

C1∥f̂ − f∗∥2L2(PX) ≤d
2
p

(
(f̂ , t̂), (f∗, t∗)

)
≤ L(f̂ , t̂)− L(f∗, t∗)

≤O
(
V

n

(
1 +

log(1/δ)

n

)
+ inf
f∈F

∥f(x)− f∗(x)∥2∞
)
.

(16)

19

Deep principal support vector machines

Proof of Corollary 4.7. Given any arbitrary N,L ∈ N+, we assume that Fn is the deep ReLU networks Fn with width

N = 3p+3 max
(
p⌊N1/p⌋, N + 1

)
and depth L = 12L+ 14 + 2p. By Theorem 1.1 in Shen (2020), we have the approximation error

inf
f∈Fn

∥f − f∗∥2∞ = O
((

NL
)− 4β

p

)
. (17)

Since the ReLU-activated neural network class is a VC class, the parameter V in assumption 4.5 can be its VC dimension
(see Theorem 7 of Bartlett et al. (2019))

SL log
(
S
)
. (18)

Based on (17) and (18), the following holds with probability at least 1− 4δ for any δ > 0 by Theorem 4.6,

L(f̂ , t̂)− L(f∗, t∗) = O
(
SL log (S)

n
+
(
NL

)− 4β
p +

SL log (S) log(1/δ)
n

)
.

Notice that, for any neural network f ∈ Fn, its size satisfies

S ≤ N (p+ 1) +
(
N 2 +N

)
(L − 1) +N + 1 = O

(
N 2L

)
.

Therefore,

L(f̂ , t̂)− L(f∗, t∗)

=O

(
N 2L2 log

(
N 2L

)
n

+
(
NL

)− 4β
p +

N 2L2 log
(
N 2L

)
log(1/δ)

n

)
.

To achieve the balance between the first two terms, we consider the width-fixed ReLU neural network class Fn with
L = n

p
2(p+2β) and N being any positive integers, which leads to

L(f̂ , t̂)− L(f∗, t∗) =O
(
n−

2β
p+2β log n+ n−

2β
p+2β log n log(1/δ)

)
=O

(
n−

2β
p+2β

{
1 + log(1/δ)

}
log n

)
.

By equality (16), ∥f̂ − f∗∥2L2(PX) has the same convergence rate with L(f̂ , t̂)− L(f∗, t∗).

20

