
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HYPERNETWORK-BASED EQUIVARIANT CNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

In geometric deep learning, numerous works have been dedicated to enhancing neu-
ral networks with ability to preserve symmetries, a concept known as equivariance.
Convolutional Neural Networks (CNNs) are already equivariant to translations.
To further achieve rotation and reflection equivariance, previous methods are pri-
marily based on Group Equivariant Convolutional Neural Networks (G-CNN).
While showing a significant improvement when processing rotation-augmented
datasets, training G-CNN on a dataset with little rotational variation typically leads
to a performance drop comparing to a regular CNN. In this study, we discuss the
reason of G-CNN not performing on datasets with little rotational variation. We
propose an alternative approach: generating CNN filters that inherently exhibit
rotational equivariance without altering the main network’s CNN structure. This
is achieved through our novel application of a dynamic hypernetwork. We prove
these generated filters grant equivariance property to a regular CNN main network.
Our experiments demonstrate that our method outperforms G-CNN and achieves
performance comparable to advanced state-of-the-art G-CNN-based methods.

1 INTRODUCTION

In machine learning, convolutional neural networks (CNNs) are effective and prevalent tools for
image classification and segmentation tasks. When a specific area of the image input is translated
to a different location, the convolution operation inherently causes the extracted feature to translate
similarly. This ability to comprehend and preserve translation is known as translation equivariance,
and general equivariance is highly significant in geometric deep learning. Wood & Shawe-Taylor
(1996) emphasize that it is a central problem to design neural networks that exhibit invariance or
equivariance to representations in machine learning. It is a natural question to ask: Can a CNN
exhibit equivariance regarding rotations and reflections?

Group Equivariant Convolutional Networks (G-CNNs), introduced by Cohen & Welling (2016), is
one of the most popular equivariant CNN structure. The convolution operation is modified to be group
equivariant and demonstrated equivariance for rotations, translations, and reflections. The G-CNN
architectures have been the backbone of many equivariant neural networks, including steerable CNNs
(Cohen & Welling, 2017; Weiler et al., 2018) and spherical CNNs (Cohen et al., 2018; Salihu et al.,
2024), with several applications such as domain adaptation (Zhang et al., 2022), pose estimation
(Howell et al., 2023; Li et al., 2021), and many other areas involving symmetries.

G-CNN’s equivariance property enables effective handling of data with symmetries, but equivariance
comes with an additional constraints imposed on the filters: Filters are grouped into smaller subsets,
where the filters in each subset are strictly related by reflections and rotations. When training on
a dataset with little rotational variation, these constraints can lead to G-CNNs underperforming
compared to standard CNN architectures. To empirically observe this, in Table 1, we train a small
CNN and a small G-CNN on the original MNIST datasets. CNN outperforms G-CNN on the original
MNIST testing dataset, while G-CNN outperforms CNN when the testing dataset is incorporated
with rotational augmentation.1

To bypass such constraint within the filters, in this paper we propose a Hypernetwork-based Equivari-
ant CNN (HE-CNN) to achieve equivariance. The proposed HE-CNN is grounded in a straightforward
concept: rotating filters in alignment with input rotation produces corresponding rotated features.

1Experimental details are presented in Section 5.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Specifically, HE-CNN consists of a dynamic hypernetwork and a main network. The main network
can be a general CNN and the dynamic hypernetwork generates input-dependent parameters. The
dynamic hypernetwork is composed of two components: a non-equivariant parameter-pieces (NEP)
generator and a novel module called equivariant combiner. The NEP generator generates parameter-
pieces of entire parameters. The equivariant combiner, abbreviated as equi-combiner, combines
the parameter-pieces in a specific pattern to form full parameters with the ability to follow given
symmetries on the inputs. Finally, we theoretically and empirically demonstrate that the proposed
HE-CNN confer the equivariance property to non-equivariant CNN structures.

Table 1: Performance of regular CNN and G-CNN
trained on the original MNIST.

Test Dataset CNN G-CNN
Original MNIST 96.29 85.88
Randomly Rotated MNIST 34.81 50.02
90◦ rotated MNIST 17.76 85.88
Mean of the first two 65.55 67.95
#Parameters 3370 12522

Our main contribution can be summarized
as follows.

1. We purpose an alternative way to achieve
equivariance: instead of constraining the
filters, equivariance is achieved through
input-dependent parameters.

2. We propose the HE-CNN to achieve the
equivariance.

3. Extensive experiments demonstrate the
effectiveness of the proposed HE-CNN.

2 RELATED WORK

Group Equivariance CNNs (G-CNN) are introduced by Cohen & Welling (2016) as one of the
earliest adaptation of general equivariance into CNN, and has been the backbone for the majority
of equivariant architectures. Assume the group consists of translation and 90 degree rotations. The
first layer of G-CNN would have a filter in the same fashion of a regular CNN, and rotate this filter
by 90◦, 180◦ and 270◦, resulting in total four rotated versions of a same filter. These four filters
output four feature maps for a single input. For all the following layers, to process these four features,
G-CNN has four different filters as a set of filters, and this set of filters is again rotated by multiples
of 90 degrees to perform the G-equivariant convolution. G-CNNs apply pooling to the final set of
features before the linear layer, achieving invariance in the final output.

A previous approach on making non-equivariant model equivariant is the canonicalization method
(Kaba et al., 2023; Mondal et al., 2023). The equivariance is achieved through a G-CNN based
canonicalization network, learning to rotate the input before feeding into the pretrained model.
HE-CNN avoids the G-CNN structures, and is utilized during the training process.

Hypernetwork, initially introduced by Ha et al. (2016), provides an alternative approach to train a
neural network. It is widely used in federated-learning (Shamsian et al., 2021), few-shot learning
(Sendera et al., 2023; Yin et al., 2022), continual learning (Hemati et al., 2023) and many other
areas, due to its versatility and parameter-efficiency. The network designated for training on a
specific dataset is known as the main or target network. The network responsible for generating the
parameters of the main network is referred to as the hypernetwork. If the hypernetwork generates
input-dependent parameters, we call it a dynamic hypernetwork. Otherwise we say it is static. The
combination of a main network and a hypernetwork is referred to as a full network in this paper.

For hypernetwork research related to equivariance, Garrido et al. (2023) uses hypernetwork to make
representations stay equivariant without converging to invariance. The hypernetwork is utilized for
parameter sharing, not for achieving equivariance. To the best of our knowledge, there is no work to
use hypernetworks to achieve the equivariance on a regular CNN structure.

3 PRELIMINARY

We give a brief definition of groups and representations, and a comprehensive definition can be
found in Section A.1. For a set G with a operation ∗, (G, ∗) or simply G is a group if all following
properties are satisfied: ∗ is associative, G has an identity element, and every element has an inverse.
Given G and a vector space V , a representation (V, ρ) or simply ρ is a mapping on G, where every
ρ(g) is a linear map on V . Furthermore, ρ(g ∗ g′) = ρ(g)ρ(g′) for any g, g′ ∈ G.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Load

generated

parameters

Dynamic Hypernetwork

NEP

generator

Parameter pieces

Equi-

Combiner

Convolutional

layers

Linear layer

Convolutional filters

Linear weight matrix

Flatten

Output

Main Network

Figure 1: An overview of the HE-CNN architecture, where all the learnable parameters lie in the
NEP generator.

If ρ is fixed and we want to study each g, ρ(g)(x) can be shorten to simply gx. If we want general
properties for all g ∈ G, ρx stands for ρ(g)x for all g ∈ G. A representation ρ is called a trivial
representation if it ρx = x for all x ∈ V .

We fix group G based on the desired symmetries for given tasks. Now we can define equivariance
and invariance in deep neural networks.
Definition 1. Let f denote a deep neural network or one neural network layer. For two representations
ρ1 and ρ2, we say f is (G-)Equivariant if for any input x, we have

ρ2f(x) = f(ρ1(x)).

If ρ2 is the trivial representation, then we say f is (G-)Invariant. That is,

f(x) = f(ρ1(x)).

An equivariant neural network typically comprise multiple equivariant layers followed by an invariant
layer prior to processing downstream tasks, a structure that has demonstrated benefits in various
research contexts (Cohen & Welling, 2016; Worrall et al., 2017; Wang et al., 2022). We also adopt
this architectural principle in the design of our models.

When utilizing hypernetwork on a main neural network f , the input space is denoted by X , and
the weight space in neural networks is denoted by Ω. We denote a dynamic hypernetwork by
w : X → Ω. For any input x ∈ X , the corresponding generated weight is w(x), and fw(x) refers
to the main network that loads w(x) as its parameters. The full network is denoted by fw(·)(·), or
simply fw, which maps input x to fw(x)(x). Within the context of dynamic hypernetworks, fw(·)(·)
is G-equivariant if ρ2fw(x)(x) = fw(ρ1x)(ρ1x), and invariant if ρ2 is the trivial representation.

4 METHODOLOGY

In this section, we present the proposed HE-CNN model.

4.1 THE ARCHITECTURE

We assume input images are square-shaped.2 As illustrated in Figure 1, the proposed HE-CNN con-
sists of a main network f and a dynamic hypernetwork w. The main network f of HE-CNN
consists of several convolutional layers, a single flatten layer, several linear layers, and some
activation/pooling/batch-normalization layers in between. We fix the group G to be (Z4,+mod 4) ,
the group of 90-degree rotations. More general group of rotations, reflections and translations are
discussed in Section 4.5. We aim to achieve equivariance on the full network fw, combining f
with the input-dependent parameters generated by a dynamic hypernetwork w. We summarize our
objectives in the following definition.
Definition 2. We say f is w-based equivariant or hypernetwork-based equivariant if the following
conditions hold:

2Due to their correspondence with rotations, input images of equivariant structures are typically selected to
be square-shaped (Cohen & Welling, 2016).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1. For any fixed parameters γ, fγ is not equivariant.

2. When using w to generate input-dependent parameters, fw(·)(·) is equivariant to G.

In other words, f is w-based equivariant if w grants equivariance to non-equivariant main network.
The output of w is referred to as equivariant parameters.

The objective of the proposed HE-CNN is to ensure w generates equivariant parameters. This w con-
sists of two components. The first component is a non-equivariant parameter-pieces generator (NEP
generator). NEP generator is responsible for generating approximately 1/4 of the total parameters,
including filters in convolutional layers and weight matrices for linear layers. The details for each
case are introduced in the next two sections. The NEP generator can be any non-equivariant neural
network and our implementation uses regular CNNs. Additionally, we expect it to be non-equivariant
to avoid collapsing to invariant filters as demonstrated in Section D.1.

When given an input image, we collect the four 90◦-rotated versions of it and send them to the NEP
generator, resulting in four parameter pieces. Then, the four parameter pieces are fed into the second
component, the equivariant combiner (equi-combiner), to assemble parameter pieces to get full
parameters that could achieve the equivariance.

The design of the equi-loader is outlined in the following two sections, which correspond to two
cases: convolutional layers and linear layers. As explained in Section 3, we follow previous designs
(Cohen & Welling, 2016; Worrall et al., 2017; Wang et al., 2022) that for the convolutional layers,
the objective of the equi-combiner is to ensure the equivariance and preserve the rotations. For
linear layers, the equi-combiner is to generate invariant parameters, so that the final output remains
consistent regardless of the input’s rotations. Hence, in the next two sections, we discuss how to
design the NEP generator and equi-combiner for the two types of layers.

4.2 HYPERNETWORK FOR CONVOLUTIONAL LAYERS

For simplicity, we assume that there is only one convolutional layer in the main network f and if there
are multiple ones, we can apply the same operation to each of them. In the following, we discuss how
to design the hypernetwork for generating parameters in this convolutional layer.

The group Z4 has four elements: 0,1,2 and 3. They corresponds to 0◦, 90◦, 180◦ and 270◦ accordingly.
The chosen permutation ρ(g) is to perform counter-clockwise rotations corresponding to g on input
image x. For all the convolutional layers, we let both ρ1 and ρ2 in the definition of equivariance to be
the same ρ. For simplicity, we write ρ(g)x as gx. The NEP generator is denoted by N .

For the convolutional layer in f has input channels Cin, output channels Cout and filter dimension
K, the weight of the convolution filter is in shape (Cout, Cin,K,K) and the bias is in shape (j). The
output shape of N is (Cout, Cin, ⌈K/2⌉, ⌈K/2⌉) + (Cout), where the first part is for parameter pieces
of filters, the second part is for the bias, and ⌈·⌉ denotes the ceiling function. Accordingly, the NEP
generator can be split into Nfilters(x) for parameter pieces of filters and Nbias(x) for biases. We first
study assembling full filters using Nfilters.

𝑎1 𝑎2 𝑎3𝑎0

𝑎𝑟
1 𝑎𝑟

2 𝑎𝑟
3𝑎𝑟

0
𝑎𝑟
0 𝑎𝑟

1

𝑎𝑟
3 𝑎𝑟

2

Final Filter

Rotate ↺
Accordingly

↻

Figure 2: A visualization of the equi-
combiner for a 4x4 filter.

We denote the input by x0, and denote its 90◦, 180◦ and
270◦ rotations as x1, x2 and x3 accordingly. Each of them is
sent into Nfilters. The corresponding outputs (i.e., parameter
pieces) are denoted by ai = Nfilters(x

i) (i = 0, 1, 2, 3). The
equi-combiner takes each ai, and perform a clockwise i ·90◦
rotation for each and get air. As illustrated in Figure 2,
we assemble them in a clockwise manner(i.e., we assign
a0r on the top left, a1r on the top right, a2r on the bottom
right, and a3r on the bottom left) to be the final filter. If
the dimension K is odd, we average the (K + 1)/2-th and
(K − 1)/2-th columns of the final filter into one column and
perform similar operations on the (K + 1)/2-th and (K − 1)/2-
th rows. Mathematically, the generation of weights in a filter
via the NEP generator can be formulated as

wfilters(x) =
∑
g∈Z4

g−1E
(
Nfilters(gx)

)
,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where E is the expansion operation, placing parameter pieces to the top left corner of a filter, and
divide the middle columns and rows by two if d is odd.

For the bias, we expect it to be identical for all the rotated versions of the input. To achieve that, we
simply average the outputs of {Nbias(x

i)}3i=0 as

wbias(x) =
1

4

∑
g∈Z4

Nbias(gx). (1)

For the hypernetwork designed above for convolutional layers, we show that it achieve the equivari-
ance on the full network in the following theorem.3

Theorem 1. Let f conv be a main neural network with several convolutional layers, and let w be the
hypernetwork composed of the NEP generator and the equi-combiner as designed above. Then, for
all g ∈ Z4, we have

gf conv
w(x) (x) = f conv

w(gx)(gx).

For an input x, after all convolutional layers of the full network fw, we have an extracted features
{Bi}Cout

i=1 = f conv
w(x) (x). For simplicity, we first look at the case when Cout = 1, and B = f conv

w(x) (x).
For the next step in HE-CNN, B are flattened and sent into following linear layers of the full network.
We denote the flatten operation as P , and the flattened vector v = P (B). If the dimension of B is
d× d, the length of v is d2. For the general case where Cout > 1, we repeat the process for all Bi.

4.3 HYPERNETWORK FOR LINEAR LAYERS

In this section, we first study the case when the main network f consists of only one linear layer. The
linear layer takes flattened vector v as the input, and output a vector of length m. In this case, the
weight matrix W of the main network f is in shape (m, d2). The hypernetwork w aims to generate
input-dependent W so that the output of fw is invariant, i.e., fw(P (B)) = fw(P (ρB)).

Prior to designing such w, we need to establish two essential propositions. First, we adapt the rotation
representation ρ for the square matrix from Section 4.2 to the flattened vectors v using ρlin = PρP−1.

𝑖 𝑙

𝑗 𝑘

𝑖 𝑙 𝑗 𝑘

𝑐0 𝑐1 𝑐3 𝑐2

90∘ Rotation

on feature 𝐵

𝜎 on 𝑣

Equi-Combiner

𝑃−1𝑃

Figure 3: On the top, we visualize a per-
mutation σ = (i, j, k, l), and the corre-
sponding 90◦ rotation. On the bottom,
the equi-combiner assign column vectors
{ci}3i=0 reverse to σ.

Now, we can write the above condition for invariance on
fw as fw(v) = fw(ρlinv).

The following proposition allow us to view ρlin as a col-
lection of length-4 permutations.
Proposition 2. For the representation ρlin on the vector
v, we have the following:

1. Let v′ = ρlin(1)v be ρlin applied on v once. For
any entry vi of the vector v, there is an unique
permutation σ = (i, j, k, l) such that vi = v′j ,
vj = v′k, vk = v′l, and vl = v′i.

4

2. The representation ρlin can be viewed as a col-
lection of all such length-4 permutations on the
index of v.

Since v is length-d2, we have ⌈d2/4⌉ amount of different
length-4 permutations.5 A single permutation on v is
illustrated on top of Figure 3. We denote the collection
of all such permutations as S. For simplicity, we fix a
σ = (i, j, k, l). After the permutation on the indices of v,
we write v′ = σ(v). This permutation σ can also permute

3All the proofs are presented in Section D.3.
4A permutation (i, j, k, l) is a circular expression, that is, (i, j, k, l) = (j, k, l, i) = (k, l, i, j) = (l, i, j, k).

Given i, the exact expression of j, k and l are given in Section D.2.
5When d is odd, we have (d2 − 1)/4 amount of length-4 permutations, and the middle point vz of v is

unchanged. By a slight abuse of notation, we can also view the unchanged point as a permutation (z, z, z, z).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the column vectors of the weight matrix W , and we denote the new matrix after permutation as
W ′ = σ(W).

In the case of convolutional filters, processing rotated inputs with rotated filters results in rotated
features. The next proposition shows that we have a similar result for linear weights.

Proposition 3. In the main network f , denote the input vector of the linear layer as v, and denote the
weight matrix of the linear layer as W . For any given permutation σ, if v′ = σ(v) and W ′ = σ(W),
we have

v′W ′⊤ = vW⊤, (2)

where the superscript ⊤ stands for the transpose operation.

Eq. (2) is exactly the affine linear operation in the linear layer of f without the bias. Therefore, we
intend for the hypernetwork w to generate weight matrix W that permutes its column vectors as v is
permuted by σ. If the linear layer in the main network f requires bias, w should generate same bias
regardless of the permutation.

To accomplish this, our NEP generator N generate one column vector per permutation σ ∈ S and
all of the bias, resulting in the output in shape (m, ⌈d2/4⌉) + (d2). We can again split the output into
Nweight(x) and Nbias(x). Furthermore, for each σ ∈ S, denote the corresponding generated column
vector in Nweight(x) by Nσ(x). We fix a σ = (i, j, k, l) ∈ S to illustrate the equi-combiner. If there
are more than one σ ∈ S, we repeat the process for all of such σ.

Given an input image x0, we denote all rotated versions as x1, x2, and x3. All four xi are fed into the
NEP generator Nσ , and denote the output column vectors by ci = Nσ(x

i) ∈ Rm×1 for i = 0, 1, 2, 3.
The equi-combiner assign {ci}3i=0 into the parameter matrix W in the direction of σ−1. That is,

Wi = c0,Wl = c1,Wk = c2,Wj = c3, (3)

where Wn denotes the n-th column of W . On the bottom of Figure 3, we give an illustration of the
equi-combiner for a single σ. We can repeat the above assembling process for all permutations in S
to obtain full W . 6

Given four column vectors {ci}3i=0 and the corresponding length-4 permutation σ, Eq. (3) above
defines a operation Eσ−1 which expand column vectors {ci} into the weight matrix W . Hence, the
generation in the dynamic hypernetwork can be expressed as

wweight(x) =
∑
σ∈S

Eσ−1

(
{Nσ(gx)}g∈Z4

)
.

Similar to the convolutional case, we expect the bias to be the same for all inputs and so we collect
the output of the NEP generator and simply take the average as in Eq. (1).

For the above design, we prove the invariance property for the linear layer in the full network fw in
the following theorem.

Theorem 4. Let f lin be one single linear layer. Let w be the hypernetwork defined above. Then, w
generate invariant parameters for f lin. That is, for all input x and g ∈ Z4, we have

f lin
w(x)(x) = f lin

w(gx)(gx).

We have shown invariant outputs after the first linear layer. For the rest of the linear layers (if any),
all weights should be the same regardless of the permutation to preserve the invariance of the full
network fw. To do that, for any additional layers, NEP generate outputs full weight W for any of the
rotated inputs {xi}, and we simply average all outputs to get the weight matrix.

4.4 PROPERTIES OF HE-CNN

Based on the above designs of HE-CNN, we can prove that the proposed HE-CNN can achieve
equivariance for intermediate features, and invariance for the final output.

6When d is odd, the middle point vz of v is unchanged. Based on Eq. (3), all generated column vectors ci are
assigned into Wz . For consistency, all four column vectors are averaged into one.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Theorem 5. Let f be a main neural network with several convolutional layers and several linear
layers. Let w be a hypernetwork for both convolution layers and linear layers. Then, f is w-based
invariant. That is, for any g ∈ Z4,

fw(x)(x) = fw(gx)(gx).

Moreover, for other commonly used layers (e.g., pooling, activation and batch-normalization layers)
in CNNs, our equivariance and invariance is unaffected.
Theorem 6. Let f be a main neural network with several convolutional layers, and linear layers.
We have achieved w-based equivariance on fw. If we insert pooling layers, activation layers, and
batch-normalization layers in fw, our equivariance still holds.

4.5 EXTENSION TO GROUP D4n × R2

We have achieved Z4-equivariance, and CNN structure is already equivariant to R2. Now we extends
to D4n, the group of reflections and 90/n

◦ rotations.

As a proposition in Basu et al. (2023), given an arbitrary group G and a non-G-equivariant neural
network N , F (x) =

∑
g∈G ρ−1

g N(ρg(x)) is always equivariant regarding G.

We choose G to be the quotient group D4n/Z4. Since our fw(·) is already equivariant to Z4 and
translation, it is trivial to see that the following expression is equivariant to D4n × R2:

Fw(x)(x) =
1

n

∑
g∈D4n/Z4

g−1fw(gx)(gx).

After extending to D4n × R2, Fw(·)(·) is named D4n-HE-CNN.

4.6 TRAINING PROCESS

Given a fixed main network, we first initialize the NEP generator N . We choose a CNN structure
with output dimension described in Sections 4.2 and 4.3. During training, the original inputs are sent
into the combination of NEP generator and equivariant combiner to generate equivariant parameters.
The main network f then loads the equivariant parameters and process the same input. We compute
the chosen loss between the output of fw and the label, and preform back propagation to update the
learnable parameters in the NEP generator.

When the inputs are in batch, our hypernetwork is indeed capable of generating parameters in batch.
However, for inputs in batch size b, we would have b corresponding parameters, thus b main networks.
This bijection can easily lead to GPU memories shortage when main network is large. We comprehend
this by the following: for each batch of inputs, we average them to get one single set of parameters,
used to process the batch of inputs. This significantly reduced the memory usage. However, due to
the average operation, our network is equivariant if the representation ρ(g) is applied on the whole
batch. For each experiment, we specify whether we use parameters in batch or averaged.

4.7 UTILIZING MULTI-HEAD AND LORA

For the NEP generator N , the output size of the last layer is approximately one forth of the parameter
of the main network. Assuming the main network f has l parameters, the parameters in the last linear
layer of N are O(l). This can become excessive if the main network is significantly large.

To reduce the parameter count for N , we utilize the low-rank adaptation (Hu et al., 2021) on the last
linear layer. We choose an intermediate rank r. On the last linear layer, instead of directly generating
the full length l, we generate two outputs, each in shape

√
l× r and r×

√
l. Multiplying them would

give us our needed length l parameters. Now, the parameters of N with LoRA is O(
√
l).

During our experiments, we discovered that applying LoRA directly can lead to a significant and
undesirable drop in the performance of HE-CNN. Therefore, for each layer of the main network,
we have a corresponding linear head in the parameter generator to generate layer-specific parameter.
Then, we apply LoRA on each linear head. Each head has different l depending on the structure

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

of the main network, but they share the same rank r. Notice that we only divide the linear layer of
N into smaller linear heads. The shared convolutional layers remain unchanged compared to the
scenario without LoRA.

5 EXPERIMENT

We first use a simple network to empirically show the affect of G-CNN filters constraint. Then,
we empirically evaluate our model using several benchmark datasets and compare its performance
against base G-CNN structures and state-of-the-art equivariant methods.

5.1 IMPACT OF G-CNN’S CONSTRAINTS ON FILTERS

Table 2: Classification accuracy (%) of small models trained and tested on different versions of
MNIST. A superscript of o or r implies the model is trained on the original or random rotated MNIST.

Test Dataset CNNo Z4-CNNo Ourso CNNr Z4-CNNr Oursr

Original MNIST 96.29 85.88 96.03 75.27 76.22 96.44
Randomly Rotated MNIST 34.81 50.02 76.94 73.08 75.51 96.32
90◦ rotated MNIST 17.76 85.88 96.03 75.68 76.22 96.44
Mean of first two 65.55 67.95 86.49 74.18 75.87 96.63
Equivariance difference 68.86% 0% 0% 0.27% 0% 0%
Parameter 3370 12522 11527 3370 12522 11527

As discussed in Section 1, G-CNN structure requires additional constraints on filters to achieve
equivariance. The first experiment is to demonstrate the affect of such constraints, and compare
HE-CNN with CNN and Z4-CNN. The network is intentionally chosen to be simple for effective
demonstration, and the group G is chosen to be Z4. Both CNN model and Z4-CNN model have 3
hidden layers with 16 hidden channels. For HE-CNN, we use the same CNN structure as the main
network f , and the NEP generator N used multi-head and LoRA. To keep the parameter count close
to Z4-CNN, N is chosen to have 2 hidden convolutional layers with 16 hidden channels. All datasets
are divided into non-overlapping training and testing subsets with a 6:1 ratio. The Rotated MNIST
dataset is derived from the original MNIST dataset by applying random rotation augmentation to
each image. We also manually rotate all images in the original MNIST by exactly 90◦ to get 90◦

rotated MNIST for testing model’s equivariance property.

Each model is either trained on the original MNIST or randomly rotated MNIST, indicated by
superscripts of o or r accordingly. Each trained model is tested on the original, randomly rotated, and
90◦-rotated MNIST, and the performance is presented in Table 2. We further displayed the average
accuracy on both the original and randomly rotated datasets to demonstrate consistent performance
across regular and rotated data. Additionally, we compute the relative difference (difference divided
by sum) of the accuracy on the original and 90◦-rotated MNIST as equivariance difference. A lower
percentage indicates a better understanding of 90◦ rotations, with 0% representing strict equivariance.
The experiment result illustrates that, in terms of average performance and performance on rotated
dataset, Z4-CNN outperforms CNN in both training scenarios: the original MNIST and the randomly
rotated MNIST. However, due to the constraint on Z4-filters, when trained and tested on original
MNIST, CNNo outperforms Z4-CNNo. The HE-CNN shows better performance in almost all settings,
with the only exception when trained and tested on original MNIST, where we have a comparable
result with CNNo. This empirically shows we bypass the constraint while achieving equivariance.

5.2 CNN ON ROTATED-MNIST

For classification on the Rotated MNIST dataset, the main network is composed of seven convolutional
layers and two linear layers, similar to the CNN used by Cohen & Welling (2016). Since the main
network is rather small, we use generated parameters in batch to process batched input. The NEP
generator N is composed of three convolutional layers and one linear layer. When using LoRA and
multi-head, we choose the intermediate rank r to be 4. Since equivariant structures benefit from
rotation augmentation that is not included in the chosen group G, we train HE-CNN on the rotated
MNIST training dataset.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Generated

filters 𝑤(𝑥)

3-rd layer

7-th layer

0-th channel 0-th channel1-st channel 1-st channel 2-nd channel2-nd channel 3-rd channel 3-rd channel

Input Image 𝑥

Figure 4: For two images related through 90◦ rotations, we visualize generated filters through the
hypernetwork w.

Table 3: Classification Accuracy on the Rotated-MNIST.

Model Accuracy (%)
Regular CNN based Methods

Sohn & Lee (2012) 95.8
Schmidt & Roth (2014) 96.02

Equivariance based Methods
Z2-CNN (Cohen & Welling, 2016) 94.97
P4-CNN (Cohen & Welling, 2016) 97.72

LieConv (Finzi et al., 2020) 98.76
Steerable-CNN (Weiler et al., 2018) 99.27

E2FCNN (Weiler & Cesa, 2019) 99.32
Sim2-CNN (Knigge et al., 2022) 99.41

Hypernetwork based Methods
Z4-HE-CNN 99.50

Z4-HE-CNN(LoRA) 97.91
D8-HE-CNN(LoRA) 98.01

D16-HE-CNN(LoRA) 98.05

Results are shown in Table 3. The full
model outperforms previous state-of-
the-art method, while HE-CNN with
LoRA ensure a better performance
comparing to the original G-CNN
method.

Furthermore, we provide a visualiza-
tion of generated filters for an MNIST
image x and its rotated version x′ in
Figure 4. Numerically, we rotate the
generated filters of x′ back, and com-
pare with filters generated by x. The
average MSE difference between two
sets of filters is less than 10−7, indicat-
ing equivariance under floating-point
computations.

5.3 RESIDUAL NETWORKS AND
DEEPER CNNS ON CIFAR10/100

For CIFAR10 and CIFAR100 datasets, we compare HE-CNN’s performance with G-CNN. Addition-
ally, partial equivariance (Romero & Lohit, 2022) is a follow-up work based on G-CNN. Based on
the data, partial equivariance G-CNN learns additional information of whether certain symmetries
are beneficial or harmful. By only keeping the beneficial symmetries, partial equivariance G-CNN
loose the constraint on the filters. However, it is not strictly equivariant, rather equivariant to a subset
of the angles. In comparison, HE-CNN remains strictly equivariant to the chosen group, and need no
additional learning on beneficial symmetries.

Table 4: Classification Accuracy (%) for CIFAR10 and CIFAR100 on a residual network.

Symmetry Group Model CIFAR10 CIFAR100
R2 Residual network 83.11 47.99
Z4 ×R2 G-CNN 83.73 52.35

Partial equivariance 86.15 53.91
HE-CNN 85.99 53.56
HE-CNN(LoRA) 83.92 52.80

D8×R2 G-CNN 85.55 55.55
Partial Equivariance 89.00 57.26
HE-CNN 88.67 56.95
HE-CNN(LoRA) 86.34 55.73

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Classification Accuracy (%) for CIFAR10/100 on 13-Layer CNN (Laine & Aila, 2017).

Symmetry Group Model CIFAR10 CIFAR100
R2 13-Layer CNN 91.21 67.14
Z4×R2 G-CNN 89.73 65.97

Partial Equivariance 92.28 69.83
HE-CNN 91.95 66.38
HE-CNN(LoRA) 90.12 66.14

D8×R2 G-CNN 90.55 67.70
Partial Equivariance 91.99 70.80
HE-CNN 92.07 68.89
HE-CNN(LoRA) 90.64 68.11

We test HE-CNN on two different main network structures. The first main network is a residual
network, composed with 2 residual blocks of 32 channels each. The second network is a deeper
13-layer CNN used by Laine & Aila (2017). For G-CNN and partial-equivariant-G-CNN (Partial
equivariance), we use the accuracy reported in Romero & Lohit (2022). For HE-CNN, we use
hypernetwork w to generate equivariant parameters for convolutional layers and linear layers in both
main networks. The NEP generator N is a 3-layer CNN. Due to the size of the main networks, we
take average to generate one main network per input batch. When LoRA and multi-head is used, the
intermediate rank is set to 7. As demonstrated in Table 4 and 5, we showed comparable results with
partial equivariance, while exceeding performance of base G-CNN in all settings.

5.4 WIDE RESIDUAL NETWORKS ON STL10

Table 6: Classification accuracy on STL10, based on
Wide-ResNet WRN16/8.

Model Accuracy (%)
Base WRN16/8 87.26
G-Equivariant Convolutions
Z4-WRN16/8 87.89
Z8-WRN16/8 88.87
E(2)-Steerable Convolutions

WRN16/8-{D8D4D1} 90.20
Hypernetwork-based

Z4-HE-WRN16/8 90.08
Z8-HE-WRN16/8 (LoRA) 89.13
D16-HE-WRN16/8 (LoRA) 89.75

We test HE-CNN’s ability of handling larger
images, using the STL10 dataset with 96×96
pixels in size. We use the labeled part
of the dataset and split into 80-20 training
testing ratio. We choose the base model
as the wide residual network WRN16/8 by
Zagoruyko & Komodakis (2016). For compar-
ison, we replace all convolutional layer with G-
equivariant convolutions to get Z4-WRN16/8
and Z8-WRN16/8. On STL10 classification,
current state-of-art equivariant model is the
E(2)-equivariant Steerable CNN (Weiler &
Cesa, 2019). It based on steerable CNN (Co-
hen & Welling, 2017), which extends the con-
cept of G-CNN to continuous groups. Their
model is denoted by WRN16/8-{D8D4D1}, where each Dn is the group for steerable filters.

For HE-CNN, hypernetwork generates parameters of all convolutional layers and linear layers. The
NEP generator consists four consists of four convolutional layer with relu, batch normalization and
pooling layers. Due to the size of WRN16/8, we take average and generate one network per batch.
When LoRA is used, the intermediate rank is set to 10.

Similar to the case of CIFAR10, our model outperforms regular G-CNN, and showed a comparable
performance with steerable-CNN based state-of-the-art.

6 CONCLUSIONS

In this study, we propose a novel hypernetwork-based equivariant CNN, offering an alternative
approach to equivariance without imposing constraints on the filters. Equivariance is achieved
through a dynamic hypernetwork composed of a non-equivariant parameter-pieces generator and
equivariant combiner. We test our model on several benchmark datasets. Comparing to G-CNN
based state-of-the-art methods, our network showed either better or comparable results. We showed
better performance in all settings compared to the base G-CNN. In our future work, we are interested
in extending HE-CNN to more complex groups.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sourya Basu, Prasanna Sattigeri, Karthikeyan Natesan Ramamurthy, Vijil Chenthamarakshan, Kush R.
Varshney, Lav R. Varshney, and Payel Das. Equi-tuning: Group equivariant fine-tuning of pretrained
models, 2023. URL https://arxiv.org/abs/2210.06475.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In Maria Florina Balcan
and Kilian Q. Weinberger (eds.), Proceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pp. 2990–2999, New York,
New York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.mlr.press/
v48/cohenc16.html.

Taco S. Cohen and Max Welling. Steerable cnns. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017. URL https://openreview.net/forum?id=rJQKYt5ll.

Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.
net/forum?id=Hkbd5xZRb.

Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing convolutional
neural networks for equivariance to lie groups on arbitrary continuous data. In Hal Daumé III
and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pp. 3165–3176. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/v119/finzi20a.html.

Quentin Garrido, Laurent Najman, and Yann LeCun. Self-supervised learning of split invariant
equivariant representations. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pp. 10975–10996. PMLR, 2023. URL https://proceedings.
mlr.press/v202/garrido23b.html.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. CoRR, abs/1609.09106, 2016. URL
http://arxiv.org/abs/1609.09106.

Hamed Hemati, Vincenzo Lomonaco, Davide Bacciu, and Damian Borth. Partial hypernetworks
for continual learning. In Sarath Chandar, Razvan Pascanu, Hanie Sedghi, and Doina Precup
(eds.), Conference on Lifelong Learning Agents, 22-25 August 2023, McGill University, Montréal,
Québec, Canada, volume 232 of Proceedings of Machine Learning Research, pp. 318–336. PMLR,
2023. URL https://proceedings.mlr.press/v232/hemati23a.html.

Owen Howell, David Klee, Ondrej Biza, Linfeng Zhao, and Robin Walters. Equivariant sin-
gle view pose prediction via induced and restriction representations. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 47251–47263. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/93b3d975f9a2448964a906199db98a9d-Paper-Conference.pdf.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. CoRR, abs/2106.09685, 2021. URL
https://arxiv.org/abs/2106.09685.

Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and Siamak Ravanbakhsh.
Equivariance with learned canonicalization functions. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 15546–15566. PMLR, 23–29 Jul 2023. URL https://proceedings.
mlr.press/v202/kaba23a.html.

11

https://arxiv.org/abs/2210.06475
https://proceedings.mlr.press/v48/cohenc16.html
https://proceedings.mlr.press/v48/cohenc16.html
https://openreview.net/forum?id=rJQKYt5ll
https://openreview.net/forum?id=Hkbd5xZRb
https://openreview.net/forum?id=Hkbd5xZRb
https://proceedings.mlr.press/v119/finzi20a.html
https://proceedings.mlr.press/v202/garrido23b.html
https://proceedings.mlr.press/v202/garrido23b.html
http://arxiv.org/abs/1609.09106
https://proceedings.mlr.press/v232/hemati23a.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/93b3d975f9a2448964a906199db98a9d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/93b3d975f9a2448964a906199db98a9d-Paper-Conference.pdf
https://arxiv.org/abs/2106.09685
https://proceedings.mlr.press/v202/kaba23a.html
https://proceedings.mlr.press/v202/kaba23a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

David M. Knigge, David W. Romero, and Erik J. Bekkers. Exploiting redundancy: Separable group
convolutional networks on lie groups. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pp. 11359–11386. PMLR, 2022. URL https://proceedings.mlr.
press/v162/knigge22a.html.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/
forum?id=BJ6oOfqge.

Xiaolong Li, Yijia Weng, Li Yi, Leonidas J Guibas, A. Abbott, Shuran Song, and He Wang. Lever-
aging se(3) equivariance for self-supervised category-level object pose estimation from point
clouds. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, volume 34, pp. 15370–15381. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/81e74d678581a3bb7a720b019f4f1a93-Paper.pdf.

Arnab Kumar Mondal, Siba Smarak Panigrahi, Oumar Kaba, Sai Rajeswar Mudumba, and
Siamak Ravanbakhsh. Equivariant adaptation of large pretrained models. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 50293–50309. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/9d5856318032ef3630cb580f4e24f823-Paper-Conference.pdf.

David W. Romero and Suhas Lohit. Learning partial equivariances from data. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 36466–36478. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/ec51d1fe4bbb754577da5e18eb54e6d1-Paper-Conference.pdf.

Driton Salihu, Adam Misik, Yuankai Wu, Constantin Patsch, Fabian Esteban Seguel, and Eckehard
Steinbach. DeepSPF: Spherical SO(3)-equivariant patches for scan-to-CAD estimation. In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=Dnc3paMqDE.

Uwe Schmidt and Stefan Roth. Shrinkage fields for effective image restoration. 2014 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2774–2781, 2014. URL https://api.
semanticscholar.org/CorpusID:3612623.

Marcin Sendera, Marcin Przewieźlikowski, Jan Miksa, Mateusz Rajski, Konrad Karanowski,
Maciej Zieba, Jacek Tabor, and Przemysław Spurek. The general framework for few-shot
learning by kernel HyperNetworks. Machine Vision and Applications, 34(4):53, May 2023.
ISSN 1432-1769. doi:10.1007/s00138-023-01403-4. URL https://doi.org/10.1007/
s00138-023-01403-4.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized federated learning using
hypernetworks. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
9489–9502. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
shamsian21a.html.

Kihyuk Sohn and Honglak Lee. Learning invariant representations with local transformations. In Inter-
national Conference on Machine Learning, 2012. URL https://api.semanticscholar.
org/CorpusID:14884315.

Rui Wang, Robin Walters, and Rose Yu. Data augmentation vs. equivariant networks:
A theory of generalization on dynamics forecasting. CoRR, abs/2206.09450, 2022.
doi:10.48550/ARXIV.2206.09450. URL https://doi.org/10.48550/arXiv.2206.
09450.

12

https://proceedings.mlr.press/v162/knigge22a.html
https://proceedings.mlr.press/v162/knigge22a.html
https://openreview.net/forum?id=BJ6oOfqge
https://openreview.net/forum?id=BJ6oOfqge
https://proceedings.neurips.cc/paper_files/paper/2021/file/81e74d678581a3bb7a720b019f4f1a93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/81e74d678581a3bb7a720b019f4f1a93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9d5856318032ef3630cb580f4e24f823-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9d5856318032ef3630cb580f4e24f823-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ec51d1fe4bbb754577da5e18eb54e6d1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ec51d1fe4bbb754577da5e18eb54e6d1-Paper-Conference.pdf
https://openreview.net/forum?id=Dnc3paMqDE
https://openreview.net/forum?id=Dnc3paMqDE
https://api.semanticscholar.org/CorpusID:3612623
https://api.semanticscholar.org/CorpusID:3612623
https://doi.org/10.1007/s00138-023-01403-4
https://doi.org/10.1007/s00138-023-01403-4
https://doi.org/10.1007/s00138-023-01403-4
https://proceedings.mlr.press/v139/shamsian21a.html
https://proceedings.mlr.press/v139/shamsian21a.html
https://api.semanticscholar.org/CorpusID:14884315
https://api.semanticscholar.org/CorpusID:14884315
https://doi.org/10.48550/ARXIV.2206.09450
https://doi.org/10.48550/arXiv.2206.09450
https://doi.org/10.48550/arXiv.2206.09450

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Maurice Weiler and Gabriele Cesa. General e(2)-equivariant steerable cnns. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf.

Maurice Weiler, Fred A. Hamprecht, and Martin Storath. Learning steerable filters for rotation
equivariant cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

Jeffrey Wood and John Shawe-Taylor. Representation theory and invariant neural networks. Dis-
crete Applied Mathematics, 69(1):33–60, August 1996. ISSN 0166-218X. doi:10.1016/0166-
218X(95)00075-3. URL https://www.sciencedirect.com/science/article/
pii/0166218X95000753.

Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and Gabriel J. Brostow. Harmonic
networks: Deep translation and rotation equivariance. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

Li Yin, Juan M Perez-Rua, and Kevin J Liang. Sylph: A Hypernetwork Framework for Incremental
Few-shot Object Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 9025–9035, New Orleans, LA, USA, June 2022. IEEE. ISBN 978-1-
66546-946-3. doi:10.1109/CVPR52688.2022.00883. URL https://ieeexplore.ieee.
org/document/9878748/.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin R. Hancock
Richard C. Wilson and William A. P. Smith (eds.), Proceedings of the British Machine Vision
Conference (BMVC), pp. 87.1–87.12. BMVA Press, September 2016. ISBN 1-901725-59-6.
doi:10.5244/C.30.87. URL https://dx.doi.org/10.5244/C.30.87.

Yivan Zhang, Jindong Wang, Xing Xie, and Masashi Sugiyama. Equivariant disentangled trans-
formation for domain generalization under combination shift. CoRR, abs/2208.02011, 2022.
doi:10.48550/ARXIV.2208.02011. URL https://doi.org/10.48550/arXiv.2208.
02011.

13

https://proceedings.neurips.cc/paper_files/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf
https://doi.org/10.1016/0166-218X(95)00075-3
https://doi.org/10.1016/0166-218X(95)00075-3
https://www.sciencedirect.com/science/article/pii/0166218X95000753
https://www.sciencedirect.com/science/article/pii/0166218X95000753
https://doi.org/10.1109/CVPR52688.2022.00883
https://ieeexplore.ieee.org/document/9878748/
https://ieeexplore.ieee.org/document/9878748/
https://doi.org/10.5244/C.30.87
https://dx.doi.org/10.5244/C.30.87
https://doi.org/10.48550/ARXIV.2208.02011
https://doi.org/10.48550/arXiv.2208.02011
https://doi.org/10.48550/arXiv.2208.02011

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A ADDITIONAL DEFINITIONS

A.1 GROUPS AND REPRESENTATIONS

Definition 3. Let G be a set and ∗ be an operation. Then, (G, ∗) is a group if the following holds:

1. There exists a e ∈ G, such that for any g ∈ G, g ∗ e = e ∗ g = g. We call this e the identity.

2. For any element g ∈ G, there exists h ∈ G such that g ∗ h = h ∗ g = e. We call this the
inverse element, and denote it as −h or h−1 depending on the context of the operation.

3. G is closed under this operation. That is, for any g1, g2 ∈ G, g1 ∗ g2 is always in G.

4. For any g, h, k ∈ G, g ∗ (h ∗ k) = (g ∗ h) ∗ k.

After defining a group (G, ∗), it is common to simply refer to it as G when the operation is clear from
the context.

Definition 4. Given a group (G, ∗), a representation of G on a vector space V is a map ρ with inputs
in G. For any g ∈ G, ρ(g) is a linear map on V . Furthermore, ρ(g1g2) = ρ(g1)ρ(g2). We denote the
representation by (ρ, V) or simply ρ.

The definition of a group and representation might be a bit hard to understand without some back-
ground on abstract algebra. It is helpful to think of groups as a collection of symmetries, and
representation as an action of such symmetries on a vector space. Let us go through one example,
the cyclic group of order 4, (Z4,+mod 4). Readers with experience in group theory can skip the
following example section.

A.2 EXAMPLE CYCLIC GROUP: Z4

The group Z4 has four elements: {0, 1, 2, 3}, combined the operation of addition modulo four.
Comparing the modulo addition in Z4 with counter-clockwise rotations by multiples of 90 degrees,
one can see some similarity between them. For instance, 2+3 = 1 mod 4, and a vector ends up in the
same place after rotating 180 degrees and then 270 degrees, as it does after a 90-degree rotation. This
similarity is captured by a representation. Let V = {(x, y) | x, y ∈ R}, all 2D vectors. Our chosen ρ
maps g ∈ Z4 to a linear map on V which perform the corresponding rotation around the origin. For
instance, pick 2 ∈ Z4. For any (x, y) ∈ V , ρ(2) is a linear map that rotate (x, y) by 180 degrees, i.e.
ρ(2)(x, y) = (−x,−y). Formally, ρ(g)v =

(cos(gπ/2) − sin(gπ/2)
sin(gπ/2) cos(gπ/2)

)(x
y

)
and one can check that this

indeed satisfies the definition of a representation.

B FORCING EQUIVARIANCE THROUGH NUMERICAL METHODS IS NOT VIABLE

Before deploying the equi-combiner, we tried to encourage equivariance by adding another rotation
loss: During training, we rotate inputs and compute their generated filters. We compute the MSE
Loss between such filters and try to minimize it. Denote the hypernetwork by w, then we can write
the rotational loss as:

Lrot =
1

4

∑
g∈Z4

Lmse
(
w(gx), w((g + 1)x)

)
.

The performance is poor on 90 degree rotations even though the rotation loss dropped significantly.
The test accuracy never surpass 50% on MNIST. We hypothesize that numerical methods can
only achieve approximate equivariance in filters. However, this numerical approximation may be
insufficient due to the inherent sensitivity of the filters. This is the reason we need strict equivariance
guaranteed by our equi-combiner.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C EXPERIMENTS DETAILS

When expanding Z4-HE-CNN to a larger groups D4n, we only have to consider the extra angles
in the first quadrant on the unit circle {90/n ∗ i}n−1

i=0 . During training, we first train fw to be Z4

equivariant for the first half of the training process. Then, for input x, we collect all input version of
x by angles in {90/n ∗ i}n−1

i=0 , and sum their outputs by fw and take average as our final output.

During all experiments, we use the Adam optimizer. We noticed that it is common to observe minimal
change in training loss (especially with LoRA) during the first 50-100 epochs, with test accuracy
typically beginning to rise after 150-250 epochs. We believe this arises from the complexities
associated with learning to generate parameters. Due to the sensitivity of the generated parameters,
we are very cautious about increasing the learning rate. If Adaptive average pooling layer is present
in the main network and the output shape is set to 1, we modify to 2 to demonstrate our parameter
generation for linear layers.

Next, we provide comprehensive details for our experiments. For the NEP generator of all cases, we
provide the detail of the convolutional layers of the generator. After all convolutional layers, features
are flatten and sent to a linear layer or several linear heads depending on whether LoRA is used.

For the first experiment where we compare CNN, Z4-CNN and HE-CNN, we choose a fairly small
model. Both CNN model and Z4-CNN model have 3 hidden layers with 16 hidden channels and 2 by
2 kernels. We use the same CNN as our main network f . The NEP generator is chosen to 2 hidden
convolutional layers with 16 hidden channels, and utilized multi-head and LoRA. We use the Adam
optimizer and choose the learning rate to be 0.001 for CNN and Z4-CNN, and 0.0002 for HE-CNN.
Batch size is set to 32.

For the second experiment on MNIST, the main network f is a CNN described in Cohen & Welling
(2016). It has seven convolutional layers, six of them has 20 channels with 3x3 filters, and the
last convolutional has 20 channels with 4 by 4 filter. Afterwards, f has two linear layers with
100 intermediate channels. For the NEP generator N in the hypernetwork w, we choose a 3-layer
convolution with [16,32,32] intermediate channels, [3,3,4] filter size and [2,2,1] stride. We set the
learning rate as 0.000075 and the batch size is set to 32. If LoRA is utilized, our intermediate rank is
set to 4.

For the experiment on CIFAR10/100, the residual main network is composed with 2 residual blocks of
32 channels, each with filter sizes 3, with additional pooling and batch normalizing layers. The main
13-layer CNN is exactly the same as in Laine & Aila (2017). In both scenarios, learning rates are
set to 0.000025. Since we average batch of inputs to get one set of parameters, we choose a smaller
batch size as 64 to lower the negative impact. When LoRA is used, the intermediate dimension is
set to be 7. The NEP generator N is composed of 3-layer convolution with [32,64,64] intermediate
channels, with all filter sizes as 3 and stride as 2 for the last layer. Relu, Batch normalization and
Max pooling layers with kernel size as 2 and stride as 2 are inserted between convolutional layers.

For the experiment on STL10, the main network is the wide residual network architecture. The
hypernetwork generates the convolutional and linear layer, keeping the others unchanged. The
learning rate is set to 0.000015 and batch size is 64. If LoRA is used, the intermediate rank r is
chosen to be 10. The NEP generator N is composed of 4-layer convolution with [64,128,128,64]
intermediate channels, with all filter sizes as 3 and stride as 2 for the last layer. Relu and Batch
normalization are inserted between convolutional layers. Additionally, we perform pooling after first
three convolutional layers, with kernel size as 2 and stride as 2.

D THEORY DETAILS AND PROOFS

D.1 REQUIRING NON-EQUIVARIANCE IN OUR PARAMETER GENERATOR

The reason we want non-equivariance is we do not want relations among generated air. If the
parameter generator is chosen to be equivariant, filters are rotational invariant as demonstrated on the
right of Figure 5, which significantly reduce the expressive power.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Generated

filters

0-th layer

3-rd layer

7-th layer

0-th channel 0-th channel 1-st channel

Non-Equivariant

Partial parameter

generator

Equivariant

Partial parameter

generator

1-st channel

Input:

Figure 5: Visualizing generated filters using different parameter generator. Filters on the left are ideal.
On the right it collapsed to invariance, i.e., all filters are equal to their rotated versions.

D.2 PERMUTATION DETAILS OF FLATTENED VECTORS

Z4 is cyclic (i.e. generated by one element), so we only have to show our claim holds for ρlin(1).
For vi as i-th component in v, denote c = ⌊i/d⌋ and r as the remainder. These two corresponds
to the column and row pre-flatten accordingly. Let j = d(d − 1) − dc + r. Then, v′j = vi. We
repeat this computation on j to get k and l. From the properties of permutations we know that,
(i, j, k, l) = (j, k, l, i). This means the starting at i or j ends up with the same permutation. This is
why we have d2/4 different permutations.

D.3 PROOF OF OUR MAIN RESULT

Instead of proving Proposition 5, we prove a more general proposition.

Proposition 7. Let {ai}{0,1,2,3} be the generated parameter-pieces mentioned in Section 4.2.

If the generated filter rotates with the inputs, the designed equi-combiner offers a unique method for
combining parameters, up to the choice of placing the first piece a0.

Proof. We can assume the dimension of target filter d is even, as the odd case can be achieved by
merging the middle rows and columns of the even case.

Our proof is structured as follows:

𝑎0

𝜌 1 𝑎3 𝜌 1 𝑎0

𝐾𝑥 𝜌 1 𝐾𝑥 𝐾𝑦

𝜌 1 𝑏3

Same Equi-Combiner

Figure 6: If the 0-th piece is assigned to the top left, the assignment of the bottom left corner is fixed.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Since Z4 is a cyclic group generated by 1, it suffice to prove the case of ρ(1), the 90-degree rotation.

Given an input image x0, let y0 = ρ(1)x0 = x1 be the 90-degree rotated version of x0. For each
input x0 and y0, we want to generate a filter for each, denoted by Kx and Ky. Our assumption is
Ky = ρ(1)Kx.

For x0, we denote all rotated version of input by x1, x2 and x3. Similarly, we denote rotated version
of y0 as yi for i = 1, 2, 3. Since y0 = x1, we know yi+1 = xi for all i = 1, 2, 3.

Given NEP generator N , denoted the output ai = N(xi) and bi = N(yi). Due to the relationship
between x and y, we also have bi = ai+1.

Now for the equi-combiner E, recall that it assigns the parameter pieces ai and bi to the filter Kx

and Ky accordingly, based on the index. Assume E assigns the 0-th parameter pieces on the top left
corner. Therefore, a0 is on the top left of Kx. By the assumption Ky = ρ(1)Kx, we know that the
bottom left corner is ρ(1)a0 = ρ(1)b3. Since E performs the same action based on index regardless
of a and b, we know that ρ(1)a3 goes to the bottom left corner as well. The process is visualized in 6.

If we keep repeating this process, we get that ρ(2)a2 goes to bottom left and ρ(3)a1 goes to the top
right corner. This is exactly the equi-combiner that we described, finishing the proof.

Proposition 8. Any filters with properties in proposition 7 grant equivariance to the convolutional
main network f . That is, let w be a hypernetwork and ρ be the 90-degree rotation representation. If
w(ρx) = ρw(x), we have

ρf(x) = fw(ρx)(ρx).

Proof. This simply follows from the fact that the element-wise multiplication of two equal-sized
square matrices remains unchanged when both matrices are subjected to 90-degree rotations.

For linear case, we have a similar proposition, and the proof is fairly similar.

Proposition 9. Let {ci}{0,1,2,3} be the generated column vectors mentioned in Section 4.3. We have
the following properties:

1. Our equi-combiner guarantees filter rotation as the inputs rotate.

2. The order of combining is unique up to the choice of placing the first piece c0.

3. Let ρlin be the representation in Section 4.3. If f is a linear layer with input vector v, we
have

f(v) = fw(ρlinv)(ρlinv).

Proof. The proof of the first and second statement is similar to the case of convolutional filters. For
an input x0 and a second input y0 = ρ(1)x0, we track the assignment of their generated column
vectors.

The third statement directly follows from adding the same bias to both side of Eq. (2).

Finally, we show our results hold for additional layers. Given two square matrices, representing
inputs and features in the full network fw, we have the following proposition:

Proposition 10. Given a square matrix M , we denote M ′ = ρM as the 90◦ rotation version of M .

1. For activation layers A that performs entry-level computation operation such as ReLu and
Softmax, the equivariance is preserved. That is, A(M ′) = ρA(M).

2. For pooling layers P with square pooling filter size, the equivariance is preserved. That is,
P (M ′) = ρP (M)

3. Assume M and M ′ are matrices in batch. For Batch normalization layers B, the equivari-
ance is preserved on the batch-level. That is, B(M ′) = ρB(M) if and only if ρ is applied
to all elements in batch.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof. For the first statement, since all computation happens on the entry level, the rotation operation
commutes with the activation layer, and have A(ρM) = ρA(M). For cases of Softmax, since the
sum of M and M ′ is identical, A(ρM) = ρA(M) still holds.

For the second statement, the pooling layer A can be viewed as a special case of 8, and the result
P (M ′) = ρP (M) follows.

For the last statement, it is clear when ρ is applied on the whole batch, we have equivariance. However,
if ρ is only applied on one of the input, we do not have equivariance due to the operation of batch
normalization.

18

	Introduction
	Related work
	Preliminary
	Methodology
	The Architecture
	Hypernetwork for Convolutional Layers
	Hypernetwork for Linear Layers
	Properties of HE-CNN
	Extension to General Cases
	Training process
	Utilizing Multi-head and LoRA

	Experiment
	Impact of G-CNN's constraints on filters
	CNN on Rotated-MNIST
	Residual Networks and deeper CNNs on CIFAR10/100
	Wide Residual Networks on STL10

	Conclusions
	Additional Definitions
	Groups and representations
	Example Group: Z4

	Forcing equivariance through numerical methods is not viable
	Experiments Details
	Theory details and proofs
	Requiring Non-Equivariance in our Parameter generator
	Permutation details of flattened vectors
	Proof of our main result

