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Figure 1: Pass@1 accuracy under unlimited token budgets. On mathematics and STEM reasoning benchmarks,
SWIREASONING yields improvements of up to +2.8% and +2.0%, respectively.

max efficiency = 4.60x

Qwen3-88 max efficiency = 6.78X ¥ 61 ' quen3-1.78 max efficiency = 6.08x
-8 CoT -8 Co

A Greedy A Greedy

9~ Soft Thinking - Soft Thinking
e~ SwiR (Ours) =e= SwiR (Ours)

DeepSeek-R1-
Distill-Llama-8B
-8 Cor

-

- Greedy
- Soft Thinking
== SwiR (Ours)

ncy (Times)

-

E[Aefficiency] = :—. =462 E[Aefficiency] = f‘—. = 457 E[Aefficiency] = ;— = +79%

Token Efficiency (Times)

Token Efficiency (Times)

a

R 3

000 7000 6000 5000 4000 3000 2000 1000 0

12000 10000 8000 6000 2000 2000 12000 10000 8000 6000 2000 2000

12000 10000 8000 6000 7000 2000 12000 10000 8000 6000 4000 2000 000 7000 6000 5000 4000 3000 2000 1000 0
Generation Length (1) Generation Length (4) Generation Length (1)

#Benchmarks
#Benchmarks
#Benchmarks

Figure 2: Token efficiency (accuracy per token compared to standard CoT), under /imited token budgets. Across
reasoning LLM families and sizes, SWIREASONING brings average efficiency improvements of up to +79%.

ABSTRACT

Recent work shows that, beyond discrete reasoning through explicit chain-of-
thought steps, which are limited by the boundaries of natural languages, large
language models (LLMs) can also reason continuously in latent space, allowing
richer information per step and thereby improving token efficiency. Despite this
promise, latent reasoning still faces two challenges, especially in training-free set-
tings: 1) purely latent reasoning broadens the search distribution by maintaining
multiple implicit paths, which diffuses probability mass, introduces noise, and
impedes convergence to a single high-confidence solution, thereby hurting accu-
racy; and 2) overthinking persists even without explicit text, wasting tokens and
degrading efficiency. To address these issues, we introduce SWIREASONING, a
training-free framework for LLM reasoning which features two key innovations:
1) SWIREASONING dynamically switches between explicit and latent reasoning,
guided by block-wise confidence estimated from entropy trends in next-token dis-
tributions, to balance exploration and exploitation and promote timely conver-
gence. 2) By limiting the maximum number of thinking-block switches, SWIREA-
SONING curbs overthinking and improves token efficiency across varying prob-
lem difficulties. On widely used mathematics and STEM benchmarks, SWIREA-
SONING consistently improves average accuracy by 1.5%-2.8% across reasoning
LLMs of different model families and scales. Furthermore, under constrained
budgets, SWIREASONING improves average token efficiency by 56%-79%, with
larger gains as budgets tighten. The code will be released publicly.
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1 INTRODUCTION

Reasoning is one of the central capabilities of large language models (LLMs) (Yang et al., 2025;
Qwen Team, 2024; Meta, 2025a;b). It allows models to tackle complex tasks such as mathematics,
science, and programming (Guo et al., 2025; OpenAl, 2025b; Jaech et al., 2024; Agarwal et al.,
2025; Qwen Team, 2025; Abdin et al., 2025; Abouelenin et al., 2025; Anthropic, 2025; DeepMind,
2024a;b), far beyond simple question answering.

A key limitation of the dominant reasoning approach, explicit chain-of-thought (CoT) (Wolf et al.,
2020; Wei et al., 2022; Yao et al., 2023a; Goyal et al., 2024; Pfau et al., 2024), lies in the reliance
on discrete tokens during inference. In standard CoT decoding, the model commits to a single token
at each step, sampled from the predicted distribution. While effective and ensures readability by
verbalizing intermediate steps, this discrete process collapses the full probability distribution into a
single trajectory, discarding uncertainty and eliminating many potentially useful reasoning paths.

To overcome this bottleneck, recent work has explored an alternative reasoning technique, latent
reasoning (Hao et al., 2024; Zhang et al., 2025; Cheng & Van Durme, 2024; Xu et al., 2025a;b; Tan
etal., 2025), where the model operates directly in a continuous hidden space instead of a discrete text
space. Latent reasoning offers two key advantages over CoT: 1) higher representational bandwidth
per step, since hidden vectors can encode richer information than single tokens (Zhu et al., 2025b);
and 2) the ability to preserve multiple reasoning hypotheses implicitly, rather than collapsing them
prematurely into one tokenized path (Li et al., 2025b; Chen et al., 2025).

Latent reasoning can be broadly categorized into training-required and training-free approaches.
Training-required ones (Hao et al., 2024; Su et al., 2025; Liu et al., 2024; Shen et al., 2025; Tack
et al., 2025) demand substantial retraining or fine-tuning (Yue et al., 2025; Li et al., 2025a; Wang
etal.,2025a; Zhu et al., 2025a), making it excessively expensive to apply to large reasoning language
models. In contrast, training-free approaches like Soft-Thinking (Zhang et al., 2025), which form
a probability-weighted mixture of token embeddings as inputs, operate directly at inference time
without incurring additional training costs. Our work focuses on the latter category, which is cost-
effective and resource-friendly for deployment in large-scale reasoning models.

Although training-free latent reasoning eliminates the need for costly retraining, operating purely
in the latent space also presents significant challenges. First, the model is not explicitly trained to
perform long-horizon reasoning with latent inputs. As a result of distributional mismatches, when
inference relies solely on latent trajectories, the process is less controlled and can easily drift off
course (Chen et al., 2025). Instead of collapsing into a single path, the model tends to spread
probability mass across many implicit reasoning paths. While this preserves multiple hypotheses,
it also introduces persistent noise, slows convergence, and ultimately harms reasoning accuracy (Li
et al., 2025b). Second, the absence of explicit tokens does not necessarily ensure efficiency. In
latent space, models may still suffer from repetitive or unnecessarily extended internal deliberations
and continuation (Zhang et al., 2025), essentially overthinking. This prolongs inference and over-
consumes tokens, undermining the very efficiency that latent reasoning is meant to improve.

To address these issues, this paper introduces SWIREASONING (abbreviated as SWIR) as a training-
free framework for LLM reasoning that alternates between explicit and latent thinking, based on
block-wise confidence inferred from entropy trends of next-token distributions, and suppresses over-
thinking by bounding the number of switches. More specifically, the framework first tracks a refer-
ence entropy within each thinking block to reflect block-wise confidence. Rising confidence triggers
an explicit switch to consolidate progress along a single path, while sustained uncertainty triggers
a latent switch to re-explore in continuous space. Second, a switch count controller caps the num-
ber of thinking block transitions and provides early-answer checkpoints, curbing unnecessary latent
loops and improving token efficiency across difficulties.

The proposed framework also benefits from reintroducing diversity by sampling in an explicit think-
ing block when compared to pure latent thinking. Even though motivated differently, SWIREASON-
ING resonates with the concurrent observation of Liang et al. (2025) that introducing stochasticity
benefits latent reasoning, but we achieve this via a distinct mode switch mechanism rather than
injecting distributions with randomness.

Our contributions are summarized as follows:
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* We propose SWIREASONING, a training-free reasoning framework that dynamically alternates be-
tween explicit and latent thinking based on confidence signals, thereby exploiting the expressivity
of latent thinking without sacrificing the stability of explicit thinking.

* We introduce a switch count control mechanism that caps the number of transitions, enabling early
answering based on partial reasoning trajectories at switch boundaries. This effectively suppresses
overthinking and improves token efficiency under limited budgets.

* We extensively validate the effectiveness of SWIREASONING on mathematics and STEM rea-
soning domains across multiple benchmarks, model families, and sizes, demonstrating consistent
gains in both accuracy and token efficiency over training-free baselines.

2 RELATED WORK

Explicit LLM Reasoning. Reasoning via explicit intermediate text has been extensively studied.
Chain-of-thought (CoT) prompting elicits stepwise rationales that improve reasoning accuracy by
decomposing problems into natural-language sub-steps (Kojima et al., 2022; Wei et al., 2022). Sub-
sequent work increases robustness by aggregating multiple CoT trajectories through self-consistency
(Wang et al., 2022). Search- and tool-augmented variants further expand the exploration space, such
as Tree-of-thought that branches over partial rationales (Yao et al., 2023a) and interleaving reason-
ing and actions with external tools and environments (Yao et al., 2023b). Least-to-most prompting
progressively solves subproblems to reduce reasoning load and mitigate error accumulation (Zhou
et al., 2022). These approaches operate purely in the discrete token space and therefore commit to a
single token at each step. While readable, the discretizations in explicit reasoning discard alternative
hypotheses early, and restrict the information bandwidth per step (Zhu et al., 2025b).

Latent LLM Reasoning. Latent reasoning operates in the continuous representation space rather
than discrete natural language space used by explicit reasoning. Prior work can be broadly grouped
into two categories. 1) Training-required approaches modify pretraining (Tack et al., 2025; Zeng
et al., 2025) or fine-tuning objectives (Tan et al., 2025; Wang et al., 2025a;b; Jiang et al., 2025;
Wu et al., 2025; Yue et al., 2025; Li et al., 2025a; Shen et al., 2025; Xu et al., 2025a) to super-
vise hidden-state trajectories or to endow models with latent-planning skills. 2) Training-free ap-
proaches (Zhang et al., 2025; Liang et al., 2025) intervene only at inference time by manipulating
hidden representations or probability distributions without updating model weights. Our work be-
longs to the training-free category but differs from prior single-mode methods. Instead of remaining
purely latent, SWIREASONING dynamically switches between latent and explicit reasoning based
on entropy-trend confidence, and further regulates the number of switches through a count controller
to suppress overthinking and improve efficiency.

3 METHODOLOGY

3.1 SWIREASONING OVERVIEW

As shown in Fig. 3, SWIREASONING is a training-free framework that dynamically alternates be-
tween explicit and latent reasoning. The number of switches is regulated to suppress overthinking
and improve token efficiency. Sec. 3.2 presents the preliminaries of explicit and latent reasoning,
Sec. 3.3 details the design of the dynamic switch, and Sec. 3.4 discusses the switch count control
mechanism. Implementation details are provided in Appendix B.1.

3.2 PRELIMINARY: EXPLICIT AND TRAINING-FREE LATENT THINKING
Explicit Thinking. Let 1 be a vocabulary and pg(z; | ©<;) a LLM over V with parameters 6.
Given a question ¢, the model produces a reasoning trace ri1.; € V7 followed by a final answer

ar.y € VU. We write the concatenated sequence as

T1(g+T40) = |4 rirs avu],
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Figure 3: SWIREASONING framework. (a) Dynamic mode switching alternates between explicit and latent
thinking based on block-wise confidence estimated from entropy trends. (b) A switch count control mechanism
limits the maximum number of thinking-block transitions, suppressing overthinking before the final answer.

At inference, decoding proceeds by repeatedly choosing a token x; from the predictive distribution
po(- | T<¢) according to a policy m(+), e.g.,

) Greedy: argmaxy,cy po(v | T<t),
.’L‘t’\‘ﬂ't(') with Tt = B .
Sampling: Top-k/Top-p with temperature 7.
The reasoning phase stops when a termination condition is met, e.g., generating (/think), after which
the answer tokens a;.;y are decoded in the same manner. While explicit reasoning improves reliabil-
ity by externalizing intermediate steps, its hard policy 7;(-) collapses the full distribution to a single
discrete decision at each step, i.e., discards information in py (- | <) beyond the chosen token.

Training-Free Latent Thinking. It replaces the hard policy 7+(-) by a continuous surrogate that
preserves distributional information. Let E2 € RIVI*? denote the token embedding matrix with rows
e(") € R?. At step t, the model yields logits £, € RIVI and p; = softmax(¢;). Given the next-token
distribution p; := py(- | z;) € AIVI=1 it forms a soft embedding

& = > pfvle e RY, (1)

veV
and feeds é; back to the model as the next input representation, rather than committing to an explicit
token by 7:(-). Upon the thinking phase being complete, the policy reverts to m;(-) for answer
generation. The convexity of Eq. | ensures é; lies in the embedding hull of E, retaining all first-
order uncertainty in p;, which reduces information discards and increases robustness to local noise.

3.3 DYNAMIC SWITCH BETWEEN EXPLICIT AND LATENT THINKING

Remaining in a single mode throughout reasoning is inherently suboptimal: explicit thinking pro-
vides readability but may discard useful information beyond chosen tokens, while latent thinking
preserves richer signals but can drift into noise and reduce accuracy. Our key insight is that reasoning
should switch modes based on confidence. Latent reasoning enables exploration across multiple po-
tential continuations when confidence is low, and explicit reasoning encourages convergence when
confidence is high, striking a balance that supports broad exploration while maintaining accuracy.

Mode Switch Criterion. We refer to the reasoning content between two consecutive switches as
a thinking block and estimate its confidence by entropy Hy=— )", p¢[v] log p;[v]. Let H denote the
reference entropy of the current block, which is initialized at the first step of the block and refreshed
when a mode switch happens. We use a criterion that converts local entropy trends into decisions:

Latent — Explicit : (Ht <H ) (confidence rises), 2)
Explicit—Latent :  (H; > H) (confidence drops), 3)
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Switch Window Size. To avoid oscillations, we impose dwell windows upon the mode switch
criterion. Formally, with mode variable m; € {Explicit, Latent} and dwell step counter At, we
have
Explicit, m; = Latent A (H; < H) A (At > Wi_g),
myr1 = | Latent, m; = Explicit A (H; > H) A (At > Wg_1),
my, otherwise.

We reset H < H;, At <« 0 upon any switch, i.e., m; 1 # m;. Otherwise, we update At < At+1. In
practice, Wi _,g = 0 while Wg_,| is positive, i.e., a Latent—Explicit switch may occur immediately
when H; dips, whereas an Explicit—Latent switch requires staying for at least Wg_, steps.

The key intuition behind the asymmetric design is that two modes play different roles in reasoning.
Latent reasoning is inherently divergent, allowing for rich exploration. However, prolonging the
latent phase after confidence has recovered is counterproductive. It increases the risks of introducing
spurious signals that may mislead the model. Therefore, once confidence rises, an immediate switch
back to explicit reasoning is necessary to consolidate progress onto a single coherent trajectory.

In contrast, explicit reasoning is convergent, gradually unfolding a chain-of-thought where each
token incrementally extends the current logical path. If the model were allowed to switch back to
latent reasoning at the first sign of an entropy fluctuation, spurious short-term uncertainty could
trigger oscillations. The dwell window Wg_, ensures that explicit reasoning is given sufficient
opportunity to stabilize and accumulate meaningful structure.

Thinking-Related Signal Mixing. To better align mode switches with the LLMs’ learned rea-
soning patterns, we blend the embeddings of thinking-related signal tokens, e.g., <think> and
</think>, when a switch occurs. Let e(pinky and ey mink) denote their embeddings. At the en-
trance to a latent thinking block, we bias the first latent step ¢* toward “begin thinking” by

Er 4 e+ (1 — e ) €(enink) s ag- € [0,1], “4)
and at the exit to an explicit thinking block, we bias the first explicit step ¢! toward “end thinking”

€t < Bri-€ + (1= Bt) e ymink) By €10, 1], (5

which encourages the model to close the latent phase and move on to answer production. In practice,
we schedule oy, = g + (1 — ap) 77— and B; = Bo + (1 — fo) 77—, where Thnax is a predefined

maximum generation length, and apply Eq. 4 or Eq. 5 only at the steps when switches occur.

3.4 OVERTHINKING SUPPRESSION BY SWITCH COUNT CONTROL

Even with confidence-aware switching, reasoning LLMs may still overthink. Therefore, we place a
bound on the total number of Latent—Explicit switches. Our key insight is that each switch natu-
rally marks the end of a thinking block where partial reasoning trajectories have been consolidated,
which may already contain sufficient evidence for arriving at a reasonable solution. Under limited
budgets, generating answers at these natural checkpoints can make use of partial reasoning trajecto-
ries, offering a chance to obtain correct predictions earlier without consuming additional tokens.

Counter and Triggers. Let C; count completed Latent — Explicit switches up to step ¢. Given a
user-specified budget C\,,,x, we define two triggers:

* Convergence trigger (at %Cmax < C; < Chax on Latent — Explicit transitions): force the next
token to be (/think). The convergence trigger is to encourage rather than enforce the end of the
thinking process and the start of converging to an answer based on partial reasoning trajectories.

¢ Termination trigger (at C; > C,.x on a subsequent Latent — Explicit transition): inject a
concise answer prefix sgna, “(/think)\n\n The final answer is”, then allow at most B additional
tokens for the final answer. The termination trigger is to enforce an immediate answer generation.

Triggers are implemented as short injection queues that overwrite future-generated tokens. Formally,
let O, be the per-sample injection queue. When a convergence or termination trigger fires, we set
Q; < [ID({/think))] or [ID(sfna)]- At the next step, if Q; # ), we deterministically set x; <
Q;.pop(). For the termination trigger, we also start a budget counter b, = B and decrement it each
step after the termination trigger fires. Decoding will be terminated once b; =0.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Models. We evaluate SWIREASONING on three recent reasoning LLMs: Qwen3-8B (Yang et al.,
2025), DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025), and Qwen3-1.7B (Yang et al., 2025). This
selection helps us validate the effectiveness of SWIREASONING across different model families,
model scales, and training paradigms.

Domains and Benchmarks. We evaluate SWIREASONING thoroughly on five benchmarks, in-
cluding GSMS8K (Cobbe et al., 2021), Math500 (Hendrycks et al., 2021), AIME 2024 (Hug-
gingFaceH4, 2024), AIME 2025 (Yentinglin, 2025) for mathematics reasoning, and GPQA Dia-
mond (Rein et al., 2024) for STEM reasoning. More details are provided in Appendix B.2.

Baselines. We compare SWIREASONING that dynamically switches between thinking modes
against three baselines with a single thinking mode, including 1) explicit thinking alone: standard
CoT reasoning with sampling, standard CoT reasoning with greedy decoding, and 2) training-free
latent thinking alone: Soft Thinking (Zhang et al., 2025).

Metrics. We use the Pass@1 metric to evaluate reasoning accuracy, and token efficiency E to
assess the level of reasoning efficiency. Let Acc,,(¢) € [0, 1] denote the accuracy of method m
when using ¢ generated tokens. Its plain token efficiency is the accuracy gained per token,

Acep(0)

—

To express efficiency in units relative to the standard CoT, we normalize it by the CoT’s plain token
efficiency when the highest accuracy is achieved. Specifically, if CoT achieves its highest accuracy

PE,,(¢) =

Acclyr using £, tokens, denote PEE 1 = A;f CoT The token efficiency of m is defined as
“CoT
PE,,(?) Acc, (0)/¢
Enl) = PEay = Aectur/log
CoT cCcor/LGor

And the average efficiency gain of method m over CoT is

J(En(¢) — Ecor(£)) dt

E[AE] = [ Ecor(€) df

4.2 REASONING ACCURACY UNDER UNLIMITED TOKEN BUDGETS

We first evaluate SWIREASONING in the setting where token budgets are set large enough to en-
sure that each method is allowed to conduct sufficient thinking (refer to Appendix B.2 for de-
tailed settings). Fig. | and Tab. | report the highest attainable accuracies across mathematics
(GSMS8K, MATH500, AIME24, AIME25) and STEM (GPQA Diamond) benchmarks under this
setting. Across different model families of varying sizes, SWIREASONING consistently achieves
higher Pass@1 accuracy than CoT with sampling, CoT with greedy decoding, and Soft Thinking.

Our observation is that improvements are most pronounced on the more challenging benchmarks.
For instance, on AIME24/AIME25, which require deep deductive reasoning and are widely re-
garded as more difficult, our method yields absolute gains of 3.34%/2.50% on Qwen3-8B, and
5.00%/5.00% on Qwen3-1.7B. These margins substantially exceed those observed on GSM8K
or MATHS500 with lower difficulty, suggesting that the proposed switching mechanism is particu-
larly beneficial when problems involve long reasoning chains or higher uncertainty from the LLM’s
perspective. Overall, the accuracy results under unlimited token budgets highlight the strength of
SWIREASONING in better addressing reasoning tasks compared to single-mode approaches.

4.3 TOKEN EFFICIENCY UNDER LIMITED TOKEN BUDGETS

Across models and benchmarks, SWIREASONING consistently attains improved Pareto frontiers.
As shown in Fig. 2, the peak efficiency gains range between 4.6x and 6.8 over CoT depending
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Table 1: Comparison of SWIREASONING and CoT with sampling, CoT with greedy decoding, and Soft Think-
ing on mathematics and STEM benchmarks. SWIREASONING improves accuracy by +2.17% on average.

MATH GPQA AIME AIME
Method GSMBK 500 Diamond 2024 2025 Average
Owen3-8B (Yang et al., 2025)
CoT 95.60 96.00 59.60 75.83 67.50 7891 +0.00
CoT (Greedy) 95.68 96.40 56.57 70.00 60.00 75.73
Soft Thinking 95.38 96.00 59.60 67.92 68.33 77.45

SwiR (Ours) 96.061+0.46 98.40 i +2.40 61.11 W +1.51 79.17 mww +3.34  70.00 W +2.50  80.94 W +2.03
QOwen3-1.7B (Yang et al., 2025)

CoT 90.44 92.00 39.39 45.83 33.33 60.20 +0.00
CoT (Greedy) 89.61 91.00 31.82 40.00 33.33 57.15
Soft Thinking 90.30 90.60 34.34 38.75 36.67 58.13

SwiR (Ours) 90.831+0.39 93.00 m+1.00 41.41 80 +2.02 50.83 mww5.00 38.33 i +5.00 62.88 i +2.68
DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025)

CoT 89.46 91.40 46.46 43.75 26.25 59.46 +0.00
CoT (Greedy) 85.82 84.80 31.81 30.00 30.00 52.49
Soft Thinking 85.90 83.80 33.33 34.17 20.42 51.52
SwiR (Ours) 90.07 1-+0.61 92,00 8+0.60 47.98 W +1.52 45.00 W +1.25  31.25 mwmm+5.00 61.26 M +1.80

on the model size. These improvements are not confined to a single budget: the area-under-curve
(AUC) advantage persists across a broad range of small to moderate budgets.

One observation from Fig. 4 is that the relatively large average efficiency gains occur on GSM8K,
MATHS500, and GPQA Diamond across three models (up to 213% AUC improvements in the per-
benchmark panels). These tasks contain many instances with lower difficulty, which benefit most
from our overthinking suppression design to obtain the correct answer with partial reasoning trajec-
tories. In contrast, on AIME24/25, the efficiency gaps are smaller, while the accuracy gains with
unlimited budgets are larger. This asymmetry is expected: the harder the problem is, the more diffi-
cult it is to predict a correct answer with unfinished reasoning trajectories. Overall, token efficiency
results under limited budgets substantiate the advantage of SWIREASONING in gaining accuracy
more efficiently as budgets tighten compared to baseline methods.

4.4 EVALUATION WITH PASS@K ACCURACY

In addition to Pass@1 accuracy, we also measure Pass@k accuracy, where k € [1,64] on Qwen3-
8B. Fig. 5 shows that SWIREASONING reaches its maximal accuracy with significantly smaller &
than baselines. Define £* as the smallest k achieving the method’s peak. On AIME24, we observe
k* = 13 for SWIREASONING versus 46 for CoT (about 72% fewer samples), and on AIME25,
k* = 16 versus 22 (about 27% fewer samples). In addition to the faster growth of the curve than
CoT, SWIREASONING also exhibits 1) a steeper initial slope at small &k (higher ~’per-sample yield”),
and 2) a higher eventual ceiling than Soft Thinking and greedy CoT, indicating better correctness
and diversity simultaneously. Overall, Pass@k accuracy results indicate that SWIREASONING is
particularly attractive for budgeted evaluation settings where &k cannot be large.

4.5 ABLATION STUDIES

Switch Window Size. SWIREASONING uses dwell windows (Sec. 3.3) to enforce the model
stays in a thinking block for at least W steps before switching to the other thinking mode. We
conduct ablation studies on Qwen3-1.7B with a representative setting consisting of Wg_,1, €
{64,128, 256,512,1024} and report Pass @ 1 accuracy on five benchmarks. Results in Tab. 3 demon-
strate that an intermediate window size of 512 consistently produces the best results.

When window sizes are too small, LLMs are allowed to jump back to latent mode prematurely,
before explicit reasoning has consolidated a coherent trajectory. This increases exposure to noisy
signals and harms final accuracy, especially on difficult tasks such as AIME24 and AIME25. On
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Figure 4: Token efficiency comparisons. SWIREASONING achieves the highest token efficiency throughout all
token budgets in 13 out of 15 evaluations, with an efficiency improvement of +84% over CoT on average.
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2024 and 2025 benchmarks.

SWIREASONING achieves maximum reasoning accuracies +50% earlier compared to CoT on average.

the contrary, when window sizes are too large, LLMs become sluggish to reenter latent exploration
when confidence declines. A promising improvement direction is to make W adaptive to the model’s
real-time density of effective reasoning.

Thinking-Related Signal Mixing. SWIREASONING uses «, 5 € [0,1] as the initial ratios for
mixing thinking-related signals at switching instants (Sec. 3.3). We sweep «g and 3y independently
and report Pass@1 accuracies in Tab. 2.
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Table 2: Ablations on g and Sy for signal mixing. indicates better performance within each column.
MATH GPQA AIME AIME MATH GPQA AIME AIME
@ GSMBK 00 piamond 2024 2025 Average fo GSMBK a0 hiond 2004 2025 Averase

0.0 89.23% 89.80% 35.86% 46.67% 35.00% 59.31% 0.0 81.50% 67.20% 28.79% 833% 9.17% 39.00%
0.1 89.84% 91.00% 36.36% 46.25% 36.25% 59.94% 0.1 81.88% 70.20% 31.82% 11.67% 8.75% 40.86%
0.2 90.37% 91.60% 34.85% 46.25% 37.50% 60.11% 0.2 82.11% 70.60% 2828% 14.17% 9.17% 40.87%
0.3 90.45% 91.60% 38.38% 47.08% 38.33% 61.17% 0.3 90.67% 92.00% 37.37% 45.42% 37.92% 60.68%
0.4 89.61% [ 92.80% 4091% 48.33% 32.50%  60.83% 0.4 90.98% 91.40% 37.88% 47.92% 36.67% 60.97%
0.5 90.45% 93.00% 34.34% 50.83% 36.25% 60.97% 0.5 90.37% 91.20% 42.42% 47.92% 35.83% 61.55%
0.6 90.83% 92.00% 39.39% 44.58% 37.92% 60.94% 0.6 90.59% 90.40% 42.42% 42.50% 36.67% 60.52%
0.7 90.06% 91.60% 37.37% 45.00% 37.08% 60.22% 90.83% 93.00% 41.41% 50.83% 38.33% 62.88%
0.8 90.60% 92.00% 37.37% 48.33% 35.42% 60.74% 0.8 89.99% 92.20% 39.39% 49.17% 35.83% 61.32%
0.9 90.37% 90.80% 39.39% 50.42% 35.83% 61.36% 0.9 90.22% 92.20% 4091% 48.75% 32.50% 60.52%

90.14% 90.60%  41.41% 49.17% 31.92% 61.85% 1.0 90.44% 91.00% 33.33% 46.67% 38.75% 60.04%

For the exit bias /3y, a very small 5y implies excessive interference with when to conclude the think-
ing process and severely degrades accuracy (e.g., AIME24 drops to 8.33% at 5,=0.0). Performance
rises sharply and peaks near 5,=0.7, which achieves the best average 62.88% and is either the best
or the second-best on most datasets. A promising improvement direction is to make /3 difficulty-
aware, so that it will be automatically adjusted based on problem difficulty.

The situation for the entrance bias o is different. We observe a broad performance plateau for
ap €[0.4,0.9], with the highest average at ag=1.0 (61.85%), however, only marginally higher than
other values like ap=0.9 (61.36%). Task-wise, problems with different levels of difficulty tend to
have various preferences over ajg. We expose o to users for adjustment based on task difficulty.
The more detailed hyperparameters we adopted for the experiments are provided in Appendix

Maximum Switch Count. We suppress over-
thiI}king b}’ bounding the number of mode Table 3: Ablation on switch window size. in-
switches with a budget Cp,ax (Sec. 3.4), and re-  dicates better performance within each column.

ducing Cp,.x leads to earlier convergence. In
Fig. 2 and Fig. 4, moving rightward on the

Window MATH GPQA AIME AIME

. ) GSM8K - Average
x—axis corresponds to smaller token budgets, Size 500  Diamond 2024 2025

i.e., smaller Cp.x. We collect data points in 64 89.69% [92160% 40:91% " 47.92% 34.17% 61.06%

these fieures by incrementine the value of 128 90.45% 91.00% 38.89% 48.33% 136.25% 60.98%

gures by . g Crmax 256 89.76% 90.80% 39.90% 49.58% 36.25% 61.26%

from 1 until further increases in Cpax no longer 90.83% 93.00% 41.41% 50.83% 38.33% 62.88%

alter generation results in most cases, i.e., max- 1024  [90.83% 91.20% 4040% 49.58% 36.67% 61.74%
imum accuracy is reached at saturation. De-
tailed data points are provided in Appendix

As analyzed in Sec. , decreasing Ci,.x yields a significant improvement in token efficiency,
which confirms the intended behavior of the switch count control design: it curbs prolonged latent
exploration and commits to an answer path early, thereby mitigating overthinking. In summary,
with switch count control, a small number of confidence-aware blocks usually suffices for easy-to-
moderate problems, while difficult instances benefit more from allowing a few more switches before
the final answer.

5 CONCLUSION

This paper presents SWIREASONING, a training-free inference framework that integrates explicit
chain-of-thought thinking with latent thinking through an entropy trends—based controller. The
framework is conceptually straightforward but empirically effective: when block-wise uncertainty
decreases, we collapse to a single explicit path to consolidate progress. When uncertainty rises and
has persisted for a minimal dwell window, we expand into latent space to explore more alternatives.
Complementing this mode switch, a switch count controller caps the number of transitions, thereby
curbing overthinking while preserving prediction quality. Together, these two mechanisms yield
consistently improved Pareto frontiers for reasoning LLMs, effectively enhancing both maximum
accuracy under unlimited budgets and token efficiency under limited budgets. Looking ahead, in-
tegrating SWIREASONING with reinforcement learning—based training may unlock even stronger
reasoning capabilities.
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6 ETHICS STATEMENT

This work focuses on enhancing the reasoning accuracy and token efficiency of LLMs, which does
not raise safety concerns. This work involves no collection of sensitive data. All evaluations are
conducted using publicly available models and benchmarks under their original licenses.

7 REPRODUCIBILITY STATEMENT

We provide implementation details in Appendix , details of the benchmark settings in Ap-
pendix B.2, and details of the hyperparameters in Appendix to facilitate reproducibility.
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A USE OF LLMS DISCLOSURE

We employed GPT-5 (OpenAl, 2025a) from OpenAl to assist with language polishing in order
to improve the readability of the paper. We affirm that large language models were not misused
intentionally in any part of this work. All intellectual contributions are attributed to the human
authors, and the results presented in this paper are entirely the product of human research efforts.

B SUPPLEMENTARY DETAILS

B.1 SWIREASONING IMPLEMENTATION

Algorithm 1 SWIREASONING

Input: Question z1.,, model M, max steps Ti,ax, coefficient «v, coefficient 5y, dwell window
WE_ 1, max switches Cy.x, and answer budget B
QOutput: Answer y1.,,
1 Init: Mode m( < Latent, reference entropy H+ H 1, dwell At < 0, switch counter C' < 0,
injection queue Q) < (), budget flag b <+ —1
2 fort =1to T, do

3 by = M(z1:4-1);  pe < softmax({y); Hy <= — ), pe[v]log pe[v] /I Entropy
4 if Q # () then /I Token injection (convergence/termination prefix)
5 xt < Q.pop()
6 if b = 0 then
7 break
8 if b > 0 then
9 b+ b—1
10 continue .
11 if m; = Latent and H; < H then /I Mode switching (Sec. 3.3)
12 my < Explicit; H« Hy;, At«+ 0, C<«+ C+1;
13 else if m; = Explicit and H; > H and At > Wg_1, then
14 my + Latent; H < Hy;; At+0
15 else
16 At +— At+1
17 if m; = Explicit and 1 Cp . < C < Cax then /] Switch count control (Sec. 3.4)
18 Q <+ [ID[(/think)]] Il Convergence trigger
19 else if m; = Explicitand C' > C\,.x then
20 Q@ + [ID[*“(/think)\n\n The final answer is”]]; b+ B /I Termination trigger
21 if m; = Explicit and m;_; # Latent then
22 Xy < arg max, p;[v] or Sampling
23 else
24 €t < y_, pt[v] E[v]
25 if At = 0 then /I Thinking-related signal mixing
26 ar=ap+ (11— aO)Trjmx
27 ét — Qg ét + (1 — Ott) e(think)
28 if m; = Explicit and m;_; = Latent then /I Thinking-related signal mixing
29 B = Bo+ (1= Bo)—
30 €t = Br € + (1 — Bt) e(/tnink)
31 Ty — €4 /I Soft embeddings feed as inputs
32 if z; = <EOS> then
33 break
34 Extract answer y from x,, 1.1
35 return y

Alg. | provides a detailed implementation of SWIREASONING, where the implementation for mode
switching is written in black and switch count control for token efficiency is outlined in blue.
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B.2 BENCHMARKS DETAILS

We conduct evaluation on five reasoning benchmarks, including GSM8K (Cobbe et al., 2021),
Math500 (Hendrycks et al., 2021), AIME 2024 (HuggingFaceH4, 2024), AIME 2025 (Yentinglin,
2025) for mathematical domain reasoning, and GPQA Diamond (Rein et al., 2024) for STEM do-
main reasoning.

* GSMSK: We use the test set of 1,319 grade-school math word problems, designed to evalu-
ate multi-step arithmetic reasoning in natural language. #: https://huggingface.
co/datasets/openai/gsm8k.

* MATHS500: A curated set of 500 problems from the MATH dataset, covering diverse high-
school competition-level mathematics domains such as algebra, geometry, and number the-
ory. @: https://huggingface.co/datasets/HuggingFaceH4/MATH-500.

» AIME 2024: Contains 30 problems from the 2024 American Invitational Mathematics Ex-
amination, each requiring a concise numeric answer and reflecting competition-level dif-
ficulty. &: https://huggingface.co/datasets/HuggingFaceH4/aime_
2024.

* AIME 2025: Contains 30 problems from the 2025 American Invitational Mathematics
Examination, continuing the focus on competition-style math reasoning with challeng-
ing questions that test symbolic and logical skills. #: https://huggingface.co/
datasets/yentinglin/aime_2025.

* GPQA Diamond: A high-quality subset of about 198 carefully verified questions, focusing
on STEM disciplines including mathematics, physics, chemistry, biology, and computer
science, designed to evaluate expert-level factual knowledge and reasoning ability. &:
https://huggingface.co/datasets/hendrydong/gpga_diamond_mc.

To provide LLMs sufficient thinking space, following the same settings in Qwen3 (Yang et al.,
2025), we set the maximum generation length to 32,768 tokens for GSM8K, Math500, and GPQA
Diamond benchmarks, and 38,912 tokens for AIME 2024 and AIME 2025 benchmarks.

We repeat the experiments eight times and report the average accuracy for both SWIREASONING
and other baselines on the AIME 2024 and AIME 2025 benchmarks.

B.3 BEST PRACTICE FOR HYPERPARAMETERS

Table 4: Hyperparameters for mode switching across datasets and models. W and [, are fixed across all
scenarios, while o provides users with flexibility for adjustment depending on the task.

Model
QOwen3-8B  Qwen3-1.7B  DeepSeek-R1-Distill-Llama-8B

Hyperparameter Dataset

GSMSK
MATHS500
W (window size) AIME2024 512 (fixed for all)
AIME2025
GPQA Diamond

GSM8K 0.5 0.6 0.1
MATHS500 1.0 0.5 0.5
oo (user-exposed) AIME2024 0.9 0.5 0.65
AIME2025 0.9 0.3 0.7
GPQA Diamond 1.0 1.0 0.7

GSMSK
MATHS500
Bo AIME2024 0.7 (fixed for all)
AIME2025
GPQA Diamond

In addition to Tab. 4, SWIREASONING operates as a straightforward and instant substitution to
model.generate () interface of Huggingface’s transformers (Wolf et al., 2020) package. There
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are no model parameters or architecture changes, and no training was used in the experiments. For
sampling-related hyperparameters and prompt templates, we use the ones recommended by Qwen3
and DeepSeek-R1’s technical report (Yang et al., 2025; Guo et al., 2025) without modification.

B.4 BROADER RELATED WORK

Efficient LLM Reasoning. In terms of improving reasoning efficiency, there are broader tech-
niques including but not limited to KV cache compression (Han et al., 2023; Xiao et al., 2023; Cai
et al., 2024; Shi et al., 2025), prompt token compression (Wingate et al., 2022; Jiang et al., 2023;
Pan et al., 2024; Shi et al., 2024), speculative decoding (Leviathan et al., 2023; Kim et al., 2023; Liu
et al., 2023; Sun et al., 2023; Chen et al., 2024), traditional methods such as quantization, pruning,
distillation (Lin et al., 2024; Fu et al., 2024; Yuan et al., 2025), and system-level optimizations such
as FlashAttention (Dao et al., 2022; Dao, 2023; Shah et al., 2024).

SWIREASONING, however, targets a different axis of efficiency and is not aiming to surpass them.
Instead, it saves tokens by dynamically alternating between latent steps and explicit steps and limit-
ing the number of block switches. As such, it is plug-and-play during inference and can be layered
on top of the aforementioned techniques for multiplicative gains.

C SUPPLEMENTARY EXPERIMENTS

C.1 DETAILED EVALUATION RESULTS UNDER VARYING TOKEN BUDGETS

We provide detailed evaluation results of Qwen3-8B in Tab. 5-9, Qwen3-1.7B in Tab. 10-14, and
DeepSeek-R1-Distill-Llama-8B in Tab. 15-19.

Table 5: Evaluation results of Qwen3-8B on the GSM8K benchmark under varying token budgets. Rows are
sorted by generation length in descending order.

Method Accuracy (%) Generation Length

CoT (Greedy)  p———— °5-03%  ——— 2240
2218

SwiR (Ours)  p———— 00.06% —

CoT (Greedy)  mm—— 5.75%  p—— 2199
CoT e 5607 —— 2138
CoT Ee—— ©5-60%  ——— 2136
CoT eeesss—— 9477%  ——— 2123
CoT (Greedy)  mee—— °515% s 2115
Soft Thinking  p————— ©533%  ——— 2073
Soft Thinking  p—————— ©5-38%  o——— 2073
Soft Thinking  p—————— 05-077%  C——— 2033
CoT eeeesssss—"m 0181%  p——— 1926
SwiR (Ours)  p———— 4.84%  o—— 1879
Soft Thinking  p————— 92.12% e 1865
SR (OIS o (105112 78— 1761
SwiR (Ours)  o— 04.39%  — 1585
CoT s 99% S— 1553
CoT (Greedy) mumne——— 7908% ——— 1540
Soft Thinking  p—————— 30.14%  S—— 1526
Swik (Ours)  p————— 04477  —— 1297
CoT — 44.50%  p— 990
CoT (Greedy)  pm— 4579%  p— 988
Soft Thinking ] 47.08% [ ] 988
SwiR (Ours)  p——————— 0370%  o— 844
CoT [ ] 25.47% [ ] 512
CoT (Greedy)  pummmm 25.93% 512
Soft Thinking . 24.87% [ ] 512
SwiR (Ours)  pe—————— 9219% 301
CoT - 636%  mm 256
CoT (Greedy) m 607%  mm 256
Soft Thinking g 622% mm 256
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919 Table 6. E aluatlon S (2 3- y
on the MAT H5
. \% ]esult of wen 8]; 00 benchmark under var lng token budgets. ROWS are

921
Method
922 0 Accuracy (%) Generation Length
923 CoT (Greedy)  p———— 96.40% 531
1 - S
924 SwiR (Olll'S) ] 98.40% ] 518;
CoT
5 e 00-00%  —————
25 Soft Thinking 9 . o5
o inki e 0.00%  ——— 4934
Soft Thinking  p——————— 5407
o Soft . 4733
SA YV — ]
T
oon Cor Oee S ——T YY) ——————T T
oo OIS — 0 R — L
SWiR (Ours) p————— 93.50% "
- o : 4057
o eesssss—— $7.00%  E—— 3899
931 SOf (Greedy)  p——— 37007 EE——— 3819
. oft Thinking  p———— 5530%  o— 3774
O e —— 007
i : S
933 SwiR (Ours) 90.20% 16s
- - EEeess—— 0. E—— 3164
o E— T240%  p— 2940
. oT (Greedy)  p———— 72.80%  p— 2890
Soft Thinking I 70.20%
i E—
936 O e Loom0 e
. COT : — 2387
. — 46.20%  p— 1922
938 Soft Thlnking . 44.80%
CoT (Greedy) 4 — 573
s . )  e— 43.00%  pu— 1873
SwiR (Ours) ] 78.40%
o o } p— 1368
— 2420%  pumm 1024
o Soft Thinking  pummm 2500%  pumm
CoT (Greedy) _—— 22.20‘7 1023
s 20%  umm 1023
943
Y Table 7: Eval
e 7: Evaluation results of Qwen3-8B i
. n on the GPQA Diamond benchm i
e Rows are sorted by generation length in descending order. ark under varying tolien budgets.
947
Method
. 0 Accuracy (%) Generation Length
SwiR (Ours)
- e 01117 ——
952 Soft Thinking ] 59.59‘7‘; Z?zz
E——
CoT e 9607 —— 8123
051 CoT (Greedy)  p—— 50.57%
cot 57% 7909
952 e 5-50% e 7570
CoT (Greedy)  p——
o reec 55.05%  p——— 7540
Soft Thmkmg ] 55.05%
i : E—
954 SwiR (Ours) 58.08% ;433
R I 8 S 7100
955 o Ours)  p——s—— 57.07%  ———— 6338
WiR (Ours)  p——— 58.08%
- 08% — 5710
CoT (Greedy) ] 33.84%
- o E— 5086
o S 33.33% m— 4972
958 Soft Thmkmg ] 34.85% 4961
! I
oo e s A e—— 50— 4766
SwiR (Ours)  p—  53.54%
960 CoT (Greedy) pumm 12.12% — 078
961 Soft Thinking 1263%  m— 2939
e CoT p— 10.61% __ 5o
SwiR (Ours) I 46:96‘?: _— <
963 Soft Thinking 2 2.53% -
s 252%  pmmm 1743
965 CoT (Greedy) 1 2.02% -
SWiR (Ours) p————— 47.47% E
966 CoT T S— oo+
967 CoT (Greedy) O:OO‘?Z - 1028
96 Soft Thinking - 100t
5 ' 0.00% g 1024
969 SwiR (Olll's) ] 39.39%
CoT 000% & i
970 CoT (Greedy) O:OO% : 23
971 Soft Thinkin
g 0.00% @ 512
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972

973

974

975

976

977

978

979

980

981

982

983

984

985 . .

086 Table 8: Evaluation results of Qwen3-8B on the AIME2024 benchmark under varying token budgets. Rows

987 are sorted by generation length in descending order.

988 .

989 Method Accuracy (%) Generation Length

990 SwiR (Ours) | p——— 70177 —— 12491
Soft Thinking  ——— 67927 ———— 2271

991 CoT EEeessss—— 5-83% a—— 12077

992 CoT (Greedy)  pmmeeeesssssss  7000% e 11680

993 SWIR(OurS) S p— (090570 — 10813
SwiRk (Ours)  p———  0625% —— 10349

994 CoT (Greedy)  pum——————— 0007% e 10328

995 Soft Thinking  p— 62.92%  pE——— 9846

996 CoT —— 63.75%  p— 9818
D IS A e —— 9275

o SwiR (Ours) | p— ST08% e— SIS

999 CoT — 3875%  p— 7109

1 000 CoT (Greedy) [ ] 36.67% [ 7033
SwiR (Ours) [ ] 45.42% [ ] 6093

1001 CoT — 2083%  p— 4096

1002 Soft Thinking — 23.33% — 4096

1003 CoT (Greedy)  pummmmm 26.67%  p— 4056
SwiR (Olll”s) [ ] 25.42% [ ] 3589

1004 CoT - 583%  umm 2048

1005 CoT (Greedy)  mm 10.00%  pm 2048

1006 Soft Thinking ] 3.75% - 2048
SwiR (Ours) (] 12.08% ] 1809

1007 CoT ; 167% 1024

1008 CoT (Greedy) g 333% m 1024

1009 Soft Thinking ] 3.33% (] 1024

101 SwiR (Ours) = 6.67% ™ 818

1o CoT | 083% g 512

1011 CoT (Greedy) 0.00% . 512

1012 Soft Thinking ) 3.33% 8 512

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025
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1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039 . .

1040 Table 9: Evaluation results of Qwen3-8B on the AIME2025 benchmark under varying token budgets. Rows

1041 are sorted by generation length in descending order.

1 g:i Method Accuracy (%) Generation Length

1044 SwiR (Ours)  p— 70.00%  p————— 13911
Soft Thinking  p—— 08.337  ———— 136065

1045 CoT (Greedy)  mumeeeessssm  0000% —— 13292

1046 CoT e 07-50%  p—— 12924

1047 RO — 5007 N —— R1S52
SwiR (Ours) o 58337 s— 10596

oas CoT — 54.17%  p— 10215

1049 Soft Thinking [ 51.25% ] 9952

1050 SwiR (Ours)  pe——m  5625% — —— 9791
CoT (Greedy)  pe—— 4333% e— 9143

o SWIR|(Ours)| " s— 4625%  n— G220

1053 Soft Thinking  p— 36.25% I 6772

1054 CoT (Greedy) [ 33.33% [ 6768
SwiR (Ours) [ ] 34.58% ] 6243

1 055 CoT (Greedy) [ ] 13.33% [ ] 4096

1056 CoT - 13.33% —— 4091

1057 Sof.t Thinking - 14.17% I 4060
SwiR (Olll”s) [ ] 21.67% ] 3608

1058 CoT = 7.50% - 2048

1059 CoT (Greedy)  gm 6.67%  mm 2048

1060 Soft Thinking = 6.25% - 2048
SwiR (Ours) g 1125% 1999

1061 CoT ; 167% m 1024

1062 CoT (Greedy) 0.00% m 1024

100 SR O e m ™

W1 urs (] o 0 (]

1064 CoT (] 2.50% [] 512

1065 CoT (Greedy) 0.00% . 512

1066 Soft Thinking s 3.33% 1 512

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079
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1080
1081 Table 10: Evaluation results of Qwen3-1.7B on the GSM8K benchmark under varying token budgets. Rows
1082 are sorted by generation length in descending order.

1083
1084 Method Accuracy (%) Generation Length
1085 CoT (Greedy)  p———— 59-01%  ——— 2038
SwiR (Ours)  pe—— 90.83%  ————— 2010
e CoT esss—— 0045%  ——— 1981
oer CoT (Greedy)  p————— 3°-017%  ——— 968
1088 Soft Thinking  p——————— 0.307%  p—————— 1959
1089 Soft Thinking  p————— ©0.22% — ——— 1940
CoT e 89-23%  p—— 1928
oo Soft Thinking  p——————— 59347  o—— 1396
1091 Col (Greedy) p— 59317 —— 1895
1092 CoT e $6.35% m——— 1753
CoT (Greedy)  pmee—— 37-04%  eeee—— 1744
1093 Soft Thinking  pEe———— 37-49%  Eeees——— 1736
1 094 SwiR (Olll'S) ] 89.23% (] 1695
1095 SWIR(Ours) " s — | 50467 o — ool
SwiR (Ours)  p———— 87.95%  —— 1462
e CoT s /0605% —— 1420
1097 Soft Thinking  p— s 7392%  E—— 1418
1098 CoT (Greedy)  p——— 78.17%  o— 1407
1099 SWIRI(Onrs)I —— (58:327 0 — 1224
CoT — 50.57%  p— 967
1100 CoT (Greedy)  pumm— 48.52%  m— 959
1101 Soft Thinking I 50.95% . 958
1 1 02 SwiR (Olll'S) ] 86.80% [ ] 816
CoT ] 29.95% [ ] 512
1103 CoT (Greedy) g 30.02%  p— 512
1104 Soft Thinking I 31.54% [ 512
11 05 SwiR (Ours) ] 82.26% [ ] 296
CoT = 796%  mm 256
1106 CoT (Greedy)  mm 834%  mm 256
1107 Soft Thinking - 9.25% == 256
1108
1109
1110 Table 11: Evaluation results of Qwen3-1.7B on the MATHS500 benchmark under varying token budgets. Rows
111 are sorted by generation length in descending order.
1112
1113 Method Accuracy (%) Generation Length
B SwiR (Ours)  p—— ©3.00%  ——— 4924
1115 CoT (Greedy)  p——— °100%  o——— 4799
1116 CoT e 0200%  ——————— 4780
Soft Thinking  p——— °0.00%  —————— 4721
o CoT meessssssssmn  00-80%  S——— 4435
11 18 CoT (Greedy) ] 89.20% ] 4342
1119 Soft Thinking  p—— 39.00%  o—— 4288
SWIR|(Onrs)i e—— 157807 o — 3862
e CoT (Greedy)  p————— 33.00%  ———— 3681
n21 CoT e— 8360 — 3655
1122 Soft Thinking  p———— 33.00% EE———— 3605
1123 SwiR (Ours)  p—————— 37-80% — C——— 3597
SHR(OUTS) S — | 36:307 8 — 3230
1 1 24 SwiR (Ours) ] 85.00% ] 2914
1125 CoT —— 68.40%  p— 2761
1126 Soft Thinking ] 69.40% [ ] 2744
CoT (Greedy) ] 69.20% [ 2738
1 1 27 SwiR (Olll'S) (] 81.00% ] 2222
1128 CoT I 46.40%  pE—— 1857
1 1 29 CoT (Greedy) ] 47.80% [ ] 1850
Soft Thinking N 46.20% I 1830
1 1 30 SwiR (Olll'S) ] 72.40% ] 1189
1131 CoT — 25.60% g 1022
1132 CoT (Greedy) —— 29.80% - 1020
1133 Soft Thinking . 27.20% . 1020

\S}

1
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1134

1135 Table 12: Evaluation results of Qwen3-1.7B on the GPQA Diamond benchmark under varying token budgets.
1136 Rows are sorted by generation length in descending order.

1137
1138 Method Accuracy (%) Generation Length
1139 SwiR (Ours)  p—— 41417 ——— 0517
1140 CoT (Greedy)  p—— 31.82%  p—— 9190
CoT (Greedy)  p— 3030%  p——— 8751
e Soft Thinking  prme—————— 3434% e 8731
Az CoT —— 9397  — 5025
1143 CoT aessss——— 37377 —— (8040
1144 SwiR (Ours)  pe— 3637% — 773
Soft Thinking I 32.32% [ ] 7447
1145 SwiR (Ours) [ 35.35% I 6792
1146 O —— S — 5856
1147 SwiR (Ours) eeeeeeeemmm  36.87% I 4766
CoT ] 17.17% [ ] 4758
1148 Soft Thinking g 1667%  p— 4463
11 49 CoT (Greedy) [ ] 12.12% [ ] 3770
1 1 50 SwiR (Olll'S) ] 37.37% ] 3497
Soft Thinking g 8.08%  pumm— 2915
e CoT p— 8.59%  umm— 2843
1152 CoT (Greedy) - 7.58% - 2344
11 53 SwiR (Ours) ] 31.31% ] 2112
1154 CoT ' 101% 1661
SwiR (Olll'S) ] 27.27% (] 1573
1155 CoT (Greedy) ™ 2.53% - 1539
1156 Soft Thinking | 0.51% - 1378
1157 CoT 0.00% m 1024
CoT (Greedy) 0.00% m 1024
1158 Soft Thinking 0.00%  mm 1024
1 1 59 SwiR (Ours) ] 29.80% (] 933
1160
1161
1162 . .
Table 13: Evaluation results of Qwen3-1.7B on the AIME2024 benchmark under varying token budgets. Rows
1163 are sorted by generation length in descending order.
1164
1165 Method Accuracy (%) Generation Length
e CoT (Greedy)  p— 40.00%  p—— 12825
e SwiR (Ours) ' —— 50-53% 1 —— 12702
1168 CoT essssss— 4533%  e— 118396
1169 Soft Thinking [ 38.75% I 10788
SwiR (Ours) [ ] 42.08% ] 10243
1170 Soft Thinking [ ] 36.67% ] 9841
17 CoT —— 38.33%  — 9510
1172 CoT (Greedy)  p——— 33.33% ___ p— 9377
1173 SwiR (Ours) I 38.75% I 9350
SwiR (Ours) ] 36.25% ] 8654
1174 Soft Thinking . 30.00% . 7498
1175 CoT (Greedy) [ 23.33% . 7302
1 1 76 SwiR (Ours) [ ] 29.17% ] 7084
CoT [ ] 27.50% [ ] 6978
177 SWIR (OUrs) pum— 2542%  p— 5926
1178 CoT (Greedy)  pmmm 10.00%  pu— 4096
1179 Soft Thinking [ ] 16.67% [ ] 4096
11 80 CoT [ ] 13.75% [ 4063
SwiR (Ours) g 14.17% 3411
1181 CoT ™ 2.92% - 2048
1182 CoT (Greedy) 0.00%  mmm 2048
Soft Thinking ™ 3.33% - 2048
183 SwiR (Ours) ) 7.50% - 1887
1184 CoT ' 125% m 1024
1185 CoT (Greedy) 0.00% = 1024
1186 Soft Thinking 0.00% = 1024
SWiR (Ours)  gm 583% m 812
1187

22
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1188 Table 14: Evaluation results of Qwen3-1.7B on the AIME2025 benchmark under varying token budgets. Rows
1189 are sorted by generation length in descending order.

1190
1191 Method Accuracy (%) Generation Length
e CoT (Greedy)  p—— s 3333% o—— 11408
1193 SwiR (Ours) e 38-33% S 9944
1194 CoT meeessssmmm 3333% e 9733
Soft Thinking  p——— 30.07% — E—— 8 8904
e CoT (Greedy)  p— 2667%  p—— 8890
1196 CoT oammsm—— 31257 —— LI
1197 SWiR (Ours)  p——n 34587 —— 8543
1 1 98 SwiR (OUI‘S) [ ] 32.92% ] 8129
1199 SwiR (Ours) [ 32.08% I 7563
1200 SwiR (Ours) I 30.83% [ 6761
1201 CoT S 2083% p—— 6071
1 202 CoT (G'reefiy) [ ] 20.00% [ ] 6008
Soft Thinking [ 23.33% [ 5738
1 203 SwiR (Olll's) (] 25.42% ] 5145
1204 CoT [ ] 14.17% [ ] 4096
1205 CoT (G.reefiy) [ ] 13.33% ] 3927
Soft Thinking S 20.00% . 3737
1206 SwiR (Ours) I 17.50% — 3311
1207 CoT ] 7.92% [ 2048
1208 CoT (Greedy) s 10.00% g 2048
Soft Thinking s 10.00% g 2048
1209 SWiR (Ours)  pummm 875%  wmm 1865
1210 CoT ™) 2.08% - 1024
1211 CoT (Greedy) m 3.33% m 1024
Soft Thinking 0.00% = 1024
1212 SwiR (Ours) g 458% @ 787
1213

1214 Table 15: Evaluation results of DeepSeek-R1-Distill-Llama-8B on the GSM8K benchmark under varying token
1215 budgets. Rows are sorted by generation length in descending order.

1216
1217 Method Accuracy (%) Generation Length
e Soft Thinking  p—————— 35-90% 2953
1219 Soft Thinking  p—TT—— 54.34% CE——— 2516
1220 CoT (Greedy)  pumeeeessssssss 35827 peeessssss— 239
Soft Thinking  p————— 33027 — 2266
e Soft Thinking  p— s 7741% o— 1741
1222 CoT (Greedy)  pe——— 86.05%  p— 1642
1223 CoT a—— 89467 p— 1588
1224 SwiR (Ours)  p—— 00.07%  o— 1565
CoT s 88.10%  p— 1554
1225 CoT — 53.02%  — 1491
1226 CoT (Greedy)  p——— 35-327%  C— 1421
1227 CoT eess— 80.13%  p— 1404
SwiR (Ours)  p———— 88.55%  o— 1349
1228 SwiR (Ours)  p———— 59.46%  o— 1312
1229 CoT (Greedy)  p————— 55447 — 1307
1230 Soft Thinking  s— 70.36%  ue— 1279
Swik (Ours)  pee— 87207 o— 12117
1ed CoT Eeeesss—— /362%  m— 1191
1232 CoT (Greedy) I 79.53% [ ] 1092
1233 SwiR (Ours)  p——— 50.43%  o— 1071
Soft Thinking [ ] 49.58% [ ] 885
e CoT —— 53.22%  — 883
1 235 CoT (Greedy) ] 57.39% [ ] 839
1236 Swik (Ours)  p———— 33.62%  o— 775
1237 CoT ] 27.37% [ ] 509
CoT (Greedy) ] 28.81% [} 508
1238 Soft Thinking  pmm 2835%  pmm 508
1239 SWiR (Ours) p— 7096%  m 210
1 240 CoT [ ] 5.69% [ ] 256
CoT (Greedy) g 652% m 256
1241 Soft Thinking g 546% m 256
23
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1242
1243 Table 16: Evaluation results of DeepSeek-R1-Distill-Llama-8B on the Math500 benchmark under varying
1244 token budgets. Rows are sorted by generation length in descending order.

1245
1246 Method Accuracy (%) Generation Length
1247 Soft Thinking  p—— s 53.30% E—— 4718
1248 CoT (Greedy) e 3480% messsssssssss 4110
Soft Thinking  p——— 32.00%  o—— 4085
1249 SwiR (Ours)  p——— ©2.00%  o—— 3837
1250 CoT oeesssss— °140%  ——— 3792
1251 CoT e $9-30%  p— 3572
Soft Thinking ] 75.40% ] 3204
1ene CoT (Greedy)  p———— 53-20%  o— 3203
1253 Swik (Ours)  p—— 59307  ——— 3046
1254 SwiR (Ours)  p——— 58.00% —— 2931
CoT eeesss— 85207 S—— 2828
1 255 SwiR (Olll's) ] 86.40% [ ] 2722
1 256 CoT (Greedy) [ ] 79.60% [ ] 2622
1257 SWiR\(Ours) T s— 50.007% [ — 2462
Soft Thinking . 64.40% N 2396
e CoT —— 71.00%  p— 2133
1259 CoT (Greedy)  pmm—— 71.20%  p— 2081
1260 SwiR (Ours) T 79.20% ] 1953
1261 Soft Thinking ] 42.60% [ ] 1605
CoT [ ] 47.60% [ ] 1539
1262 CoT (Greedy)  pu— 52.60%  pum— 1500
1 263 SwiR (Ours) ] 68.40% ] 1116
1264 CoT = 1220% gm 512
Soft Thinking g 1020%  gm 511
1265 CoT (Greedy)  gum 1180% s11
1 266 SwiR (Ours) ] 57.40% (] 453
1267
1268

1269 Table 17: Evaluation results of DeepSeek-R 1-Distill-Llama-8B on the GPQA Diamond benchmark under vary-
1270 ing token budgets. Rows are sorted by generation length in descending order.

1271
1272 Method Accuracy (%) Generation Length
1273 Soft Thinking  p— 3333% m—————— 8593
1274 CoT e 40467 —— 7591
1275 Soft Thinking I 30.81% [T 7507
SwiR (Ours)  p———— 47.9%% — — 7458
1276 CoT e 40-46% meeeeee——— 7236
1 277 SwiR (Olll'S) ] 45.45% ] 6635
1278 SWIR|(Ours)i s—— AT — 6038
CoT (Greedy)  p— 31.82%  p— 5854
1 279 SwiR (Olll's) ] 41.92% ] 5406
1 280 CoT (Greedy) [ ] 27.78% [ ] 5230
1281 CoT — 331%  p— 4943
Soft Thinking [ ] 16.67% [ ] 4510
1 282 SwiR (Ours) ] 39.90% [ ] 4388
1 283 CoT (Greedy) [ ] 23.73% [ ] 4301
1284 Swik Ours)  p——mm— 41417 — 3292
1285 CoT (Greedy)  pummm 11.62% 2625
Soft Thinking g 657%  p—— 2350
1286 CoT p— 9.60%  p— 2314
1287 SwiR (Ours) . 25.76% . 1840
1288 CoT s 253% 1595
CoT (Greedy) = 3.54% - 1469
1289 Soft Thinking g 3.03% pmm 1381
1290 CoT (Greedy) | 0.50% = 918
1291 CoT ] 1.01% [ ] 855
Soft Thinking 1 1.01% m 785
1 292 SwiR (Olll's) ] 29.80% (] 673
1293 CoT 0.00% ™ 512
1294 CoT (Greedy) 0.00% ™ 512
1295 Soft Thinking 0.00% ™ 511
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1296

1297

1298 . L .

1299 Table 18: Evaluation results of DeepSeek-R1-Distill-LLlama-8B on the AIME2024 benchmark under varying

1900 token budgets. Rows are sorted by generation length in descending order.

1301 Method Accuracy (%) Generation Length

1302
SwiR (Ours)  p—— 45.00%  ———— 8179

e CoT e 43.75%  p—— 8145

1304 CoT (Greedy)  pm— 30.00%  p— 7540

1305 SwiR (Ours) " o—— 4107 — | 7555
CoT eessss—— 41.25% —— 7330

e CoT (Greedy)  p— 2666% pe——— 107

1307 Soft Thinking  p—— 8 34.17%  p—— 0956

1308 O ——— O — J0S02

1309 SWIR(Onrs)E ee—— L2570 — 0645
SwiR (Ours) p——— 3958%  — 5876

1910 Soft Thinking  p——— 3208% oe— 5871

1311 CoT E— 2833%  p— 5086

1312 CoT (Greedy)  pu— 16.67%  m—— 4952
Soft Thinkjng ] 27.50% [ ] 4860

e SwiR (Ours)  p—— 3250% p— 4757

1314 CoT (Greedy) - 6.66% I 3795

1315 Soft Thinking _ 11.67% . 3784

131 6 CoT ] 14.58% [ ] 3515
SwiR (Olll'S) [ ] 23.33% ] 3419

1317 SwiR (Ours)  gumm 875%  wmmm 2103

1318 CoT [} 1.67% _ 2048

1319 CoT (Greedy) g 333%  pmmm 2048
Soft Thinkin 3.33% 2045

. T m o

1321

1322

1323

1324

1325

1326 Table 19: Evaluation results of DeepSeek-R1-Distill-Llama-8B on the AIME2025 benchmark under varying
1327 token budgets. Rows are sorted by generation length in descending order.

1328
1329 Method Accuracy (%) Generation Length
1330 Soft Thinking ] 20.42% . 8448
1331 SwiR (Ours)  p—— 1257 —— 6327
Soft Thinking [ ] 19.17% [ ] 6824
e CoT EEEEe—— 2025% — 6583
1 333 SwiR (Olll'S) ] 30.83% ] 6419
1334 CoT (Greedy)  p———— 30.00%  o—— 6293
1335 SwiR (Ours)  p— 30.00% ——— 6230
CoT — 25.00%  p—— 5724
1336 SwiR (Ours) [ 29.17% I 5721
1337 SwiR (Ours) I 26.67% I 5229
1 338 CoT (Greedy) [ ] 26.67% [ ] 4967
CoT (Greedy) ] 23.33% [ ] 4370
1339 Soft Thinking I 14.17% . 4170
1340 CoT ] 19.58% [ ] 4085
1 341 SwiR (Olll'S) ] 21.25% ] 4035
CoT ] 14.17% [ ] 3197
1342 Soft Thinking 1000%  m— 3023
1 343 SwiR (Ours) ] 16.67% ] 2970
1 344 CoT (Greedy) ] 16.67% [ ] 2862
CoT ] 3.33% _ 2048
1345 Soft Thinking 0.00% _— 2048
1346 CoT (Greedy)  gm 333%  pmm 1904
1347 SwiR (Ours) . 7.08% . 1777
1348
1349
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