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Figure 1: Pass@1 accuracy under unlimited token budgets. On mathematics and STEM reasoning benchmarks,
SWIREASONING yields improvements of up to +2.8% and +2.0%, respectively.

Figure 2: Token efficiency (accuracy per token compared to standard CoT), under limited token budgets. Across
reasoning LLM families and sizes, SWIREASONING brings average efficiency improvements of up to +79%.

ABSTRACT

Recent work shows that, beyond discrete reasoning through explicit chain-of-
thought steps, which are limited by the boundaries of natural languages, large
language models (LLMs) can also reason continuously in latent space, allowing
richer information per step and thereby improving token efficiency. Despite this
promise, latent reasoning still faces two challenges, especially in training-free set-
tings: 1) purely latent reasoning broadens the search distribution by maintaining
multiple implicit paths, which diffuses probability mass, introduces noise, and
impedes convergence to a single high-confidence solution, thereby hurting accu-
racy; and 2) overthinking persists even without explicit text, wasting tokens and
degrading efficiency. To address these issues, we introduce SWIREASONING, a
training-free framework for LLM reasoning which features two key innovations:
1) SWIREASONING dynamically switches between explicit and latent reasoning,
guided by block-wise confidence estimated from entropy trends in next-token dis-
tributions, to balance exploration and exploitation and promote timely conver-
gence. 2) By limiting the maximum number of thinking-block switches, SWIREA-
SONING curbs overthinking and improves token efficiency across varying prob-
lem difficulties. On widely used mathematics and STEM benchmarks, SWIREA-
SONING consistently improves average accuracy by 1.5%–2.8% across reasoning
LLMs of different model families and scales. Furthermore, under constrained
budgets, SWIREASONING improves average token efficiency by 56%-79%, with
larger gains as budgets tighten. The code will be released publicly.
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1 INTRODUCTION

Reasoning is one of the central capabilities of large language models (LLMs) (Yang et al., 2025;
Qwen Team, 2024; Meta, 2025a;b). It allows models to tackle complex tasks such as mathematics,
science, and programming (Guo et al., 2025; OpenAI, 2025b; Jaech et al., 2024; Agarwal et al.,
2025; Qwen Team, 2025; Abdin et al., 2025; Abouelenin et al., 2025; Anthropic, 2025; DeepMind,
2024a;b), far beyond simple question answering.

A key limitation of the dominant reasoning approach, explicit chain-of-thought (CoT) (Wolf et al.,
2020; Wei et al., 2022; Yao et al., 2023a; Goyal et al., 2024; Pfau et al., 2024), lies in the reliance
on discrete tokens during inference. In standard CoT decoding, the model commits to a single token
at each step, sampled from the predicted distribution. While effective and ensures readability by
verbalizing intermediate steps, this discrete process collapses the full probability distribution into a
single trajectory, discarding uncertainty and eliminating many potentially useful reasoning paths.

To overcome this bottleneck, recent work has explored an alternative reasoning technique, latent
reasoning (Hao et al., 2024; Zhang et al., 2025; Cheng & Van Durme, 2024; Xu et al., 2025a;b; Tan
et al., 2025), where the model operates directly in a continuous hidden space instead of a discrete text
space. Latent reasoning offers two key advantages over CoT: 1) higher representational bandwidth
per step, since hidden vectors can encode richer information than single tokens (Zhu et al., 2025b);
and 2) the ability to preserve multiple reasoning hypotheses implicitly, rather than collapsing them
prematurely into one tokenized path (Li et al., 2025b; Chen et al., 2025).

Latent reasoning can be broadly categorized into training-required and training-free approaches.
Training-required ones (Hao et al., 2024; Su et al., 2025; Liu et al., 2024; Shen et al., 2025; Tack
et al., 2025) demand substantial retraining or fine-tuning (Yue et al., 2025; Li et al., 2025a; Wang
et al., 2025a; Zhu et al., 2025a), making it excessively expensive to apply to large reasoning language
models. In contrast, training-free approaches like Soft-Thinking (Zhang et al., 2025), which form
a probability-weighted mixture of token embeddings as inputs, operate directly at inference time
without incurring additional training costs. Our work focuses on the latter category, which is cost-
effective and resource-friendly for deployment in large-scale reasoning models.

Although training-free latent reasoning eliminates the need for costly retraining, operating purely
in the latent space also presents significant challenges. First, the model is not explicitly trained to
perform long-horizon reasoning with latent inputs. As a result of distributional mismatches, when
inference relies solely on latent trajectories, the process is less controlled and can easily drift off
course (Chen et al., 2025). Instead of collapsing into a single path, the model tends to spread
probability mass across many implicit reasoning paths. While this preserves multiple hypotheses,
it also introduces persistent noise, slows convergence, and ultimately harms reasoning accuracy (Li
et al., 2025b). Second, the absence of explicit tokens does not necessarily ensure efficiency. In
latent space, models may still suffer from repetitive or unnecessarily extended internal deliberations
and continuation (Zhang et al., 2025), essentially overthinking. This prolongs inference and over-
consumes tokens, undermining the very efficiency that latent reasoning is meant to improve.

To address these issues, this paper introduces SWIREASONING (abbreviated as SWIR) as a training-
free framework for LLM reasoning that alternates between explicit and latent thinking, based on
block-wise confidence inferred from entropy trends of next-token distributions, and suppresses over-
thinking by bounding the number of switches. More specifically, the framework first tracks a refer-
ence entropy within each thinking block to reflect block-wise confidence. Rising confidence triggers
an explicit switch to consolidate progress along a single path, while sustained uncertainty triggers
a latent switch to re-explore in continuous space. Second, a switch count controller caps the num-
ber of thinking block transitions and provides early-answer checkpoints, curbing unnecessary latent
loops and improving token efficiency across difficulties.

The proposed framework also benefits from reintroducing diversity by sampling in an explicit think-
ing block when compared to pure latent thinking. Even though motivated differently, SWIREASON-
ING resonates with the concurrent observation of Liang et al. (2025) that introducing stochasticity
benefits latent reasoning, but we achieve this via a distinct mode switch mechanism rather than
injecting distributions with randomness.

Our contributions are summarized as follows:
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• We propose SWIREASONING, a training-free reasoning framework that dynamically alternates be-
tween explicit and latent thinking based on confidence signals, thereby exploiting the expressivity
of latent thinking without sacrificing the stability of explicit thinking.

• We introduce a switch count control mechanism that caps the number of transitions, enabling early
answering based on partial reasoning trajectories at switch boundaries. This effectively suppresses
overthinking and improves token efficiency under limited budgets.

• We extensively validate the effectiveness of SWIREASONING on mathematics and STEM rea-
soning domains across multiple benchmarks, model families, and sizes, demonstrating consistent
gains in both accuracy and token efficiency over training-free baselines.

2 RELATED WORK

Explicit LLM Reasoning. Reasoning via explicit intermediate text has been extensively studied.
Chain-of-thought (CoT) prompting elicits stepwise rationales that improve reasoning accuracy by
decomposing problems into natural-language sub-steps (Kojima et al., 2022; Wei et al., 2022). Sub-
sequent work increases robustness by aggregating multiple CoT trajectories through self-consistency
(Wang et al., 2022). Search- and tool-augmented variants further expand the exploration space, such
as Tree-of-thought that branches over partial rationales (Yao et al., 2023a) and interleaving reason-
ing and actions with external tools and environments (Yao et al., 2023b). Least-to-most prompting
progressively solves subproblems to reduce reasoning load and mitigate error accumulation (Zhou
et al., 2022). These approaches operate purely in the discrete token space and therefore commit to a
single token at each step. While readable, the discretizations in explicit reasoning discard alternative
hypotheses early, and restrict the information bandwidth per step (Zhu et al., 2025b).

Latent LLM Reasoning. Latent reasoning operates in the continuous representation space rather
than discrete natural language space used by explicit reasoning. Prior work can be broadly grouped
into two categories. 1) Training-required approaches modify pretraining (Tack et al., 2025; Zeng
et al., 2025) or fine-tuning objectives (Tan et al., 2025; Wang et al., 2025a;b; Jiang et al., 2025;
Wu et al., 2025; Yue et al., 2025; Li et al., 2025a; Shen et al., 2025; Xu et al., 2025a) to super-
vise hidden-state trajectories or to endow models with latent-planning skills. 2) Training-free ap-
proaches (Zhang et al., 2025; Liang et al., 2025) intervene only at inference time by manipulating
hidden representations or probability distributions without updating model weights. Our work be-
longs to the training-free category but differs from prior single-mode methods. Instead of remaining
purely latent, SWIREASONING dynamically switches between latent and explicit reasoning based
on entropy-trend confidence, and further regulates the number of switches through a count controller
to suppress overthinking and improve efficiency.

3 METHODOLOGY

3.1 SWIREASONING OVERVIEW

As shown in Fig. 3, SWIREASONING is a training-free framework that dynamically alternates be-
tween explicit and latent reasoning. The number of switches is regulated to suppress overthinking
and improve token efficiency. Sec. 3.2 presents the preliminaries of explicit and latent reasoning,
Sec. 3.3 details the design of the dynamic switch, and Sec. 3.4 discusses the switch count control
mechanism. Implementation details are provided in Appendix B.1.

3.2 PRELIMINARY: EXPLICIT AND TRAINING-FREE LATENT THINKING

Explicit Thinking. Let V be a vocabulary and pθ(xt | x<t) a LLM over V with parameters θ.
Given a question q, the model produces a reasoning trace r1:T ∈ V T followed by a final answer
a1:U ∈ V U . We write the concatenated sequence as

x1:(|q|+T+U) =
[
q, r1:T , a1:U

]
,

3
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Figure 3: SWIREASONING framework. (a) Dynamic mode switching alternates between explicit and latent
thinking based on block-wise confidence estimated from entropy trends. (b) A switch count control mechanism
limits the maximum number of thinking-block transitions, suppressing overthinking before the final answer.

At inference, decoding proceeds by repeatedly choosing a token xt from the predictive distribution
pθ(· | x<t) according to a policy πt(·), e.g.,

xt ∼ πt(·) with πt =

{
Greedy: argmaxv∈V pθ(v | x<t),

Sampling: Top-k/Top-p with temperature τ.

The reasoning phase stops when a termination condition is met, e.g., generating ⟨/think⟩, after which
the answer tokens a1:U are decoded in the same manner. While explicit reasoning improves reliabil-
ity by externalizing intermediate steps, its hard policy πt(·) collapses the full distribution to a single
discrete decision at each step, i.e., discards information in pθ(· | x<t) beyond the chosen token.

Training-Free Latent Thinking. It replaces the hard policy πt(·) by a continuous surrogate that
preserves distributional information. Let E ∈ R|V |×d denote the token embedding matrix with rows
e(v)∈Rd. At step t, the model yields logits ℓt ∈ R|V | and pt = softmax(ℓt). Given the next-token
distribution pt := pθ(· | x<t) ∈ ∆|V |−1, it forms a soft embedding

ẽt =
∑
v∈V

pt[v] e
(v) ∈ Rd, (1)

and feeds ẽt back to the model as the next input representation, rather than committing to an explicit
token by πt(·). Upon the thinking phase being complete, the policy reverts to πt(·) for answer
generation. The convexity of Eq. 1 ensures ẽt lies in the embedding hull of E, retaining all first-
order uncertainty in pt, which reduces information discards and increases robustness to local noise.

3.3 DYNAMIC SWITCH BETWEEN EXPLICIT AND LATENT THINKING

Remaining in a single mode throughout reasoning is inherently suboptimal: explicit thinking pro-
vides readability but may discard useful information beyond chosen tokens, while latent thinking
preserves richer signals but can drift into noise and reduce accuracy. Our key insight is that reasoning
should switch modes based on confidence. Latent reasoning enables exploration across multiple po-
tential continuations when confidence is low, and explicit reasoning encourages convergence when
confidence is high, striking a balance that supports broad exploration while maintaining accuracy.

Mode Switch Criterion. We refer to the reasoning content between two consecutive switches as
a thinking block and estimate its confidence by entropy Ht=−

∑
v pt[v] log pt[v]. Let H̄ denote the

reference entropy of the current block, which is initialized at the first step of the block and refreshed
when a mode switch happens. We use a criterion that converts local entropy trends into decisions:

Latent→Explicit :
(
Ht < H̄

)
(confidence rises), (2)

Explicit→Latent :
(
Ht > H̄

)
(confidence drops), (3)
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Switch Window Size. To avoid oscillations, we impose dwell windows upon the mode switch
criterion. Formally, with mode variable mt ∈ {Explicit,Latent} and dwell step counter ∆t, we
have

mt+1 =


Explicit, mt = Latent ∧ (Ht < H̄) ∧ (∆t ≥WL→E),

Latent, mt = Explicit ∧ (Ht > H̄) ∧ (∆t ≥WE→L),

mt, otherwise.

We reset H̄←Ht, ∆t←0 upon any switch, i.e., mt+1 ̸= mt. Otherwise, we update ∆t←∆t+1. In
practice, WL→E = 0 while WE→L is positive, i.e., a Latent→Explicit switch may occur immediately
when Ht dips, whereas an Explicit→Latent switch requires staying for at least WE→L steps.

The key intuition behind the asymmetric design is that two modes play different roles in reasoning.
Latent reasoning is inherently divergent, allowing for rich exploration. However, prolonging the
latent phase after confidence has recovered is counterproductive. It increases the risks of introducing
spurious signals that may mislead the model. Therefore, once confidence rises, an immediate switch
back to explicit reasoning is necessary to consolidate progress onto a single coherent trajectory.

In contrast, explicit reasoning is convergent, gradually unfolding a chain-of-thought where each
token incrementally extends the current logical path. If the model were allowed to switch back to
latent reasoning at the first sign of an entropy fluctuation, spurious short-term uncertainty could
trigger oscillations. The dwell window WE→L ensures that explicit reasoning is given sufficient
opportunity to stabilize and accumulate meaningful structure.

Thinking-Related Signal Mixing. To better align mode switches with the LLMs’ learned rea-
soning patterns, we blend the embeddings of thinking-related signal tokens, e.g., <think> and
</think>, when a switch occurs. Let e⟨think⟩ and e⟨/think⟩ denote their embeddings. At the en-
trance to a latent thinking block, we bias the first latent step t⋆ toward “begin thinking” by

ẽt⋆ ← αt⋆ ·ẽt⋆ + (1− αt⋆)·e⟨think⟩, αt⋆ ∈ [0, 1], (4)

and at the exit to an explicit thinking block, we bias the first explicit step t† toward “end thinking”

ẽt† ← βt† ·ẽt† + (1− βt†)·e⟨/think⟩, βt† ∈ [0, 1], (5)

which encourages the model to close the latent phase and move on to answer production. In practice,
we schedule αt = α0 + (1 − α0)

t
Tmax

and βt = β0 + (1 − β0)
t

Tmax
, where Tmax is a predefined

maximum generation length, and apply Eq. 4 or Eq. 5 only at the steps when switches occur.

3.4 OVERTHINKING SUPPRESSION BY SWITCH COUNT CONTROL

Even with confidence-aware switching, reasoning LLMs may still overthink. Therefore, we place a
bound on the total number of Latent→Explicit switches. Our key insight is that each switch natu-
rally marks the end of a thinking block where partial reasoning trajectories have been consolidated,
which may already contain sufficient evidence for arriving at a reasonable solution. Under limited
budgets, generating answers at these natural checkpoints can make use of partial reasoning trajecto-
ries, offering a chance to obtain correct predictions earlier without consuming additional tokens.

Counter and Triggers. Let Ct count completed Latent→Explicit switches up to step t. Given a
user-specified budget Cmax, we define two triggers:

• Convergence trigger (at 1
2Cmax ≤ Ct ≤ Cmax on Latent→Explicit transitions): force the next

token to be ⟨/think⟩. The convergence trigger is to encourage rather than enforce the end of the
thinking process and the start of converging to an answer based on partial reasoning trajectories.

• Termination trigger (at Ct > Cmax on a subsequent Latent → Explicit transition): inject a
concise answer prefix sfinal, “⟨/think⟩\n\n The final answer is”, then allow at most B additional
tokens for the final answer. The termination trigger is to enforce an immediate answer generation.

Triggers are implemented as short injection queues that overwrite future-generated tokens. Formally,
let Qt be the per-sample injection queue. When a convergence or termination trigger fires, we set
Qt ← [ID(⟨/think⟩)] or [ID(sfinal)]. At the next step, if Qt ̸= ∅, we deterministically set xt ←
Qt.pop(). For the termination trigger, we also start a budget counter bt=B and decrement it each
step after the termination trigger fires. Decoding will be terminated once bt=0.

5
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Models. We evaluate SWIREASONING on three recent reasoning LLMs: Qwen3-8B (Yang et al.,
2025), DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025), and Qwen3-1.7B (Yang et al., 2025). This
selection helps us validate the effectiveness of SWIREASONING across different model families,
model scales, and training paradigms.

Domains and Benchmarks. We evaluate SWIREASONING thoroughly on five benchmarks, in-
cluding GSM8K (Cobbe et al., 2021), Math500 (Hendrycks et al., 2021), AIME 2024 (Hug-
gingFaceH4, 2024), AIME 2025 (Yentinglin, 2025) for mathematics reasoning, and GPQA Dia-
mond (Rein et al., 2024) for STEM reasoning. More details are provided in Appendix B.2.

Baselines. We compare SWIREASONING that dynamically switches between thinking modes
against three baselines with a single thinking mode, including 1) explicit thinking alone: standard
CoT reasoning with sampling, standard CoT reasoning with greedy decoding, and 2) training-free
latent thinking alone: Soft Thinking (Zhang et al., 2025).

Metrics. We use the Pass@1 metric to evaluate reasoning accuracy, and token efficiency E to
assess the level of reasoning efficiency. Let Accm(ℓ) ∈ [0, 1] denote the accuracy of method m
when using ℓ generated tokens. Its plain token efficiency is the accuracy gained per token,

PEm(ℓ) =
Accm(ℓ)

ℓ
.

To express efficiency in units relative to the standard CoT, we normalize it by the CoT’s plain token
efficiency when the highest accuracy is achieved. Specifically, if CoT achieves its highest accuracy
Acc⋆CoT using ℓ⋆CoT tokens, denote PE⋆

CoT =
Acc⋆CoT

ℓ⋆CoT
. The token efficiency of m is defined as

Em(ℓ) =
PEm(ℓ)

PE⋆
CoT

=
Accm(ℓ)/ℓ

Acc⋆CoT/ℓ
⋆
CoT

.

And the average efficiency gain of method m over CoT is

E[∆Em] =

∫
(Em(ℓ)− ECoT(ℓ)) dℓ∫

ECoT(ℓ) dℓ
.

4.2 REASONING ACCURACY UNDER UNLIMITED TOKEN BUDGETS

We first evaluate SWIREASONING in the setting where token budgets are set large enough to en-
sure that each method is allowed to conduct sufficient thinking (refer to Appendix B.2 for de-
tailed settings). Fig. 1 and Tab. 1 report the highest attainable accuracies across mathematics
(GSM8K, MATH500, AIME24, AIME25) and STEM (GPQA Diamond) benchmarks under this
setting. Across different model families of varying sizes, SWIREASONING consistently achieves
higher Pass@1 accuracy than CoT with sampling, CoT with greedy decoding, and Soft Thinking.

Our observation is that improvements are most pronounced on the more challenging benchmarks.
For instance, on AIME24/AIME25, which require deep deductive reasoning and are widely re-
garded as more difficult, our method yields absolute gains of 3.34%/2.50% on Qwen3-8B, and
5.00%/5.00% on Qwen3-1.7B. These margins substantially exceed those observed on GSM8K
or MATH500 with lower difficulty, suggesting that the proposed switching mechanism is particu-
larly beneficial when problems involve long reasoning chains or higher uncertainty from the LLM’s
perspective. Overall, the accuracy results under unlimited token budgets highlight the strength of
SWIREASONING in better addressing reasoning tasks compared to single-mode approaches.

4.3 TOKEN EFFICIENCY UNDER LIMITED TOKEN BUDGETS

Across models and benchmarks, SWIREASONING consistently attains improved Pareto frontiers.
As shown in Fig. 2, the peak efficiency gains range between 4.6× and 6.8× over CoT depending

6
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Table 1: Comparison of SWIREASONING and CoT with sampling, CoT with greedy decoding, and Soft Think-
ing on mathematics and STEM benchmarks. SWIREASONING improves accuracy by +2.17% on average.

Method
GSM8K MATH

500
GPQA

Diamond
AIME
2024

AIME
2025 Average

Qwen3-8B (Yang et al., 2025)

CoT 95.60 96.00 59.60 75.83 67.50 78.91 +0.00

CoT (Greedy) 95.68 96.40 56.57 70.00 60.00 75.73 −3.18

Soft Thinking 95.38 96.00 59.60 67.92 68.33 77.45 −1.46

SwiR (Ours) 96.06 +0.46 98.40 +2.40 61.11 +1.51 79.17 +3.34 70.00 +2.50 80.94 +2.03

Qwen3-1.7B (Yang et al., 2025)

CoT 90.44 92.00 39.39 45.83 33.33 60.20 +0.00

CoT (Greedy) 89.61 91.00 31.82 40.00 33.33 57.15 −3.05

Soft Thinking 90.30 90.60 34.34 38.75 36.67 58.13 −2.07

SwiR (Ours) 90.83 +0.39 93.00 +1.00 41.41 +2.02 50.83 +5.00 38.33 +5.00 62.88 +2.68

DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025)

CoT 89.46 91.40 46.46 43.75 26.25 59.46 +0.00

CoT (Greedy) 85.82 84.80 31.81 30.00 30.00 52.49 −6.97

Soft Thinking 85.90 83.80 33.33 34.17 20.42 51.52 −7.94

SwiR (Ours) 90.07 +0.61 92.00 +0.60 47.98 +1.52 45.00 +1.25 31.25 +5.00 61.26 +1.80

on the model size. These improvements are not confined to a single budget: the area-under-curve
(AUC) advantage persists across a broad range of small to moderate budgets.

One observation from Fig. 4 is that the relatively large average efficiency gains occur on GSM8K,
MATH500, and GPQA Diamond across three models (up to 213% AUC improvements in the per-
benchmark panels). These tasks contain many instances with lower difficulty, which benefit most
from our overthinking suppression design to obtain the correct answer with partial reasoning trajec-
tories. In contrast, on AIME24/25, the efficiency gaps are smaller, while the accuracy gains with
unlimited budgets are larger. This asymmetry is expected: the harder the problem is, the more diffi-
cult it is to predict a correct answer with unfinished reasoning trajectories. Overall, token efficiency
results under limited budgets substantiate the advantage of SWIREASONING in gaining accuracy
more efficiently as budgets tighten compared to baseline methods.

4.4 EVALUATION WITH PASS@K ACCURACY

In addition to Pass@1 accuracy, we also measure Pass@k accuracy, where k ∈ [1, 64] on Qwen3-
8B. Fig. 5 shows that SWIREASONING reaches its maximal accuracy with significantly smaller k
than baselines. Define k⋆ as the smallest k achieving the method’s peak. On AIME24, we observe
k⋆ = 13 for SWIREASONING versus 46 for CoT (about 72% fewer samples), and on AIME25,
k⋆ = 16 versus 22 (about 27% fewer samples). In addition to the faster growth of the curve than
CoT, SWIREASONING also exhibits 1) a steeper initial slope at small k (higher ”per-sample yield”),
and 2) a higher eventual ceiling than Soft Thinking and greedy CoT, indicating better correctness
and diversity simultaneously. Overall, Pass@k accuracy results indicate that SWIREASONING is
particularly attractive for budgeted evaluation settings where k cannot be large.

4.5 ABLATION STUDIES

Switch Window Size. SWIREASONING uses dwell windows (Sec. 3.3) to enforce the model
stays in a thinking block for at least W steps before switching to the other thinking mode. We
conduct ablation studies on Qwen3-1.7B with a representative setting consisting of WE→L ∈
{64, 128, 256, 512, 1024} and report Pass@1 accuracy on five benchmarks. Results in Tab. 3 demon-
strate that an intermediate window size of 512 consistently produces the best results.

When window sizes are too small, LLMs are allowed to jump back to latent mode prematurely,
before explicit reasoning has consolidated a coherent trajectory. This increases exposure to noisy
signals and harms final accuracy, especially on difficult tasks such as AIME24 and AIME25. On

7
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Figure 4: Token efficiency comparisons. SWIREASONING achieves the highest token efficiency throughout all
token budgets in 13 out of 15 evaluations, with an efficiency improvement of +84% over CoT on average.

Figure 5: Pass@k accuracy (k ∈ [1, 64]) evaluation with Qwen3-8B on AIME 2024 and 2025 benchmarks.
SWIREASONING achieves maximum reasoning accuracies +50% earlier compared to CoT on average.

the contrary, when window sizes are too large, LLMs become sluggish to reenter latent exploration
when confidence declines. A promising improvement direction is to make W adaptive to the model’s
real-time density of effective reasoning.

Thinking-Related Signal Mixing. SWIREASONING uses α0, β0 ∈ [0, 1] as the initial ratios for
mixing thinking-related signals at switching instants (Sec. 3.3). We sweep α0 and β0 independently
and report Pass@1 accuracies in Tab. 2.
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Table 2: Ablations on α0 and β0 for signal mixing. Greener indicates better performance within each column.

α0 GSM8K MATH
500

GPQA
Diamond

AIME
2024

AIME
2025 Average β0 GSM8K MATH

500
GPQA

Diamond
AIME
2024

AIME
2025 Average

0.0 89.23% 89.80% 35.86% 46.67% 35.00% 59.31% 0.0 81.50% 67.20% 28.79% 8.33% 9.17% 39.00%
0.1 89.84% 91.00% 36.36% 46.25% 36.25% 59.94% 0.1 81.88% 70.20% 31.82% 11.67% 8.75% 40.86%
0.2 90.37% 91.60% 34.85% 46.25% 37.50% 60.11% 0.2 82.11% 70.60% 28.28% 14.17% 9.17% 40.87%
0.3 90.45% 91.60% 38.38% 47.08% 38.33% 61.17% 0.3 90.67% 92.00% 37.37% 45.42% 37.92% 60.68%
0.4 89.61% 92.80% 40.91% 48.33% 32.50% 60.83% 0.4 90.98% 91.40% 37.88% 47.92% 36.67% 60.97%
0.5 90.45% 93.00% 34.34% 50.83% 36.25% 60.97% 0.5 90.37% 91.20% 42.42% 47.92% 35.83% 61.55%
0.6 90.83% 92.00% 39.39% 44.58% 37.92% 60.94% 0.6 90.59% 90.40% 42.42% 42.50% 36.67% 60.52%
0.7 90.06% 91.60% 37.37% 45.00% 37.08% 60.22% 0.7 ✓ 90.83% 93.00% 41.41% 50.83% 38.33% 62.88%
0.8 90.60% 92.00% 37.37% 48.33% 35.42% 60.74% 0.8 89.99% 92.20% 39.39% 49.17% 35.83% 61.32%
0.9 90.37% 90.80% 39.39% 50.42% 35.83% 61.36% 0.9 90.22% 92.20% 40.91% 48.75% 32.50% 60.52%
1.0 ✓ 90.14% 90.60% 41.41% 49.17% 37.92% 61.85% 1.0 90.44% 91.00% 33.33% 46.67% 38.75% 60.04%

For the exit bias β0, a very small β0 implies excessive interference with when to conclude the think-
ing process and severely degrades accuracy (e.g., AIME24 drops to 8.33% at β0=0.0). Performance
rises sharply and peaks near β0=0.7, which achieves the best average 62.88% and is either the best
or the second-best on most datasets. A promising improvement direction is to make β0 difficulty-
aware, so that it will be automatically adjusted based on problem difficulty.

The situation for the entrance bias α0 is different. We observe a broad performance plateau for
α0∈ [0.4, 0.9], with the highest average at α0=1.0 (61.85%), however, only marginally higher than
other values like α0=0.9 (61.36%). Task-wise, problems with different levels of difficulty tend to
have various preferences over α0. We expose α0 to users for adjustment based on task difficulty.
The more detailed hyperparameters we adopted for the experiments are provided in Appendix B.3.

Table 3: Ablation on switch window size. Greener in-
dicates better performance within each column.

Window
Size

GSM8K MATH
500

GPQA
Diamond

AIME
2024

AIME
2025 Average

64 89.69% 92.60% 40.91% 47.92% 34.17% 61.06%
128 90.45% 91.00% 38.89% 48.33% 36.25% 60.98%
256 89.76% 90.80% 39.90% 49.58% 36.25% 61.26%
512 ✓ 90.83% 93.00% 41.41% 50.83% 38.33% 62.88%
1024 90.83% 91.20% 40.40% 49.58% 36.67% 61.74%

Maximum Switch Count. We suppress over-
thinking by bounding the number of mode
switches with a budget Cmax (Sec. 3.4), and re-
ducing Cmax leads to earlier convergence. In
Fig. 2 and Fig. 4, moving rightward on the
x–axis corresponds to smaller token budgets,
i.e., smaller Cmax. We collect data points in
these figures by incrementing the value of Cmax

from 1 until further increases in Cmax no longer
alter generation results in most cases, i.e., max-
imum accuracy is reached at saturation. De-
tailed data points are provided in Appendix C.1.

As analyzed in Sec. 4.3, decreasing Cmax yields a significant improvement in token efficiency,
which confirms the intended behavior of the switch count control design: it curbs prolonged latent
exploration and commits to an answer path early, thereby mitigating overthinking. In summary,
with switch count control, a small number of confidence-aware blocks usually suffices for easy-to-
moderate problems, while difficult instances benefit more from allowing a few more switches before
the final answer.

5 CONCLUSION

This paper presents SWIREASONING, a training-free inference framework that integrates explicit
chain-of-thought thinking with latent thinking through an entropy trends–based controller. The
framework is conceptually straightforward but empirically effective: when block-wise uncertainty
decreases, we collapse to a single explicit path to consolidate progress. When uncertainty rises and
has persisted for a minimal dwell window, we expand into latent space to explore more alternatives.
Complementing this mode switch, a switch count controller caps the number of transitions, thereby
curbing overthinking while preserving prediction quality. Together, these two mechanisms yield
consistently improved Pareto frontiers for reasoning LLMs, effectively enhancing both maximum
accuracy under unlimited budgets and token efficiency under limited budgets. Looking ahead, in-
tegrating SWIREASONING with reinforcement learning–based training may unlock even stronger
reasoning capabilities.
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6 ETHICS STATEMENT

This work focuses on enhancing the reasoning accuracy and token efficiency of LLMs, which does
not raise safety concerns. This work involves no collection of sensitive data. All evaluations are
conducted using publicly available models and benchmarks under their original licenses.

7 REPRODUCIBILITY STATEMENT

We provide implementation details in Appendix B.1, details of the benchmark settings in Ap-
pendix B.2, and details of the hyperparameters in Appendix B.3 to facilitate reproducibility.
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A USE OF LLMS DISCLOSURE

We employed GPT-5 (OpenAI, 2025a) from OpenAI to assist with language polishing in order
to improve the readability of the paper. We affirm that large language models were not misused
intentionally in any part of this work. All intellectual contributions are attributed to the human
authors, and the results presented in this paper are entirely the product of human research efforts.

B SUPPLEMENTARY DETAILS

B.1 SWIREASONING IMPLEMENTATION

Algorithm 1 SWIREASONING

Input: Question x1:n, model M, max steps Tmax, coefficient α0, coefficient β0, dwell window
WE→L, max switches Cmax, and answer budget B

Output: Answer y1:m
1 Init: Mode m0 ← Latent, reference entropy Ĥ ← H1, dwell ∆t ← 0, switch counter C ← 0,

injection queue Q← ∅, budget flag b← −1
2 for t = 1 to Tmax do
3 ℓt ←M(x1:t−1); pt ← softmax(ℓt); Ht ← −

∑
v pt[v] log pt[v] // Entropy

4 if Q ̸= ∅ then // Token injection (convergence/termination prefix)
5 xt ← Q.pop()
6 if b = 0 then
7 break
8 if b > 0 then
9 b← b− 1

10 continue
11 if mt = Latent and Ht < Ĥ then // Mode switching (Sec. 3.3)
12 mt ← Explicit; Ĥ ← Ht; ∆t← 0; C ← C + 1;
13 else if mt = Explicit and Ht > Ĥ and ∆t ≥WE→L then
14 mt ← Latent; Ĥ ← Ht; ∆t← 0
15 else
16 ∆t← ∆t+ 1
17 if mt = Explicit and 1

2Cmax ≤ C ≤ Cmax then // Switch count control (Sec. 3.4)
18 Q← [ ID[⟨/think⟩] ] // Convergence trigger
19 else if mt = Explicit and C > Cmax then
20 Q← [ ID[“⟨/think⟩\n\n The final answer is”] ]; b← B // Termination trigger
21 if mt = Explicit and mt−1 ̸= Latent then
22 xt ← argmaxv pt[v] or Sampling
23 else
24 ẽt ←

∑
v pt[v]E[v]

25 if ∆t = 0 then // Thinking-related signal mixing
26 αt = α0 + (1− α0)

t
Tmax

27 ẽt ← αt ẽt + (1− αt) e⟨think⟩

28 if mt = Explicit and mt−1 = Latent then // Thinking-related signal mixing
29 βt = β0 + (1− β0)

t
Tmax

30 ẽt ← βt ẽt + (1− βt) e⟨/think⟩

31 xt ← ẽt // Soft embeddings feed as inputs
32 if xt = <EOS> then
33 break
34 Extract answer y from xn+1:−1

35 return y

Alg. 1 provides a detailed implementation of SWIREASONING, where the implementation for mode
switching is written in black and switch count control for token efficiency is outlined in blue.
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B.2 BENCHMARKS DETAILS

We conduct evaluation on five reasoning benchmarks, including GSM8K (Cobbe et al., 2021),
Math500 (Hendrycks et al., 2021), AIME 2024 (HuggingFaceH4, 2024), AIME 2025 (Yentinglin,
2025) for mathematical domain reasoning, and GPQA Diamond (Rein et al., 2024) for STEM do-
main reasoning.

• GSM8K: We use the test set of 1,319 grade-school math word problems, designed to evalu-
ate multi-step arithmetic reasoning in natural language. : https://huggingface.
co/datasets/openai/gsm8k.

• MATH500: A curated set of 500 problems from the MATH dataset, covering diverse high-
school competition-level mathematics domains such as algebra, geometry, and number the-
ory. : https://huggingface.co/datasets/HuggingFaceH4/MATH-500.

• AIME 2024: Contains 30 problems from the 2024 American Invitational Mathematics Ex-
amination, each requiring a concise numeric answer and reflecting competition-level dif-
ficulty. : https://huggingface.co/datasets/HuggingFaceH4/aime_
2024.

• AIME 2025: Contains 30 problems from the 2025 American Invitational Mathematics
Examination, continuing the focus on competition-style math reasoning with challeng-
ing questions that test symbolic and logical skills. : https://huggingface.co/
datasets/yentinglin/aime_2025.

• GPQA Diamond: A high-quality subset of about 198 carefully verified questions, focusing
on STEM disciplines including mathematics, physics, chemistry, biology, and computer
science, designed to evaluate expert-level factual knowledge and reasoning ability. :
https://huggingface.co/datasets/hendrydong/gpqa_diamond_mc.

To provide LLMs sufficient thinking space, following the same settings in Qwen3 (Yang et al.,
2025), we set the maximum generation length to 32,768 tokens for GSM8K, Math500, and GPQA
Diamond benchmarks, and 38,912 tokens for AIME 2024 and AIME 2025 benchmarks.

We repeat the experiments eight times and report the average accuracy for both SWIREASONING
and other baselines on the AIME 2024 and AIME 2025 benchmarks.

B.3 BEST PRACTICE FOR HYPERPARAMETERS

Table 4: Hyperparameters for mode switching across datasets and models. W and β0 are fixed across all
scenarios, while α0 provides users with flexibility for adjustment depending on the task.

Hyperparameter Dataset
Model

Qwen3-8B Qwen3-1.7B DeepSeek-R1-Distill-Llama-8B

W (window size)

GSM8K

512 (fixed for all)
MATH500
AIME2024
AIME2025
GPQA Diamond

α0 (user-exposed)

GSM8K 0.5 0.6 0.1
MATH500 1.0 0.5 0.5
AIME2024 0.9 0.5 0.65
AIME2025 0.9 0.3 0.7
GPQA Diamond 1.0 1.0 0.7

β0

GSM8K

0.7 (fixed for all)
MATH500
AIME2024
AIME2025
GPQA Diamond

In addition to Tab. 4, SWIREASONING operates as a straightforward and instant substitution to
model.generate() interface of Huggingface’s transformers (Wolf et al., 2020) package. There
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are no model parameters or architecture changes, and no training was used in the experiments. For
sampling-related hyperparameters and prompt templates, we use the ones recommended by Qwen3
and DeepSeek-R1’s technical report (Yang et al., 2025; Guo et al., 2025) without modification.

B.4 BROADER RELATED WORK

Efficient LLM Reasoning. In terms of improving reasoning efficiency, there are broader tech-
niques including but not limited to KV cache compression (Han et al., 2023; Xiao et al., 2023; Cai
et al., 2024; Shi et al., 2025), prompt token compression (Wingate et al., 2022; Jiang et al., 2023;
Pan et al., 2024; Shi et al., 2024), speculative decoding (Leviathan et al., 2023; Kim et al., 2023; Liu
et al., 2023; Sun et al., 2023; Chen et al., 2024), traditional methods such as quantization, pruning,
distillation (Lin et al., 2024; Fu et al., 2024; Yuan et al., 2025), and system-level optimizations such
as FlashAttention (Dao et al., 2022; Dao, 2023; Shah et al., 2024).

SWIREASONING, however, targets a different axis of efficiency and is not aiming to surpass them.
Instead, it saves tokens by dynamically alternating between latent steps and explicit steps and limit-
ing the number of block switches. As such, it is plug-and-play during inference and can be layered
on top of the aforementioned techniques for multiplicative gains.

C SUPPLEMENTARY EXPERIMENTS

C.1 DETAILED EVALUATION RESULTS UNDER VARYING TOKEN BUDGETS

We provide detailed evaluation results of Qwen3-8B in Tab. 5-9, Qwen3-1.7B in Tab. 10-14, and
DeepSeek-R1-Distill-Llama-8B in Tab. 15-19.

Table 5: Evaluation results of Qwen3-8B on the GSM8K benchmark under varying token budgets. Rows are
sorted by generation length in descending order.

Method Accuracy (%) Generation Length

CoT (Greedy) 95.68% 2240
SwiR (Ours) 96.06% 2218
CoT (Greedy) 95.75% 2199
CoT 95.60% 2138
CoT 95.60% 2136
CoT 94.77% 2123
CoT (Greedy) 95.15% 2115
Soft Thinking 95.38% 2073
Soft Thinking 95.38% 2073
Soft Thinking 95.07% 2033
CoT 91.81% 1926
SwiR (Ours) 94.84% 1879
Soft Thinking 92.12% 1865
SwiR (Ours) 95.14% 1761
SwiR (Ours) 94.39% 1585
CoT 79.90% 1553
CoT (Greedy) 79.68% 1540
Soft Thinking 80.14% 1526
SwiR (Ours) 94.47% 1297
CoT 44.50% 990
CoT (Greedy) 45.79% 988
Soft Thinking 47.08% 988
SwiR (Ours) 93.70% 844
CoT 25.47% 512
CoT (Greedy) 25.93% 512
Soft Thinking 24.87% 512
SwiR (Ours) 92.19% 301
CoT 6.36% 256
CoT (Greedy) 6.07% 256
Soft Thinking 6.22% 256
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Table 6: Evaluation results of Qwen3-8B on the MATH500 benchmark under varying token budgets. Rows are
sorted by generation length in descending order.

Method Accuracy (%) Generation Length

CoT (Greedy) 96.40% 5311
SwiR (Ours) 98.40% 5183
CoT 96.00% 4985
Soft Thinking 96.00% 4934
Soft Thinking 95.40% 4733
CoT 95.60% 4729
CoT (Greedy) 94.00% 4565
SwiR (Ours) 95.80% 4266
SwiR (Ours) 93.80% 4057
CoT 87.00% 3899
CoT (Greedy) 87.00% 3819
Soft Thinking 85.80% 3774
SwiR (Ours) 93.00% 3635
SwiR (Ours) 90.20% 3164
CoT 72.40% 2940
CoT (Greedy) 72.80% 2890
Soft Thinking 70.20% 2865
SwiR (Ours) 85.80% 2387
CoT 46.20% 1922
Soft Thinking 44.80% 1898
CoT (Greedy) 43.00% 1873
SwiR (Ours) 78.40% 1368
CoT 24.20% 1024
Soft Thinking 25.00% 1024
CoT (Greedy) 22.20% 1023

Table 7: Evaluation results of Qwen3-8B on the GPQA Diamond benchmark under varying token budgets.
Rows are sorted by generation length in descending order.

Method Accuracy (%) Generation Length

SwiR (Ours) 61.11% 8359
Soft Thinking 59.59% 8153
CoT 59.60% 8123
CoT (Greedy) 56.57% 7909
CoT 55.56% 7570
CoT (Greedy) 55.05% 7546
Soft Thinking 55.05% 7433
SwiR (Ours) 58.08% 7100
SwiR (Ours) 57.07% 6338
SwiR (Ours) 58.08% 5710
CoT (Greedy) 33.84% 5086
CoT 33.33% 4972
Soft Thinking 34.85% 4961
SwiR (Ours) 55.05% 4766
SwiR (Ours) 53.54% 3603
CoT (Greedy) 12.12% 3078
Soft Thinking 12.63% 2959
CoT 10.61% 2861
SwiR (Ours) 46.96% 2117
Soft Thinking 2.53% 1753
CoT 2.52% 1743
CoT (Greedy) 2.02% 1723
SwiR (Ours) 47.47% 1527
CoT 0.00% 1024
CoT (Greedy) 0.00% 1024
Soft Thinking 0.00% 1024
SwiR (Ours) 39.39% 867
CoT 0.00% 512
CoT (Greedy) 0.00% 512
Soft Thinking 0.00% 512
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Table 8: Evaluation results of Qwen3-8B on the AIME2024 benchmark under varying token budgets. Rows
are sorted by generation length in descending order.

Method Accuracy (%) Generation Length

SwiR (Ours) 79.17% 12491
Soft Thinking 67.92% 12271
CoT 75.83% 12077
CoT (Greedy) 70.00% 11680
SwiR (Ours) 69.58% 10815
SwiR (Ours) 66.25% 10349
CoT (Greedy) 66.67% 10328
Soft Thinking 62.92% 9846
CoT 63.75% 9818
SwiR (Ours) 61.25% 9275
SwiR (Ours) 57.08% 8115
Soft Thinking 36.67% 7343
CoT 38.75% 7109
CoT (Greedy) 36.67% 7033
SwiR (Ours) 45.42% 6093
CoT 20.83% 4096
Soft Thinking 23.33% 4096
CoT (Greedy) 26.67% 4056
SwiR (Ours) 25.42% 3589
CoT 5.83% 2048
CoT (Greedy) 10.00% 2048
Soft Thinking 3.75% 2048
SwiR (Ours) 12.08% 1809
CoT 1.67% 1024
CoT (Greedy) 3.33% 1024
Soft Thinking 3.33% 1024
SwiR (Ours) 6.67% 818
CoT 0.83% 512
CoT (Greedy) 0.00% 512
Soft Thinking 3.33% 512
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Table 9: Evaluation results of Qwen3-8B on the AIME2025 benchmark under varying token budgets. Rows
are sorted by generation length in descending order.

Method Accuracy (%) Generation Length

SwiR (Ours) 70.00% 13911
Soft Thinking 68.33% 13665
CoT (Greedy) 60.00% 13292
CoT 67.50% 12924
SwiR (Ours) 62.92% 11482
SwiR (Ours) 58.33% 10596
CoT 54.17% 10215
Soft Thinking 51.25% 9952
SwiR (Ours) 56.25% 9791
CoT (Greedy) 43.33% 9143
SwiR (Ours) 46.25% 8220
CoT 34.58% 6887
Soft Thinking 36.25% 6772
CoT (Greedy) 33.33% 6768
SwiR (Ours) 34.58% 6243
CoT (Greedy) 13.33% 4096
CoT 13.33% 4091
Soft Thinking 14.17% 4060
SwiR (Ours) 21.67% 3608
CoT 7.50% 2048
CoT (Greedy) 6.67% 2048
Soft Thinking 6.25% 2048
SwiR (Ours) 11.25% 1999
CoT 1.67% 1024
CoT (Greedy) 0.00% 1024
Soft Thinking 3.33% 1024
SwiR (Ours) 6.67% 722
CoT 2.50% 512
CoT (Greedy) 0.00% 512
Soft Thinking 3.33% 512
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Table 10: Evaluation results of Qwen3-1.7B on the GSM8K benchmark under varying token budgets. Rows
are sorted by generation length in descending order.

Method Accuracy (%) Generation Length

CoT (Greedy) 89.61% 2038
SwiR (Ours) 90.83% 2010
CoT 90.45% 1981
CoT (Greedy) 89.61% 1968
Soft Thinking 90.30% 1959
Soft Thinking 90.22% 1946
CoT 89.23% 1928
Soft Thinking 89.84% 1896
CoT (Greedy) 89.31% 1895
CoT 86.35% 1753
CoT (Greedy) 87.64% 1744
Soft Thinking 87.49% 1736
SwiR (Ours) 89.23% 1695
SwiR (Ours) 89.46% 1621
SwiR (Ours) 87.95% 1462
CoT 76.65% 1420
Soft Thinking 78.92% 1418
CoT (Greedy) 78.17% 1407
SwiR (Ours) 88.32% 1229
CoT 50.57% 967
CoT (Greedy) 48.52% 959
Soft Thinking 50.95% 958
SwiR (Ours) 86.80% 816
CoT 29.95% 512
CoT (Greedy) 30.02% 512
Soft Thinking 31.54% 512
SwiR (Ours) 82.26% 296
CoT 7.96% 256
CoT (Greedy) 8.34% 256
Soft Thinking 9.25% 256

Table 11: Evaluation results of Qwen3-1.7B on the MATH500 benchmark under varying token budgets. Rows
are sorted by generation length in descending order.

Method Accuracy (%) Generation Length

SwiR (Ours) 93.00% 4924
CoT (Greedy) 91.00% 4799
CoT 92.00% 4780
Soft Thinking 90.60% 4721
CoT 90.80% 4435
CoT (Greedy) 89.20% 4342
Soft Thinking 89.00% 4288
SwiR (Ours) 87.80% 3862
CoT (Greedy) 83.60% 3681
CoT 83.60% 3655
Soft Thinking 83.60% 3605
SwiR (Ours) 87.80% 3597
SwiR (Ours) 86.80% 3280
SwiR (Ours) 85.00% 2914
CoT 68.40% 2761
Soft Thinking 69.40% 2744
CoT (Greedy) 69.20% 2738
SwiR (Ours) 81.00% 2222
CoT 46.40% 1857
CoT (Greedy) 47.80% 1850
Soft Thinking 46.20% 1830
SwiR (Ours) 72.40% 1189
CoT 25.60% 1022
CoT (Greedy) 29.80% 1020
Soft Thinking 27.20% 1020
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Table 12: Evaluation results of Qwen3-1.7B on the GPQA Diamond benchmark under varying token budgets.
Rows are sorted by generation length in descending order.

Method Accuracy (%) Generation Length

SwiR (Ours) 41.41% 9517
CoT (Greedy) 31.82% 9190
CoT (Greedy) 30.30% 8751
Soft Thinking 34.34% 8731
CoT 39.39% 8625
CoT 37.37% 8040
SwiR (Ours) 36.87% 7773
Soft Thinking 32.32% 7447
SwiR (Ours) 35.35% 6792
SwiR (Ours) 37.88% 5856
SwiR (Ours) 36.87% 4766
CoT 17.17% 4758
Soft Thinking 16.67% 4463
CoT (Greedy) 12.12% 3770
SwiR (Ours) 37.37% 3497
Soft Thinking 8.08% 2915
CoT 8.59% 2843
CoT (Greedy) 7.58% 2344
SwiR (Ours) 31.31% 2112
CoT 1.01% 1661
SwiR (Ours) 27.27% 1573
CoT (Greedy) 2.53% 1539
Soft Thinking 0.51% 1378
CoT 0.00% 1024
CoT (Greedy) 0.00% 1024
Soft Thinking 0.00% 1024
SwiR (Ours) 29.80% 933

Table 13: Evaluation results of Qwen3-1.7B on the AIME2024 benchmark under varying token budgets. Rows
are sorted by generation length in descending order.

Method Accuracy (%) Generation Length

CoT (Greedy) 40.00% 12825
SwiR (Ours) 50.83% 12702
CoT 45.83% 11896
Soft Thinking 38.75% 10788
SwiR (Ours) 42.08% 10243
Soft Thinking 36.67% 9841
CoT 38.33% 9510
CoT (Greedy) 33.33% 9377
SwiR (Ours) 38.75% 9350
SwiR (Ours) 36.25% 8654
Soft Thinking 30.00% 7498
CoT (Greedy) 23.33% 7302
SwiR (Ours) 29.17% 7084
CoT 27.50% 6978
SwiR (Ours) 25.42% 5926
CoT (Greedy) 10.00% 4096
Soft Thinking 16.67% 4096
CoT 13.75% 4063
SwiR (Ours) 14.17% 3411
CoT 2.92% 2048
CoT (Greedy) 0.00% 2048
Soft Thinking 3.33% 2048
SwiR (Ours) 7.50% 1887
CoT 1.25% 1024
CoT (Greedy) 0.00% 1024
Soft Thinking 0.00% 1024
SwiR (Ours) 5.83% 812
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Table 14: Evaluation results of Qwen3-1.7B on the AIME2025 benchmark under varying token budgets. Rows
are sorted by generation length in descending order.

Method Accuracy (%) Generation Length

CoT (Greedy) 33.33% 11408
SwiR (Ours) 38.33% 9944
CoT 33.33% 9733
Soft Thinking 36.67% 8904
CoT (Greedy) 26.67% 8890
CoT 31.25% 8618
SwiR (Ours) 34.58% 8543
SwiR (Ours) 32.92% 8129
Soft Thinking 33.33% 7630
SwiR (Ours) 32.08% 7563
SwiR (Ours) 30.83% 6761
CoT 20.83% 6071
CoT (Greedy) 20.00% 6008
Soft Thinking 23.33% 5738
SwiR (Ours) 25.42% 5145
CoT 14.17% 4096
CoT (Greedy) 13.33% 3927
Soft Thinking 20.00% 3737
SwiR (Ours) 17.50% 3311
CoT 7.92% 2048
CoT (Greedy) 10.00% 2048
Soft Thinking 10.00% 2048
SwiR (Ours) 8.75% 1865
CoT 2.08% 1024
CoT (Greedy) 3.33% 1024
Soft Thinking 0.00% 1024
SwiR (Ours) 4.58% 787

Table 15: Evaluation results of DeepSeek-R1-Distill-Llama-8B on the GSM8K benchmark under varying token
budgets. Rows are sorted by generation length in descending order.

Method Accuracy (%) Generation Length

Soft Thinking 85.90% 2953
Soft Thinking 84.84% 2516
CoT (Greedy) 85.82% 2393
Soft Thinking 83.62% 2266
Soft Thinking 77.41% 1741
CoT (Greedy) 86.05% 1642
CoT 89.46% 1588
SwiR (Ours) 90.07% 1565
CoT 88.10% 1554
CoT 88.02% 1491
CoT (Greedy) 85.82% 1421
CoT 86.13% 1404
SwiR (Ours) 88.55% 1349
SwiR (Ours) 89.46% 1312
CoT (Greedy) 85.44% 1307
Soft Thinking 70.36% 1279
SwiR (Ours) 87.26% 1217
CoT 78.62% 1191
CoT (Greedy) 79.53% 1092
SwiR (Ours) 86.43% 1071
Soft Thinking 49.58% 885
CoT 53.22% 883
CoT (Greedy) 57.39% 839
SwiR (Ours) 83.62% 775
CoT 27.37% 509
CoT (Greedy) 28.81% 508
Soft Thinking 28.35% 508
SwiR (Ours) 70.96% 270
CoT 5.69% 256
CoT (Greedy) 6.52% 256
Soft Thinking 5.46% 256
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Table 16: Evaluation results of DeepSeek-R1-Distill-Llama-8B on the Math500 benchmark under varying
token budgets. Rows are sorted by generation length in descending order.

Method Accuracy (%) Generation Length

Soft Thinking 83.80% 4718
CoT (Greedy) 84.80% 4110
Soft Thinking 82.60% 4085
SwiR (Ours) 92.00% 3837
CoT 91.40% 3792
CoT 89.80% 3572
Soft Thinking 75.40% 3204
CoT (Greedy) 83.20% 3203
SwiR (Ours) 89.80% 3046
SwiR (Ours) 88.00% 2931
CoT 85.20% 2828
SwiR (Ours) 86.40% 2722
CoT (Greedy) 79.60% 2622
SwiR (Ours) 86.00% 2462
Soft Thinking 64.40% 2396
CoT 71.00% 2133
CoT (Greedy) 71.20% 2081
SwiR (Ours) 79.20% 1953
Soft Thinking 42.60% 1605
CoT 47.60% 1539
CoT (Greedy) 52.60% 1500
SwiR (Ours) 68.40% 1116
CoT 12.20% 512
Soft Thinking 10.20% 511
CoT (Greedy) 11.80% 511
SwiR (Ours) 57.40% 453

Table 17: Evaluation results of DeepSeek-R1-Distill-Llama-8B on the GPQA Diamond benchmark under vary-
ing token budgets. Rows are sorted by generation length in descending order.

Method Accuracy (%) Generation Length

Soft Thinking 33.33% 8593
CoT 46.46% 7591
Soft Thinking 30.81% 7507
SwiR (Ours) 47.98% 7458
CoT 46.46% 7236
SwiR (Ours) 45.45% 6635
SwiR (Ours) 44.44% 6038
CoT (Greedy) 31.82% 5854
SwiR (Ours) 41.92% 5406
CoT (Greedy) 27.78% 5230
CoT 31.31% 4943
Soft Thinking 16.67% 4510
SwiR (Ours) 39.90% 4388
CoT (Greedy) 23.73% 4301
SwiR (Ours) 41.41% 3292
CoT (Greedy) 11.62% 2625
Soft Thinking 6.57% 2350
CoT 9.60% 2314
SwiR (Ours) 25.76% 1840
CoT 2.53% 1595
CoT (Greedy) 3.54% 1469
Soft Thinking 3.03% 1381
CoT (Greedy) 0.50% 918
CoT 1.01% 855
Soft Thinking 1.01% 785
SwiR (Ours) 29.80% 673
CoT 0.00% 512
CoT (Greedy) 0.00% 512
Soft Thinking 0.00% 511
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Table 18: Evaluation results of DeepSeek-R1-Distill-Llama-8B on the AIME2024 benchmark under varying
token budgets. Rows are sorted by generation length in descending order.

Method Accuracy (%) Generation Length

SwiR (Ours) 45.00% 8179
CoT 43.75% 8145
CoT (Greedy) 30.00% 7840
SwiR (Ours) 44.17% 7555
CoT 41.25% 7330
CoT (Greedy) 26.66% 7107
Soft Thinking 34.17% 6956
SwiR (Ours) 40.42% 6803
SwiR (Ours) 41.25% 6645
SwiR (Ours) 39.58% 5876
Soft Thinking 32.08% 5871
CoT 28.33% 5086
CoT (Greedy) 16.67% 4952
Soft Thinking 27.50% 4860
SwiR (Ours) 32.50% 4757
CoT (Greedy) 6.66% 3795
Soft Thinking 11.67% 3784
CoT 14.58% 3515
SwiR (Ours) 23.33% 3419
SwiR (Ours) 8.75% 2103
CoT 1.67% 2048
CoT (Greedy) 3.33% 2048
Soft Thinking 3.33% 2045

Table 19: Evaluation results of DeepSeek-R1-Distill-Llama-8B on the AIME2025 benchmark under varying
token budgets. Rows are sorted by generation length in descending order.

Method Accuracy (%) Generation Length

Soft Thinking 20.42% 8448
SwiR (Ours) 31.25% 6827
Soft Thinking 19.17% 6824
CoT 26.25% 6583
SwiR (Ours) 30.83% 6419
CoT (Greedy) 30.00% 6293
SwiR (Ours) 30.00% 6230
CoT 25.00% 5724
SwiR (Ours) 29.17% 5721
SwiR (Ours) 26.67% 5229
CoT (Greedy) 26.67% 4967
CoT (Greedy) 23.33% 4370
Soft Thinking 14.17% 4170
CoT 19.58% 4085
SwiR (Ours) 21.25% 4035
CoT 14.17% 3197
Soft Thinking 10.00% 3023
SwiR (Ours) 16.67% 2970
CoT (Greedy) 16.67% 2862
CoT 3.33% 2048
Soft Thinking 0.00% 2048
CoT (Greedy) 3.33% 1904
SwiR (Ours) 7.08% 1777
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