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Figure 1: High-fidelity textured 3D morphing of Wukong. Taking an image of Wukong (bottom
left) as the source and an image of another character (bottom right) as the target, we demonstrate two
types of textured 3D morphing by our method: (i) Pur p arrows indicate texture-controlled morphing,
where the geometric structure changes while preserving detailed textures from the source; (ii) Green
arrows indicate textured 3D morphing guided by the target prompt.

Abstract

We present WUKONG, a novel training-free framework for high-fidelity textured
3D morphing that takes a pair of source and target prompts (image or text) as input.
Unlike conventional methods—which rely on manual correspondence matching
and deformation trajectory estimation (limiting generalization and requiring costly
preprocessing)—WUKONG leverages the generative prior of flow-based transform-
ers to produce high-fidelity 3D transitions with rich texture details. To ensure
smooth shape transitions, we exploit the inherent continuity of flow-based genera-
tive processes and formulate morphing as an optimal transport barycenter problem.
We further introduce a sequential initialization strategy to prevent abrupt geometric
distortions and preserve identity coherence. For faithful texture preservation, we
propose a similarity-guided semantic consistency mechanism that selectively re-
tains high-frequency details and enables precise control over blending dynamics.
This empowers WUKONG to support both global texture transitions and identity-
preserving texture morphing, catering to diverse generation needs. Extensive quan-
titative and qualitative evaluations demonstrate that WUKONG significantly outper-
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forms state-of-the-art methods, achieving superior results across diverse geometry
and texture variations. Project page: https://visual-ai.github.io/wukong

1 Introduction

3D morphing techniques (Seitz and Dyer, 1996; Shechtman et al., 2010; Tsai et al., 2022; Kim
et al., 2024) aim to produce smooth transitions between the source object and target object by
gradually altering 3D attributes such as shape and texture. These methods have broad applications
in gaming, animation, and cinematic transitions. Existing approaches primarily focus on geometric
transformations, relying on correspondence matching (Deng et al., 2023) and deformation trajectory
estimation (Eisenberger et al., 2021). However, most existing methods are limited to untextured
3D meshes, leaving textured 3D morphing a largely under-explored problem. Moreover, their
effectiveness is constrained by the limited availability of large-scale 3D datasets with source-target
pairs, often resulting in unsatisfactory outputs when applied to unseen data. To bridge this gap, we
introduce WUKONG, a method for high-fidelity textured 3D morphing from a pair of image or text
prompts. This name is inspired by the legendary character Wukong and his 72 earthly transformations,
as exemplified by the morphing result in Fig. 1.

With recent advances in large-scale 3D generation and reconstruction (Xiang et al., 2024; Tochilkin
et al., 2024; Li et al., 2025), one may consider to address the 3D morphing problem by training a
feed-forward network to model the transitions between two input objects. However, constructing
paired 3D data for training based on existing large-scale 3D data (Deitke et al., 2024) is non-trivial,
both technically and economically. Therefore, such a straightforward approach is infeasible.

Recently, 2D image morphing has achieved remarkable success (Qiyuan et al., 2024; Zhang et al.,
2024a), driven by advances in 2D diffusion models (e.g., Stable Diffusion (Rombach et al., 2022)).
Inspired by this progress, we aim to extend these successes to 3D — morphing not only shapes but also
textures — without relying on large-scale paired data. In other words, we aim to develop a training-free
framework for textured 3D morphing by leveraging the strong priors of generative models. However,
building such a framework poses significant challenges due to the absence of large-scale 3D data
with continuous shape and texture transitions.

In this paper, we propose WUKONG, a novel framework for high-fidelity textured 3D morphing that
takes image or text pairs as input to delineate source and target objects. Built upon a pre-trained
flow-based transformer (Xiang et al., 2024) for 3D generation, WUKONG bridges the gap between
3D shapes and image/text conditions. Leveraging the deterministic property of flow models (where
intermediate states are not stochastic), we derive morphing trajectories by solving a free-support
Wasserstein barycenter problem. Additionally, we introduce a sequential initialization strategy to
enhance the smoothness of the transitions along the barycentric trajectory. This design also allows us
to handle the texture morphing in 3D in a similar fashion. However, a naive interpolation treats all
texture regions uniformly, which may not satisfy the need for preserving specific source attributes,
such as fine details, distinct styles, or identity patterns. To address this, we propose a similarity-guided
consistency mechanism for texture controlled morphing, which selectively preserves high-frequency
texture details while providing finer control over transition dynamics.

The main contributions of this work are as follows: (i) We propose WUKONG, a novel framework for
high-fidelity textured 3D morphing that takes a pair of image or text prompts as input. By leveraging
a flow-based generative model as a prior, WUKONG enables smooth and controllable shape and
texture interpolation. (ii) We introduce a method to derive faithful intermediate morphing states by
solving an optimal transport barycenter problem, further augmented by a sequential initialization
strategy to facilitate smooth transitions. (iii) We propose a similarity-guided semantic consistency
mechanism to enable texture controlled morphing, allowing users to selectively preserve high-
frequency texture details and exercise fine-grained control over appearance transitions. (iv) Through
extensive experiments on diverse 3D morphing scenarios—spanning different object categories with
varying geometry and significant texture changes—we demonstrate that WUKONG outperforms
existing methods, establishing a new state-of-the-art in textured 3D morphing.

2 Related work

2D morphing Classical image morphing (Liao et al., 2014; Beier and Neely, 1992; Darabi et al.,
2012; Shechtman et al., 2010) typically involves three key steps: (1) finding feature-based correspon-
dence; (2) mapping between two images using optimization frameworks; and (3) auxiliary techniques
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to ensure smooth transitional continuity. However, strong priors and limited model expressiveness
often lead to ghosting artifacts. With growing data availability, data-driven morphing methods (Fish
et al., 2020; Averbuch-Elor et al., 2016) shifted from explicit mappings to learning over dataset
distributions using deep models. However, their generalization is limited by dataset-specific training.
Recent approaches like DiffMorpher (Zhang et al., 2024a) address this by leveraging pre-trained
diffusion models, enabling more flexible morphing. DiffMorpher achieves morphing by interpolating
noise, conditional inputs, and selectively blending model parameters, enabling strong shape and
texture transitions. Inspired by this idea, we propose a novel method that replaces linear interpolation
with an optimal transport-based strategy, offering a more principled and effective interpolation of
latent conditions.

3D generation To achieve 3D generation, two dominant paradigms have emerged: (1) Distilling
useful priors from pretrained generative models into a 3D feed-forward reconstruction algorithm; (2)
Training a unified 3D generative model from scratch. In the first paradigm, knowledge distillation
from large generative models occurs via gradient-based or data-based methods. Data distillation
fine-tunes 2D models to generate multi-view images (Yu et al., 2024; Shi et al., 2024; Shriram et al.,
2025), which are then reconstructed into 3D using methods like Gaussian splatting (Kerbl et al.,
2023). Gradient distillation, exemplified by Score Distillation Sampling (Poole et al., 2023), guides
3D optimization directly. However, both lack a latent 3D space, limiting structural control. To
bridge this gap, native 3D generative models have emerged (Lan et al., 2025; Zeng et al., 2022;
Zhang et al., 2024b), typically combining a VAE for dimensionality reduction with a 3D generative
model. However, most are limited to either explicit (e.g., point clouds, voxels, meshes) or implicit
(e.g., neural fields, Gaussians) formats. Trellis (Xiang et al., 2024) addresses this by introducing a
Structured Latent Representation (SLAT) for flexible multi-format generation. We inherit Trellis’s
versatility to support diverse 3D modalities.

3D morphing Early 3D morphing research centered on shape transition (Tam et al., 2013), following
a three-step pipeline: finding correspondence, modeling the mapping, and refinement. Classical
methods employed techniques like Wasserstein distance (Tsai et al., 2022; Solomon et al., 2015;
Sorkine and Alexa, 2007; Ren et al., 2020; Eisenberger et al., 2021). Despite their contributions, these
methods suffer from oversimplified assumptions and high input sensitivity. Recent learning-based
methods improve robustness by integrating foundation model priors. NSSM (Morreale et al., 2024)
uses DINOv2 (Oquab et al., 2023) for 3D correspondence; SRIF (Sun et al., 2024) incorporates a
diffusion prior from DiffMorpher (Zhang et al., 2024a). Emerging works (Gao et al., 2023; Yang et al.,
2025; Michel et al., 2022) explore text-driven morphing using CLIP (Radford et al., 2021), though
limited by CLIP’s coarse latent space. Other efforts leverage topology-aligned datasets (Eisenberger
et al., 2021) with in-domain training to enhance semantic consistency (Yumer et al., 2015). Shape-
only 3D morphing has limited practical use without texture and appearance cues. A recent concurrent
work (Yang et al., 2025) explores morphing textured 3D representations using generative models,
bypassing explicit correspondence computation. However, it mainly focuses on parameter fusion and
pays less attention to latent condition interpolation. In contrast, our method emphasizes a principled
interpolation schedule for latent conditions. Additionally, we adopt a flow-based model with a unified
3D representation, enabling flexible output across diverse formats.

3 Method

3.1 Overview and formulation

Given two input prompts (Psource» Plarget) in image or text form, our method learns an interpolation
function I to generate a coherent sequence of 3D textured meshes G = {G,, ii(l), which forms a
smooth morphing trajectory between the two concepts. Here, « € {0, ..., J+ 1} denotes the discrete
interpolation step index. Among them, G and G ;4 denote the 3D generation of the input prompts
Pyource and Piyger, respectively. Formally, the problem can be formulated as:

Ga = (I)(I(S(Psource)a S(Rargel)a oz)), (1)

where ¢ denotes a flow-based 3D generator, £ represents the encoders that embed the prompts into
the latent space. For feature extraction, we use DINOv2 (Oquab et al., 2023) as the encoder £ for
image prompts and CLIP (Radford et al., 2021) for textual inputs.

In the rest of this section, we will discuss the details of our employed flow-based 3D generator ¢ and
how we formulate the interpolation function I. From a general perspective, an effective interpolation
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Figure 2: Our WUKONG framework. Given a source and a target (image or text), we extract
features using pretrained encoders and treat the condition tokens as empirical distributions. We
compute their Wasserstein barycenter with weights (1 — 3) and 3 to obtain interpolated condition
tokens Z. These tokens are fed into a shared geometry flow model @, and texture flow model ®;,,
to generate 3D outputs at different « values, producing textured 3D morphs. The top-right shows
our texture-controlled morphing branch, and the bottom-right illustrates the recursive initialization
strategy.

Decoded results

strategy in 3D morphing should satisfy two key requirements: (1) smooth shape transitions that
preserve identity and prevent abrupt changes, and (2) controllable texture blending. As depicted in
Fig. 2, we propose to model these two properties with (1) shape interpolation via optimal transport
barycenter and (2) controllable texture generation via selective interpolation.

3.2 Flow-based 3D generator

Recently, Trellis (Xiang et al., 2024) advances 3D generation by introducing a unified structured
latent representation via rectified flow transformers (Xiang et al., 2024). It achieves high-fidelity
outputs from image or text inputs by training a feed-forward pipeline, with the generation process at
test time separated into three distinct phases:

(1) Geometric structure generation that generates sparse structure p = {p; } ¢L:1 from the condition
C, which are either text-embedded CLIP features (Radford et al., 2021) or image-encoded DINOv2
features (Oquab et al., 2023):

{pi}iL:l = (I)geo (Cv t)a (2)
where @, denotes the flow transformer backbone, ? is the timestep, and L represents the number of
active voxels.

(2) Textured latent generation that generates latents h = {h; }2_, given the structure {p; } = ;:

{hi}iLzl = ¢tex(p77(w)7cat)7 (3)
where ~(x) is the positional embedded points.

(3) Latent decoder that decodes the structured latents s = {(h;, p;)}L ; into a 3D representation,
which we opt for meshes in our experiments:

Diesn(s) = {{w], d])}7L1} i, @
where wf € R% are the flexible parameters in FlexiCubes (Shen et al., 2023) and dg € R® are
signed distance values for the eight vertices of the corresponding voxel. Note that our employed 3D
generator (Xiang et al., 2024) also supports output in both 3D Gaussian Splatting (Kerbl et al., 2023)
and NeRF (Martin-Brualla et al., 2021) formats, and our method naturally inherits this capability.

For our experiment, we utilize the pre-trained Trellis model as the backbone network due to its
demonstrated efficiency and high-quality outputs:

® = {(I)geoy (I)teXa Dmesh}- (5)

To maintain distinct control over different attributes, we design separate interpolation functions for
geometric and texture features:

I= {Igeoy Itex}~ (6)



3.3 Shape interpolation via optimal transport barycenter

Given Cy = E(Piource) and C 41 = E(Prarget), Which represent the conditioning features respectively
encoded from the input prompts Piouce and Piager, We first model them as discrete probability
distributions in feature space by extracting their respective sets of feature tokens:

X ={xi}i_y CR™, YV={y;};_, CR", )

where m is the embedding dimension. We can then obtain their empirical distribution:

H1 = Zaﬂsx“ M2 = ijfsyj, (8)
i=1 j=1

where 0, and dy; denote the Dirac measures located at the tokens x; and y, respectively. a; and b;
are weights assigned to each token, which we set a; = b; = 1/n in our experiments.

To obtain the geometric structure p,, at an intermediate step o via the generator ®g,, We require its
corresponding interpolated condition Z,. Since @, is a deterministic mapping from conditions to
structures, we propose to obtain Z,, by solving a free-support Wasserstein barycenter problem:

Igeo : ZOt = argrrgn[(l - /B)Wg(ﬂhy) +B . W22(,LL271/)], ﬂ = a/(‘]+ 1)v

9
Wi (p,v) = inf d(z,y)* dy(z,y), ®
YET(1,v) Jnxn
where W2 (u1,v) denotes the 2-Wasserstein distance, v = > h_i CkOy, is the target interpolated
distribution with learnable support points {zk}Zzl uniformly weighted by ¢, = 1/n. The interpolated
tokens Z, = {zy}}_, generated through this process serve as input to our geometric structure
generator g, which produces the corresponding 3D structure p,,.

A critical design for solving the free-support Wasserstein barycenter problem is the initialization of
support points {z;}. While a naive linear interpolation approach, zy iy = (1 — 8) - X + 5 - Y&,
might seem reasonable, we empirically observe that this often results in discontinuous or inconsistent
interpolations. This is particularly evident when interpolating between either: (1) geometrically
distant shapes, or (2) semantically divergent conditions (see Fig. 8). The failure arises because linear
initialization overlooks the structure of token distributions, often leading the barycenter optimization
to unstable or unrealistic interpolations.

We address this limitation with a sequential initialization scheme that guarantees smooth transitions
along the barycenter trajectory. Specifically, for interpolation step « € [0, J + 1], we initialize its
barycenter using the optimized solution from the previous step:

() _ JXk fa=0
o [ 10
k. init {z](:‘ D) ,  otherwise. o

This recursive approach supports the barycenter evolves continuously on the data manifold, main-
taining: (1) geometric coherence: support points adapt gradually, reducing abrupt deviations or poor
local minima, and (2) semantic stability: intermediate shapes retain recognizable object parts and
consistent structural semantics throughout the interpolation.

3.4 Controllable texture generation via selective interpolation

As illustrated in Fig. 2, our framework supports two strategies for texture evolution. The default
textured 3D morphing utilizes the barycenter interpolated tokens Z,, (derived in Sec. 3.3) as the
condition for the texture flow model ®,.,.. Although this produces a smooth transformation, it strictly
couples texture evolution with the structural transition. However, creative applications often demand
more flexibility—specifically, the ability to preserve the source’s visual identity (e.g., facial features
or iconic patterns) even as the shape transforms. One may consider enforcing source tokens X across
all token regions, but this is not feasible: as the geometry deforms, forcing static tokens onto the
evolving structure creates inherent texture-geometry misalignment, resulting in visual artifacts.

To address this, we introduce texture controlled 3D morphing. This mode employs a selective
interpolation strategy that functions as a tunable filter. By adjusting a similarity threshold, users



can explicitly regulate the degree of source preservation, spanning from subtle detail retention to
strong identity maintenance. This mechanism retains high-frequency details from X only where
semantically aligned to prevent artifacts, while utilizing Z,, elsewhere to ensure structural coherence.

Building upon the geometric interpolation introduced in Sec. 3.3, we first compute the free-support
barycenter Z, = {z}}_, from Eq. 9. While this provides a general interpolation baseline, it may
dilute fine-grained details from the source. To mitigate this, we augment the interpolation with a
semantic consistency evaluation between barycenter points z; and the source tokens X, ).

Specifically, for each barycenter point zy, we identify its closest source tokens x; and y; and compute
the cosine similarity sim = cos (x;,y;). We then selectively retain high-frequency information from
either x; or the interpolated tokens based on similarity:

~ ~ . Zr =% ifl —sim > 71
Lex : 2o = {Zx}, while k ks .
Zr = X;, otherwise.

(11
Here, 7 € [0, 1] is a pre-defined similarity threshold that determines whether semantic discrepancy
is large enough to justify interpolation. See Fig. 6 for an analysis across different values of 7. This
approach enables asymmetric texture fusion, where more visually salient or personalized texture
features can be preserved from one condition, while maintaining semantically meaningful global
structure via the barycenter.

The selectively refined condition tokens Z,, are then passed into the 3D textured structured latents
generator @ to produce the final latent representation h,,. The interpolated 3D textured mesh at
step « can then be obtained through the decoding function Eq. 4:

G, = Dmesh(sa)7 where s, = {houpa} = {(hi,aapi,a)}z‘l/:l- (12)

4 Experimental results

Implementation details We adopt the Trellis framework as our 3D generative model. Both the
structure flow and texture flow models are implemented using rectified flow with 25 sampling steps
each. The Classifier-Free Guidance (CFG) strength is set to 3. DINOv2 (Oquab et al., 2023) and
CLIP (Radford et al., 2021) are used for image and text feature extraction. Both the structure and
texture flow-based generator ®g,, Piex contain 21 cross-attention blocks, where interpolation is
performed on every condition token before each cross-attention layer. The morphing coefficient o
is uniformly sampled during morphing and we set J = 6 for experiments presented in the paper.
For shape interpolation, we compute the token-wise barycenter using the free-support Wasserstein
barycenter implemented by ot.1lp.free_support_barycenter (Lindheim, 2023). We set the
maximum number of optimization iterations to 100, and the convergence threshold (stop criterion)
to 1 x 107°. We conduct experiments on an NVIDIA A100 GPU. Generating a single morphed 3D
output takes approximately 30 seconds.

Metrics Following (Yang et al., 2025), we evaluate textured 3D morphing quality using metrics
for fidelity, plausibility, and smoothness on their input pairs: (1) FID (Heusel et al., 2017) for visual
fidelity; (2) STP-GPT and SEP-GPT for structural and semantic consistency; (3) GPT-4o (Hurst et al.,
2024) for visual plausibility (01 score); (4) PPL (Karras et al., 2019) for perceptual smoothness; and
(5) V-CLIP (Ma et al., 2022), which measures semantic alignment to “a smooth transformation from
A to B” using cosine similarity in a joint embedding space.

Baseline methods for evaluation We compare our 3D textured morphing results against two
baseline methods: 3DRM (Yang et al., 2025) and MorphFlow (Tsai et al., 2022). To further evaluate
performance, we render the 3D meshes into 2D images and compare them with state-of-the-art 2D
image morphing approaches, including DiffMorpher (Zhang et al., 2024a), AID (Qiyuan et al., 2024),
MV-Adapter (Jin et al., 2024), and Luma (Luma Labs AI, 2025).

4.1 Main results
4.1.1 Quantitative results

In Tab 1, we compare our method against a range of baselines across multiple evaluation metrics.
As can be observed, our method consistently outperforms existing approaches across all metrics,



Table 1: Quantitative comparison.

Model FID| STP-GPT+ SEP-GPT{ PPL| V-CLIP{
DiffMorpher  218.07 0.14 0.10 5.23 0.61
AID 115.72 0.46 0.62 4.68 0.74
MV-Adapter ~ 120.93 0.4 0.49 7.29 0.67
Luma 95.49 0.69 0.65 7.37 0.70
MorphFlow  147.70 0.71 0.79 3.10 0.78
3DRM 6.36 0.93 0.88 3.02 0.84
Ours 4.01 1.00 1.00 2.91 0.90

demonstrating superior quality and consistency in both shape and texture morphing. Specifically,
we outperform state-of-the-art textured 3D morphing methods across the board, i.e., 3DRM (Yang
et al., 2025) and MorphFlow (Tsai et al., 2022), showing clear improvements in perceptual quality
and semantic coherence. Furthermore, compared with image-based morphing methods (Zhang et al.,
2024a; Qiyuan et al., 2024; Jin et al., 2024; Luma Labs Al, 2025), our approach also exhibits much
stronger 3D consistency and higher fidelity in both appearance and structure. See Appendix B for
more quantitative evaluations.

Source image:

ﬁ ~ ?

Target image:

Figure 3: Textured 3D morphing with image prompts. The leftmost column shows source image
prompts, while the rightmost column shows target prompts. Intermediate columns depict the morphing
trajectory generated by our method.

4.1.2 Qualitative results

Image-conditioned 3D morphing Fig. 3 shows image-conditioned 3D morphing results. Each row
presents a smooth transition from source to target, with consistent shape and texture interpolation.
Intermediate frames preserve structure without distortions. Rows 3-5 highlight our method’s ability
to handle cross-category morphing with clear semantic consistency.

Text-conditioned 3D morphing Our method also enables 3D morphing conditioned on textual
descriptions, allowing users to generate transitions directly from text prompts. As shown in Fig. 4,
the results exhibit smooth transitions in both shape and texture, with intermediate outputs maintaining
high fidelity and semantic alignment. Notably, the second row captures a precise castle-to-room
transformation, while the fourth row demonstrates realistic face morphing with consistent structure.

Comparison with existing methods We now compare our method with the current state-of-the-art
in textured 3D morphing (3DRM (Yang et al., 2025)) in Fig. 5. Visually, our method delivers higher
overall quality with significantly smoother transitions in both geometry and texture. Color variations
in our morphing sequences also appear more continuous, and the interpolated shapes retain clear
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Figure 4: Textured 3D morphing with text prompts. The leftmost column shows the source text
descriptions, and the rightmost column shows the target prompts. Intermediate results visualize the
smooth morphing trajectory generated by our method.
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Figure 5: Qualitative comparison with current SOTA method 3DRM. Rows 1 and 3 show 3DRM’s
generated results, while rows 2 and 4 display our method’s outputs.
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semantic coherence throughout. We further compare with MorphFlow, a recent textured 3D morphing
approach, in the Appendix D.

Controllable texture morphing In Fig. 6, we demonstrate the capabilities of our texture controlled
morphing mode, by employing our proposed selective texture interpolation. Each row represents a
distinct morphing process with different interpolation thresholds, with the leftmost column fixed as
the source shape. The results along the vertical axis (columns) are independent of each other. The
far-left column does not show texture changes, as it represents the same 3D source generated from the
input source image. By adjusting the selective interpolation threshold 7 (from top to bottom), we can
control the relative influence of source and target tokens during the morphing process. For instance,
we can preserve source-dominant features such as facial identity, clothing styles, and color patterns in
the intermediate 3D shapes, while still achieving smooth and semantically coherent shape transitions.

4.2 Ablation study

Ablation on shape interpolation In Fig. 7 (top three rows), we first present ablation studies
evaluating different strategies for shape interpolation in image-conditioned 3D morphing. Specifically,
(1) the first row shows results from directly applying linear interpolation to the condition tokens.
While this produces smooth blending in token space, it results in semantically ambiguous intermediate
shapes, incoherent textures, and noticeable color artifacts, revealing the limitations of naive token-
level averaging. (2) The second row presents our method using a linearly initialized free-support
barycenter (i.e., linear initialization of support points). Although more flexible than fixed linear
interpolation, it tends to converge to undesirable solutions, leading to distorted geometry and unstable
textures in intermediate outputs. (3) In contrast, the third row shows our full method, where the
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Figure 7: Image-conditioned ablation study.
Top three rows compare textured 3D morphing:
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Figure 6: Texture controlled morphmg results.
The figure shows shape interpolation arranged
horizontally, with each row representing a mor-
phing process at different interpolation thresh-
olds, illustrating the smooth transition from the
source image to the target image.

barycenter is properly initialized and refined through iterative optimization. This results in high-
quality morphs with semantically meaningful structure, smooth geometric transitions, and coherent
color blending.

We further conduct ablation studies for shape interpolation under the setting of text-conditioned 3D
morphing, as in Fig. 8. The results reveal the following: (1) Linear interpolation (row 1) produces
unnatural artifacts, such as T-pose human figures, indicating that direct token blending often strays
into semantically invalid regions. (2) Our method without recursive initialization (row 2) exhibits
similar issues, underscoring the importance of proper initialization for barycenter optimization. Linear
initialization fails to respect the underlying data manifold, often leading to unstable or artifact-prone
results, as detailed in Sec. 3.3. (3) Our full method (row 3), with recursive initialization, successfully
avoids these problems, delivering smooth and structurally plausible shape transitions throughout the
morph.

Source text: “T-rex” Target text: “Cat”
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Flgure 8: Ablation study on text-conditioned 3D shape morphing. Morphing from “T-rex” to

“cat,” the first row (linear interpolation) shows multiple T-pose human artifacts. The second row
(without recursive initialization) still has some artifacts. The third row (full method) achieves smooth,
coherent shape transitions.

Ours
w/o recursive
initialization

In flow-based 3D generators, condition tokens guide the generation by modulating cross-attention at
each layer. Linear interpolation between latent features explores intermediate regions of the latent



space. However, when the source and target features are semantically distant (e.g., from “T-Rex” to
“cat” in Fig. 8) and lack appropriate supervision, the model’s conditioning may become ambiguous or
collapse into mode-averaged representations. This often results in “hallucinated” generic outputs,
such as T-poses or default humanoid templates commonly seen in generative models. This issue
highlights the importance of our barycentric interpolation and sequential initialization strategy, which
helps: (1) intermediate tokens remain on a semantically valid manifold; (2) abrupt jumps across
unrelated modes are mitigated.

For quantitative comparison, Tab 2 provides ab-

lation results to validate our method. The “Lin- Table 2: Ablation on shape interpolation.
ear” baseline, using direct interpolation without Model FID | STP-GPT 1 SEP-GPT 4 PPL | V-CLIP 4
optimization, leads to unnE}tural shapes and vis- Linear 1473 0.86 085 306 o0sl
ible artifacts. The “w/o r-i” row employs opti- word 1252 090 092 303 084
mization but omits recursive initialization; while Ours* 416 096 098 295 091

it improves upon the linear baseline, the lack of Ours 401 097 095 291 090

a robust prior often causes convergence to sub-

optimal solutions, resulting in distortions. In

contrast, “Ours*” applies our full method to the TripoSG (Li et al., 2025) backbone. This config-
uration includes recursive initialization, which acts as a strong prior to guide optimization toward
stable and meaningful representations. Consequently, “Ours*” yields smoother geometry and better
texture blending than the baselines. Notably, both “Ours*” and our default “Ours” achieve the highest
fidelity, demonstrating that our method generalizes well across models and improves quality through
effective initialization and optimization.

Ablation on texture interpolation In Fig. 7 ) . )
(rows 4 & 5), we evaluate the effectiveness of Table 3: Ablation on texture interpolation.

texture controlled morphing enabled by our se- Model  FID | STP-GPT 1+ SEP-GPT 1 PPL | V-CLIP 4
!ectlve mterpolatlon strategy. In row 4, (.i.lrect.ly wointerp 652 083 085 304 08l
increasing source token weights via naive lin- Lincar 517 092 090 295 086
ear interpolation leads to texture collapse, with Ours 420 100 100 291 0.90

disorganized colors and unclear semantics. In
contrast, row 5 shows that our selective interpo-
lation yields smooth morphing results while preserving distinctive source features like Wukong’s
appearance and attire. This demonstrates that selective control is crucial for high-quality and identity-
preserving texture transitions.

We conduct quantitative ablation experiments for texture interpolation strategy as shown in Tab 3.
The first row “w/o interp” refers to directly copying the source texture tokens across all steps without
any interpolation. The second row “linear” refers to applying standard linear interpolation between
source and target texture tokens. The third row “ours” corresponds to using our proposed selective
interpolation strategy based on similarity thresholding. Our method achieves the highest visual
fidelity and semantic consistency throughout the morphing trajectory, demonstrating that our method
generalizes effectively across various 3D generative models. Additionally, it significantly enhances
interpolation quality by carefully designing both the texture interpolation procedures.

5 Conclusion

We present a unified and flexible framework, WUKONG, for high-quality 3D morphing driven by
minimal input—either in the form of image or text prompts. By leveraging a rectified flow-based
generative model as a prior, our method enables semantically meaningful and structurally consistent
shape and texture transitions. We reformulate the interpolation process using an optimal transport
barycenter approach, and further enhance its stability and realism through a sequential initialization
strategy. Additionally, our selective texture interpolation module offers fine-grained control over
appearance, allowing users to preserve or blend semantic attributes as needed. Extensive experiments
across diverse categories confirm the effectiveness of our design, with our method consistently
outperforming prior state-of-the-art in both shape fidelity and texture consistency.
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Wukong’s 72 Transformations: High-fidelity Textured 3D
Morphing via Flow Models
— Appendix -

A  Model details

To enable high-fidelity textured 3D morphing, we build upon two pretrained flow-based transformer
models introduced in Trellis (Xiang et al., 2024): the structure flow model and SLat flow model, orig-
inally designed for unconditional 3D generation. The structure flow model operates on a structured
latent representation and follows a transformer-based architecture with 24 modulated transformer
blocks with cross attentions. Each block contains self-attention, cross-attention, and feed-forward
components, modulated via AdaLN (Guo et al., 2022) conditioning from a learned timestep embed-
ding. Root Mean Square Normalization (RMSNorm) (Zhang and Sennrich, 2019) is applied to both
the query and key representations prior to their use in the attention mechanism. The SLat flow model
incorporates a hierarchical design with sparse 3D convolutional blocks and positional embeddings
to encode spatial context. The transformer core comprises 24 modulated sparse transformer blocks
with cross attentions, analogous in structure to the geometry model but enhanced with sparse atten-
tion and feed-forward operations. Additionally, the model includes dedicated output convolutional
blocks for upsampling and decoding, ensuring fine-grained preservation and modulation of high-
frequency texture details. We use the free-support Wasserstein barycenter solver from the POT library
(ot.lp.free_support_barycenter (Lindheim, 2023)), which is based on linear programming
(LP). The cost matrix is computed using the squared Euclidean distance in the CLIP (Radford et al.,
2021) (for text) and DINOv2 (Oquab et al., 2023) (for image) embedding space.

B Ablation study

To ensure a fair, apples-to-apples comparison with 3DRM, we implemented our full morphing method
on top of the GaussianAnything (Yushi et al., 2025) framework—the same 3D generator used in
3DRM (Yang et al., 2025), results are shown in Tab 4. We denote this variant as “Ours*” in the table
below. Across all evaluation metrics, including FID, PPL, V-CLIP, and GPT-based perceptual scores
(STP-GPT, SEP-GPT), our method consistently outperforms 3DRM, even when both share the exact
same backbone. This clearly demonstrates that the improvement is not solely due to the use of a
stronger generator like Trellis, but rather stems from our core morphing algorithm. Note that the
GPT-based results may differ from those presented in the main paper, as they are computed using
only the four methods reported here.

Table 4: Quantitative comparison with GaussianAnything as backbone.

Model FID| STP-GPT{ SEP-GPT{ PPL| V-CLIP?
MorphFlow  147.70 0.38 0.41 3.10 0.78
3DRM 6.36 0.85 0.80 3.02 0.84
Ours* 5.15 0.93 0.91 2.94 0.87
Ours 4.01 1.00 1.00 291 0.90

Besides, we conduct quantitative evaluations with different threshold 7 values and present the results
below as shown in Tab 5. We observe that the performance is robust across a reasonable range of
thresholds (0.2-0.8). We set a default threshold 0.3 in our evaluation.

Table 5: Ablation study on threshold 7.
Thresholdr 02 03 04 06 038
FID | 454 420 4.17 425 449

PPL | 294 291 291 292 293
V-CLIP ¢ 0.88 090 091 090 0.87
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To evaluate the method’s generalization to real 3D data, we conducted experiments using the
Headspace dataset (Dai et al., 2020), which contains high-quality 3D face scans along with corre-
sponding rendered RGB images. In our pipeline, we used these rendered images as inputs and passed
them through the DINOv2 (Oquab et al., 2023) encoder to extract texture and semantic features for
morphing. The outputs were generated by our standard pipeline without any architectural changes or
fine-tuning. Despite relying on pretrained components, our method shows strong generalization to
real-world 3D scans. Our method outperformed both MorphFlow (Tsai et al., 2022) and 3DRM (Our
own implementation) (Yang et al., 2025) on the same evaluation protocol. Quantitative results are
shown below in Tab 6:

Table 6: Quantitative results on Headspace dataset.

Model FID| STP-GPT{ SEP-GPT{ PPL| V-CLIP?
MorphFlow  95.24 0.53 0.47 3.22 0.84
3DRM 6.61 0.83 0.77 3.04 0.88
Ours 3.97 1.00 1.00 2.88 0.96

C Rectified flow models vs. diffusion models

Continuity The first reason we choose the flow model over the diffusion model for 3D morphing is
its mathematically grounded continuity with respect to the interpolation parameter cv. In flow-based
generative models, the mapping from « to the output F'(«) is deterministic and constructed via
an invertible transformation 7'(z; ), typically defined by an ordinary differential equation (ODE).
Under standard regularity conditions (e.g., Lipschitz continuity of the velocity field), the solution
T(z; @) is guaranteed to be continuously differentiable with respect to o (Loud, 1987), ensuring that
the morphing trajectory forms a smooth path in the output space. This deterministic nature makes it
possible to precisely control intermediate shapes and textures, yielding consistent and artifact-free
transitions.

In contrast, diffusion models are typically governed by stochastic differential equations (SDEs), which
introduce randomness throughout the generative process. While deterministic sampling methods
like DDIM (Song et al., 2021) exist and are widely used, the underlying denoising process in these
models often follows a stochastic trajectory. Consequently, even with interpolated conditioning, the
same value of « can yield different outputs across runs. This inherent variability makes it difficult to
ensure continuity or precise control in the morphing sequence, particularly at intermediate points
where uncertainties compound. In contrast, rectified flow models generate deterministic and unique
interpolation paths, enabling forward integration with a guaranteed likelihood formulation. This
property makes them more suitable for achieving smooth, stable, and controllable interpolation,
which aligns with our need for consistency in the latent space.

Convexity and optimality There are theoretical guarantees for flow models like the rectified flow
model in maintaining the convexity of data during the generation process. This linearity ensures that
any intermediate sample lies within the convex hull of the endpoints, thereby preserving the convexity
of the data. In practice, the trajectory is hard to remain straight. There is analysis (Liu et al., 2023) on
the straightness error on the trajectory, which states that even an imperfect trajectory is close enough
to straight lines and ensures the convexity of data to some extent. Theorems in this analysis further
emphasize the uniqueness and optimality of the solution of rectified flow in matching distributions
under convex cost functions. For diffusion models, the backward process generates data from the prior
but does not theoretically guarantee convexity preservation. These models focus on matching data
distributions, not preserving geometric properties like convexity. There is no theoretical guarantee
on the data convexity in the backward process. The noise term in the reverse-time SDE can easily
violate the convexity of the original data. Also, under the same condition as the rectified flow model,
the path of diffusion models is not assured to be optimal. There exist certain crossing flows in the
matching of two distributions, leading to features that are out-of-distribution in practice.

Inference speed The theoretical basis for the faster inference of flow models (such as rectified

flow models) primarily stems from the geometric properties of their trajectories and the efficiency
of numerical simulation. For rectified flow model used in this paper, it aims to make generation
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Table 7: Quantitative comparison with shape morphing methods.
Metrics MapTree BIM SmoothShells NeuroMorph  SRIF Ours

Dirichlet | 17.7309  12.4723 14.0198 22.0461 6.4702 4.5163
Cov. 1 0.3967 0.4665 0.6275 0.1099 0.6418 0.8510

trajectories as straight as possible For ideal straight-line flows, the trajectory between any two points
Zy ~ mp and Zy ~ 1 is given by the linear interpolation Z; = tZ; + (1 — t)Zy. In this case, the
drift field of the ODE is a constant v(Z;,t) = Z1 — Zy, which can be solved exactly with a single
Euler step: Z; = Zy + v(Zp, 0) - 1. This eliminates the need for time discretization errors. Even
in non-ideal cases, the optimized trajectories are close to straight lines, significantly reducing the
number of required steps (in this paper, we take 20 steps). Diffusion models use nonlinear, stochastic
trajectories requiring many steps—typically 2,000 without sampling techniques or around 200 with
them—to achieve good results. Also, the reverse SDE process requires noise sampling, leading to
additional computation cost.

D Comparison with other methods

D.1 Comparison with other textured 3D method

We compare our method with existing textured 3D morphing approaches, including MorphFlow,
3DRM, and our own. While the main paper presents qualitative comparisons with 3DRM, here we
additionally provide a side-by-side qualitative comparison with MorphFlow. As shown in the Fig. 9,
rows 1 and 3 display results from MorphFlow, and rows 2 and 4 show our corresponding outputs.
Our method produces noticeably clearer and more accurate shapes and textures, with smoother and
more coherent morphing transitions. These visual improvements are consistent with the quantitative
results reported in the main paper, further corroborating the effectiveness of our approach.

S o B . B B R 4
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Figure 9: Qualitative comparison with MorphFlow.

Ours

D.2 Comparison with shape morphing methods

Although previous 3D shape morphing methods do not consider texture transformation, we provide a
comparison focused solely on shape deformation. As shown in Tab 7, we compare our method with
several state-of-the-art shape morphing approaches, including MapTree (Ren et al., 2020), BIM (Kim
et al., 2011), SmoothShells (Eisenberger et al., 2020), NeuroMorph (Eisenberger et al., 2021), and
SRIF (Sun et al., 2024). Following the evaluation protocol from (Sun et al., 2024), we use the
SHRECO7 (Temerinac et al., 2007) dataset and report performance using Dirichlet energy (Ezuz
et al., 2019) and Coverage (Huang and Ovsjanikov, 2017) metrics. Our method achieves superior
results across both metrics, demonstrating more efficient and accurate shape interpolation.

For qualitative comparison, we show results against SRIF in Fig. 10, where rows 1, 3, and 5 show
SRIF’s outputs and rows 2, 4, and 6 show ours. Our morphing process is smoother and preserves
finer details in intermediate shapes—for example, the gecko’s toes in row 2 and the head structure in
row 4. Additional comparison with NeuralMorph is presented in Fig. 11, where our results are again
significantly more detailed and coherent.
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To ensure that intermediate shapes remain faithful to both source and target, we introduce a shape-
aware initialization. Specifically, we render both front and back views of the source and target objects
and use these images as inputs to the flow model to extract an initial condition feature. This feature
is then refined by minimizing the geometric difference between generated shapes and the original
meshes, leading to accurate and consistent 3D representations throughout the morphing sequence.

E More results

Fig. 12 and Fig. 13 illustrate the textured 3D morphing process generated from “Wukong” to a variety
of objects. The texture can be flexibly inherited from either the source or the target image, depending
on the user’s preference. Fig. 14 and Fig. 15 further demonstrate morphing between additional
object pairs, showcasing the versatility of our method. Notably, our method is capable of performing
textured 3D morphing not only between geometrically complex objects, but also across different
semantic categories, highlighting its superior robustness and generalizability.

F Broader impact

Our work introduces WUKONG , a training-free framework for high-quality textured 3D morphing,
which significantly lowers the barrier to creating detailed and semantically consistent 3D transfor-
mations from simple prompts. This greatly reduces the efforts on 3D content creation for artists,
designers, and educators, enabling broader access to advanced generative tools without requiring
technical expertise in 3D modeling or animation. The ability to produce controllable and high-fidelity
morphing sequences could benefit applications in virtual reality, digital storytelling, education, and
creative industries. We hope our work inspires further research into controllable and efficient 3D
generation techniques, and that it serves as a foundation for inclusive and creative applications of
generative 3D content.

G Limitation

While our method achieves state-of-the-art performance in textured 3D morphing, several limitations
remain. First, like existing morphing methods, our approach still encounters difficulties in cases
involving extreme topological changes, such as splitting or merging parts. These scenarios remain a
general challenge in the field and are not yet fully addressed by existing methods. Second, since our
method operates without explicit 3D supervision or correspondence annotations, its results may be
sensitive to ambiguities in the input prompts or inconsistencies in multi-view generation, especially
when the input lacks structural clarity.
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Figure 12: Textured 3D morphing of Wukong (The Monkey King).
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Figure 13: Textured 3D morphing of Wukong (The Monkey King).
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Figure 15: Textured 3D morphing of different objects.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly summarize the main contributions of the
paper, accurately reflecting both the scope and the results presented.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper explicitly discusses the limitations of the proposed work. Although
the main manuscript focuses on the core contributions, a dedicated section on limitations is
provided in the supplementary material.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The paper explicitly states all theoretical results and proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully details experimental setups, datasets, hyperparameters, eval-
uation metrics, and procedures (including model architecture descriptions or replication
instructions where applicable), enabling reproduction of results without relying on unre-
leased code/data.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides publicly accessible links to code, along with detailed
step-by-step instructions (including exact commands, environment specifications, and data
preparation workflows)

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper specify all training and test details.
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The paper reports error bars suitably and correctly.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The paper provide sufficient information on the computer resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics
in every respect.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work focuses on foundational 3D generation research without direct
applications to societal contexts, and there are no foreseeable direct paths to negative societal
impacts such as disinformation or privacy risks, hence no broader impacts discussion is
applicable.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work focuses on 3D generation research using synthetic datasets, and
thus does not involve releasing data or models with significant potential for misuse, making
safeguards discussions inapplicable.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Original code, data, and model owners are appropriately credited, with licenses
and terms of use clearly stated and fully respected.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets are well documented. The documentation includes details about
training, license, and limitations.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research does not involve crowdsourcing experiments or studies with hu-
man subjects, focusing solely on 3D generation methodology without participant interaction,
thus the question is not applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve research with human subjects or crowdsourcing,
and thus does not require IRB approvals or discussions of participant risks.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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