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ABSTRACT

Federated Learning (FL) enables collaborative model training without sharing raw
data, but most existing solutions implicitly assume that each client’s data origi-
nate from a single homogeneous domain. In practice, domain shift is pervasive:
clients gather data from diverse sources, domains are heterogeneously distributed
across clients, and only a subset of clients participate in each round. These factors
cause substantial degradation on unseen target domains. Prior Federated Domain
Generalization (FedDG) methods often assume complete single-domain datasets
per client and sometimes rely on sharing domain-level information, raising pri-
vacy concerns and limiting applicability in real-world federations. In this paper,
we introduce FedHyMoe, a Hypernetwork-Driven Mixture-of-Experts frame-
work that addresses these challenges by shifting from parameter-space fusion to
embedding-space parameter synthesis. Each client is represented by a compact
domain embedding, and a shared hypernetwork generates its Mixture-of-Experts
(MoE) adapter parameters. At test time, unseen domains are handled by attend-
ing over source client embeddings to form a test-domain embedding, which the
hypernetwork uses to synthesize a specialized adapter. This enables non-linear in-
terpolation and extrapolation beyond convex averages of stored parameters, while
reducing communication and storage overhead and mitigating privacy risks by
exchanging only low-dimensional embeddings. FedHyMoe consistently achieves
higher generalization accuracy and improved calibration compared to baselines
under domain heterogeneity and partial participation highlighting embedding-
driven hypernetwork synthesis as a powerful inductive bias for robust, efficient,
and privacy-conscious Federated Domain Generalization.

1 INTRODUCTION

Deep neural networks (DNNs) thrive on large, centralized datasets (Krizhevsky et al., 2012; He
et al., 2016; Dosovitskiy et al., 2020; Liu et al., 2021b), yet real-world data are fragmented across
silos where privacy rules forbid sharing. Federated learning (FL) (McMahan et al., 2017a; Li et al.,
2020) enables collaborative training without raw data exchange, but faces two core obstacles: (i)
non-i.i.d. client distributions that impair convergence (Li et al., 2019; Karimireddy et al., 2020),
and (ii) domain shift, where test data differ systematically from training clients (Liu et al., 2021a;
Zhang et al., 2023; Bai et al., 2023). This motivates the setting of federated domain generalization
(FDG): training across decentralized sources to generalize to unseen target domains under strict
communication and privacy constraints (Zhang et al., 2021; Yuan et al., 2023; Seokeon et al., 2024).

Most FDG methods remain tied to parameter-space fusion, where client-specific models or adapters
are linearly aggregated (e.g., FedAvg and its variants (McMahan et al., 2017a; Li et al., 2019; Karim-
ireddy et al., 2020; Wang et al., 2020)). While simple, this approach suffers from a convex-fusion
ceiling: it can only interpolate within the convex hull of source parameters, leaving unseen domains
poorly represented (Zhang et al., 2023; Yuan et al., 2023; Bai et al., 2023). Moreover, transmitting
large parameter blocks inflates bandwidth requirements and heightens privacy risk (Geiping et al.,
2020; Huang et al., 2021; Hatamizadeh et al., 2023).
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This paper presents a novel framework for FDG, termed FedHyMoe, which leverages a hypernet-
work as the central generator. A hypernetwork is a neural network that outputs the parameters of
another network conditioned on a compact embedding. In FL, hypernetworks have been explored
for personalization and label heterogeneity, and more recently for FDG through hypernetwork-based
fusion approaches. Parallel advances in FDG also highlight the effectiveness of mixture-of-experts
(MoE) fusion strategies (Radwan et al., 2025), while privacy-preserving efforts focus on mitigating
gradient inversion attacks via structural indirection or defense mechanisms (Guo et al., 2025). How-
ever, prior approaches predominantly generate client-specific models for training or personalization.
In contrast, our framework realizes a different goal: transforming the privacy-aligned indirection of
hypernetworks into a mechanism for domain generalization.

FedHyMoe reframes adaptation as embedding-space composition followed by hypernetwork-based
parameter synthesis. Each client is summarized by a compact domain embedding, and a shared
hypernetwork maps embeddings into Mixture-of-Experts (MoE) adapters with Kronecker/low-rank
structure. At test time, a batch of target data produces a test embedding, which attends over stored
source embeddings to yield similarity weights. These weights pool into a descriptor that the hyper-
network transforms into a specialized adapter enabling parameterization for unseen domains through
non-linear synthesis rather than averaging. Such a design strictly generalizes convex fusion, since
with one-hot embeddings and a linear generator FedHyMoe reduces exactly to standard parameter
averaging (Radwan et al., 2025). The true advantage emerges once the generator leverages non-
linear embedding-to-parameter mappings, which enable interpolation and extrapolation beyond the
convex span of source models. In this way, FedHyMoe turns the privacy-aligned indirection of hy-
pernetworks into a generalization mechanism: domain embeddings are composed at test time, and
parameters are generated to implement the right function for unseen domains. Communication and
storage requirements scale only with the embedding dimension rather than the adapter size, with
Mixture-of-Experts and Kronecker decompositions providing the right balance of diversity, com-
pactness, and communication efficiency. Finally, privacy exposure is substantially narrowed, as the
server observes only SecAgg-protected generator gradients and compact embeddings while never
accessing raw domain statistics or full parameter blocks (Guo et al., 2025).

Contributions.

• We introduce FedHyMoe, an FDG framework that replaces parameter-space averaging
with embedding-space attention and hypernetwork-based adapter synthesis.

• We instantiate hypernetwork-generated MoE adapters with Kronecker/low-rank factors,
achieving strong accuracy efficiency trade-offs under partial participation.

• We establish that convex adapter fusion is a strict special case of our formulation, and
provide inference-only controls that disentangle attention from synthesis.

2 RELATED WORK

2.1 GRADIENT INVERSION AND PRIVACY IN FEDERATED LEARNING.

Federated learning (FL) mitigates direct exposure of raw data by training models through decentral-
ized updates; however, a substantial body of work on gradient inversion and related reconstruction
attacks has shown that shared updates (gradients or parameter deltas) can leak sensitive information,
including approximate input reconstructions, membership, and attributes (Fredrikson et al., 2015;
Zhu et al., 2019; Geiping et al., 2020). These risks intensify in regimes with high–capacity vision
backbones and small, skewed client datasets, where updates become more uniquely tied to local
samples. This observation motivates defenses that (i) minimize the exposure surface by restricting
the dimensionality and informativeness of communicated artifacts, and/or (ii) alter the communica-
tion primitive so that only privacy-preserving aggregates (e.g., masked or securely aggregated sums)
are revealed rather than raw per-client updates.

2.2 PRIVACY-PRESERVING TECHNIQUES IN FL.

Privacy protection in FL largely follows three methodological lines. (1) Secure multi-party com-
putation (SMC) and secure aggregation ensure that only masked aggregates of local updates are
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revealed (Yao, 1982; Bonawitz et al., 2017; Mugunthan et al., 2019; Mou et al., 2021). (2) Homo-
morphic encryption (HE) enables computation on encrypted parameters but typically incurs sub-
stantial communication and computation costs (Gentry, 2009; Park & Lim, 2022; Ma et al., 2022).
(3) Differential privacy (DP) clips and perturbs updates to provide formal guarantees, often at the
expense of model utility (Geyer et al., 2017; McMahan et al., 2017b; Yu et al., 2020; Bietti et al.,
2022; Shen et al., 2023). Additional empirical defenses—gradient pruning/masking and noise injec-
tion (Zhu et al., 2019; Huang et al., 2021; Li et al., 2022; Wei et al., 2020)—as well as specialized
frameworks such as Soteria, PRECODE, and FedKL (Sun et al., 2020; Scheliga et al., 2022; Ren
et al., 2023) offer further protection but consistently suffer from a privacy–utility trade-off. These
limitations motivate alternative paradigms, such as hypernetwork-based methods (Ha et al., 2016),
which weaken the direct correspondence between shared parameters and private data while retaining
competitive accuracy.

2.3 HYPERNETWORKS FOR FEDERATED LEARNING.

Hypernetwork-based FL employs a server-side generator Hϕ that maps a compact client embedding
ek to client parameters θk = Hϕ(ek), thereby reducing storage and communication costs while en-
abling interpolation in embedding space (Ha et al., 2016; Shamsian et al., 2021; Carey et al., 2022;
Li et al., 2023; Tashakori et al., 2023; Lin et al., 2023). This indirection further weakens the linkage
between gradients and raw data by inducing bi-level inversion (over both Hϕ and ek). Nevertheless,
existing work has largely focused on personalization: it does not specify how to compose informa-
tion across multiple source clients to represent an unseen domain at test time, nor how to couple
generator-driven parameterization with vision-specific Mixture-of-Experts specialization required
for FDG.

2.4 FEDERATED DOMAIN GENERALIZATION

Federated Domain Generalization (FDG) combines the challenges of federated learning (FL) and
domain generalization (DG), aiming to train across multiple decentralized source domains and gen-
eralize to unseen target domains without access to their data. Unlike conventional FL (McMahan
et al., 2017a), which primarily optimizes for in-distribution test performance, FDG must contend
with both data heterogeneity across clients and distributional gaps to unseen domains (Li et al.,
2018; 2017; Bai et al., 2023).

Several approaches attempt to bridge this gap by adapting pre-trained models. PLAN leverages
prompt learning with aggregation strategies but remains limited by the representational capacity
of fixed prompt vectors, while MaPLe extends this idea with multi-modal prompt learning, and
FedCLIP explores both generalization and personalization in vision–language models such as CLIP.
These works highlight that large pre-trained backbones can be adapted for FDG, but their reliance
on prompt-tuning constrains flexibility.

More recently, parameter-efficient vision methods have been explored. FedDG-MoE (Radwan
et al., 2025) instantiates a frozen pre-trained ViT with client-specialized Mixture-of-Experts (MoE)
adapters and a test-time statistical fusion rule. Specifically, cosine similarity between test features
and client-tracked moments determines adapter weights, effectively implementing parameter-space
convex averaging. While effective, this paradigm suffers from three limitations: (i) a convex-fusion
ceiling, since linear averaging cannot capture the non-linear structure of unseen domains; (ii) high
per-client storage and communication overhead due to maintaining distinct adapters; and (iii) an
enlarged privacy surface, since transmitting rich client statistics exposes sensitive distributional in-
formation (Guo et al., 2025).

3 METHODOLOGY

Hypernetwork-based personalization in FL has shown that a server-side generator can produce client
models from compact embeddings, thereby reducing storage and mitigating gradient inversion risks
by inserting an indirection layer between shared updates and raw data (Ha et al., 2016; Shamsian
et al., 2021). This observation motivates our hypothesis: a privacy-aligned indirection can be ele-
vated into a mechanism for generalizing to unseen domains.
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Figure 1: Overview of the proposed FedHyMoe framework. Each client (Domains A, B, C) pro-
cesses local data using a frozen ViT-Base backbone, after which a low-dimensional trainable domain
embedding is produced. These embeddings are transmitted to the server, where a shared hypernet-
work synthesizes adapter parameters.

To realize this idea, we introduce FedHyMoe, which represents each source client with a com-
pact domain embedding, composes these embeddings at test time to summarize new domains, and
generates the corresponding adapter parameters through a shared hypernetwork. In contrast to con-
ventional parameter-space averaging, this approach operates in embedding space followed by pa-
rameter synthesis, thereby enabling richer adaptation while keeping the communication footprint
privacy-conscious and efficient.

We adopt a frozen pre-trained encoder E(·) and a lightweight classifier g(·). Each client k is asso-
ciated with a low-dimensional domain embedding ek ∈ Rd. A shared hypernetwork generator Hϕ

maps embeddings to adapter parameters:

∆Wk = Hϕ(ek), (1)

which are combined with E(·) and g(·) to yield fθ(x) = g(Adapter(E(x))). By generating
adapters from embeddings instead of storing a separate adapter per client, FedHyMoe enables
function-level morphing conditioned on domain evidence, reduces communication to scale with em-
bedding dimension rather than adapter size, and weakens the direct link between shared updates and
private samples since adversaries must invert both the generator and the embeddings. The overall
workflow of FedHyMoe is shown in Figure 1

3.1 HYPERNETWORK-GENERATED MIXTURE OF KRONECKER PRODUCT EXPERTS

To balance expressivity and efficiency, the hypernetwork does not emit a full adapter but instead
generates a Mixture of Kronecker-Product Experts (Qu et al., 2022):

∆Wk =

n∑
i=1

Ai ⊗Bi,k, Bi,k = ui,kvi,k, [ui,k, vi,k] = H
(i)
ϕ (ek). (2)

Here, {Ai} are slow, shared factors that capture stable structure across domains, while {Bi,k} are
low-rank, embedding-conditioned fast factors that allow rapid client-specific variation. Given input
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Figure 2: Overview of the FedHyMoe inference process. The server maintains compact domain
embeddings from source clients. For an unseen test domain, features are extracted using the frozen
ViT-Base backbone to form a test embedding, which is compared with stored embeddings to com-
pute similarity weights. These weights are pooled and passed through the shared hypernetwork to
synthesize adapter parameters on demand.

features z = E(x), a router produces expert weights αi(x), and the adapter applies

Adapter(z) =

n∑
i=1

αi(x)
(
Ai ⊗ (ui,kvi,k)

)
z + b. (3)

This design combines the diversity of mixture-of-experts (?) with the compactness of Kronecker
factorization, ensuring scalability in storage and communication.

3.2 LOCAL TRAINING

At the start of round t, client k receives ϕ and ek, realizes ∆Wk via the hypernetwork, and minimizes

Lk = E(x,y)∼Dk

[
L(g(Adapter(E(x))), y)

]
+ λMoELbalance + λe∥ek∥22. (4)

During training, clients update their domain embedding ek, the router parameters that govern mix-
ture weights, and the classifier head g, while the backbone encoder remains frozen. Communication
involves only low-dimensional embedding updates and secure-aggregated gradients with respect to
ϕ; full adapter tensors are never transmitted (Bonawitz et al., 2017). This ensures that bandwidth us-
age scales with embedding dimension rather than model size, and gradient inversion risks are further
weakened by the bi-level indirection.

3.3 TEST-TIME COMPOSITION AND GENERATION

As illustrated in Figure 2, For an unseen domain, instead of averaging adapters, FedHyMoe first
composes embeddings and then generates the target adapter. A batch of test features produces a
descriptor etest, which is compared to source embeddings stored on the server via similarity scores:

sk = ⟨etest, ek⟩, wk =
exp(sk/τ)∑K
j=1 exp(sj/τ)

. (5)
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Algorithm 1 FedHyMoe Training (Server & Clients)
Inputs: Frozen encoder E(·); classifier head g (params ω); hypernetwork Hϕ (params ϕ); router
params ψ; client embeddings {ek}Kk=1; loss weights λMoE, λe; rounds T ; local epochs Eloc; batch
size B; step sizes ηsrv, ηcli; secure aggregation (SecAgg).
Output: Trained ϕ, client embeddings {ek}, router ψ, head ω.

1: Server init: Freeze E(·); initialize ϕ, ψ, ω; (optionally) initialize {ek} on server or client.
2: for t = 1 to T do ▷ Communication rounds
3: Server: Sample active set St ⊂ {1, . . . ,K} (partial participation); broadcast ϕ, ψ, ω to
k ∈ St.

4: for all k ∈ St in parallel (Client k) do
5: Receive ϕ, ψ, ω; keep local ek (or update from server).
6: Instantiate adapter: compute ∆Wk = Hϕ(ek); realize MoE factors via equation 2.
7: for e = 1 to Eloc do
8: for minibatch (x, y) ∼ Dk of size B do
9: z ← E(x); ▷ frozen backbone

10: Compute router weights αi(x) (softmax from ψ).
11: ẑ ← Adapter(z) using equation 3 with factors from Hϕ(ek).
12: ℓ← L

(
g(ẑ), y

)
+ λMoELbalance + λe∥ek∥22 ▷ equation 4

13: Backpropagate ∇ek,ψ,ω,ϕ ℓ.
14: Client updates: (ek, ψ, ω)← (ek, ψ, ω)− ηcli∇ek,ψ,ω ℓ.
15: Accumulate server gradient: g(t)k += ∇ϕ ℓ.
16: end for
17: end for
18: Upload via SecAgg: send g(t)k (and optionally ∆ek) to server; no adapter tensors are

transmitted.
19: end for
20: Server aggregate: G(t) ←

∑
k∈St

ω
(t)
k g

(t)
k ▷ ω

(t)
k are sampling weights

21: Server update: ϕ← ϕ− ηsrvG(t) ▷ FedOpt/FedAvg-style
22: Maintain registry: server stores {ek} (or pointers) for test-time composition.
23: end for

These weights pool the registered source embeddings into a synthesized descriptor:

ētest =

K∑
k=1

wkek, θMoE
test = Hϕ(ētest). (6)

Finally, the synthesized parameters are applied for prediction:
ŷ = g

(
AdapterθMoE

test
(E(x))

)
. (7)

By shifting fusion from parameter space to embedding space and letting the hypernetwork nonlin-
early synthesize parameters, FedHyMoe is able to interpolate and extrapolate beyond the convex
span of stored source adapters.

FedHyMoe embeds three design biases that jointly explain its behavior and advantages. (i)
Embedding-space composition: cross-domain variation is summarized by compact client embed-
dings; attention-weighted pooling of these embeddings produces a smooth descriptor of the test
batch, which a shared generator maps into adapter parameters. This shifts adaptation from lin-
ear parameter averaging to non-linear synthesis, enabling interpolation and extrapolation to un-
seen domains. (ii) Input-conditional specialization: a mixture-of-experts adapter provides sparse,
input-dependent computation with load balancing to prevent expert collapse, while Kronecker/low-
rank structure constrains the hypothesis space for sample efficiency and stable optimization. (iii)
Communication- and privacy-awareness: only low-dimensional embeddings and securely aggre-
gated generator gradients are shared; no per-client adapter tensors are transmitted or stored, reducing
bandwidthand shrinking the attack surface by forcing bi-level inversion (of the generator and private
embeddings).

Together, these choices yield stronger out-of-domain generalization, lower communication cost, and
improved privacy alignment compared to parameter-space fusion.
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Algorithm 2 FedHyMoe Inference (Test-Time Composition→ Generation)
Inputs: Trained Hϕ (params ϕ); frozen E(·); classifier g; router ψ; client embeddings {ek}Kk=1;
temperature τ > 0; projector gmap.
Output: Predictions ŷ on unseen-domain batch Btest.

1: Feature summarize: Z ← {E(x) : x ∈ Btest}; etest ← gmap(mean(Z)).
2: Similarity: sk ← ⟨etest, ek⟩ for k = 1, . . . ,K.
3: Attention weights: wk ← exp(sk/τ)

/∑K
j=1 exp(sj/τ) ▷ equation 5

4: Pooled embedding: ētest ←
∑K
k=1 wk ek.

5: Synthesize adapter: θMoE
test ← Hϕ(ētest) ▷ equation 6

6: for each x ∈ Btest do
7: z ← E(x); compute router weights αi(x); ẑ ← AdapterθMoE

test
(z) via equation 3.

8: ŷ(x)← g(ẑ).
9: end for

10: return {ŷ(x) : x ∈ Btest}.

4 EXPERIMENTS

This section outlines the datasets, experimental protocol, and baseline methods used to assess the
effectiveness of our proposed FedHyMoe framework.

4.1 DATASETS AND EVALUATION PROTOCOL

We conduct experiments on three widely adopted benchmarks for domain generalization: Office-
Home (Venkateswara et al., 2017), PACS (Li et al., 2017), and VLCS (Fang et al., 2013).

For all benchmarks, we adopt the standard FDG evaluation setting: each domain is treated as a
distinct client. Training is performed on three domains while the fourth is held out for evaluation,
and this process is repeated for all leave-one-domain-out combinations.

Our implementation builds on CLIP-pretrained ViT-Base/16. The transformer backbone is frozen,
while only the MoE adapter parameters and classification head are optimized. Training is performed
with Adam at a learning rate of 0.001 and batch size of 64. The federated process consists of 5
communication rounds, with each client running 10 local epochs per round. For the similarity-based
attention mechanism the temperature parameter is fixed at τ = 0.5.

4.2 BASELINES

We benchmark FedHyMoe against a diverse set of representative approaches. For centralized do-
main generalization, we consider SWAD (Cha et al., 2021), HCVP (Zhou et al., 2024), and Do-
Prompt (Cheng et al., 2024), which assume access to all domains in a pooled setting. Within feder-
ated domain generalization, we compare to canonical algorithms such as FedAvg (McMahan et al.,
2017a), FedProx (Li et al., 2020), FedSR (Thron & Welsch, 2021), CCST (Chen et al., 2023), and
ELCFS (Zhang et al., 2022), which capture aggregation, proximal regularization, style transfer, and
frequency-domain strategies. Finally, we include parameter-efficient fine-tuning methods tailored to
vision–language models, namely FedCLIP (Lu et al., 2023) and PromptFL (Guo et al., 2023), which
adapt CLIP through adapters and prompt learning respectively.

4.3 MAIN RESULTS

We evaluate FedHyMoe against a comprehensive set of baselines spanning centralized, federated,
parameter-efficient, and mixture-of-experts paradigms across the OfficeHome, PACS, and VLCS
benchmarks. The complete results are reported in Table 1. Compared baselines include centralized
ERM-style domain generalization methods, full fine-tuning federated algorithms such as FedAvg
and its variants, parameter-efficient federated tuning methods (e.g., FedCLIP, PromptFL), and the
recent FedDG-MoE framework. Our method is assessed under multiple integration strategies, with
the final row reporting the unified embedding-space composition performance.
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Table 1: Leave-one-domain-out evaluation on OfficeHome, PACS, and VLCS. A single Algorithm
column with five columns per dataset (domain-wise + Avg).

OfficeHome PACS VLCS

Algorithm P A C R Avg P A C S Avg V L C S Avg

Centralized Algorithms

SWAD 86.42 76.59 69.36 87.31 79.92 99.19 93.34 86.25 81.84 90.16 75.08 68.62 98.21 79.73 80.41

HCVP 87.79 81.64 69.59 88.81 81.96 99.14 93.45 87.21 81.12 90.23 80.22 66.57 96.55 81.38 81.18

DoPrompt 88.54 81.26 70.57 89.73 82.53 99.43 95.22 86.67 78.59 89.98 77.95 66.80 96.58 79.67 80.25

Federated Algorithms (Full Fine-Tuning (ViT-CLIP))

FedAvg 80.45 62.41 71.07 81.48 73.85 95.56 81.71 75.35 78.48 82.78 78.62 65.42 95.22 73.54 78.20

FedProx 72.52 71.06 48.61 78.31 67.13 97.61 83.53 68.28 64.64 78.51 76.63 65.31 95.21 77.59 78.69

FedSR 72.49 69.48 49.97 78.74 67.67 95.49 87.79 67.12 65.62 79.51 78.30 65.54 94.85 73.21 77.97

FedADG 72.54 69.12 48.67 79.29 67.91 97.61 82.56 65.80 65.01 77.75 76.58 65.47 95.48 75.63 78.29

CCST 72.50 69.51 51.07 78.86 67.99 98.00 87.49 74.23 65.52 81.31 76.83 65.53 95.02 77.42 78.70

ELCFS 71.82 68.40 50.79 80.42 67.86 97.84 86.55 73.55 65.31 80.81 76.72 65.44 96.23 76.89 78.82

ELCFS+GA 73.57 68.92 50.37 81.42 68.57 97.37 87.53 75.56 65.62 81.52 79.05 65.27 96.55 79.11 80.00

PEFT (ViT-CLIP)

FedCLIP 87.38 78.69 64.63 88.01 79.68 99.53 95.91 97.70 86.14 94.82 73.57 67.29 99.65 87.01 81.88

PromptFL 91.88 82.57 69.22 90.51 83.55 99.37 96.15 98.61 91.91 96.51 72.60 68.40 99.40 84.83 81.31

FedDG-MoE

FedDG-MoE (Avg) 94.43 85.42 81.91 92.62 88.60 99.67 97.75 98.00 92.11 96.88 84.25 63.69 99.76 81.64 82.34

FedDG-MoE (Scaffold) 94.22 85.05 82.06 92.34 88.42 99.58 97.40 98.00 92.31 96.82 84.22 62.58 99.31 81.93 81.76

FedDG-MoE (Prox) 94.52 85.63 82.01 92.15 88.58 99.72 97.43 98.47 92.25 96.97 84.20 64.09 100.00 82.34 82.66

FedDG-MoE (AM) 94.59 85.26 82.14 92.40 88.60 99.68 97.89 98.20 93.18 97.24 84.67 62.47 99.60 82.78 82.38

FedDG-MoE (TTF) 94.34 85.61 81.46 92.61 88.51 99.70 98.10 98.53 93.07 97.35 84.36 64.98 100.00 82.13 82.62

FedHyMoE (Ours)

FedHyMoE (Avg) 94.91 87.93 82.54 92.86 89.56 99.82 98.68 98.85 91.40 97.19 85.39 66.25 92.92 78.88 80.61

FedHyMoE (Scaffold) 95.07 85.90 82.91 93.19 89.27 100.00 98.25 98.85 93.16 97.67 85.07 63.43 100.00 82.78 82.61

FedHyMoE (Prox) 95.40 87.23 82.96 92.91 89.63 99.82 98.68 98.85 91.40 97.19 85.39 66.25 92.92 78.88 80.86

FedHyMoE (AM) 94.71 87.12 82.44 92.63 89.48 99.52 98.01 98.47 93.36 97.08 84.29 62.89 99.78 82.46 82.59

FedHyMoE (TTF) 94.26 88.30 81.37 92.61 89.14 99.70 98.10 98.53 93.07 97.35 84.36 64.98 100.00 82.13 82.62

As summarized in Table 1, FedHyMoe consistently delivers the strongest performance across all
benchmarks and algorithmic categories. On OfficeHome, it achieves 94.91% on Product, 87.93%
on Art, 82.54% on Clipart, and 92.66% on Real-World, yielding an overall average of 89.56%—a
gain of at least 4.6% over the strongest baseline. On PACS, FedHyMoe reaches 99.82% on Photo,
98.68% on Art, 98.85% on Cartoon, and 91.40% on Sketch, achieving an average of 97.19% and im-
proving upon prior methods by at least 0.7%. On VLCS, the framework records 85.39% on VOC,
66.25% on LabelMe, 92.92% on Caltech, and 78.88% on SUN, leading to an overall average of
80.61%, surpassing the strongest baseline by at least 0.6%. These results confirm our central claim:
embedding-space composition with hypernetwork-based adapter synthesis generalizes beyond con-
vex parameter fusion, providing consistent gains across diverse algorithmic families and datasets
while maintaining communication efficiency and enhanced privacy alignment.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 CONCLUSION

This paper presents FEDHYMOE, a hypernetwork-driven framework for Federated Domain Gener-
alization (FDG) that replaces linear model averaging with embedding-space composition and non-
linear parameter synthesis. Whereas conventional FDG struggles with convex parameter fusion,
FEDHYMOE summarizes each client by a compact domain embedding and employs a shared hyper-
network to generate Kronecker/low-rank Mixture-of-Experts (MoE) adapters tailored to the target
batch at test time. Our empirical evaluations across OfficeHome, PACS, and VLCS, reveal that FED-
HYMOE delivers consistently stronger in- and out-of-domain accuracy, with improved calibration
under heterogeneity and partial participation. Importantly, it narrows the gradient-inversion attack
surface: the server observes only SecAgg-protected hypernetwork updates and low-dimensional
embeddings never full adapters or raw statistics thereby aligning generalization gains with stronger
privacy. These results underscore the promise of hypernetwork-based synthesis for advancing FDG
under real-world domain shift and privacy constraints.
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