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ABSTRACT

Federated Learning (FL) enables collaborative model training without sharing raw
data, but most existing solutions implicitly assume that each client’s data origi-
nate from a single homogeneous domain. In practice, domain shift is pervasive:
clients gather data from diverse sources, domains are heterogeneously distributed
across clients, and only a subset of clients participate in each round. These factors
cause substantial degradation on unseen target domains. Prior Federated Domain
Generalization (FedDG) methods often assume complete single-domain datasets
per client and sometimes rely on sharing domain-level information, raising pri-
vacy concerns and limiting applicability in real-world federations. In this paper,
we introduce FedHyMoe, a Hypernetwork-Driven Mixture-of-Experts frame-
work that addresses these challenges by shifting from parameter-space fusion to
embedding-space parameter synthesis. Each client is represented by a compact
domain embedding, and a shared hypernetwork generates its Mixture-of-Experts
(MoE) adapter parameters. At test time, unseen domains are handled by attend-
ing over source client embeddings to form a test-domain embedding, which the
hypernetwork uses to synthesize a specialized adapter. This enables non-linear in-
terpolation and extrapolation beyond convex averages of stored parameters, while
reducing communication and storage overhead and mitigating privacy risks by
exchanging only low-dimensional embeddings. FedHyMoe consistently achieves
higher generalization accuracy and improved calibration compared to baselines
under domain heterogeneity and partial participation highlighting embedding-
driven hypernetwork synthesis as a powerful inductive bias for robust, efficient,
and privacy-conscious Federated Domain Generalization.

1 INTRODUCTION

Deep neural networks (DNNs) thrive on large, centralized datasets (Krizhevsky et al., 2012; |[He
et al.| 2016} Dosovitskiy et al., [2020; Liu et al., 2021b)), yet real-world data are fragmented across
silos where privacy rules forbid sharing. Federated learning (FL) (McMahan et al.| 2017a; [Li et al.}
2020) enables collaborative training without raw data exchange, but faces two core obstacles: (i)
non-i.i.d. client distributions that impair convergence (Li et al.l 2019; [Karimireddy et al., |2020),
and (ii) domain shift, where test data differ systematically from training clients (Liu et al., 2021a;
Zhang et al., [2023} |Bai et al.,|2023)). This motivates the setting of federated domain generalization
(FDQG): training across decentralized sources to generalize to unseen target domains under strict
communication and privacy constraints (Zhang et al.}| 2021} [Yuan et al.}|2023}|Seokeon et al.| [2024).

Most FDG methods remain tied to parameter-space fusion, where client-specific models or adapters
are linearly aggregated (e.g., FedAvg and its variants (McMahan et al.,2017a};|Li et al., 2019} Karim-
ireddy et al., 2020; Wang et al., 2020)). While simple, this approach suffers from a convex-fusion
ceiling: it can only interpolate within the convex hull of source parameters, leaving unseen domains
poorly represented (Zhang et al.| 2023} |Yuan et al.| 2023} Bai et al., 2023). Moreover, transmitting
large parameter blocks inflates bandwidth requirements and heightens privacy risk (Geiping et al.,
2020; Huang et al.,|2021; |Hatamizadeh et al., 2023).
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This paper presents a novel framework for FDG, termed FedHyMoe, which leverages a hypernet-
work as the central generator. A hypernetwork is a neural network that outputs the parameters of
another network conditioned on a compact embedding. In FL, hypernetworks have been explored
for personalization and label heterogeneity, and more recently for FDG through hypernetwork-based
fusion approaches. Parallel advances in FDG also highlight the effectiveness of mixture-of-experts
(MOoE) fusion strategies (Radwan et al., [2025), while privacy-preserving efforts focus on mitigating
gradient inversion attacks via structural indirection or defense mechanisms (Guo et al.,2025)). How-
ever, prior approaches predominantly generate client-specific models for training or personalization.
In contrast, our framework realizes a different goal: transforming the privacy-aligned indirection of
hypernetworks into a mechanism for domain generalization.

FedHyMoe reframes adaptation as embedding-space composition followed by hypernetwork-based
parameter synthesis. Each client is summarized by a compact domain embedding, and a shared
hypernetwork maps embeddings into Mixture-of-Experts (MoE) adapters with Kronecker/low-rank
structure. At test time, a batch of target data produces a test embedding, which attends over stored
source embeddings to yield similarity weights. These weights pool into a descriptor that the hyper-
network transforms into a specialized adapter enabling parameterization for unseen domains through
non-linear synthesis rather than averaging. Such a design strictly generalizes convex fusion, since
with one-hot embeddings and a linear generator FedHyMoe reduces exactly to standard parameter
averaging (Radwan et al|, [2025). The true advantage emerges once the generator leverages non-
linear embedding-to-parameter mappings, which enable interpolation and extrapolation beyond the
convex span of source models. In this way, FedHyMoe turns the privacy-aligned indirection of hy-
pernetworks into a generalization mechanism: domain embeddings are composed at test time, and
parameters are generated to implement the right function for unseen domains. Communication and
storage requirements scale only with the embedding dimension rather than the adapter size, with
Mixture-of-Experts and Kronecker decompositions providing the right balance of diversity, com-
pactness, and communication efficiency. Finally, privacy exposure is substantially narrowed, as the
server observes only SecAgg-protected generator gradients and compact embeddings while never
accessing raw domain statistics or full parameter blocks (Guo et al.| [2025)).

Contributions.

* We introduce FedHyMoe, an FDG framework that replaces parameter-space averaging
with embedding-space attention and hypernetwork-based adapter synthesis.

* We instantiate hypernetwork-generated MoE adapters with Kronecker/low-rank factors,
achieving strong accuracy efficiency trade-offs under partial participation.

* We establish that convex adapter fusion is a strict special case of our formulation, and
provide inference-only controls that disentangle attention from synthesis.

2 RELATED WORK

2.1 GRADIENT INVERSION AND PRIVACY IN FEDERATED LEARNING.

Federated learning (FL) mitigates direct exposure of raw data by training models through decentral-
ized updates; however, a substantial body of work on gradient inversion and related reconstruction
attacks has shown that shared updates (gradients or parameter deltas) can leak sensitive information,
including approximate input reconstructions, membership, and attributes (Fredrikson et al., 2015}
Zhu et al.,|2019; |Geiping et al.l 2020). These risks intensify in regimes with high—capacity vision
backbones and small, skewed client datasets, where updates become more uniquely tied to local
samples. This observation motivates defenses that (i) minimize the exposure surface by restricting
the dimensionality and informativeness of communicated artifacts, and/or (ii) alter the communica-
tion primitive so that only privacy-preserving aggregates (e.g., masked or securely aggregated sums)
are revealed rather than raw per-client updates.

2.2  PRIVACY-PRESERVING TECHNIQUES IN FL.

Privacy protection in FL largely follows three methodological lines. (1) Secure multi-party com-
putation (SMC) and secure aggregation ensure that only masked aggregates of local updates are
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revealed (Yaol |1982; Bonawitz et al., 2017; Mugunthan et al., 2019; Mou et al.| [2021). (2) Homo-
morphic encryption (HE) enables computation on encrypted parameters but typically incurs sub-
stantial communication and computation costs (Gentry, 2009; Park & Liml [2022; Ma et al., |2022).
(3) Differential privacy (DP) clips and perturbs updates to provide formal guarantees, often at the
expense of model utility (Geyer et al., 2017; McMahan et al., 2017b; |Yu et al., 2020; |Biett1 et al.,
2022; [Shen et al.| [2023)). Additional empirical defenses—gradient pruning/masking and noise injec-
tion (Zhu et al, [2019; Huang et al.l 2021} Li et al., [2022; [Wei et al., 2020)—as well as specialized
frameworks such as Soteria, PRECODE, and FedKL (Sun et al.} 2020; |Scheliga et al.l 2022; Ren
et al., 2023)) offer further protection but consistently suffer from a privacy-utility trade-off. These
limitations motivate alternative paradigms, such as hypernetwork-based methods (Ha et al., |2016),
which weaken the direct correspondence between shared parameters and private data while retaining
competitive accuracy.

2.3 HYPERNETWORKS FOR FEDERATED LEARNING.

Hypernetwork-based FL employs a server-side generator H 4 that maps a compact client embedding
ey, to client parameters 6, = H(ey), thereby reducing storage and communication costs while en-
abling interpolation in embedding space (Ha et al., [2016; |Shamsian et al., 2021} Carey et al.| [2022;
Li et al.| 2023} [Tashakori et al., [2023}; |Lin et al., [2023). This indirection further weakens the linkage
between gradients and raw data by inducing bi-level inversion (over both Hy and ¢e,). Nevertheless,
existing work has largely focused on personalization: it does not specify how to compose informa-
tion across multiple source clients to represent an unseen domain at test time, nor how to couple
generator-driven parameterization with vision-specific Mixture-of-Experts specialization required
for FDG.

2.4 FEDERATED DOMAIN GENERALIZATION

Federated Domain Generalization (FDG) combines the challenges of federated learning (FL) and
domain generalization (DG), aiming to train across multiple decentralized source domains and gen-
eralize to unseen target domains without access to their data. Unlike conventional FL (McMahan
et al., 2017a), which primarily optimizes for in-distribution test performance, FDG must contend
with both data heterogeneity across clients and distributional gaps to unseen domains (L1 et al.,
2018} 2017; Bai et al.,[2023).

Several approaches attempt to bridge this gap by adapting pre-trained models. PLAN leverages
prompt learning with aggregation strategies but remains limited by the representational capacity
of fixed prompt vectors, while MaPLe extends this idea with multi-modal prompt learning, and
FedCLIP explores both generalization and personalization in vision—language models such as CLIP.
These works highlight that large pre-trained backbones can be adapted for FDG, but their reliance
on prompt-tuning constrains flexibility.

More recently, parameter-efficient vision methods have been explored. FedDG-MoE (Radwan
et al.| 2025)) instantiates a frozen pre-trained ViT with client-specialized Mixture-of-Experts (MoE)
adapters and a test-time statistical fusion rule. Specifically, cosine similarity between test features
and client-tracked moments determines adapter weights, effectively implementing parameter-space
convex averaging. While effective, this paradigm suffers from three limitations: (i) a convex-fusion
ceiling, since linear averaging cannot capture the non-linear structure of unseen domains; (ii) high
per-client storage and communication overhead due to maintaining distinct adapters; and (iii) an
enlarged privacy surface, since transmitting rich client statistics exposes sensitive distributional in-
formation (Guo et al., [2025)).

3 METHODOLOGY

Hypernetwork-based personalization in FL has shown that a server-side generator can produce client
models from compact embeddings, thereby reducing storage and mitigating gradient inversion risks
by inserting an indirection layer between shared updates and raw data (Ha et al., 2016} Shamsian
et al., 2021)). This observation motivates our hypothesis: a privacy-aligned indirection can be ele-
vated into a mechanism for generalizing to unseen domains.
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Figure 1: Overview of the proposed FedHyMoe framework. Each client (Domains A, B, C) pro-
cesses local data using a frozen ViT-Base backbone, after which a low-dimensional trainable domain
embedding is produced. These embeddings are transmitted to the server, where a shared hypernet-
work synthesizes adapter parameters.

To realize this idea, we introduce FedHyMoe, which represents each source client with a com-
pact domain embedding, composes these embeddings at test time to summarize new domains, and
generates the corresponding adapter parameters through a shared hypernetwork. In contrast to con-
ventional parameter-space averaging, this approach operates in embedding space followed by pa-
rameter synthesis, thereby enabling richer adaptation while keeping the communication footprint
privacy-conscious and efficient.

We adopt a frozen pre-trained encoder E(-) and a lightweight classifier g(-). Each client & is asso-
ciated with a low-dimensional domain embedding e;, € R?. A shared hypernetwork generator H. ®
maps embeddings to adapter parameters:

AWk = H¢(€k), (1)

which are combined with E(-) and g(-) to yield fy(x) = g(Adapter(E(z))). By generating
adapters from embeddings instead of storing a separate adapter per client, FedHyMoe enables
function-level morphing conditioned on domain evidence, reduces communication to scale with em-
bedding dimension rather than adapter size, and weakens the direct link between shared updates and
private samples since adversaries must invert both the generator and the embeddings. The overall
workflow of FedHyMoe is shown in Figure/[I]

3.1 HYPERNETWORK-GENERATED MIXTURE OF KRONECKER PRODUCT EXPERTS

To balance expressivity and efficiency, the hypernetwork does not emit a full adapter but instead
generates a Mixture of Kronecker-Product Experts (Qu et al.,|2022)):

AWy = ZAi ® Bk, B i = Ui Vi,

i=1

(i g v 6] = HY (er). )

Here, {A;} are slow, shared factors that capture stable structure across domains, while {B;  } are
low-rank, embedding-conditioned fast factors that allow rapid client-specific variation. Given input
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Figure 2: Overview of the FedHyMoe inference process. The server maintains compact domain
embeddings from source clients. For an unseen test domain, features are extracted using the frozen
ViT-Base backbone to form a test embedding, which is compared with stored embeddings to com-
pute similarity weights. These weights are pooled and passed through the shared hypernetwork to
synthesize adapter parameters on demand.

features z = F(x), a router produces expert weights «; (), and the adapter applies
n
Adapter(z) = Z i (z) (A ® (uskvik)) 2 + b. (3)
i=1

This design combines the diversity of mixture-of-experts (?) with the compactness of Kronecker
factorization, ensuring scalability in storage and communication.

3.2 LocAL TRAINING

At the start of round ¢, client k receives ¢ and ey, realizes AW}, via the hypernetwork, and minimizes

Ly, = E(z,y)~p,| L(g(Adapter(E(z))), y)} + AMoELbalance + Acl€x 13- @)

During training, clients update their domain embedding ey, the router parameters that govern mix-
ture weights, and the classifier head g, while the backbone encoder remains frozen. Communication
involves only low-dimensional embedding updates and secure-aggregated gradients with respect to
¢; full adapter tensors are never transmitted (Bonawitz et al.,[2017). This ensures that bandwidth us-
age scales with embedding dimension rather than model size, and gradient inversion risks are further
weakened by the bi-level indirection.

3.3 TEST-TIME COMPOSITION AND GENERATION

As illustrated in Figure [2} For an unseen domain, instead of averaging adapters, FedHyMoe first
composes embeddings and then generates the target adapter. A batch of test features produces a
descriptor e, which is compared to source embeddings stored on the server via similarity scores:

Sk = <etestuek>, Wg = M (5)

S exp(s;/7)
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Algorithm 1 FedHyMoe Training (Server & Clients)
Inputs: Frozen encoder E(-); classifier head g (params w); hypernetwork H, (params ¢); router
params v; client embeddings {ek}szl; loss weights AyjoE, Ae; rounds T'; local epochs Ej,; batch
size B; step sizes Nsrv, Ncli; Secure aggregation (SecAgg).
Output: Trained ¢, client embeddings {ey, }, router ¢, head w.

1: Server init: Freeze E(-); initialize ¢, ¢, w; (optionally) initialize {ej } on server or client.

2: fort =1to T do > Communication rounds
3: Server: Sample active set S; C {1,..., K} (partial participation); broadcast ¢,,w to
keS;.
4: for all & € S; in parallel (Client k) do
5: Receive ¢, 9, w; keep local ey, (or update from server).
6: Instantiate adapter: compute AW), = H,(ey); realize MoE factors via equation
7: fore = 1to £}, do
8: for minibatch (z,y) ~ Dy, of size B do
9: z + E(x); > frozen backbone
10: Compute router weights o; () (softmax from ).
11: % + Adapter(z) using equation 3| with factors from Hy(ex).
12: £+ L(g(’é)v y) + AMoEﬁbalance + )\e”ek H% > equation@
13: Backpropagate Ve, 1 w0 L.
14: Client updates: (e, 1, w) < (ex, ¥,w) — Neti Veg 0 £-
15: Accumulate server gradient: g,(f) += VL.
16: end for
17: end for
18: Upload via SecAgg: send g,(:) (and optionally Aey) to server; no adapter tensors are
transmitted.
19: end for
20: Server aggregate: G(*) « D ke S w,(:) g,(f) > w,(f) are sampling weights
21: Server update: ¢ < ¢ — 75, G > FedOpt/Fed Avg-style
22: Maintain registry: server stores {ey} (or pointers) for test-time composition.
23: end for

These weights pool the registered source embeddings into a synthesized descriptor:

K
Crest = Z WEEE, 9&;1\{?E = H¢(étest)~ (6)
k=1

Finally, the synthesized parameters are applied for prediction:
g=9 (Adapter%g‘op: (E(z))). (7)

By shifting fusion from parameter space to embedding space and letting the hypernetwork nonlin-
early synthesize parameters, FedHyMoe is able to interpolate and extrapolate beyond the convex
span of stored source adapters.

FedHyMoe embeds three design biases that jointly explain its behavior and advantages. (i)
Embedding-space composition: cross-domain variation is summarized by compact client embed-
dings; attention-weighted pooling of these embeddings produces a smooth descriptor of the test
batch, which a shared generator maps into adapter parameters. This shifts adaptation from lin-
ear parameter averaging to non-linear synthesis, enabling interpolation and extrapolation to un-
seen domains. (ii) Input-conditional specialization: a mixture-of-experts adapter provides sparse,
input-dependent computation with load balancing to prevent expert collapse, while Kronecker/low-
rank structure constrains the hypothesis space for sample efficiency and stable optimization. (iii)
Communication- and privacy-awareness: only low-dimensional embeddings and securely aggre-
gated generator gradients are shared; no per-client adapter tensors are transmitted or stored, reducing
bandwidthand shrinking the attack surface by forcing bi-level inversion (of the generator and private
embeddings).

Together, these choices yield stronger out-of-domain generalization, lower communication cost, and
improved privacy alignment compared to parameter-space fusion.
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Algorithm 2 FedHyMoe Inference (Test-Time Composition — Generation)

Inputs: Trained Hy (params ¢); frozen E(-); classifier g; router ¢; client embeddings {ek}kf,(zl;
temperature 7 > 0; projector gmap.-
Output: Predictions 3 on unseen-domain batch Biyeg;.

1: Feature summarize: Z < {E(x) : © € Biest };  Etest < Gmap(mean(”2)).

2: Similarity: s < (eest, ex) fork=1,..., K.

3: Attention weights: wy, + exp(s;,/7)/ Zszl exp(s;/T) > equation
4: Pooled embedding: &;.; + Z,{,{:l Wy, €.

5: Synthesize adapter: 0}SE < Hy (Eqest) > equation@
6: for each x € By do

7: z < E(x); compute router weights a;(2); 2 <— Adapterguos (2) via equation

8 y(x) < g(2).

9: end for

0:

—

return {§(x) : © € Biest }-

4 EXPERIMENTS

This section outlines the datasets, experimental protocol, and baseline methods used to assess the
effectiveness of our proposed FedHyMoe framework.

4.1 DATASETS AND EVALUATION PROTOCOL

We conduct experiments on three widely adopted benchmarks for domain generalization: Office-
Home (Venkateswara et al.,[2017), PACS (Li et al.;2017), and VLCS (Fang et al., 2013|.

For all benchmarks, we adopt the standard FDG evaluation setting: each domain is treated as a
distinct client. Training is performed on three domains while the fourth is held out for evaluation,
and this process is repeated for all leave-one-domain-out combinations.

Our implementation builds on CLIP-pretrained ViT-Base/16. The transformer backbone is frozen,
while only the MoE adapter parameters and classification head are optimized. Training is performed
with Adam at a learning rate of 0.001 and batch size of 64. The federated process consists of 5
communication rounds, with each client running 10 local epochs per round. For the similarity-based
attention mechanism the temperature parameter is fixed at 7 = 0.5.

4.2 BASELINES

We benchmark FedHyMoe against a diverse set of representative approaches. For centralized do-
main generalization, we consider SWAD (Cha et al.| [2021), HCVP (Zhou et al., |2024), and Do-
Prompt (Cheng et al., [2024), which assume access to all domains in a pooled setting. Within feder-
ated domain generalization, we compare to canonical algorithms such as FedAvg (McMahan et al.,
2017a), FedProx (Li et al., 2020), FedSR (Thron & Welsch, 2021)), CCST (Chen et al., [2023)), and
ELCEFS (Zhang et al.} 2022}, which capture aggregation, proximal regularization, style transfer, and
frequency-domain strategies. Finally, we include parameter-efficient fine-tuning methods tailored to
vision—language models, namely FedCLIP (Lu et al.l|2023) and PromptFL (Guo et al.,[2023)), which
adapt CLIP through adapters and prompt learning respectively.

4.3 MAIN RESULTS

We evaluate FedHyMoe against a comprehensive set of baselines spanning centralized, federated,
parameter-efficient, and mixture-of-experts paradigms across the OfficeHome, PACS, and VLCS
benchmarks. The complete results are reported in Table[I] Compared baselines include centralized
ERM-style domain generalization methods, full fine-tuning federated algorithms such as FedAvg
and its variants, parameter-efficient federated tuning methods (e.g., FedCLIP, PromptFL), and the
recent FedDG-MoE framework. Our method is assessed under multiple integration strategies, with
the final row reporting the unified embedding-space composition performance.
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Table 1: Leave-one-domain-out evaluation on OfficeHome, PACS, and VLCS. A single Algorithm
column with five columns per dataset (domain-wise + Avg).

OfficeHome PACS VLCS
Algorithm P A C R Avg P A C S Avg \ L C S Avg

Centralized Algorithms

SWAD 86.42 76.59 69.36 87.31 79.92| 99.19 93.34 86.25 81.84 90.16|75.08 68.62 98.21 79.73 80.41
HCVP 87.79 81.64 69.59 88.81 81.96| 99.14 9345 87.21 81.12 90.23|80.22 66.57 96.55 81.38 81.18
DoPrompt 88.54 81.26 70.57 89.73 82.53| 99.43 9522 86.67 78.59 89.98|77.95 66.80 96.58 79.67 80.25

Federated Algorithms (Full Fine-Tuning (ViT-CLIP))

FedAvg 80.45 6241 71.07 81.48 73.85| 9556 81.71 7535 7848 82.78|78.62 6542 9522 73.54 78.20
FedProx 72.52 71.06 48.61 7831 67.13| 97.61 83.53 68.28 64.64 7851 |76.63 6531 9521 77.59 78.69
FedSR 72.49 69.48 49.97 78.74 67.67| 9549 87.79 67.12 65.62 79.51|78.30 6554 9485 73.21 77.97
FedADG 72.54 69.12 48.67 79.29 6791 | 97.61 82.56 65.80 6501 77.75|76.58 6547 9548 75.63 78.29
CCST 72.50 69.51 51.07 78.86 67.99| 98.00 8749 7423 6552 81.31|76.83 6553 9502 7742 78.70
ELCFS 71.82 68.40 50.79 80.42 67.86| 97.84 86.55 73.55 6531 80.81|76.72 6544 9623 76.89 78.82
ELCFS+GA 73.57 68.92 5037 8142 68.57| 97.37 87.53 75.56 65.62 81.52|79.05 6527 96.55 79.11 80.00
PEFT (ViT-CLIP)
FedCLIP 87.38 78.69 64.63 88.01 79.68 | 99.53 9591 97.70 86.14 94.82|73.57 6729 99.65 87.01 81.88
PromptFL 91.88 82.57 69.22 90.51 83.55| 99.37 96.15 98.61 9191 96.51|72.60 6840 99.40 84.83 81.31
FedDG-MoE

FedDG-MOoE (Avg) 94.43 8542 8191 92.62 88.60| 99.67 97.75 98.00 92.11 96.88 | 84.25 63.69 99.76 81.64 82.34
FedDG-MOE (Scaffold) | 94.22 85.05 82.06 92.34 88.42| 99.58 97.40 98.00 92.31 96.82|84.22 62.58 99.31 81.93 81.76
FedDG-MOoE (Prox) 94.52 85.63 82.01 92.15 88.58| 99.72 97.43 98.47 9225 96.97 | 8420 64.09 100.00 82.34 82.66
FedDG-MoE (AM) 94.59 8526 82.14 9240 88.60| 99.68 97.89 98.20 93.18 97.24 | 84.67 62.47 99.60 82.78 82.38
FedDG-MOoE (TTF) 94.34 85.61 81.46 92.61 88.51| 99.70 98.10 98.53 93.07 97.35|84.36 64.98 100.00 82.13 82.62

FedHyMoE (Ours)

FedHyMOoE (Avg) 9491 8793 82.54 92.86 89.56| 99.82 98.68 98.85 91.40 97.19 | 85.39 66.25 9292 78.88 80.61
FedHyMOoE (Scaffold) |95.07 8590 8291 93.19 89.27 | 100.00 98.25 98.85 93.16 97.67 | 85.07 63.43 100.00 82.78 82.61
FedHyMOoE (Prox) 95.40 87.23 8296 9291 89.63| 99.82 98.68 98.85 91.40 97.19 |85.39 66.25 9292 78.88 80.86
FedHyMoE (AM) 94.71 87.12 82.44 92.63 89.48| 99.52 98.01 98.47 93.36 97.08 | 8429 62.89 99.78 82.46 82.59
FedHyMOoE (TTF) 94.26 88.30 81.37 92.61 89.14| 99.70 98.10 98.53 93.07 97.35|84.36 64.98 100.00 82.13 82.62

As summarized in Table [, FedHyMoe consistently delivers the strongest performance across all
benchmarks and algorithmic categories. On OfficeHome, it achieves 94.91% on Product, 87.93%
on Art, 82.54% on Clipart, and 92.66% on Real-World, yielding an overall average of 89.56%—a
gain of at least 4.6% over the strongest baseline. On PACS, FedHyMoe reaches 99.82% on Photo,
98.68% on Art, 98.85% on Cartoon, and 91.40% on Sketch, achieving an average of 97.19% and im-
proving upon prior methods by at least 0.7%. On VLCS, the framework records 85.39% on VOC,
66.25% on LabelMe, 92.92% on Caltech, and 78.88% on SUN, leading to an overall average of
80.61%, surpassing the strongest baseline by at least 0.6%. These results confirm our central claim:
embedding-space composition with hypernetwork-based adapter synthesis generalizes beyond con-
vex parameter fusion, providing consistent gains across diverse algorithmic families and datasets
while maintaining communication efficiency and enhanced privacy alignment.
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5 CONCLUSION

This paper presents FEDHYMOE, a hypernetwork-driven framework for Federated Domain Gener-
alization (FDG) that replaces linear model averaging with embedding-space composition and non-
linear parameter synthesis. Whereas conventional FDG struggles with convex parameter fusion,
FEDHYMOE summarizes each client by a compact domain embedding and employs a shared hyper-
network to generate Kronecker/low-rank Mixture-of-Experts (MoE) adapters tailored to the target
batch at test time. Our empirical evaluations across OfficeHome, PACS, and VLCS, reveal that FED-
HYMOE delivers consistently stronger in- and out-of-domain accuracy, with improved calibration
under heterogeneity and partial participation. Importantly, it narrows the gradient-inversion attack
surface: the server observes only SecAgg-protected hypernetwork updates and low-dimensional
embeddings never full adapters or raw statistics thereby aligning generalization gains with stronger
privacy. These results underscore the promise of hypernetwork-based synthesis for advancing FDG
under real-world domain shift and privacy constraints.

REFERENCES

Rugi Bai, Saurabh Bagchi, and David I Inouye. Benchmarking algorithms for federated domain
generalization. arXiv preprint arXiv:2307.04942, 2023.

Alberto Bietti, Chen-Yu Wei, Miroslav Dudik, John Langford, and Steven Wu. Personalization im-
proves privacy-accuracy tradeoffs in federated learning. In International Conference on Machine
Learning, pp. 1945-1962. PMLR, 2022.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1175-1191, 2017.

Alycia N Carey, Wei Du, and Xintao Wu. Robust personalized federated learning under demographic
fairness heterogeneity. In 2022 IEEE International Conference on Big Data (Big Data), pp. 1425—
1434. IEEE, 2022.

Junbum Cha, Sanghyuk Hwang, and Se-Young Yun. Swad: Domain generalization by seeking flat
minima. In Advances in Neural Information Processing Systems, volume 34, pp. 22405-22418,
2021.

Junming Chen, Meirui Jiang, Qi Dou, and Qifeng Chen. Federated domain generalization for image
recognition via cross-client style transfer. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 361-370, 2023.

De Cheng, Zhipeng Xu, Xinyang Jiang, Nannan Wang, Dongsheng Li, and Xinbo Gao. Disentangled
prompt representation for domain generalization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 23595-23604, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased metric learning: On the utilization of multiple
datasets and web images for softening bias. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 1657-1664, 2013.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confi-
dence information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC confer-
ence on computer and communications security, pp. 1322-1333, 2015.

Jonas Geiping, Hartmut Bauermeister, Hannah Droge, and Michael Moeller. Inverting gradients-
how easy is it to break privacy in federated learning? Advances in neural information processing
systems, 33:16937-16947, 2020.



Under review as a conference paper at ICLR 2026

Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.

Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client
level perspective. arXiv preprint arXiv:1712.07557, 2017.

Chengyue Guo, Hongyu Wu, Wei Jin, Xiaorui Jiang, Jinfeng Liu, Tianyu Yang, Yanjie Qi, Chuxu
Zhang, and Sijia Wang. Promptfl: Prompt federated learning with vision-language models. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 8045-8053, 2023.

Pengxin Guo, Shuang Zeng, Wenhao Chen, Xiaodan Zhang, Weihong Ren, Yuyin Zhou, and
Liangqiong Qu. A new federated learning framework against gradient inversion attacks. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 16969-16977, 2025.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Ali Hatamizadeh, Hongxu Yin, Pavlo Molchanov, Andriy Myronenko, Wenqi Li, Prerna Dogra,
Andrew Feng, Mona G Flores, Jan Kautz, Daguang Xu, et al. Do gradient inversion attacks make
federated learning unsafe? IEEE Transactions on Medical Imaging, 42(7):2044-2056, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770778, 2016.

Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. Evaluating gradient in-
version attacks and defenses in federated learning. Advances in neural information processing
systems, 34:7232-7241, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132-5143. PMLR, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE International Conference on Computer Vision, pp.
5542-5550, 2017.

DaLi, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Meta-learning
for domain generalization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Hongxia Li, Zhongyi Cai, Jingya Wang, Jiangnan Tang, Weiping Ding, Chin-Teng Lin, and Ye Shi.
Fedtp: Federated learning by transformer personalization. IEEE Transactions on Neural Networks
and Learning Systems, 35(10):13426-13440, 2023.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Sys-
tems, 2:429-450, 2020.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

Zhuohang Li, Jiaxin Zhang, Luyang Liu, and Jian Liu. Auditing privacy defenses in federated learn-
ing via generative gradient leakage. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10132-10142, 2022.

Yanfei Lin, Haiyi Wang, Weichen Li, and Jun Shen. Federated learning with hyper-network—a case
study on whole slide image analysis. Scientific Reports, 13(1):1724, 2023.

Quande Liu, Cheng Chen, Jing Qin, Qi Dou, and Pheng-Ann Heng. Feddg: Federated domain gen-
eralization on medical image segmentation via episodic learning in continuous frequency space.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1013-1023, 2021a.

10



Under review as a conference paper at ICLR 2026

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012-10022, 2021b.

Yu Lu, Mei Chen, Hwee Kuan Yu, Xian Zhang, Joo Hwee Tan, and Choon Seng Lau. Fedclip: Fast
generalization and personalization for clip in federated learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 481-489, 2023.

Jing Ma, Si-Ahmed Naas, Stephan Sigg, and Xixiang Lyu. Privacy-preserving federated learning
based on multi-key homomorphic encryption. International Journal of Intelligent Systems, 37(9):
5880-5901, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273—-1282. PMLR, 2017a.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. arXiv preprint arXiv:1710.06963, 2017b.

Wenhao Mou, Chunlei Fu, Yan Lei, and Chungiang Hu. A verifiable federated learning scheme
based on secure multi-party computation. In International conference on wireless algorithms,
systems, and applications, pp. 198-209. Springer, 2021.

Vaikkunth Mugunthan, Antigoni Polychroniadou, David Byrd, and Tucker Hybinette Balch. Sm-
pai: Secure multi-party computation for federated learning. In Proceedings of the NeurIPS 2019
Workshop on Robust Al in Financial Services, volume 21. MIT Press Cambridge, MA, USA,
2019.

Jaehyoung Park and Hyuk Lim. Privacy-preserving federated learning using homomorphic encryp-
tion. Applied Sciences, 12(2):734, 2022.

Jingang Qu, Thibault Faney, Ze Wang, Patrick Gallinari, Soleiman Yousef, and Jean-Charles
de Hemptinne. Hmoe: Hypernetwork-based mixture of experts for domain generalization. arXiv
preprint arXiv:2211.08253, 2022.

Ahmed Radwan, Mahmoud Soliman, Omar Abdelaziz, and Mohamed Shehata. Feddg-moe: Test-
time mixture-of-experts fusion for federated domain generalization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1811-1820, 2025.

Hanchi Ren, Jingjing Deng, Xianghua Xie, Xiaoke Ma, and Jianfeng Ma. Gradient leakage defense
with key-lock module for federated learning. arXiv preprint arXiv:2305.04095, 2023.

Daniel Scheliga, Patrick Méder, and Marco Seeland. Precode — a generic model extension to prevent
deep gradient leakage. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 1849-1858, 2022.

Choi Seokeon, Park Hyunsin, Choi Sungha, et al. Client-agnostic learning and zero-shot adaptation
for federated domain generalization, April 4 2024. US Patent App. 18/238,998.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized federated learning using
hypernetworks. In International conference on machine learning, pp. 9489-9502. PMLR, 2021.

Zebang Shen, Jiayuan Ye, Anmin Kang, Hamed Hassani, and Reza Shokri. Share your represen-
tation only: Guaranteed improvement of the privacy-utility tradeoff in federated learning. arXiv
preprint arXiv:2309.05505, 2023.

Jingwei Sun, Ang Li, Binghui Wang, Huanrui Yang, Hai Li, and Yiran Chen. Provable defense
against privacy leakage in federated learning from representation perspective. arXiv preprint
arXiv:2012.06043, 2020.

Arvin Tashakori, Wenwen Zhang, Z Jane Wang, and Peyman Servati. Semipfl: Personalized semi-
supervised federated learning framework for edge intelligence. IEEE Internet of Things Journal,
10(10):9161-9176, 2023.

11



Under review as a conference paper at ICLR 2026

Christopher Thron and Braeden Welsch. Sliced, not splitted: a better alternative to many-worlds?
arXiv preprint arXiv:2110.00580, 2021.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5018-5027, 2017.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611-7623, 2020.

Wenqi Wei, Ling Liu, Margaret Loper, Ka-Ho Chow, Mehmet Emre Gursoy, Stacey Truex, and
Yanzhao Wu. A framework for evaluating gradient leakage attacks in federated learning. arXiv
preprint arXiv:2004.10397, 2020.

Andrew C Yao. Protocols for secure computations. In 23rd annual symposium on foundations of
computer science (sfcs 1982), pp. 160-164. IEEE, 1982.

Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. Salvaging federated learning by local adapta-
tion. arXiv preprint arXiv:2002.04758, 2020.

Junkun Yuan, Xu Ma, Defang Chen, Fei Wu, Lanfen Lin, and Kun Kuang. Collaborative semantic
aggregation and calibration for federated domain generalization. [EEE Transactions on Knowl-
edge and Data Engineering, 35(12):12528-12541, 2023.

Liling Zhang, Xinyu Lei, Yichun Shi, Hongyu Huang, and Chao Chen. Federated learning with
domain generalization. arXiv preprint arXiv:2111.10487, 2021.

Liling Zhang, Xinyu Lei, Yichun Shi, Hongyu Huang, and Chao Chen. Elcfs: Towards privacy-
preserving federated domain generalization. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 8915-8923, 2022.

Ruipeng Zhang, Qinwei Xu, Jiangchao Yao, Ya Zhang, Qi Tian, and Yanfeng Wang. Federated do-
main generalization with generalization adjustment. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3954-3963, 2023.

Guanglin Zhou, Zhongyi Han, Shiming Chen, Biwei Huang, Liming Zhu, Tongliang Liu, Lina Yao,
and Kun Zhang. Hevp: Leveraging hierarchical contrastive visual prompt for domain generaliza-
tion. IEEE Transactions on Multimedia, 2024.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural infor-
mation processing systems, 32, 2019.

12



	Introduction
	Related Work
	Gradient inversion and privacy in federated learning.
	Privacy-preserving techniques in FL.
	Hypernetworks for federated learning.
	Federated Domain Generalization

	Methodology
	Hypernetwork-Generated Mixture of Kronecker Product Experts
	Local Training
	Test-Time Composition and Generation

	Experiments
	Datasets and Evaluation Protocol
	Baselines
	Main Results

	Conclusion

