
Under review as submission to TMLR

More Rigorous Software Engineering Would Improve Repro-
ducibility in Machine Learning Research

Anonymous authors
Paper under double-blind review

Abstract

While experimental reproduction remains a pillar of the scientific method, we observe that
the software best practices supporting the reproduction of machine learning (ML) research
are often undervalued or overlooked, leading both to poor reproducibility and damage to
trust in the ML community. We quantify these concerns by surveying the usage of software
best practices in software repositories associated with publications at major ML conferences
and journals such as NeurIPS, ICML, ICLR, TMLR, and MLOSS within the last decade.
We report the results of this survey that identify areas where software best practices are
lacking and areas with potential for growth in the ML community. Finally, we discuss the
implications and present concrete recommendations on how we, as a community, can improve
reproducibility in ML research.

1 Introduction

Scientific claims can only be considered empirical or scientific if we are capable of testing them (Popper,
2005). Theoretical papers are often self-contained, while numerical work typically depends on code. The
large numerical part of machine learning (ML) research, therefore, rests upon empirical foundations. Code
reproducibility is a key concern in this branch, as it enables others to repeat and build upon prior work.

This paper focuses on what we, as a community, are already doing to enable the reproducibility of our work and
how we can improve further. Since machine learning heavily relies on software, we review established software
engineering best practices, systematically estimate their adoption in source code repositories associated
with publications in major ML conferences and journals between 2018 and 2025, and ultimately argue for
more rigorous software engineering in ML research. Our assessment is based on data from a large-scale
web crawl of repository links in conference papers. Using the crawled data, we identify current research
trends and gaps in software engineering. Given the popularity of ML frameworks like PyTorch (Paszke
et al., 2017), Jax (Bradbury et al., 2025), and Tensorflow (Abadi et al., 2015), Python has become the
most widely used language in ML. Consequently, the NeurIPS guide for releasing code (Stojnic et al., 2020)
is written exclusively with Python in mind. Therefore, while our ideas for examining reproducibility are
language-agnostic, our assessment focuses on Python-specific best practices.

Finally, we provide actionable recommendations for how we as a community can improve further. We make
the source code for our analysis available online such that it can be periodically refreshed and later extended
to cover additional conferences and journals. Furthermore, the supplementary includes the code in a zip file.

2 Related work

Before reviewing software engineering best practices, we survey recent works from the ML community on the
hallmarks of reproducibility, how new ideas in reproducibility have been operationalized, the relationship
between open source and reproducibility, and the effect of reproducibility on uptake and citation.

1



Under review as submission to TMLR

Defining reproducibility Tatman et al. (2018) proposed a distinction between ML reproduction and ML
replication in which reproduction refers to recreating the exact results reported by a paper, while replication
describes the application of the described methods to another dataset.

Hallmarks of reproducibility Hutson (2018) and Haibe-Kains et al. (2020) described how missing source
code and data are key obstacles to ML reproduction. However, Tatman et al. (2018) suggested that in addition
to source code and data availability, clear communication of software dependencies is another important
obstacle towards ML reproduction on machines that are different from the one where a code was originally
developed. In addition to code dependencies, we require exact descriptions of algorithmic details. To study
these aspects, Raff (2019; 2021) developed a survival model to predict how long it would take to re-implement
and reproduce the results from a paper based on features of the paper, like whether it contains pseudocode, a
hyperparameter specification, et cetera.

Neighboring computational fields have started to identify code quality as a key component to reproducible
research (Hoyt et al., 2023; Ziemann et al., 2023; Pérez-Riverol et al., 2016; Prlic & Procter, 2012; Sandve
et al., 2013; List et al., 2017). Similarly, in spirit, this work focuses on best practices for code quality in
Section 3.4 and Section 3.5 we discuss best practices like dependency documentation and packaging.

Operationalization of reproducibility Ideas NeurIPS recently published a reproducibility checklist
and updated its code submission guidelines to encourage reproducibility (Pineau et al., 2021). In our data,
we see a small improvement trend around 2020, when the NeurIPS code guide (Stojnic et al., 2020) went
into effect. Section 5 provides a further elaboration. Similarly, ICLR began asking authors in 2022 1 to
include an optional reproducibility statement, while the Machine Learning Reproducibility Challenge (MLRC)
encourages investigations into ML reproducibility2. In the life sciences, Heil et al. (2021) introduced tangible
criteria in the form of a three-tiered reproducibility scale in which the first level requires data, models, and
code to be shared along with the paper. The second level requires projects to document software dependencies,
the order of commands necessary for reproduction, and to deactivate all stochastic code elements. The third
level, or “gold standard”, requires enabling reproduction of a paper’s analysis with a single command.

Criticisms of open source The ML community does not unanimously argue in favor of open source code
releases. For example, Raff & Farris (2023) expressed concerns that releasing open source code could first
lead to a relaxation of standards for detailed descriptions within papers and second could enable divergence
between code and paper. We suggest that these are instead editorial and peer review issues, which could be
alleviated with the improved application of software engineering best practices that both support review and
enable automated testing for key assumptions communicated in the paper.

Reproducibility bolsters citations Finally, the statistical analysis by Raff (2023) suggested that
reproducible articles are cited more frequently. . Following best practices is, therefore, both in the author’s
and in the community’s best interest. The next section describes these best practices.

3 Best practices

We review a subset of software engineering best practices and comment on how they can be applied by the
ML community. Here, we exclusively consider those that can be automatically measured.

3.1 Licensing software

A license communicates the terms under which source code can be used, changed, and distributed. Without
a license, source code can not be (legally) reproduced, modified, nor distributed3. A permissive license,
such as one suggested by the Open Source Initiative4, enables others to improve, reuse, and extend the

1https://iclr.cc/Conferences/2022/AuthorGuide, reproducibility in not part of the 2021 guide at https://iclr.cc/
Conferences/2021/AuthorGuide.

2Princeton-AI-Lab (2025), https://reproml.org/
3On GitHub, the terms of service apply, minimally allowing all repositories to be viewed and forked, even without a license
4https://opensource.org/

2

https://iclr.cc/Conferences/2022/AuthorGuide
https://iclr.cc/Conferences/2021/AuthorGuide
https://iclr.cc/Conferences/2021/AuthorGuide
https://reproml.org/
https://opensource.org/


Under review as submission to TMLR

code (Sonnenburg et al., 2007; Pérez-Riverol et al., 2016). This can further extend the life of a project
since development can continue even without the original authors. Sonnenburg et al. (2007) and https:
//choosealicense.com/ offer guidance for choosing an appropriate license.

3.2 Onboarding new users with a README

A README file is typically the first documentation that a reader checks in a source code repository. It
should include a project description, a guide for installation, a quick start guide, and share information on
how to contribute (Stojnic et al., 2020; Pérez-Riverol et al., 2016).

Providing a license and README is a language-agnostic step. Below, we focus on the specifics of Python,
the most common programming language in ML research.

3.3 Formatting, linting, and type checking

Programming language communities often establish style conventions to make source code more uniform and
reduce the cognitive burden on readers. The Python community suggested best practices in PEP-8 (van
Rossum et al., 2001) and has several tools for automatically formatting code (e.g., Ruff, Black) and for linting
code (e.g., Flake8, PyFlakes, Ruff). Optional static type hints (Rossum et al., 2014) enable the implicit
documentation of functions as well as the ability to check formal correctness and identify bugs using static
type checkers like MyPy (mypy developers, 2025).

3.4 Enumerating dependencies

Most ML projects written in Python depend on external Python code, such as PyTorch. Therefore, it is
crucial to enumerate these dependencies such that they can be automatically installed. A historical approach
has been to enumerate the direct dependencies (i.e., those appearing in the ML code) in a ‘requirements.txt’
file, which can then be installed via ‘pip install -r requirements.txt’ (Pip-developers, 2025; Stojnic et al.,
2020). The ‘requirements.txt’ has been historically created by running ‘pip freeze’, which outputs a lock file
that contains all currently installed Python packages (in the current environment) with version pins following
manual installation via ‘pip install’.

There have been several iterations of project management tools and configuration formats that attempt to
systematize the declaration of direct dependencies, including setuptools, Poetry, Hatch, PDM, and ultimately
uv. Each tool has historically created its own configuration files (setup.py, poetry.toml, hatch.toml,
pdm.toml, uv.toml), which motivated the Python community to define a standard configuration format and
filename pyproject.toml in PEP-621 (Cannon et al., 2020). Further, many of these project management
tools performed similar locking operations to pip freeze, which created their own lock files (Pipfile.lock,
poetry.lock, uv.lock, etc.) that can be used to reproduce an exact environment. The Python community
defined a standard configuration format and filename pylock.toml in Python Enhancement Proposal (PEP)-
751 (Cannon, 2024), which will simplify reproduction in the future.

Conda (Conda-developers, 2025) is a more generic package manager that can install both Python and
non-Python dependencies, then generate a ‘environment.yml’ file that lists dependencies. However, Conda is
not a packaging tool and is often incorrectly used as a substitute for properly packaging Python code.

3.5 Packaging code

Most ML projects re-use functions or even entire modules from others. While directly copying code is simple,
it is problematic for maintainability and visibility (Pérez-Riverol et al., 2016). For example, if a bug is
identified, it must be manually fixed for every duplication. Packaging solves this problem by enabling code to
be uploaded to the Python Package Index (PyPI), installed with package installer for Python (PIP), then
imported using standard import statements without local code duplication.

3

https://choosealicense.com/
https://choosealicense.com/


Under review as submission to TMLR

Packaging is relatively straightforward: A packaged project should have src and tests folders (Python-
Packaging-Authority, 2025). Metadata about the package, such as its name, license, and dependencies, can
be encoded in a standard pyproject.toml file (Brett Cannon, 2016; Smith et al., 2015).

The pyproject.toml also specifies a build backend (e.g., setuptools), which produces artifacts for
PyPI (Python-Packaging-Authority, 2025; Smith et al., 2015). When authors use setuptools (Setuptools-
Team, 2025) as a build backend, they also need to include a setup.py or setup.cfg. Hatch (Hatch-developers,
2025), Poetry, and uv can be used as a setuptools alternative for users seeking a high-level experience with
carefully chosen defaults.

By packaging our code, we enable others to replicate and build on our work via automatic installation. The
process gives users access to a working installation now and to package updates and bug fixes in the future.
Generally, we recommend widespread adoption of the backend-agnostic pyproject.toml-file (Brett Cannon,
2016).

3.6 Testing

Tests allow us to check new ideas before integrating them into the core codebase (Pérez-Riverol et al.,
2016). By writing tests, we document core development assumptions and the key behavior of the code.
When other groups or new people in the same group join a project, the tests help them ensure older
features remain operational as new functionality is added. Two popular test frameworks for the Python
programming language are pytest (Pytest-developers, 2025) and unittests (Python-developers, 2025).
Regarding test organization, the Python Packaging Authority (PyPA) recommends organizing them into
a tests folder (Python-Packaging-Authority, 2025) in the root directory of the project. Within the Jax
ecosystem, Chex (ecosystem authors, 2025) offers an elegant and modular way to automatically evaluate
individual tests in different ML-specific settings. For example, its @variants decorator automatically tests a
function’s compatibility with just-in-time (JIT) compilation, device mapping, and parallelization.

Tests allow maintainers, contributors, and users to verify that the code works as intended, which fosters
confidence in new contributors. In this setting, successful test runs indicate that everything is set up
correctly (List et al., 2017). In the long run, tests ensure that the code remains functional as it evolves.
Without it, bugs may be introduced, but not discovered. Such hidden errors are a form of technical debt (Breck
et al., 2017). During the development phase, automated tests facilitate code verification and prevent the
accumulation of technical debt. The next section focuses on the test automation.

3.6.1 Automation

After configuring formatting, linting, type checking, packaging, and testing for a project, it is possible
to standardize, consolidate, and automate their application using workflow tools like tox or nox. These
tools automate the creation of isolated virtual environments, installation of packaged code, and allow for
arbitrary configuration of other build steps that need to be run, e.g., before tests. They are configured with a
tox.toml/tox.ini or noxfile.py, respectively, which appear in the root directory of the project.

Finally, Continuous Integration (CI) can be used to run these workflow tools, e.g., on all pushes to a project
on GitHub. On GitHub, this can be configured via a yaml file placed in the .github/workflows directory.
Overall, CI facilitates enhanced cooperation between team members through automatic verification of new
features.

3.6.2 Recording seeds

Because neural network optimization is typically not a convex problem, we often require pseudorandom
initialization to initialize network matrices before we begin experimenting. However, in order to be reproducible,
stochastic behavior must be disabled and the seed given to the random number generator must be made
explicit (Heil et al., 2021). In this regard, Jax (Bradbury et al., 2025), for example, makes the state of the
pseudorandom number generator explicit by introducing a unique key object. Similarly, PyTorch users can
optionally choose to set seed values (PyTorch-Contributors, 2024).

4



Under review as submission to TMLR

3.7 Documenting code

Documentation is the component that makes code accessible to others. Typically, documentation is generated
in the form of docstrings for every user-facing function, class, and module. Automated tools like Sphinx
(Sphinx-developers, 2025) allow us to generate documentation websites from the docstrings. It is customary
to create a docs folder for the documentation (Sphinx-developers, 2025). Specialized web services such as
ReadTheDocs5 automate the build and hosting of documentation.

3.8 Difficulties in adopting best practices

Johanson & Hasselbring (2018) observed low adoption rates of modern software engineering techniques in
computational sciences. The work also finds that few scientists are trained in software engineering. We suspect
a similar situation within the ML-community and argue that professors don’t place value on it, since they
often have no experience working this way. Furthermore, working under tight conference deadlines probably
exacerbates this problem. We find that after a steep initial learning curve, proper software engineering
practices are not hard to follow. Especially since we can rely on pre-configured templates6. In the long
run, especially when considering project handover from one PhD student generation to another, software
engineering saves time.

4 Methods

We developed an automated pipeline that quantifies the adoption of the software engineering best practices
described in the previous section. Our focus is the ML community, where lots of research appears in conference
proceedings. We generated criteria for choosing ML journals and conferences based on their generality and
reputation. We limited ourselves to four top conference venues and two journals due to time constraints. The
NeurIPS, ICML, ICLR, and the International Conference on Artificial Intelligence and Statistics (AISTATS)
conference, as well as TMLR and MLOSS, are included in this study.

The pipeline first downloads Portable Document Format (PDF) documents in bulk from select journals
and conferences. We wrote custom web scrapers when proceedings websites are available. Whenever
no proceedings had been published yet, we relied on the OpenReview-API to download the proceedings.
This was the case for ICML 2025 at the time we crawled the data. First, for proceedings pages, we use
beautiful-soup (Richardson, 2023) to extract all links to papers by filtering for links ending with pdf.
Second, we extracted links to source code repositories hosted on GitHub. We use pdfx (Hager, 2021)
and a small number of custom natural language processing functions for PDF processing. Finally, in
each repository, we look for the existence of the following files and their common spelling variants and file
extension variants in order to estimate the adoption of software engineering best practices: (LICENSE, COPYING,
README, requirements.txt, Pipfile.lock, pylock.toml, pyproject.toml, tox.toml, tox.ini, setup.py,
setup.cfg, noxfile.py, environment.yml, uv.lock, poetry.lock, poetry.toml, hatch.toml, pixi.lock,
pixi.toml, .pre-commit-config.yaml, Makefile) and folders (docs, test, tests, .github/workflows).
Test folders sometimes appear inside the src folder or in a folder with the same name as the project. For
completeness, we check these locations as well.

Before looking at conference proceedings, we first estimate the adoption of software engineering best practices
for the journals such as Transactions on Machine Learning Research (TMLR) and Machine Learning Open
Source Software (MLOSS) (see Figure 1). We use MLOSS as a baseline because its submissions are generally
reusable software, which in turn correlates with the adoption of software engineering best practices. To
broaden our view further, we look for signs of best practice adoption within the software repositories we
extracted from papers that appeared at major machine learning conferences since 2018.

Since our analysis is Python-specific, the Python adoption rate should be considered as the upper limit when
reading Figure 1. To avoid confusion, we exclude repositories that do not use Python later in this section,
when we discuss Python-specific methods.

5https://about.readthedocs.com/
6https://cookiecutter.readthedocs.io/en/2.0.2/README.html

5

https://about.readthedocs.com/
https://cookiecutter.readthedocs.io/en/2.0.2/README.html


Under review as submission to TMLR

RE
AD

M
E

LI
CE

NS
E

Py
th

on
de

pe
nd

en
cie

s
pa

ck
ag

ed
te

st
s

do
cs

0

20

40

60

80

100

A
do

pt
io

n
[%

]

Estimated adoption

TMLR MLOSS

Figure 1: Estimated state of software engineering best practices at TMLR and MLOSS. The software focused
MLOSS serves as a baseline for comparison. The plots illustrate web-crawled percentages of files and folders
tied to the adoption of software engineering best practices.

18 19 20 21 22 23 24 25

92

94

96

98

100

conference year

a
d
op

ti
o
n
[%

]

README

icml
aistats
iclr
neurips

18 19 20 21 22 23 24 25

50

60

70

80

conference year

ad
op

ti
on

[%
]

LICENSE

icml
aistats
iclr
neurips

Figure 2: Estimated state of README and LICENSE file adoption in major ML conferences. We add the
counts for README.md and README.rst files, as well as common spelling variations and show these as README.
For the licenses, we add the counts for LICENSE, COPYING, and common spelling variations.

5 An assessment of the software ecosystem state in ML research

In Figure 1, we observe that TMLR papers are not yet at the level of MLOSS in terms of best practices
adoption. We observe growth potential for TMLR code submissions in almost all dimensions in comparison
to MLOSS. The rest of this section considers conference venues where most ML research appears, we will
keep the MLOSS-baseline in mind.

README and LICENSE files over time In Figure 2, we observe that the inclusion of README files is
widespread, with nearly all repositories across all journals and conferences having full adoption. However, the
inclusion of license files seems to have stagnated between 50% and 80% over time, with ICLR, NeurIPS, and
ICML having the most. This means users are potentially working without legal security with the implications
outlined in section 3.1.

6



Under review as submission to TMLR

18 19 20 21 22 23 24 25

70

80

90

conference year

a
d
op

ti
o
n
[%

]

Python use

icml
aistats
iclr
neurips

18 19 20 21 22 23 24 25

10

15

20

conference year

a
d
op

ti
o
n
[%

]

docs folder

icml
aistats
iclr
neurips

Figure 3: Repository link crawl results for Python adoption (left) and standalone documentation (right). We
count each repository where Python is listed as a language in GitHub’s language box. The plot on the right
of this figure illustrates the share of repositories with a doc or docs folder.

18 19 20 21 22 23 24 25

0

1

2

3

conference year

ad
op

ti
on

[%
]

.flake8

icml
aistats
iclr
neurips

Figure 4: Adoption of .flake8 configuration files in repositories over time.

Python adoption over time Most of the engineering best practices we described previously in Section 3
are Python specific, before moving on, we must therefore check if Python is indeed the most common language
in ML. In the left-hand plot of Figure 3, we observe an upwards trend in the usage of Python over time.
Since 2021, more than 80% of repositories use Python at all major conferences we considered. We believe this
trend bolsters the case for more rigorous software engineering. Since fewer language barriers exist, packaging
especially would help us to collaborate more effectively as a community. After all, since almost everyone is
working with Python, the import statement is available to the vast majority of the community, and can help
us to avoid code duplication.

The following sections will focus on Python-specific engineering practices. We exclude repositories in other
languages from our analysis.

Documentation In the right-hand side of Figure 3, we observe that the share of projects with a standalone
documentation folder approaches 20%. While this share remains low, we see a clear upward trend, and in
some cases, a well-written README file is also sufficient.

7



Under review as submission to TMLR

18 19 20 21 22 23 24 25

10

20

30

40

conference year

a
d
op

ti
o
n
[%

]

requirements.txt

icml
aistats
iclr
neurips

18 19 20 21 22 23 24 25

0

2

4

6

8

10

conference year

a
d
op

ti
o
n
[%

]

environment

icml
aistats
iclr
neurips

Figure 5: Requirements documentation over time. The figure illustrates the share of repositories with
requirements.txt and environment.yml files.

18 19 20 21 22 23 24 25

0

0.5

1

1.5

2

2.5

conference year

ad
op

ti
on

[%
]

poetry.lock

icml
aistats
iclr
neurips

18 19 20 21 22 23 24 25

0

0.5

1

1.5

conference year

ad
op

ti
on

[%
]

uv.lock

icml
aistats
iclr
neurips

Figure 6: Overview of the lock files the crawler discovered. The environment plot adds the numbers for
environment.yml as well as environment.yaml files.

Linting In Figure 4, we observe a relatively low, but upwards-trending, adoption of configuration for
Flake8. However, tracking .flake8 is not necessarily representative of linting adoption because of widespread
adoption of Ruff7, which is typically configured in the pyproject.toml. Therefore, we can estimate an upper
bound on linting by combining pyproject.toml and setup.cfg file counts from Figure 7 with the .flake8
numbers from Figure 4, which places us well under 50%.

Requirements documentation Requirements are very important for reproducibility since initializations,
for example, differ between PyTorch versions8. The exact version used in a project should therefore appear
in the requirements documentation. In Figure 5 and Figure 6 depict the numbers. We observe moderate,
upwards-trending adoption of various mechanisms for declaring dependencies.

The number of .lock-files we found was very small, the uv version appeared most (see supplementary Figure 9
for the rare ones). Lockfiles are higher-level application-centric alternatives to the requirements.txt file.

Both requirements.txt and environment files appear more frequently. At ICML in 2024, the combined
share of projects with requirements.txt and environment.yml files was still less than 50%. This adoption

7https://github.com/astral-sh/ruff
8https://docs.pytorch.org/docs/stable/notes/randomness.html

8

https://github.com/astral-sh/ruff
https://docs.pytorch.org/docs/stable/notes/randomness.html


Under review as submission to TMLR

18 19 20 21 22 23 24 25

10

20

30

40

conference year

a
d
op

ti
o
n
[%

]

setup.py

icml
aistats
iclr
neurips

18 19 20 21 22 23 24 25

0

5

10

15

20

25

conference year

a
d
op

ti
o
n
[%

]

pyproject.toml

icml
aistats
iclr
neurips

18 19 20 21 22 23 24 25

4

6

8

10

12

14

conference year

ad
op

ti
on

[%
]

setup.cfg

icml
aistats
iclr
neurips

18 19 20 21 22 23 24 25

5

10

15

conference year

ad
op

ti
on

[%
]

src

icml
aistats
iclr
neurips

Figure 7: Files and folders which indicate Python packaging adoption over time.

rate implies that the results of many projects will not be reproducible straightforwardly. The NeurIPS code
guide appeared (Stojnic et al., 2020) in 2020, it asks authors to provide these files. We see a solid positive
trend since the guide appeared. Ideally, we should aim to allow straightforward reproduction for every project.

It is possible to provide both files automatically with a single command each. Pip users can run pip
freeze > requirements.txt to create the historic file. For the modern standard pip lock -e . will create
the pylock.toml file (Cannon, 2024). While we did not find many usages pylock.toml due to its recent
introduction, we expect to see more of these files in the future. Similarly, for Conda users, providing the file
requires typing conda env export > environment.yml into the terminal. Afterward, both groups could
commit the files to their code repositories, doing so will ensure future scientists end up with the correct
software versions.

Packaging adoption Packaging as described in section 3.5 is an elegant way to improve code reusability.
This section discusses our estimates of Python code packaging at major ML conferences over time. Figure 7
illustrates that the numbers stagnate roughly between 20% and 40% for setup.py files. PEP-518 recommends
the use of pyproject.toml files over setup.py files since 2016 (Brett Cannon, 2016). The PEP also outlines
the case against setup.py. The trend for pyproject.toml adoption is upwards, which is encouraging. The
setup.cfg is a configuration file for setuptools, which is used to package Python code. Its use is falling,
presumably because people are migrating to pyproject.toml files, as recommended.

We also tracked hatch.toml files. In supplementary Figure 10, we see a small upward trend for its use,
but it’s size is insignificant. Overall, we see that more projects could package their code. This is apparent,

9



Under review as submission to TMLR

18 19 20 21 22 23 24 25
12

14

16

18

20

22

24

conference year

a
d
op

ti
o
n
[%

]

test-folder

icml
aistats
iclr
neurips

18 19 20 21 22 23 24 25

0

0.5

1

1.5

2

conference year

ad
op

ti
on

[%
]

tox

icml
aistats
iclr
neurips

18 19 20 21 22 23 24 25

0

1

2

3

conference year

ad
op

ti
on

[%
]

noxfile.py

icml
aistats
iclr
neurips

18 19 20 21 22 23 24 25

0

5

10

15

conference year

ad
op

ti
on

[%
]

.pre-commit-config.yaml

icml
aistats
iclr
neurips

18 19 20 21 22 23 24 25

0

2

4

6

8

10

conference year

ad
op

ti
on

[%
]

.github/workflows

icml
aistats
iclr
neurips

18 19 20 21 22 23 24 25

4

6

8

10

12

conference year

ad
op

ti
on

[%
]

Makefile

icml
aistats
iclr
neurips

Figure 8: Systematic test adoption over time. The plot for tox combines counts of tox.ini and tox.toml,
both of which are valid filenames.

especially in comparison to the adoption rates we saw for MLOSS on the right of Figure 1. The current
upward trend for pyproject.toml files is encouraging. Packaging is a key component of replicable research,
and we should encourage authors to package their code, for example, by including a reference to packaging in
the NeurIPS code guide (Stojnic et al., 2020).

10



Under review as submission to TMLR

Test and workflow use Figure 8 illustrates our estimate of the adoption of both methods in parts of
the ML community over time. In the top-left plot in Figure 8, we observe the share of repositories where
our crawler found test folders. We look at the repository root for test or test as well as within a src or a
package folder. We estimate that roughly a quarter of repositories have a dedicated test folder.

Containerized testing requires a specification of dependencies, and a package helps. Consequently, our
estimates for both are upper bounds. The numbers from the Tox and noxfile.py plots in Figure 8
allow us to estimate the adoption of containerized testing. Since both Tox and Nox run tests in isolated
containers. We identified automated workflows by checking the presence of the .github/workflows folder
and .pre-commit-config.yaml files, which are both used to automate workflows, such as by running tests
on every push to a repository. Compute-intensive tests are often automated via .github/workflows. Linting
and formatting checks are less costly and often appear in .pre-commit-config.yaml files. Roughly three-
quarters of the community work largely without automated testing and workflow automation, even though
most projects are team efforts with multiple authors.

6 How can we do better?

We believe that a step towards improving the community adoption of software best engineering practices
could take the form of a checklist for submitters and reviewers, similar to the checklist proposed by Hoyt
et al. (2023) for the cheminformatics community:

• Does the code have a license file?

• Is a README included at the repository root?

• Does the project document its dependencies? Does it provide a pylock.toml file? If not, are the
dependencies documented in the pyproject.toml file?

• Does the project facilitate automatic installation by others via packaging? It’s never too late to
package code! When deadline pressure prevents us from spending the time early, this can still happen
between paper acceptance and conference presentation.

• Is it possible to run tests automatically? Did we test our external code dependencies by running a
containerized set of tests?

• Are all pseudorandom number generator seed values fixed?

• Did automatic code checkers like flake8 or MyPy (in case of type annotations) report any problems?

• Ideally, we would like to have a single file or a command that executes the code required to re-run all
experiments from a paper.

To improve the current situation, we should ask code authors these or similar questions more frequently when
reviewing and read the author’s answers with an open mindset.

Sometimes, there are good reasons for a no, which can be an acceptable answer. For example, an illustrative
notebook for a theory paper does not require a big test machine, since the paper rests on mathematical
proofs. Furthermore, a mindless test crusade risks triggering authors to withhold code altogether. We require
a measured approach, which stresses authors’ interests and needs. Most of the time, authors will re-use their
code themselves. Moreover, proper software engineering will boost their reach. Both arguments can help us
to convince authors to adopt best practices.

Additionally, as a reviewer, if we notice that engineering best practices are not observed, we should share
relevant sources from the Python community with the authors, for example, by pointing them to the NeurIPS
code guide (Stojnic et al., 2020) or to this paper.

11



Under review as submission to TMLR

7 Conclusion

In ML research projects build on each other and teams change over time, motivating software engineering
best practices including testing, packaging, and documenting dependencies. Their application saves time
and effort and also reaps benefits in the long run by preventing bugs, easing on-boarding, and promoting
reproducibility. Therefore, we advocate for more rigorous software engineering, but with author’s interests in
mind. However, we recognize that there are practical difficulties with applying best practices, including the
lack of good incentives, lack of mentorship, competitiveness of the field, and often time pressure. Therefore,
we are mindful when recommending enforcing software engineering practices that they should be applied
only when appropriate, e.g., limiting ourselves to cases where systematic tests are efficient and valuable.
Forgoing testing, dependency documentation, and packaging initially saves time, which produces a competitive
advantage since skipping systematic testing will allow projects to be finished quicker and papers to appear
earlier. However, our methodology should not be governed by short-term interests. As large parts of ML
research rely on shared code, improving software quality means building a stronger foundation for our work,
which is in everyone’s best interest.

12



Under review as submission to TMLR

References
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL https://www.
tensorflow.org/. Software available from tensorflow.org.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2025. URL http://github.com/jax-ml/jax.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, and D Sculley. The ml test score: A rubric for ml
production readiness and technical debt reduction. In 2017 IEEE international conference on big data (big
data), pp. 1123–1132. IEEE, 2017.

Donald Stufft Brett Cannon, Nathaniel J. Smith. Pep 518 – specifying minimum build system requirements
for python projects, 2016. URL https://peps.python.org/pep-0518/.

Brett Cannon. Pep 751 – a file format to record python dependencies for installation reproducibility, 2024.
URL https://peps.python.org/pep-0751/.

Brett Cannon, Dustin Ingram, Paul Ganssle, Pradyun Gedam, Sébastien Eustace, Thomas Kluyver, and
Tzu-ping Chung. Pep 621 – storing project metadata in pyproject.toml, 2020. URL https://peps.python.
org/pep-0621/.

Conda-developers. Conda documentation, 2025. URL https://github.com/conda/conda.

Jax ecosystem authors. Chex documentation, 2025. URL https://chex.readthedocs.io/en/latest/.

Chris Hager. Pdfx, 2021. URL https://github.com/metachris/pdfx.

Benjamin Haibe-Kains, George Alexandru Adam, Ahmed Hosny, Farnoosh Khodakarami, Massive Analysis
Quality Control (MAQC) Society Board of Directors Shraddha Thakkar 35 Kusko Rebecca 36 Sansone
Susanna-Assunta 37 Tong Weida 35 Wolfinger Russ D. 38 Mason Christopher E. 39 Jones Wendell 40
Dopazo Joaquin 41 Furlanello Cesare 42, Levi Waldron, Bo Wang, Chris McIntosh, Anna Goldenberg,
Anshul Kundaje, et al. Transparency and reproducibility in artificial intelligence. Nature, 586(7829):
E14–E16, 2020.

Hatch-developers. Hatch documentation, 2025. URL https://hatch.pypa.io/latest/.

Benjamin J Heil, Michael M Hoffman, Florian Markowetz, Su-In Lee, Casey S Greene, and Stephanie C Hicks.
Reproducibility standards for machine learning in the life sciences. Nature Methods, 18(10):1132–1135,
2021.

Charles Tapley Hoyt, Barbara Zdrazil, Rajarshi Guha, Nina Jeliazkova, Karina Martinez-Mayorga, and
Eva Nittinger. Improving reproducibility and reusability in the journal of cheminformatics. Journal of
Cheminformatics, 15(1):62, 2023.

Matthew Hutson. Artificial intelligence faces reproducibility crisis. Science, 359, 2018.

Arne Johanson and Wilhelm Hasselbring. Software engineering for computational science: Past, present,
future. Computing in Science & Engineering, 20(2):90–109, 2018.

Markus List, Peter Ebert, and Felipe Albrecht. Ten simple rules for developing usable software in computational
biology. PLoS Comput. Biol., 13(1), 2017. URL https://doi.org/10.1371/journal.pcbi.1005265.

13

https://www.tensorflow.org/
https://www.tensorflow.org/
http://github.com/jax-ml/jax
https://peps.python.org/pep-0518/
https://peps.python.org/pep-0751/
https://peps.python.org/pep-0621/
https://peps.python.org/pep-0621/
https://github.com/conda/conda
https://chex.readthedocs.io/en/latest/
https://github.com/metachris/pdfx
https://hatch.pypa.io/latest/
https://doi.org/10.1371/journal.pcbi.1005265


Under review as submission to TMLR

mypy developers. mypy, 2025. URL https://mypy-lang.org/index.html. Accessed: 2025-07-30.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In NIPS 2017
Autodiff Workshop, 2017.

Yasset Pérez-Riverol, Laurent Gatto, Rui Wang, Timo Sachsenberg, Julian Uszkoreit, Felipe da Veiga Lepre-
vost, Christian Fufezan, Tobias Ternent, Stephen J. Eglen, Daniel S. Katz, Tom J. Pollard, Alexander Kono-
valov, Robert M. Flight, Kai Blin, and Juan Antonio Vizcaíno. Ten simple rules for taking advantage of git
and github. PLoS Comput. Biol., 12(7), 2016. URL https://doi.org/10.1371/journal.pcbi.1004947.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina Beygelzimer, Florence
d’Alché Buc, Emily Fox, and Hugo Larochelle. Improving reproducibility in machine learning research (a
report from the neurips 2019 reproducibility program). Journal of machine learning research, 22(164):1–20,
2021.

Pip-developers. Requirements file format - pip documentation v25.0, 2025. URL https://pip.pypa.io/en/
stable/reference/requirements-file-format/.

Karl Popper. The logic of scientific discovery. Routledge, 2005.

Princeton-AI-Lab. Ml reproducibility challenge, 2025. URL https://reproml.org/. Accessed: 2025-06-30.

Andreas Prlic and James B. Procter. Ten simple rules for the open development of scientific software. PLoS
Comput. Biol., 8(12), 2012. URL https://doi.org/10.1371/journal.pcbi.1002802.

Pytest-developers. Pytest documentation, 2025. URL https://docs.pytest.org/en/stable/.

Python-developers. unittest - unit testing framework, 2025. URL https://docs.python.org/3/library/
unittest.html.

Python-Packaging-Authority. Packaging python-projects, 2025. URL https://packaging.python.org/
tutorials/packaging-projects/.

PyTorch-Contributors. Reproducibility, 2024. URL https://pytorch.org/docs/stable/notes/
randomness.html.

Edward Raff. A step toward quantifying independently reproducible machine learning research. Advances in
Neural Information Processing Systems, 32, 2019.

Edward Raff. Research reproducibility as a survival analysis. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 469–478, 2021. URL https://doi.org/10.1609/aaai.v35i1.16124.

Edward Raff. Does the market of citations reward reproducible work? In Proceedings of the 2023 ACM
Conference on Reproducibility and Replicability, pp. 89–96, 2023.

Edward Raff and Andrew L Farris. A siren song of open source reproducibility, examples from machine
learning. In Proceedings of the 2023 ACM Conference on Reproducibility and Replicability, pp. 115–120,
2023.

Leonard Richardson. Beautiful soup documentation, 2023. URL https://www.crummy.com/software/
BeautifulSoup/bs4/doc/.

Guido van Rossum, Jukka Lehtosalo, and Łukasz Langa. Pep 484 – type hints, 2014. URL https:
//peps.python.org/pep-0484/.

Geir Kjetil Sandve, Anton Nekrutenko, James Taylor, and Eivind Hovig. Ten simple rules for reproducible
computational research. PLoS Comput. Biol., 9(10), 2013. URL https://doi.org/10.1371/journal.
pcbi.1003285.

Setuptools-Team. Setuptools documentation, 2025. URL https://setuptools.pypa.io/en/stable/.

14

https://mypy-lang.org/index.html
https://doi.org/10.1371/journal.pcbi.1004947
https://pip.pypa.io/en/stable/reference/requirements-file-format/
https://pip.pypa.io/en/stable/reference/requirements-file-format/
https://reproml.org/
https://doi.org/10.1371/journal.pcbi.1002802
https://docs.pytest.org/en/stable/
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://packaging.python.org/tutorials/packaging-projects/
https://packaging.python.org/tutorials/packaging-projects/
https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html
https://doi.org/10.1609/aaai.v35i1.16124
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://doi.org/10.1371/journal.pcbi.1003285
https://doi.org/10.1371/journal.pcbi.1003285
https://setuptools.pypa.io/en/stable/


Under review as submission to TMLR

Nathaniel J. Smith, Thomas Kluyver, and Alyssa Coghlan. Pep 517 – a build-system independent format for
source trees, 2015. URL https://peps.python.org/pep-0517/.

Sören Sonnenburg, Mikio L Braun, Cheng Soon Ong, Samy Bengio, Leon Bottou, Geoffrey Holmes, Yann
LeCun, Klaus-Robert Müller, Fernando Pereira, Carl Edward Rasmussen, et al. The need for open source
software in machine learning. Journal of Machine Learning Research, 8(Oct):2443–2466, 2007. URL
https://www.jmlr.org/papers/volume8/sonnenburg07a/sonnenburg07a.pdf.

Sphinx-developers. Sphinx documentation, 2025. URL https://www.sphinx-doc.org.

Robert Stojnic, Ross Taylor, Sarthak Pati, Fabian-Robert Stöter, Viktor Kerkez andShagun Sodhani,
Hamel Husain, Amit Chaudhary, and Rishabh Jain. Tips for releasing research code in machine learn-
ing (with official neurips 2020 recommendations), 2020. URL https://github.com/paperswithcode/
releasing-research-code. Accessed: 2025-01-28.

Rachael Tatman, Jake VanderPlas, and Sohier Dane. A practical taxonomy of reproducibility for machine
learning research. In 2nd Reproducibility in Machine Learning Workshop at ICML 2018, Stockholm, Sweden.,
2018.

Guido van Rossum, Barry Warsaw, and Nick Coghlan. Pep 8 – style guide for python code, 2001. URL
https://www.python.org/dev/peps/pep-0008/.

Mark Ziemann, Pierre Poulain, and Anusuiya Bora. The five pillars of computational reproducibility:
bioinformatics and beyond. Briefings in Bioinformatics, 24(6), 2023.

15

https://peps.python.org/pep-0517/
https://www.jmlr.org/papers/volume8/sonnenburg07a/sonnenburg07a.pdf
https://www.sphinx-doc.org
https://github.com/paperswithcode/releasing-research-code
https://github.com/paperswithcode/releasing-research-code
https://www.python.org/dev/peps/pep-0008/


Under review as submission to TMLR

18 19 20 21 22 23 24 25

0

1

2

3

4

5

·10−1

conference year

ad
op

ti
on

[%
]

Pipfile.lock

icml
aistats
iclr
neurips

18 19 20 21 22 23 24 25

0

1

2

3

4

5

·10−1

conference year

ad
op

ti
on

[%
]

pixi.lock

icml
aistats
iclr
neurips

Figure 9: Rare requirements documentation lock-files

A Appendix

Impact Statement

This work exhibits a critical gap in the adoption of software practices to improve reproducibility in ML
research and proposes actionable recommendations. Our findings aim to call for action in the ML community
to promote reproducibility and long-term scientific integrity through these standard software practices.

Acronyms

AISTATS International Conference on Artificial Intelligence and Statistics

CI Continuous Integration

ICLR International Conference on Learning Representations

ICML International Conference on Machine Learning

JIT just-in-time

ML machine learning

MLOSS Machine Learning Open Source Software

MLRC Machine Learning Reproducibility Challenge

NeurIPS Conference on Neural Information Processing Systems

PDF Portable Document Format

PEP Python Enhancement Proposal

PIP package installer for Python

PyPA Python Packaging Authority

PyPI Python Package Index

TMLR Transactions on Machine Learning Research

16



Under review as submission to TMLR

18 19 20 21 22 23 24 25

0

5

10

15

·10−2

conference year

ad
op

ti
on

[%
]

pixi.toml

icml
aistats
iclr
neurips

18 19 20 21 22 23 24 25

0

1

2

3

4

5
·10−2

conference year

ad
op

ti
on

[%
]

hatch.toml

icml
aistats
iclr
neurips

Figure 10: Adoption of potentially emerging packaging tools.

17


