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Abstract

Various XAI attribution methods have been pro-001
posed recently for the transformer architecture,002
allowing for insights into the decision-making003
process of large language models by assigning004
importance scores to input tokens and interme-005
diate representations. One class of methods006
that seems very promising in this direction in-007
cludes decomposition-based approaches, i.e.,008
XAI methods that redistribute the model’s pre-009
diction logit through the network, as this value010
is directly related to the prediction. In the pre-011
vious literature we note though that two promi-012
nent methods of this category, namely ALTI-013
Logit and LRP, have not yet been analyzed in014
juxtaposition and hence we propose to close015
this gap by conducting a careful quantitative016
evaluation w.r.t. ground truth annotations on017
a subject-verb agreement task, as well as vari-018
ous qualitative inspections, using BERT, GPT-2019
and LLaMA-3 as a testbed. Along the way we020
compare and extend the ALTI-Logit and LRP021
methods, including the recently proposed At-022
tnLRP variant, from an algorithmic and imple-023
mentation perspective. We further incorporate024
in our benchmark two widely-used gradient-025
based attribution techniques. Finally, we make026
our carefullly constructed benchmark dataset027
for evaluating attributions on language models,028
as well as our code1, publicly available in or-029
der to foster evaluation of XAI methods on a030
well-defined common ground.031

1 Introduction & Background032

1.1 Interpretability of Transformers033

Many approaches have been explored to shed light034

on how Transformer models process language.035

BERTology works (Rogers et al., 2020) primar-036

ily employ probes (Gupta et al., 2015; Köhn, 2015;037

Alain and Bengio, 2016) to analyze what informa-038

tion the model’s internal representations encode,039

1Link will be made available upon paper acceptance.
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Figure 1: Our XAI evaluation pipeline using subject-
verb agreement: 1) Predict the logits difference for the
two verb forms, 2) Explain the logits difference by gen-
erating a token-level relevance heatmap for each XAI
method (for decomposition-based XAI methods the rel-
evances sum up to the logits difference), 3) Evaluate the
heatmaps w.r.t. ground truth linguistic evidence (i.e.,
the subject) by computing various relevance accuracy
metrics (such as the fraction of positive relevance falling
inside the GT).

which can range from linguistic properties to fac- 040

tual and world knowledge (Clark et al., 2019; He- 041

witt and Manning, 2019; Liu et al., 2019; Petroni 042

et al., 2019; Tenney et al., 2019; Cui et al., 2021, 043

inter alia). However, probing itself is not with- 044

out limitations, as it is correlational in nature and 045

requires careful interpretation (Hewitt and Liang, 046

2019; Belinkov, 2022). 047

This spurs another line of inquiry asking how 048

information is actually being used via causal inter- 049

vention (Pearl, 2001; Vig et al., 2020; Geiger et al., 050

2021). Elazar et al. (2021) propose amnesic prob- 051

ing that ablates certain linguistic properties such as 052

part-of-speech from models’ representation to see 053

how it affects actual predictions. Similarly, Meng 054

et al. (2022) analyse how LLMs store and recall 055

1



factual information by intervening on weights and056

hidden representations. Causal methods allow the057

isolation of subgraphs of neural networks that are058

responsible for certain tasks such as indirect object059

identification (Wang et al., 2023) and induction060

heads (Olsson et al., 2022), although the process061

itself relies on a non-trivial amount of manual la-062

bor. Recent efforts such as ACDC (Conmy et al.,063

2023) attempt to alleviate this issue, yet still can064

miss some nodes that are supposed to be part of the065

subgraph.066

Our focus lies on attribution methods, specif-067

ically those that decompose the prediction logit068

throughout the entire network and do not only con-069

sider parts of the Transformer model such as MLPs070

(Geva et al., 2021, 2022) or attention modules (Ab-071

nar and Zuidema, 2020; Kobayashi et al., 2020).072

These approaches are able to measure causal prop-073

erties (Geiger et al., 2021), allowing for the iden-074

tification and localization of features playing an075

important role during inference in a more scalable076

manner, and simultaneously enable inspection of077

information encoded in the model (Achtibat et al.,078

2023; Ferrando and Voita, 2024).079

1.2 Evaluation of Attributions080

A common way to evaluate attributions is to system-081

atically perturb parts of the models’ inputs accord-082

ing to their relevance and then measure the result-083

ing changes in the output, the higher the change the084

more accurate the attribution. Such an approach has085

been initially proposed as pixel-perturbation in the086

computer vision domain (Bach et al., 2015; Samek087

et al., 2017), and was later extended to words and088

tokens in NLP (Arras et al., 2016, 2019b; DeYoung089

et al., 2020).090

Another direction is to use syntactic tasks to eval-091

uate attributions, such as subject-verb agreement,092

since those tasks typically allow for the creation093

of ground truth annotations. Although such ap-094

proach has been quite popular, to the best of our095

knowledge there exist no properly constructed and096

publicly available benchmark dataset using subject-097

verb agreement on real-world natural language data,098

and existing benchmarks often were constructed099

automatically by using short and simple sentence100

templates such as done for instance in BLiMP and101

CausalGym (Warstadt et al., 2020; Arora et al.,102

2024).103

Besides automatic evaluation, user studies were104

also widely used to evaluate explanations (Doshi-105

Velez and Kim, 2017; Lipton, 2018; Hase and106

Bansal, 2020). 107

In the present work we contribute the follow- 108

ing: (a) Analyze and compare decomposition- 109

based attribution methods which were not yet com- 110

pared to one another; (b) Generate and release 111

a ground truth annotated real-world dataset for 112

evaluating attributions on Language Models us- 113

ing a subject-verb agreement task; (c) Extend 114

the ALTI-Logit decomposition-based XAI method 115

to the Llama model family; (d) Propose a novel 116

fast and simple method to implement the AttnLRP 117

decomposition-based XAI method based on a mod- 118

ified Gradient×Input strategy, as well as provide a 119

complete set of proofs to justify this approach for 120

both XAI methods LRP and AttnLRP. 121

2 XAI Methods Strategy 122

Let us first introduce some notations that will help 123

us analyze and compare the strategy of the con- 124

sidered XAI methods. Let xlt be the token repre- 125

sentation for timestep t and layer l, and Rl
t the 126

corresponding relevance2 for this token. Accord- 127

ingly R0
t represents the relevance of the input to- 128

ken for timestep t. Let U be the output embed- 129

ding matrix, and Uw the column vector for the 130

predicted token w. Hence, the language model’s 131

prediction logit for predicting token w at timestep 132

T 3 is: logitw = xLT · Uw, with L being the number 133

of layers of the model. A property which is com- 134

mon to all decomposition-based XAI methods is 135

that the logitw is decomposed additively into contri- 136

butions of model components (token, neuron, head 137

or layer), or in other words, the contributions of 138

model components sum up to the value logitw. 139

2.1 ALTI-Logit 140

ALTI-Logit is a recently proposed state-of-the-art 141

decomposition-based approach for Transformer 142

Language Models proposed by Ferrando et al. 143

(2023). Its central idea is to additively decompose 144

the final layer’s token representation xLT used to 145

compute the prediction logit (i.e., the penultimate 146

vector ahead of the output embedding layer U) 147

into layer-wise contributions of the outputs of each 148

MLP and MHA block4, by following the resid- 149

2In this work we use the terms relevance, contribution,
attribution and importance score interchangeably.

3Here we assume an Autoregressive Language Model, with
T being the input length, but all considered XAI methods are
in principle applicable to Masked Language Models as well.

4We refer to MLP as Multi-Layer Perceptron, and MHA as
Multi-Head Attention, representing the two main components
of the Transformer architecture.
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ual connections of the model (Elhage et al., 2021).150

While the contributions of the MLP blocks are not151

decomposed further backward, the contributions152

of the MHA blocks get further broken down into153

contributions of their respective input token rep-154

resentations, similarly to attention decomposition155

from Kobayashi et al. (2021). The latter is achieved156

by linearizing the MHA-block by viewing the at-157

tention weight matrix as a constant, as well as treat-158

ing the standard deviation within the normalization159

layers as a constant, similarly to how Layer-wise160

Relevance Propagation (LRP) was previously ex-161

tended to Transformers (Ali et al., 2022). Lastly,162

in order to account for the mixing of information163

across multiple layers, a token-level contribution164

matrix is built within each MHA block by consid-165

ering the contributions of the MHA’s transformed166

vectors to the MHA’s output vector (as was done in167

the ALTI method by Ferrando et al. (2022)), and168

the resulting matrices are multiplied across layers169

to finally obtain an ALTI-Logit contribution for170

each input token. Overall the decomposition prop-171

erty of ALTI-Logit can be summarized as follows5:172 ∑
tR

0
t +

∑
l R̃

l
T = logitw, where R0

t is the input173

token contribution for each timestep t in the in-174

put sequence resulting from the MHA blocks and175

aggregated over all layers, while R̃l
T is the contribu-176

tion of the output of each MLP block for the given177

prediction timestep T and layer l, since ALTI-Logit178

assumes there is no mixing of information across179

timesteps resulting from MLP blocks.180

In practice, the official implementation of ALTI-181

Logit6 from (Ferrando et al., 2023) requires the182

computation of a second, carefully designed for-183

ward pass through the model (using attention ma-184

trices, as well as weight parameters from various185

intermediate layers), after having run a first stan-186

dard forward pass through the model during which187

the inputs and outputs of hidden layers are col-188

lected via hooks. This dedicated forward pass in189

ALTI-Logit was so far derived for Pre-LayerNorm190

architectures7 and Autoregressive Language Mod-191

els, and exclusively applied to the models GPT2192

(Radford et al., 2019), OPT (Zhang et al., 2022)193

and BLOOM (Scao et al., 2023).194

5Ignoring contributions from model biases for simplicity
of notation.

6https://github.com/mt-upc/logit-explanations
7We refer to Pre-LayerNorm to indicate that the normal-

ization layer is located before the self-attention computation
(resp. the fully-connected layers) within the MHA (resp. MLP)
blocks, as opposed to Post-LayerNorm where the normaliza-
tion happens after them.

In this work we extend the ALTI-Logit algorithm 195

to the Llama model family (Touvron et al., 2023; 196

Grattafiori et al., 2024) by adapting ALTI-Logit 197

to handle grouped-query attention (Ainslie et al., 198

2023), as well as RMSNorm normalization (Zhang 199

and Sennrich, 2019). However, we refrain from 200

adapting ALTI-Logit to the BERT model family, 201

as this would require a substantial re-design of the 202

algorithm to cope with Post-LayerNorm architec- 203

tures as well as Masked Language Modeling. 204

ALTI-Logit provides layer-wise token-level (as 205

well as head-level) contributions to the prediction 206

logit, and this method (resp. its components Logit 207

(Ferrando et al., 2023) and ALTI (Ferrando et al., 208

2022)) were previously evaluated against Erasure 209

(Li et al., 2017), Gradient (Simonyan et al., 2014; 210

Li et al., 2016), Gradient×Input (Denil et al., 2015; 211

Shrikumar et al., 2016), Integrated Gradients (Sun- 212

dararajan et al., 2017), Attention Rollout (Abnar 213

and Zuidema, 2020) and GlobEnc (Modarressi 214

et al., 2022) explanations, where ALTI-Logit was 215

shown to deliver the best results. 216

2.2 Layer-wise Relevance Propagation 217

Layer-wise Relevance Propagation (LRP) (Bach 218

et al., 2015) is an interpretability method based on 219

backward decomposition following a layer-wise 220

conservation principle. In other words, in each 221

layer of the model the contributions of neurons sum 222

up to the prediction logit. More precisely it holds8: 223∑
tR

0
t =

∑
tR

1
t = · · · =

∑
tR

L
t = logitw. LRP 224

was initially proposed for Convolutional Neural 225

Networks (Bach et al., 2015), and later extended to 226

other models such as Recurrent Networks (Arras 227

et al., 2017, 2019a), Transformers (Ali et al., 2022; 228

Achtibat et al., 2024) and selective State Space 229

Models (Rezaei Jafari et al., 2024). 230

In practice, LRP can be implemented by apply- 231

ing dedicated LRP backward propagation rules for 232

each type of layer occuring in the network, and that 233

redistribute neuron relevances from upper layers to 234

lowers layers in a conservative manner (Montavon 235

et al., 2019). 236

For a linear layer with forward pass equation 237

zj =
∑

i ziwij+bj , and given the relevances of the 238

output neurons Rj , the input neurons’ relevances 239

Ri are computed through a summation of the form9: 240

8Here also ignoring the relevances assigned to model bi-
ases for simplicity.

9This rule corresponds to the LRP-ϵ rule (with ϵ being a
small numerical stabilizer) which was shown to work well in
NLP. On computer vision models, in particular for convolu-
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Ri =
∑

j
zi·wij

zj + ϵ·sign(zj)
·Rj , hence their relevances241

are proportional to their forward pass contributions.242

For an element-wise activation layer of the form243

zj = g(zi), with g being a non-linear activation244

function, the relevance Rj is redistributed back-245

ward using the identity rule, thus Ri = Rj . In246

order to extend LRP to Transformer models, it is247

required to design new rules to propagate the rele-248

vance backward through two further non-linearities249

typical to the models’ architecture: product layers250

(occurring for instance in the product between at-251

tention weights and value vectors inside the MHA),252

and the normalization layer (LayerNorm or RM-253

SNorm). To this end Ali et al. (2022) propose to254

view the attention weights as a constant, which is255

equivalent to using the signal-take-all LRP redis-256

tribution rule for products which was previously257

proposed for extending LRP to Recurrent Neural258

Networks (Arras et al., 2017, 2019a). For the nor-259

malization layers, Ali et al. (2022) propose to treat260

the standard deviation as a constant. In practice,261

these two rules can be implemented by treating the262

previous non-linearities as linear layers for LRP263

(see Appendix D for more details).264

While the LRP extension to Transformers has265

been proposed in Ali et al. (2022), early implemen-266

tations of LRP on Transformers Ali et al. (2022);267

Eberle et al. (2022) omit the redistribution of rel-268

evance through MLP blocks (more particularly269

through its element-wise activation layer), and270

were only utilizing LRP rules inside MHA blocks.271

To the best of our knowledge the first LRP im-272

plementation applied to a complete Transformer273

architecture was provided by Eberle et al. (2023).274

Ali et al. (2022) evaluated LRP against various275

attention-based XAI methods (Abnar and Zuidema,276

2020; Sood et al., 2020; Chefer et al., 2021a), as277

well as Gradient×Input (Denil et al., 2015; Shriku-278

mar et al., 2016), and LRP was shown to deliver279

the best results.280

2.3 AttnLRP281

AttnLRP is a novel variant of LRP (Achtibat et al.,282

2024), which in contrast to ALTI-Logit and LRP283

does not consider the attention weights as a con-284

stant, and thus redistributes relevances backward285

onto the key and query vectors. In particular286

Achtibat et al. (2024) handles product layers by287

employing “uniform” LRP redistribution rule. Con-288

tional layers, other rules have be shown to be more adequate
(Montavon et al., 2019; Arras et al., 2022; Kohlbrenner et al.,
2020)

cretely, given a product layer za · zb = zj , the 289

relevance of the output neuron Rj is redistributed 290

equally among input neurons, hence Ra = Rb = 291

0.5 · Rj . This is similar to a rule previously pro- 292

posed for extending LRP to customized LSTMs 293

(Arras et al., 2019a; Arjona-Medina et al., 2019). 294

As a result, the attention weights’ matrix is as- 295

signed relevance scores, opening up the question 296

of how to redistribute this quantity further back- 297

ward through the softmax non-linearity. For that 298

purpose Achtibat et al. (2024) propose a novel re- 299

distribution rule which is equivalent to using the 300

Gradient×Input XAI method for that layer. While 301

this redistribution strategy does not conserve the 302

overall relevance between the layer’s output and 303

input neurons, it can be justified by the fact that dur- 304

ing the forward pass the softmax layer may have a 305

non-zero output while all inputs are zero, which can 306

be interpreted as a bias parameter for that layer10. 307

Currently, an implementation of AttnLRP 308

(Achtibat et al., 2024) is available via the highly 309

specialized LXT11 toolbox, which overwrites the 310

Pytorch backward function of all layers present in 311

the network. In Section 2.7, we will show that a 312

strategy similar to the one previously adopted for 313

LRP based on a modified Gradient×Input approach 314

can also be extended to AttnLRP to allow for a sim- 315

pler and faster implementation. AttnLRP was eval- 316

uated against LRP from Ali et al. (2022), as well as 317

various attention-based (Abnar and Zuidema, 2020; 318

Chefer et al., 2021a,b; Deiseroth et al., 2023) and 319

gradient-based (Simonyan et al., 2014; Sundarara- 320

jan et al., 2017; Smilkov et al., 2017) XAI methods, 321

and AttnLRP was shown to deliver the best results. 322

2.4 Gradient-based 323

We consider two gradient-based methods com- 324

monly used in previous XAI works. Both ap- 325

proaches compute the gradient of the prediction 326

logit w.r.t. the input token’s representation of in- 327

terest and normalize it using either the L1-norm 328

or squared L2-norm, i.e., R0
t = ∥∇x0

t
logitw∥1, 329

10This is similar to how biases in linear layers get assigned
(or absorb) a portion of the relevance. Indeed, strictly speaking,
with LRP the sum of the input tokens’ relevances will be
numerically equal to the prediction logit only if all model
biases are set to zero (which in practice can serve as a sanity
check for the LRP implementation). See the redistribution
rule for linear layers introduced in Section 2.2, where the bias
term appears in the denominator.

11https://github.com/rachtibat/
LRP-eXplains-Transformers/tree/25aa8f3 (latest
available commit at the time of submission: Feb 13th 2025,
25aa8f3)
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resp. ∥∇x0
t

logitw∥22. Both variants have the advan-330

tage of being on an additive scale, meaning that the331

contributions of smaller units (neurons, tokens, or332

words) can be summed up to obtain the relevance333

of a greater portion of the input. We tried both and334

report only the best results under Gradient. The335

Gradient×Input method computes the dot product336

between the gradient and the input token’s repre-337

sentation, i.e. R0
t = ∇x0

t
· x0t . All gradient-based338

methods are easy and efficient to compute, and can339

be obtained via standard gradient backpropagation.340

2.5 Overview341

Table 1 summarizes all XAI attribution methods342

considered in this work, whereas only the first343

three methods ALTI-Logit, LRP and AttnLRP are344

decomposition-based and redistribute the predic-345

tion logit’s quantity onto model components at dif-346

ferent levels of granularity. While ALTI-Logit as-347

signs relevance at the token-level, and if desired348

also at head-level inside MHA blocks, LRP and349

AttnLRP are more fine-grained methods and de-350

compose the prediction down to the smallest pos-351

sible unit, i.e., a neuron. Regarding computation352

time, all methods have conceptually a similar cost353

in number of forward/backward passes required,354

though depending on the efficiency of the particular355

implementation that is used different memory and356

time costs might arise in practice (as we will see for357

instance for AttnLRP in Section 2.7). In order to358

additively decompose the prediction logit into con-359

tributions of model components, decomposition-360

based XAI methods make several simplifying as-361

sumptions: in particular they tend to "linearize"362

parts of the model (e.g., by viewing the attention363

matrix as a constant, or treating the standard de-364

viation inside normalization layers as a constant,365

see Appendix D for more details). Gradient-based366

explanations do not make those simplifications,367

though they are unable to explain the actual pre-368

diction’s logit, but explain instead its derivatives369

(or in other words, per definition, they identify to-370

kens/neurons of which a slight perturbation might371

influence a significant change in the prediction).372

Finally, while most XAI methods redistribute rel-373

evances backward across all layers of the model,374

and thereby take into account a mixing of contex-375

tual information arising from token-interactions376

inside MHA block, ALTI-Logit is the only method377

where the flow of information gets truncated inside378

MLP blocks and is not backward propagated fur-379

ther from these layers on (except for contributions380

from residual connections). 381

2.6 Methods not considered 382

Other non-decomposition based XAI methods 383

which we do not consider include more sophis- 384

ticated gradient-based variants such as Integrated 385

Gradients (Sundararajan et al., 2017) and Smooth- 386

Grad (Smilkov et al., 2017). These methods try 387

to alleviate the noisy gradient problem (Balduzzi 388

et al., 2017) by averaging gradients over several 389

perturbed samples. However they introduce hy- 390

perparameters into the explanation process (such 391

as the number/type of perturbations or the base- 392

line choice12), and in a typical XAI use-case (with 393

no available ground truth) one has no criteria to 394

tune those hyperparameters. Further, similarly to 395

perturbation-based XAI methods, generating and 396

leveraging the perturbations yields an additional 397

computation cost (one typically needs one back- 398

ward, resp. forward pass, for each perturbed sample 399

with gradient-based, resp. perturbation-based, XAI 400

methods). Other popular non-decomposition based 401

XAI methods include attention-based methods such 402

as Attention Rollout (Abnar and Zuidema, 2020) 403

and ALTI (Ferrando et al., 2022). Although these 404

methods are intuitively appealing since they lever- 405

age the mixing of information already provided by 406

attention weights and trace it back across layers, 407

those methods have been shown to be inferior to 408

decomposition-based methods in previous works 409

(Ali et al., 2022; Achtibat et al., 2024; Ferrando 410

et al., 2022, 2023), and are typically not directly 411

related to a specific class/token prediction. Lastly 412

we do not consider other LRP-based approaches 413

for Transformers proposed in the literature (Voita 414

et al., 2021; Chefer et al., 2021b): those do not 415

follow a layer-wise conservation principle within 416

the MHA layer13 and have been observed to lead 417

to numerical instabilities (Achtibat et al., 2024). 418

2.7 LRPx : Fast and simple implementation of 419

LRP variants 420

The adoption of LRP (and its variant AttnLRP) has 421

been so far mainly tied to the use of ready-made 422

and highly specialized toolboxes (such as Zennit 423

(Anders et al., 2021), LXT (Achtibat et al., 2024) or 424

12Indeed these hyperparameters can have a huge impact
on the quality of explanations, as was previously shown in
computer vision (Arras et al., 2022), for instance a zero-valued
baseline as is often used for the Integrated Gradients method
might be sub-optimal.

13In fact they enforce conservation artificially via a subse-
quent normalization step over relevances.
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Table 1: Overview of the XAI attribution methods considered in this work.

Method granularity computation treat normalization
as a linear layer

treat attention matrix
as a constant

mixing of information
upward MLP blocks

logit
decomposition

ALTI-Logit token, head, layer 2 × forward ✓ ✓ ✗ ✓
LRP neuron, layer forward + backward ✓ ✓ ✓ ✓
AttnLRP neuron, layer forward + backward ✓ ✗ ✓ ✓

Gradient,
Gradient×Input neuron, layer forward + backward ✗ ✗ ✓ ✗

others (Lapuschkin et al., 2016; Alber et al., 2019)).425

Such toolboxes compute the LRP relevances explic-426

itly at each layer by overwriting the standard gra-427

dient backward pass (either through hooks, and by428

overwriting the backward function of every layer).429

However, it is possible to implement LRP on Trans-430

formers in a more lightweight and elegant manner431

by adopting a modified Gradient×Input strategy.432

To the best of our knowledge the first work where433

this strategy was employed was Eberle et al. (2023).434

It consists in modifying a few layers during the for-435

ward pass (only non-linear layers need to be modi-436

fied, so far less layers than in Zennit or LXT) such437

that their output values remain unchanged (hence438

without affecting the forward pass outcome), but439

in a way that the resulting gradients from the Py-440

torch´s automatic differentiation engine multiplied441

with the forward pass activations yields LRP rele-442

vances at any hidden or input layer of interest (in443

practice this is achieved by detaching dedicated444

neurons from the computational graph by using Py-445

torch’s Tensor.detach() method). Although this446

efficient and simple strategy to implement LRP has447

been further adopted in a recent work extending448

LRP to State Space Models (Rezaei Jafari et al.,449

2024), and builds upon various LRP properties and450

derivations provided in multiple previous works451

(Lapuschkin, 2019; Eberle, 2022; Montavon et al.,452

2019; Rezaei Jafari et al., 2024), to the best of453

our knowledge there exist so far no comprehen-454

sive and complete set of proofs demonstrating the455

equivalence of explicit LRP rules with this modified456

Gradient×Input approach. In the present work we457

close this gap by providing such extensive proofs458

in the Appendix D.459

Further, we show for the first time that the modi-460

fied Gradient×Input strategy can also be extended461

to AttnLRP. As mentioned earlier, AttnLRP differs462

from LRP by the rules it employs for the prod-463

uct and softmax layers, see Section 2.3. Let us464

consider the modified product layer defined by:465

ẑj = 0.5 ·(za ·zb)+[0.5 · (za · zb)]detach(). One can466

easily see that the forward pass outcome remains467

unchanged (i.e., zj = ẑj). The resulting gradient 468

of za is: dza = 0.5 · zb · dzj . Now let’s assume 469

relevances are computed via a Gradient×Input 470

formula using this modified product layer, thus 471

Rj = dzj ·zj and Ra = dza·za. As a result it holds: 472

Ra = 0.5 · zb · dzj · za = 0.5 · zj · dzj = 0.5 ·Rj , 473

which is equivalent to the uniform rule for prod- 474

ucts □. Hence we have shown that the uniform 475

rule used in AttnLRP can be implemented via a 476

modified Gradient×Input strategy. In the Appendix 477

D.5 we provide a further proof that the AttnLRP re- 478

distribution rule for softmax proposed by Achtibat 479

et al. (2024) is equivalent to Gradient×Input. 480

In this work we implement a straightforward and 481

compact Pytorch toolbox named LRPx (where x 482

stands for multiple LRP variants) which is part 483

of our released code, and that allows to com- 484

pute both LRP and AttnLRP using the modified 485

Gradient×Input strategy. In Section 4.3 we bench- 486

mark the resulting computational time on Trans- 487

formers using LRPx against the LXT toolbox from 488

Achtibat et al. (2024). 489

3 A Benchmark for Language Model 490

Attributions 491

3.1 Suject-Verb Agreement (SVA) Task 492

We build our XAI benchmark dataset for Language 493

Models on top of the natural language subject-verb 494

agreement dataset released by Goldberg (2019), 495

which itself is based upon data from Linzen et al. 496

(2016). In order to identify the subject of a given 497

verb we employ Spacy’s dependency parser and 498

make sure that the dependency relation between 499

the verb and the subject is of type “nominal sub- 500

ject”. Note that previous work by Ferrando et al. 501

(2023) also created a similar benchmark, however 502

their ground truth subjects were incorrect14. We 503

14Indeed they used the first subject occuring in the sentence
as ground truth, although it might not be in a dependency
relation with the verb of interest in case of multi-phrase sen-
tences. This bug has a huge impact on the results, e.g., on
GPT2-small Ferrando et al. (2023) report a MRR accuracy of
approx. 0.60 for the ALTI-Logit method, while we find 0.81.
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build our dataset meticulously, additionally discard-504

ing some invalid and trivial samples, in order to505

release a proper and well-defined dataset to the re-506

search community. Appendix B provides all the507

details of the data generation process. Our resulting508

tokenized datasets contain 29k samples.509

In order to explain the model’s SVA predictions,510

we generate contrastive explanations (Yin and Neu-511

big, 2022), in other words, we explain a logits dif-512

ference of the form: logitp − logito, where p indi-513

cates the predicted verb number (singular/plural)514

and o the opposite verb number.515

3.2 Language Models516

We employ the following models:517

bert-base-uncased, bert-large-uncased,518

GPT2-small, GPT2-XL, Llama-3.2-1B and519

Llama-3.2-3B from the HuggingFace library.520

Appendix Table 3 provides the models’ prediction521

accuracy on SVA, as well as various informations522

on the models’ sizes and tokenizer.523

3.3 Evaluation Metrics524

We employ four different evaluation metrics.525

Pointing Game top-k (PGk). This metric looks526

at the top-k tokens with the highest relevances. If527

one of these tokens is within the ground truth, the528

accuracy is 1 else 0. We report results for k=2 in our529

experiments. A similar metric has been previously530

used to evaluate attributions (Poerner et al., 2018).531

Mean Reciprocal Rank (MRR). This is the sole532

metric reported in the evaluation work by Ferrando533

et al. (2023). It consists in retrieving the inverse of534

the minimal rank (in decreasing order of relevance)535

of the tokens belonging to the ground truth.536

Relevance Mass Accuracy (RMA). This metric537

was introduced in computer vision (Arras et al.,538

2022), and calculates the fraction of positive rel-539

evance that falls inside the ground truth over the540

total positive relevance present in the input.541

Per-Token Accuracy (PTA). This metric makes542

a binary classification decision based on the sign543

of the relevance and then computes the classifica-544

tion accuracy w.r.t. the ground truth tokens. More545

precisely, it assumes tokens inside the ground truth546

shall receive a strictly positive relevance, while547

tokens outside the ground truth shall have no rel-548

evance or a negative relevance. It is related to the549

Pixel Accuracy used to evaluate semantic segmen-550

tation in computer vision.551

4 Results 552

4.1 Evaluation w.r.t. Ground Truth 553

Table 2 presents our results. We computed the met- 554

rics using only correctly predicted samples. When 555

we look at the PTA results, we find that Gradient 556

has the best performance, and results are consistent 557

across models. However, the score achieved by 558

Gradient for this metric is close to random, and 559

worse than random for the other XAI methods. 560

This illustrates the importance of the choice of the 561

metric for XAI evaluation, and reveals that the un- 562

derlying assumption of PTA that the sign of the 563

relevance shall switch between tokens inside and 564

outside the ground truth is not adequate. 565

The remaining evaluation metrics deliver largely 566

consistent result per Language Model family. 567

While AttnLRP performs well on BERT and 568

Llama3 models, ALTI-Logit is the strongest 569

method on GPT2, followed by LRP. We are not 570

yet able to understand why the results are so differ- 571

ent across model families, since most components 572

within the given architectures are similar. However 573

we believe this constitutes an interesting finding 574

that should be investigated in future work. In terms 575

of magnitude of the metrics, results are higher for 576

GPT2 and Llama3 than on BERT, which is proba- 577

bly due to the different tokenizers and vocabulary 578

sizes that lead to longer inputs for BERT models, 579

since this difference is also reflected in the random 580

baseline results. 581

4.2 Exemplary Heatmaps 582

In the Appendix Fig. D.5 we provide some exem- 583

plary heatmaps using the five samples with the high- 584

est logits difference across the dataset for the model 585

Llama-3.2-1B. One can see that heatmaps for At- 586

tnLRP are more sparse and focused than those for 587

ALTI-Logit. 588

4.3 Computational Speedup with LRPx 589

We calculated the computational time speedup ob- 590

tained for AttnLRP using our LRPx toolbox (i.e., 591

a Gradient×Input strategy), versus the original 592

LXT toolbox from Achtibat et al. (2024) (based 593

on an explicit relevance computation). To this 594

end, we retrieve the median speedup over the 595

first 1,000 samples of our SVA dataset, using two 596

types of GPUs: NVIDIA Tesla V100 32GB and 597

NVIDIA A100 40GB, and single precision. On 598

bert-base-uncased we obtained a speedup be- 599

tween 1.83 and 1.98, and on Llama-3.2-1B be- 600
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Table 2: Token-level accuracy of the XAI methods w.r.t. ground truth, using different metrics (PG2: Pointing Game
top-2, MRR: Mean Reciprocal Rank, RMA: Relevance Mass Accuracy, PTA: Per-Token Accuracy). All metrics are
within [0.0, 1.0], the higher the better, we highlight in bold the best result, and underline the second best per model.
The random baseline was obtained by sampling relevances uniformly in the range [-1.0, 1.0) for each given model’s
tokenized dataset (averaged over 10 runs).

BERT GPT2 Llama3
bert-base-uncased GPT2-small Llama-3.2-1B

XAI Method PG2↑ MRR↑ RMA↑ PTA↑ PG2 MRR RMA PTA PG2 MRR RMA PTA

ALTI-Logit - - - - 0.867 0.808 0.342 0.330 0.690 0.623 0.288 0.359
LRP 0.688 0.637 0.208 0.339 0.738 0.706 0.367 0.445 0.690 0.533 0.221 0.244
AttnLRP 0.775 0.705 0.260 0.376 0.705 0.634 0.318 0.408 0.884 0.814 0.387 0.382
Gradient 0.775 0.718 0.245 0.041 0.592 0.551 0.255 0.153 0.283 0.366 0.151 0.127
Gradient×Input 0.292 0.316 0.095 0.497 0.262 0.353 0.152 0.565 0.365 0.407 0.183 0.512

bert-large-uncased GPT2-XL Llama-3.2-3B

ALTI-Logit - - - - 0.885 0.852 0.402 0.320 0.614 0.557 0.266 0.297
LRP 0.560 0.521 0.187 0.408 0.823 0.754 0.407 0.392 0.747 0.622 0.241 0.231
AttnLRP 0.641 0.580 0.224 0.383 0.779 0.658 0.351 0.384 0.885 0.764 0.364 0.326
Gradient 0.555 0.551 0.177 0.041 0.579 0.546 0.265 0.153 0.275 0.311 0.143 0.127
Gradient×Input 0.212 0.249 0.077 0.513 0.321 0.408 0.198 0.608 0.377 0.413 0.192 0.514

Random mean 0.080 0.149 0.040 0.500 0.277 0.360 0.151 0.501 0.241 0.326 0.127 0.501
±std 0.002 0.001 0.000 0.001 0.004 0.002 0.001 0.001 0.002 0.001 0.001 0.000

tween 1.54 and 1.61. Hence this illlustrates that601

the Gradient×Input approach for implementing602

LRP/AttnLRP is not only conceptually simpler, but603

also faster.604

5 Outlook605

While in this work we have focused on evaluat-606

ing decomposition-based attributions on the input607

tokens, since for the input tokens one can easily608

define a ground truth, the relevances obtained for609

hidden layers might in principle also be useful to610

perform other tasks than merely explain the pre-611

dictions, e.g., to unbias or improve the model’s612

performance (Weber et al., 2023), increase model613

robustness to perturbations (Sun et al., 2025), or to614

prune and quantize the model (Yeom et al., 2021;615

Becking et al., 2022). Recently it has been shown616

that gradient-based relevances can be used in place617

of costly causal attribution methods to localize and618

control model behaviors to components (Kramár619

et al., 2024). The decomposition-based approaches620

discussed in this work might perform even better621

in this regard, since their token-level accuracies622

are generally higher than those of gradient-based623

methods. Another complementary direction to the624

present approach would be to consider synthetic625

tasks instead of natural language to evaluate XAI,626

in order to allow for a better control over biases and627

Clever Hans behaviors (Lapuschkin et al., 2019), or628

to use white-box models (Hao, 2020). Lastly, our 629

evaluation approach using subject-verb agreement 630

can also be extended to other Language Model ar- 631

chitectures as well such as State Space Models or 632

xLSTMs. 633

6 Conclusion 634

In this work we took a close look at state-of-the- 635

art decomposition-based attributions, by analyzing 636

their common characteristics as well as their dif- 637

ferences. Further, we showed that the LRP-based 638

explanations can be computed in a simple and fast 639

way by using a modified Gradient×Input strategy. 640

Our careful evaluation w.r.t. automatically gener- 641

ated ground truth annotations reveals that the qual- 642

ity of explanations differs across model families. 643

Identifying the root causes for these differences 644

shall constitute a topic for future work. 645

Limitations 646

Our ground truth data is automatically generated 647

via using the dependency parser Spacy. Such a 648

a toolbox is not 100% accurate, and hence might 649

introduce some noise in the evaluation process. Fur- 650

ther our benchmark dataset is extracted from real- 651

world natural language data, and as such might con- 652

tain misspellings, typos, and even grammatically 653

incorrect sentences. However our goal in this work 654

is to evaluate in a realistic setup, and we believe 655

8



those limitations do not influence the comparison656

of XAI methods in a noticeable way.657

References658

Samira Abnar and Willem Zuidema. 2020. Quantify-659
ing attention flow in transformers. In Proceedings660
of the 58th Annual Meeting of the Association for661
Computational Linguistics, pages 4190–4197, On-662
line. Association for Computational Linguistics.663

Reduan Achtibat, Maximilian Dreyer, Ilona Eisenbraun,664
Sebastian Bosse, Thomas Wiegand, Wojciech Samek,665
and Sebastian Lapuschkin. 2023. From attribution666
maps to human-understandable explanations through667
concept relevance propagation. Nature Machine In-668
telligence, 5(9):1006–1019.669

Reduan Achtibat, Sayed Mohammad Vakilzadeh Hatefi,670
Maximilian Dreyer, Aakriti Jain, Thomas Wiegand,671
Sebastian Lapuschkin, and Wojciech Samek. 2024.672
AttnLRP: Attention-aware layer-wise relevance prop-673
agation for transformers. In Proceedings of the 41st674
International Conference on Machine Learning, vol-675
ume 235 of Proceedings of Machine Learning Re-676
search, pages 135–168. PMLR.677

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury678
Zemlyanskiy, Federico Lebron, and Sumit Sanghai.679
2023. GQA: Training generalized multi-query trans-680
former models from multi-head checkpoints. In Pro-681
ceedings of the 2023 Conference on Empirical Meth-682
ods in Natural Language Processing, pages 4895–683
4901, Singapore. Association for Computational Lin-684
guistics.685

Guillaume Alain and Yoshua Bengio. 2016. Under-686
standing intermediate layers using linear classifier687
probes. Preprint, arXiv:1610.01644.688

Maximilian Alber, Sebastian Lapuschkin, Philipp689
Seegerer, Miriam Hägele, Kristof T. Schütt, Grégoire690
Montavon, Wojciech Samek, Klaus-Robert Müller,691
Sven Dähne, and Pieter-Jan Kindermans. 2019. in-692
nvestigate neural networks! Journal of Machine693
Learning Research, 20(93):1–8.694

Ameen Ali, Thomas Schnake, Oliver Eberle, Grégoire695
Montavon, Klaus-Robert Müller, and Lior Wolf.696
2022. XAI for transformers: Better explanations697
through conservative propagation. In Proceedings of698
the 39th International Conference on Machine Learn-699
ing, volume 162 of Proceedings of Machine Learning700
Research, pages 435–451. PMLR.701

Christopher J. Anders, David Neumann, Wojciech702
Samek, Klaus-Robert Müller, and Sebastian La-703
puschkin. 2021. Software for dataset-wide xai: From704
local explanations to global insights with Zennit,705
CoRelAy, and ViRelAy. CoRR, abs/2106.13200.706

Jose A. Arjona-Medina, Michael Gillhofer, Michael707
Widrich, Thomas Unterthiner, Johannes Brandstetter,708

and Sepp Hochreiter. 2019. Rudder: Return decom- 709
position for delayed rewards. In Advances in Neural 710
Information Processing Systems, volume 32. Curran 711
Associates, Inc. 712

Aryaman Arora, Dan Jurafsky, and Christopher Potts. 713
2024. CausalGym: Benchmarking causal inter- 714
pretability methods on linguistic tasks. In Proceed- 715
ings of the 62nd Annual Meeting of the Association 716
for Computational Linguistics (Volume 1: Long Pa- 717
pers), pages 14638–14663, Bangkok, Thailand. As- 718
sociation for Computational Linguistics. 719

Leila Arras, José Arjona-Medina, Michael Widrich, Gré- 720
goire Montavon, Michael Gillhofer, Klaus-Robert 721
Müller, Sepp Hochreiter, and Wojciech Samek. 722
2019a. Explaining and Interpreting LSTMs. In Ex- 723
plainable AI: Interpreting, Explaining and Visualiz- 724
ing Deep Learning, volume 11700 of Lecture Notes 725
in Computer Science, pages 211–238. 726

Leila Arras, Franziska Horn, Grégoire Montavon, Klaus- 727
Robert Müller, and Wojciech Samek. 2016. Explain- 728
ing predictions of non-linear classifiers in NLP. In 729
Proceedings of the 1st Workshop on Representation 730
Learning for NLP, pages 1–7, Berlin, Germany. As- 731
sociation for Computational Linguistics. 732

Leila Arras, Grégoire Montavon, Klaus-Robert Müller, 733
and Wojciech Samek. 2017. Explaining recurrent 734
neural network predictions in sentiment analysis. In 735
Proceedings of the 8th Workshop on Computational 736
Approaches to Subjectivity, Sentiment and Social Me- 737
dia Analysis, pages 159–168, Copenhagen, Denmark. 738
Association for Computational Linguistics. 739

Leila Arras, Ahmed Osman, Klaus-Robert Müller, and 740
Wojciech Samek. 2019b. Evaluating recurrent neural 741
network explanations. In Proceedings of the 2019 742
ACL Workshop BlackboxNLP: Analyzing and Inter- 743
preting Neural Networks for NLP, pages 113–126, 744
Florence, Italy. Association for Computational Lin- 745
guistics. 746

Leila Arras, Ahmed Osman, and Wojciech Samek. 2022. 747
CLEVR-XAI: A benchmark dataset for the ground 748
truth evaluation of neural network explanations. In- 749
formation Fusion, 81:14–40. 750

Sebastian Bach, Alexander Binder, Grégoire Montavon, 751
Frederick Klauschen, Klaus-Robert Müller, and Wo- 752
jciech Samek. 2015. On pixel-wise explanations 753
for non-linear classifier decisions by layer-wise rele- 754
vance propagation. PLOS ONE, 10(7):1–46. 755

David Balduzzi, Marcus Frean, Lennox Leary, J. P. 756
Lewis, Kurt Wan-Duo Ma, and Brian McWilliams. 757
2017. The shattered gradients problem: If resnets 758
are the answer, then what is the question? In Pro- 759
ceedings of the 34th International Conference on 760
Machine Learning, volume 70 of Proceedings of Ma- 761
chine Learning Research, pages 342–350. PMLR. 762

Daniel Becking, Maximilian Dreyer, Wojciech Samek, 763
Karsten Müller, and Sebastian Lapuschkin. 2022. 764

9

https://doi.org/10.18653/v1/2020.acl-main.385
https://doi.org/10.18653/v1/2020.acl-main.385
https://doi.org/10.18653/v1/2020.acl-main.385
https://doi.org/10.1038/s42256-023-00711-8
https://doi.org/10.1038/s42256-023-00711-8
https://doi.org/10.1038/s42256-023-00711-8
https://doi.org/10.1038/s42256-023-00711-8
https://doi.org/10.1038/s42256-023-00711-8
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/1610.01644
http://jmlr.org/papers/v20/18-540.html
http://jmlr.org/papers/v20/18-540.html
http://jmlr.org/papers/v20/18-540.html
https://proceedings.mlr.press/v162/ali22a.html
https://proceedings.mlr.press/v162/ali22a.html
https://proceedings.mlr.press/v162/ali22a.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/16105fb9cc614fc29e1bda00dab60d41-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/16105fb9cc614fc29e1bda00dab60d41-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/16105fb9cc614fc29e1bda00dab60d41-Paper.pdf
https://doi.org/10.18653/v1/2024.acl-long.785
https://doi.org/10.18653/v1/2024.acl-long.785
https://doi.org/10.18653/v1/2024.acl-long.785
https://doi.org/10.18653/v1/W16-1601
https://doi.org/10.18653/v1/W16-1601
https://doi.org/10.18653/v1/W16-1601
https://doi.org/10.18653/v1/W17-5221
https://doi.org/10.18653/v1/W17-5221
https://doi.org/10.18653/v1/W17-5221
https://doi.org/10.18653/v1/W19-4813
https://doi.org/10.18653/v1/W19-4813
https://doi.org/10.18653/v1/W19-4813
https://doi.org/10.1016/j.inffus.2021.11.008
https://doi.org/10.1016/j.inffus.2021.11.008
https://doi.org/10.1016/j.inffus.2021.11.008
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140
https://proceedings.mlr.press/v70/balduzzi17b.html
https://proceedings.mlr.press/v70/balduzzi17b.html
https://proceedings.mlr.press/v70/balduzzi17b.html


ECQx: Explainability-Driven Quantization for Low-765
Bit and Sparse DNNs, pages 271–296. Springer In-766
ternational Publishing, Cham.767

Yonatan Belinkov. 2022. Probing classifiers: Promises,768
shortcomings, and advances. Computational Linguis-769
tics, 48(1):207–219.770

Hila Chefer, Shir Gur, and Lior Wolf. 2021a. Generic771
Attention-model Explainability for Interpreting Bi-772
Modal and Encoder-Decoder Transformers . In 2021773
IEEE/CVF International Conference on Computer774
Vision (ICCV), pages 387–396, Los Alamitos, CA,775
USA. IEEE Computer Society.776

Hila Chefer, Shir Gur, and Lior Wolf. 2021b. Trans-777
former Interpretability Beyond Attention Visualiza-778
tion . In 2021 IEEE/CVF Conference on Computer779
Vision and Pattern Recognition (CVPR), pages 782–780
791, Los Alamitos, CA, USA. IEEE Computer Soci-781
ety.782

Kevin Clark, Urvashi Khandelwal, Omer Levy, and783
Christopher D. Manning. 2019. What does BERT784
look at? an analysis of BERT‘s attention. In Pro-785
ceedings of the 2019 ACL Workshop BlackboxNLP:786
Analyzing and Interpreting Neural Networks for NLP,787
pages 276–286, Florence, Italy. Association for Com-788
putational Linguistics.789

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch,790
Stefan Heimersheim, and Adrià Garriga-Alonso.791
2023. Towards automated circuit discovery for mech-792
anistic interpretability. In Advances in Neural Infor-793
mation Processing Systems, volume 36, pages 16318–794
16352. Curran Associates, Inc.795

Leyang Cui, Sijie Cheng, Yu Wu, and Yue Zhang. 2021.796
On commonsense cues in BERT for solving common-797
sense tasks. In Findings of the Association for Com-798
putational Linguistics: ACL-IJCNLP 2021, pages799
683–693, Online. Association for Computational Lin-800
guistics.801

Björn Deiseroth, Mayukh Deb, Samuel Weinbach,802
Manuel Brack, Patrick Schramowski, and Kristian803
Kersting. 2023. Atman: Understanding transformer804
predictions through memory efficient attention ma-805
nipulation. In Advances in Neural Information Pro-806
cessing Systems, volume 36, pages 63437–63460.807
Curran Associates, Inc.808

Misha Denil, Alban Demiraj, and Nando de Freitas.809
2015. Extraction of Salient Sentences from Labelled810
Documents. arXiv:1412.6815. Version 2.811

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,812
Eric Lehman, Caiming Xiong, Richard Socher, and813
Byron C. Wallace. 2020. ERASER: A benchmark to814
evaluate rationalized NLP models. In Proceedings815
of the 58th Annual Meeting of the Association for816
Computational Linguistics, pages 4443–4458, Online.817
Association for Computational Linguistics.818

Finale Doshi-Velez and Been Kim. 2017. Towards a819
rigorous science of interpretable machine learning.820
Preprint, arXiv:1702.08608.821

Oliver Eberle. 2022. Explainable structured machine 822
learning. Phd thesis, Technische Universität Berlin. 823
Https://doi.org/10.14279/depositonce-16149. 824

Oliver Eberle, Stephanie Brandl, Jonas Pilot, and An- 825
ders Søgaard. 2022. Do transformer models show 826
similar attention patterns to task-specific human 827
gaze? In Proceedings of the 60th Annual Meet- 828
ing of the Association for Computational Linguistics 829
(Volume 1: Long Papers), pages 4295–4309, Dublin, 830
Ireland. Association for Computational Linguistics. 831

Oliver Eberle, Ilias Chalkidis, Laura Cabello, and 832
Stephanie Brandl. 2023. Rather a nurse than a physi- 833
cian - contrastive explanations under investigation. 834
In Proceedings of the 2023 Conference on Empiri- 835
cal Methods in Natural Language Processing, pages 836
6907–6920, Singapore. Association for Computa- 837
tional Linguistics. 838

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav 839
Goldberg. 2021. Amnesic probing: Behavioral expla- 840
nation with amnesic counterfactuals. Transactions of 841
the Association for Computational Linguistics, 9:160– 842
175. 843

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom 844
Henighan, Nicholas Joseph, Ben Mann, Amanda 845
Askell, Yuntao Bai, Anna Chen, Tom Conerly, 846
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac 847
Hatfield-Dodds, Danny Hernandez, Andy Jones, 848
Jackson Kernion, Liane Lovitt, Kamal Ndousse, 849
Dario Amodei, Tom Brown, Jack Clark, Jared Ka- 850
plan, Sam McCandlish, and Chris Olah. 2021. A 851
mathematical framework for transformer circuits. 852
Transformer Circuits Thread. Https://transformer- 853
circuits.pub/2021/framework/index.html. 854

Javier Ferrando, Gerard I. Gállego, and Marta R. Costa- 855
jussà. 2022. Measuring the mixing of contextual 856
information in the transformer. In Proceedings of 857
the 2022 Conference on Empirical Methods in Nat- 858
ural Language Processing, pages 8698–8714, Abu 859
Dhabi, United Arab Emirates. Association for Com- 860
putational Linguistics. 861

Javier Ferrando, Gerard I. Gállego, Ioannis Tsiamas, 862
and Marta R. Costa-jussà. 2023. Explaining how 863
transformers use context to build predictions. In 864
Proceedings of the 61st Annual Meeting of the As- 865
sociation for Computational Linguistics (Volume 1: 866
Long Papers), pages 5486–5513, Toronto, Canada. 867
Association for Computational Linguistics. 868

Javier Ferrando and Elena Voita. 2024. Information flow 869
routes: Automatically interpreting language models 870
at scale. In Proceedings of the 2024 Conference on 871
Empirical Methods in Natural Language Processing, 872
pages 17432–17445, Miami, Florida, USA. Associa- 873
tion for Computational Linguistics. 874

Atticus Geiger, Hanson Lu, Thomas Icard, and Christo- 875
pher Potts. 2021. Causal abstractions of neural net- 876
works. In Advances in Neural Information Process- 877
ing Systems, volume 34, pages 9574–9586. Curran 878
Associates, Inc. 879

10

https://doi.org/10.1007/978-3-031-04083-2_14
https://doi.org/10.1007/978-3-031-04083-2_14
https://doi.org/10.1007/978-3-031-04083-2_14
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.1109/ICCV48922.2021.00045
https://doi.org/10.1109/ICCV48922.2021.00045
https://doi.org/10.1109/ICCV48922.2021.00045
https://doi.org/10.1109/ICCV48922.2021.00045
https://doi.org/10.1109/ICCV48922.2021.00045
https://doi.org/10.1109/CVPR46437.2021.00084
https://doi.org/10.1109/CVPR46437.2021.00084
https://doi.org/10.1109/CVPR46437.2021.00084
https://doi.org/10.1109/CVPR46437.2021.00084
https://doi.org/10.1109/CVPR46437.2021.00084
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://doi.org/10.18653/v1/2021.findings-acl.61
https://doi.org/10.18653/v1/2021.findings-acl.61
https://doi.org/10.18653/v1/2021.findings-acl.61
https://proceedings.neurips.cc/paper_files/paper/2023/file/c83bc020a020cdeb966ed10804619664-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/c83bc020a020cdeb966ed10804619664-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/c83bc020a020cdeb966ed10804619664-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/c83bc020a020cdeb966ed10804619664-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/c83bc020a020cdeb966ed10804619664-Paper-Conference.pdf
https://arxiv.org/pdf/1412.6815.pdf
https://arxiv.org/pdf/1412.6815.pdf
https://arxiv.org/pdf/1412.6815.pdf
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
https://arxiv.org/abs/1702.08608
https://arxiv.org/abs/1702.08608
https://arxiv.org/abs/1702.08608
https://doi.org/10.18653/v1/2022.acl-long.296
https://doi.org/10.18653/v1/2022.acl-long.296
https://doi.org/10.18653/v1/2022.acl-long.296
https://doi.org/10.18653/v1/2022.acl-long.296
https://doi.org/10.18653/v1/2022.acl-long.296
https://doi.org/10.18653/v1/2023.emnlp-main.427
https://doi.org/10.18653/v1/2023.emnlp-main.427
https://doi.org/10.18653/v1/2023.emnlp-main.427
https://doi.org/10.1162/tacl_a_00359
https://doi.org/10.1162/tacl_a_00359
https://doi.org/10.1162/tacl_a_00359
https://doi.org/10.18653/v1/2022.emnlp-main.595
https://doi.org/10.18653/v1/2022.emnlp-main.595
https://doi.org/10.18653/v1/2022.emnlp-main.595
https://doi.org/10.18653/v1/2023.acl-long.301
https://doi.org/10.18653/v1/2023.acl-long.301
https://doi.org/10.18653/v1/2023.acl-long.301
https://doi.org/10.18653/v1/2024.emnlp-main.965
https://doi.org/10.18653/v1/2024.emnlp-main.965
https://doi.org/10.18653/v1/2024.emnlp-main.965
https://doi.org/10.18653/v1/2024.emnlp-main.965
https://doi.org/10.18653/v1/2024.emnlp-main.965
https://proceedings.neurips.cc/paper_files/paper/2021/file/4f5c422f4d49a5a807eda27434231040-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/4f5c422f4d49a5a807eda27434231040-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/4f5c422f4d49a5a807eda27434231040-Paper.pdf


Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Gold-880
berg. 2022. Transformer feed-forward layers build881
predictions by promoting concepts in the vocabulary882
space. In Proceedings of the 2022 Conference on883
Empirical Methods in Natural Language Process-884
ing, pages 30–45, Abu Dhabi, United Arab Emirates.885
Association for Computational Linguistics.886

Mor Geva, Roei Schuster, Jonathan Berant, and Omer887
Levy. 2021. Transformer feed-forward layers are key-888
value memories. In Proceedings of the 2021 Confer-889
ence on Empirical Methods in Natural Language Pro-890
cessing, pages 5484–5495, Online and Punta Cana,891
Dominican Republic. Association for Computational892
Linguistics.893

Yoav Goldberg. 2019. Assessing BERT’s Syntactic894
Abilities. CoRR arXiv:1901.05287.895

Aaron Grattafiori et al. 2024. The llama 3 herd of mod-896
els. Preprint, arXiv:2407.21783.897

Abhijeet Gupta, Gemma Boleda, Marco Baroni, and898
Sebastian Padó. 2015. Distributional vectors encode899
referential attributes. In Proceedings of the 2015900
Conference on Empirical Methods in Natural Lan-901
guage Processing, pages 12–21, Lisbon, Portugal.902
Association for Computational Linguistics.903

Yiding Hao. 2020. Evaluating attribution methods us-904
ing white-box LSTMs. In Proceedings of the Third905
BlackboxNLP Workshop on Analyzing and Interpret-906
ing Neural Networks for NLP, pages 300–313, On-907
line. Association for Computational Linguistics.908

Peter Hase and Mohit Bansal. 2020. Evaluating explain-909
able AI: Which algorithmic explanations help users910
predict model behavior? In Proceedings of the 58th911
Annual Meeting of the Association for Computational912
Linguistics, pages 5540–5552, Online. Association913
for Computational Linguistics.914

John Hewitt and Percy Liang. 2019. Designing and in-915
terpreting probes with control tasks. In Proceedings916
of the 2019 Conference on Empirical Methods in Nat-917
ural Language Processing and the 9th International918
Joint Conference on Natural Language Processing919
(EMNLP-IJCNLP), pages 2733–2743, Hong Kong,920
China. Association for Computational Linguistics.921

John Hewitt and Christopher D. Manning. 2019. A922
structural probe for finding syntax in word represen-923
tations. In Proceedings of the 2019 Conference of924
the North American Chapter of the Association for925
Computational Linguistics: Human Language Tech-926
nologies, Volume 1 (Long and Short Papers), pages927
4129–4138, Minneapolis, Minnesota. Association for928
Computational Linguistics.929

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and930
Kentaro Inui. 2020. Attention is not only a weight:931
Analyzing transformers with vector norms. In932
Proceedings of the 2020 Conference on Empirical933
Methods in Natural Language Processing (EMNLP),934
pages 7057–7075, Online. Association for Computa-935
tional Linguistics.936

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and 937
Kentaro Inui. 2021. Incorporating Residual and Nor- 938
malization Layers into Analysis of Masked Language 939
Models. In Proceedings of the 2021 Conference on 940
Empirical Methods in Natural Language Processing, 941
pages 4547–4568, Online and Punta Cana, Domini- 942
can Republic. Association for Computational Lin- 943
guistics. 944

Maximilian Kohlbrenner, Alexander Bauer, Shinichi 945
Nakajima, Alexander Binder, Wojciech Samek, and 946
Sebastian Lapuschkin. 2020. Towards best practice 947
in explaining neural network decisions with lrp. In 948
2020 International Joint Conference on Neural Net- 949
works (IJCNN), pages 1–7. 950

Arne Köhn. 2015. What‘s in an embedding? analyzing 951
word embeddings through multilingual evaluation. 952
In Proceedings of the 2015 Conference on Empiri- 953
cal Methods in Natural Language Processing, pages 954
2067–2073, Lisbon, Portugal. Association for Com- 955
putational Linguistics. 956

János Kramár, Tom Lieberum, Rohin Shah, and Neel 957
Nanda. 2024. Atp*: An efficient and scalable method 958
for localizing llm behaviour to components. Preprint, 959
arXiv:2403.00745. 960

Sebastian Lapuschkin. 2019. Opening the machine 961
learning black box with Layer-wise Relevance Prop- 962
agation. Phd thesis, Technische Universität Berlin. 963
Http://dx.doi.org/10.14279/depositonce-7942. 964

Sebastian Lapuschkin, Alexander Binder, Grégoire 965
Montavon, Klaus-Robert Müller, and Wojciech 966
Samek. 2016. The lrp toolbox for artificial neural 967
networks. Journal of Machine Learning Research, 968
17(114):1–5. 969

Sebastian Lapuschkin, Stephan Wäldchen, Alexander 970
Binder, Grégoire Montavon, Wojciech Samek, and 971
Klaus-Robert Müller. 2019. Unmasking clever hans 972
predictors and assessing what machines really learn. 973
Nature Communications, 10:1096. 974

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. 975
2016. Visualizing and understanding neural models 976
in NLP. In Proceedings of the 2016 Conference 977
of the North American Chapter of the Association 978
for Computational Linguistics: Human Language 979
Technologies, pages 681–691, San Diego, California. 980
Association for Computational Linguistics. 981

Jiwei Li, Will Monroe, and Dan Jurafsky. 2017. Un- 982
derstanding neural networks through representation 983
erasure. Preprint, arXiv:1612.08220. 984

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. 985
2016. Assessing the Ability of LSTMs to Learn 986
Syntax-Sensitive Dependencies. Transactions of the 987
Association for Computational Linguistics, 4:521– 988
535. 989

Zachary C. Lipton. 2018. The mythos of model in- 990
terpretability: In machine learning, the concept of 991
interpretability is both important and slippery. Queue, 992
16(3):31–57. 993

11

https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
http://arxiv.org/abs/1901.05287
http://arxiv.org/abs/1901.05287
http://arxiv.org/abs/1901.05287
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/D15-1002
https://doi.org/10.18653/v1/D15-1002
https://doi.org/10.18653/v1/D15-1002
https://doi.org/10.18653/v1/2020.blackboxnlp-1.28
https://doi.org/10.18653/v1/2020.blackboxnlp-1.28
https://doi.org/10.18653/v1/2020.blackboxnlp-1.28
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/2021.emnlp-main.373
https://doi.org/10.18653/v1/2021.emnlp-main.373
https://doi.org/10.18653/v1/2021.emnlp-main.373
https://doi.org/10.18653/v1/2021.emnlp-main.373
https://doi.org/10.18653/v1/2021.emnlp-main.373
https://doi.org/10.1109/IJCNN48605.2020.9206975
https://doi.org/10.1109/IJCNN48605.2020.9206975
https://doi.org/10.1109/IJCNN48605.2020.9206975
https://doi.org/10.18653/v1/D15-1246
https://doi.org/10.18653/v1/D15-1246
https://doi.org/10.18653/v1/D15-1246
https://arxiv.org/abs/2403.00745
https://arxiv.org/abs/2403.00745
https://arxiv.org/abs/2403.00745
http://jmlr.org/papers/v17/15-618.html
http://jmlr.org/papers/v17/15-618.html
http://jmlr.org/papers/v17/15-618.html
https://doi.org/10.18653/v1/N16-1082
https://doi.org/10.18653/v1/N16-1082
https://doi.org/10.18653/v1/N16-1082
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/3236386.3241340


Nelson F. Liu, Matt Gardner, Yonatan Belinkov,994
Matthew E. Peters, and Noah A. Smith. 2019. Lin-995
guistic knowledge and transferability of contextual996
representations. In Proceedings of the 2019 Confer-997
ence of the North American Chapter of the Associ-998
ation for Computational Linguistics: Human Lan-999
guage Technologies, Volume 1 (Long and Short Pa-1000
pers), pages 1073–1094, Minneapolis, Minnesota.1001
Association for Computational Linguistics.1002

Kevin Meng, David Bau, Alex Andonian, and Yonatan1003
Belinkov. 2022. Locating and editing factual asso-1004
ciations in gpt. In Advances in Neural Information1005
Processing Systems, volume 35, pages 17359–17372.1006
Curran Associates, Inc.1007

Ali Modarressi, Mohsen Fayyaz, Yadollah1008
Yaghoobzadeh, and Mohammad Taher Pile-1009
hvar. 2022. GlobEnc: Quantifying global token1010
attribution by incorporating the whole encoder1011
layer in transformers. In Proceedings of the 20221012
Conference of the North American Chapter of the1013
Association for Computational Linguistics: Human1014
Language Technologies, pages 258–271, Seattle,1015
United States. Association for Computational1016
Linguistics.1017

Grégoire Montavon, Alexander Binder, Sebastian La-1018
puschkin, Wojciech Samek, and Klaus-Robert Müller.1019
2019. Layer-wise relevance propagation: An1020
overview. In Explainable AI: Interpreting, Explain-1021
ing and Visualizing Deep Learning, volume 11700 of1022
Lecture Notes in Computer Science, pages 193–209.1023
Springer.1024

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas1025
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,1026
Amanda Askell, Yuntao Bai, Anna Chen, Tom Con-1027
erly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,1028
Danny Hernandez, Scott Johnston, Andy Jones,1029
Jackson Kernion, Liane Lovitt, Kamal Ndousse,1030
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-1031
plan, Sam McCandlish, and Chris Olah. 2022. In-1032
context learning and induction heads. Preprint,1033
arXiv:2209.11895.1034

Judea Pearl. 2001. Direct and indirect effects. In1035
Proceedings of the Seventeenth Conference on Un-1036
certainty in Artificial Intelligence, UAI’01, page1037
411–420, San Francisco, CA, USA. Morgan Kauf-1038
mann Publishers Inc.1039

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,1040
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and1041
Alexander Miller. 2019. Language models as knowl-1042
edge bases? In Proceedings of the 2019 Confer-1043
ence on Empirical Methods in Natural Language Pro-1044
cessing and the 9th International Joint Conference1045
on Natural Language Processing (EMNLP-IJCNLP),1046
pages 2463–2473, Hong Kong, China. Association1047
for Computational Linguistics.1048

Nina Poerner, Hinrich Schütze, and Benjamin Roth.1049
2018. Evaluating neural network explanation meth-1050
ods using hybrid documents and morphosyntactic1051

agreement. In Proceedings of the 56th Annual Meet- 1052
ing of the Association for Computational Linguis- 1053
tics (Volume 1: Long Papers), pages 340–350, Mel- 1054
bourne, Australia. Association for Computational 1055
Linguistics. 1056

Alec Radford, Jeff Wu, Rewon Child, David Luan, 1057
Dario Amodei, and Ilya Sutskever. 2019. Language 1058
models are unsupervised multitask learners. 1059

Farnoush Rezaei Jafari, Grégoire Montavon, Klaus- 1060
Robert Müller, and Oliver Eberle. 2024. Mambalrp: 1061
Explaining selective state space sequence models. 1062
In Advances in Neural Information Processing Sys- 1063
tems, volume 37, pages 118540–118570. Curran As- 1064
sociates, Inc. 1065

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 1066
2020. A primer in BERTology: What we know about 1067
how BERT works. Transactions of the Association 1068
for Computational Linguistics, 8:842–866. 1069

Wojciech Samek, Alexander Binder, Grégoire Mon- 1070
tavon, Sebastian Lapuschkin, and Klaus-Robert 1071
Müller. 2017. Evaluating the visualization of what 1072
a deep neural network has learned. IEEE Trans- 1073
actions on Neural Networks and Learning Systems, 1074
28(11):2660–2673. 1075

Teven Le Scao et al. 2023. Bloom: A 176b-parameter 1076
open-access multilingual language model. Preprint, 1077
arXiv:2211.05100. BigScience Workshop. 1078

Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, 1079
and Anshul Kundaje. 2016. Not just a black box: 1080
Interpretable deep learning by propagating activation 1081
differences. arXiv preprint arXiv:1605.01713. 1082

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser- 1083
man. 2014. Deep Inside Convolutional Networks: Vi- 1084
sualising Image Classification Models and Saliency 1085
Maps. In International Conference on Learning Rep- 1086
resentations - Workshop track (ICLR). 1087

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda 1088
Viégas, and Martin Wattenberg. 2017. Smoothgrad: 1089
removing noise by adding noise. In Proceedings of 1090
the International Conference on Machine Learning 1091
Workshop on Visualization for Deep Learning. 1092

Ekta Sood, Simon Tannert, Diego Frassinelli, Andreas 1093
Bulling, and Ngoc Thang Vu. 2020. Interpreting 1094
attention models with human visual attention in ma- 1095
chine reading comprehension. In Proceedings of 1096
the 24th Conference on Computational Natural Lan- 1097
guage Learning, pages 12–25, Online. Association 1098
for Computational Linguistics. 1099

Qi Sun, Marc Pickett, Aakash Kumar Nain, and 1100
Llion Jones. 2025. Transformer layers as painters. 1101
Preprint, arXiv:2407.09298. 1102

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. 1103
Axiomatic Attribution for Deep Networks. In Pro- 1104
ceedings of the 34th International Conference on 1105
Machine Learning (ICML), pages 3319–3328. 1106

12

https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://doi.org/10.18653/v1/2022.naacl-main.19
https://doi.org/10.18653/v1/2022.naacl-main.19
https://doi.org/10.18653/v1/2022.naacl-main.19
https://doi.org/10.18653/v1/2022.naacl-main.19
https://doi.org/10.18653/v1/2022.naacl-main.19
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/P18-1032
https://doi.org/10.18653/v1/P18-1032
https://doi.org/10.18653/v1/P18-1032
https://doi.org/10.18653/v1/P18-1032
https://doi.org/10.18653/v1/P18-1032
https://proceedings.neurips.cc/paper_files/paper/2024/file/d6d0e41e0b1ed38c76d13c9e417a8f1f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d6d0e41e0b1ed38c76d13c9e417a8f1f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d6d0e41e0b1ed38c76d13c9e417a8f1f-Paper-Conference.pdf
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1109/TNNLS.2016.2599820
https://doi.org/10.1109/TNNLS.2016.2599820
https://doi.org/10.1109/TNNLS.2016.2599820
https://arxiv.org/abs/2211.05100. BigScience Workshop
https://arxiv.org/abs/2211.05100. BigScience Workshop
https://arxiv.org/abs/2211.05100. BigScience Workshop
https://arxiv.org/pdf/1312.6034.pdf
https://arxiv.org/pdf/1312.6034.pdf
https://arxiv.org/pdf/1312.6034.pdf
https://arxiv.org/pdf/1312.6034.pdf
https://arxiv.org/pdf/1312.6034.pdf
https://doi.org/10.18653/v1/2020.conll-1.2
https://doi.org/10.18653/v1/2020.conll-1.2
https://doi.org/10.18653/v1/2020.conll-1.2
https://doi.org/10.18653/v1/2020.conll-1.2
https://doi.org/10.18653/v1/2020.conll-1.2
https://arxiv.org/abs/2407.09298
http://proceedings.mlr.press/v70/sundararajan17a/sundararajan17a.pdf


Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.1107
BERT rediscovers the classical NLP pipeline. In1108
Proceedings of the 57th Annual Meeting of the Asso-1109
ciation for Computational Linguistics, pages 4593–1110
4601, Florence, Italy. Association for Computational1111
Linguistics.1112

Hugo Touvron et al. 2023. Llama 2: Open foun-1113
dation and fine-tuned chat models. Preprint,1114
arXiv:2307.09288.1115

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,1116
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu-1117
art Shieber. 2020. Investigating gender bias in lan-1118
guage models using causal mediation analysis. In1119
Advances in Neural Information Processing Systems,1120
volume 33, pages 12388–12401. Curran Associates,1121
Inc.1122

Elena Voita, Rico Sennrich, and Ivan Titov. 2021. Ana-1123
lyzing the source and target contributions to predic-1124
tions in neural machine translation. In Proceedings1125
of the 59th Annual Meeting of the Association for1126
Computational Linguistics and the 11th International1127
Joint Conference on Natural Language Processing1128
(Volume 1: Long Papers), pages 1126–1140, Online.1129
Association for Computational Linguistics.1130

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,1131
Buck Shlegeris, and Jacob Steinhardt. 2023. Inter-1132
pretability in the wild: a circuit for indirect object1133
identification in GPT-2 small. In The Eleventh Inter-1134
national Conference on Learning Representations.1135

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-1136
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.1137
Bowman. 2020. BLiMP: The benchmark of linguis-1138
tic minimal pairs for English. Transactions of the1139
Association for Computational Linguistics, 8:377–1140
392.1141

Leander Weber, Sebastian Lapuschkin, Alexander1142
Binder, and Wojciech Samek. 2023. Beyond explain-1143
ing: Opportunities and challenges of xai-based model1144
improvement. Information Fusion, 92:154–176.1145

Seul-Ki Yeom, Philipp Seegerer, Sebastian Lapuschkin,1146
Alexander Binder, Simon Wiedemann, Klaus-Robert1147
Müller, and Wojciech Samek. 2021. Pruning by ex-1148
plaining: A novel criterion for deep neural network1149
pruning. Pattern Recognition, 115:107899.1150

Kayo Yin and Graham Neubig. 2022. Interpreting lan-1151
guage models with contrastive explanations. In Pro-1152
ceedings of the 2022 Conference on Empirical Meth-1153
ods in Natural Language Processing, pages 184–198,1154
Abu Dhabi, United Arab Emirates. Association for1155
Computational Linguistics.1156

Biao Zhang and Rico Sennrich. 2019. Root mean square1157
layer normalization. In Advances in Neural Informa-1158
tion Processing Systems, volume 32. Curran Asso-1159
ciates, Inc.1160

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 1161
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 1162
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi- 1163
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel 1164
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu 1165
Wang, and Luke Zettlemoyer. 2022. Opt: Open 1166
pre-trained transformer language models. Preprint, 1167
arXiv:2205.01068. 1168

13

https://doi.org/10.18653/v1/P19-1452
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/2021.acl-long.91
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1016/j.inffus.2022.11.013
https://doi.org/10.1016/j.inffus.2022.11.013
https://doi.org/10.1016/j.inffus.2022.11.013
https://doi.org/10.1016/j.inffus.2022.11.013
https://doi.org/10.1016/j.inffus.2022.11.013
https://doi.org/10.1016/j.patcog.2021.107899
https://doi.org/10.1016/j.patcog.2021.107899
https://doi.org/10.1016/j.patcog.2021.107899
https://doi.org/10.1016/j.patcog.2021.107899
https://doi.org/10.1016/j.patcog.2021.107899
https://doi.org/10.18653/v1/2022.emnlp-main.14
https://doi.org/10.18653/v1/2022.emnlp-main.14
https://doi.org/10.18653/v1/2022.emnlp-main.14
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068


A Software Requirements & Licenses1169

All our experiments are conducted using the follow-1170

ing python packages and their respective version1171

numbers within a Python 3.11.9 environment:1172

• Spacy 3.7.31173

• Pandas 2.2.11174

• Pytorch 2.3.01175

• Numpy 1.26.41176

• HuggingFace Transformers 4.48.11177

Licenses BERT is released under Apache 2.0,1178

GPT-2 under MIT, and Llama-3 under Meta Llama1179

3 Community License.1180

B XAI Benchmark Dataset Generation1181

We build our XAI benchmark for language models1182

on top of the natural language subject-verb1183

agreement dataset released by Goldberg (2019)1184

(available under: https://github.com/yoavg/1185

bert-syntax/blob/master/lgd_dataset.tsv),1186

which itself is based upon data from Linzen1187

et al. (2016) with MIT license. This dataset is1188

made of initially 29,985 uncased sentences from1189

Wikipedia, each containing a verb in present tense,1190

and allowing for a bidirectional stimuli with input1191

beyond the verb’s position in the sentence (i.e.,1192

for BERT-like masked language models). For1193

causal language models (i.e., GPT2-like language1194

models) we use as a stimuli only the portion of the1195

sentence before the verb’s position. Each sentence1196

additionally contains at least one agreement1197

“attractor” located between the subject and the1198

verb (the number of attractors per sample varies1199

between 1 and 4), and all attractors are nouns of1200

opposite number from the subject, which makes1201

this dataset well-suited for XAI evaluation, as1202

the evidence for the correct verb number shall be1203

concentrated on the subject. We noticed that the1204

original dataset from Goldberg (2019) contained1205

46 invalid samples, where the singular and plural1206

verb forms were identical, which we discarded1207

from our benchmark.1208

In the following we describe how we identify1209

the subject of each sentence (i.e. the linguistic evi-1210

dence we use as the ground truth for the XAI eval-1211

uation), as well as the preprocessing steps we un-1212

dertook to take into account each language model’s1213

specific tokenization.1214

Generic ground truth. In a first step we gener- 1215

ate the model-agnostic ground truth data. For that 1216

purpose we use Spacy’s dependency parser from 1217

the english pipeline en_core_web_trf to identify 1218

the subject of a given verb in a sentence. We retain 1219

only samples with the syntactic dependency rela- 1220

tion nsubj (i.e., “nominal subject”), thereby we 1221

aim to remove potential ambiguous cases (this step 1222

discards 1005 samples). Further, we retain only 1223

samples whose verb was identified by Spacy’s part- 1224

of-speech tagger to be either of type VBZ (“verb, 1225

3rd person singular present”) or VBP (“verb, non- 1226

3rd person singular present”) (thereby discarding 1227

148 samples where the verb was not recognized as 1228

being conjugated in present tense). This leaves us 1229

with a dataset of size 28,786, from which 67% of 1230

the samples contain a “plural” verb form as the cor- 1231

rect prediction (note that such “plural” verb forms 1232

also include some rare samples where the pronouns 1233

“I” and “you” are the subject, and thus strictly 1234

speaking would be singular cases), and 33% of 1235

the samples contain a “singular” verb form, hence 1236

the verb’s number is imbalanced. 1237

Tokenized ground truth. For each considered 1238

language model, we generate in a second step 1239

a model-specific benchmark made of tokenized 1240

stimulis and their corresponding tokenized ground 1241

truths, by taking into account each model’s particu- 1242

lar tokenizer. More precisely, we discard samples 1243

for which the verb’s singular or plural inflection 1244

gets tokenized into more than one token, since the 1245

SVA prediction is based on comparing the logit 1246

scores for these two verb forms. Further, we verify 1247

that the ground truth is always shorter (in terms 1248

of number of tokens) than the input text stimuli 1249

to avoid any trivial cases for XAI evaluation. For 1250

causal language models (i.e. GPT2-like), we also 1251

discard samples where a portion of the ground truth 1252

lies after the verb in the sentence. Finally, we en- 1253

sure that the effective input text (i.e. when exclud- 1254

ing some special tokens, such as [CLS], [SEP] 1255

and [MASK] for BERT) is always longer than one 1256

token, again to avoid any trivial cases for XAI eval- 1257

uation. 1258

With the above considerations, we finally obtain 1259

for BERT a benchmark made of 28472 samples, 1260

whose input length (in terms of number of tokens) 1261

varies between 9 and 170, with mean 30, std 12, 1262

and median of 28, while the ground truth’s length 1263

varies between 1 and 7 with 96.7% of the samples 1264

having a ground truth length of 1 (and 2.6% of 1265

samples a ground truth length of 2). 1266
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For GPT-2 we likewise obtain a benchmark made1267

of 28,602 samples, whose input length (in terms of1268

number of tokens) varies between 2 and 60, with1269

mean 11, std 7, and median of 8, while the ground1270

truth’s length varies between 1 and 7 with 85.1%1271

of the samples having a ground truth length of 11272

(and 12.4% of samples a ground truth length of 2).1273

For Llama-3 we finally obtain a benchmark made1274

of 28,629 samples, with an input length (in number1275

of tokens) varying between 3 and 60, with mean1276

11, std 7, and median of 9, while the ground truth’s1277

length varies between 1 and 5 with 89.4% of the1278

samples having a ground truth length of 1 (and1279

8.8% of samples a ground truth length of 2).1280

C Language Models1281

Table 3 summarizes the prediction accuracies of1282

each model on our tokenized subject-verb agree-1283

ment benchmark datasets, as well as provides vari-1284

ous informations about the models’ sizes and tok-1285

enizers.1286

D Proofs on implementing LRP/AttnLRP1287

via a modified Gradient×Input strategy1288

D.1 LRP-ϵ rule for linear layers1289

Given a linear of the form zj =
∑

i ziwij + bj in1290

the forward pass, and given the relevances of the1291

output neurons Rj , the input neurons’ relevances1292

Ri are computed using the following LRP-ϵ rule:1293

Ri =
∑
j

zi·wij

zj + ϵ·sign(zj)
·Rj (1)1294

The term ϵ is typically a small positive numerical1295

stabilizer. But for simplifying the derivation let’s1296

assume ϵ = 0, and so: Ri =
∑

j
zi·wij

zj
·Rj .1297

Now let’s assume the relevances at the layer out-1298

put and input are computed via Gradient×Input, in1299

other words it holds:1300

Rj = dzj · zj (2)1301

Ri = dzi · zi (3)1302

Using elementary rules of differentiation and the1303

chain rule it holds:1304

dzi =
∑
j

dzj · wij (4)1305

By incorporating Eq. 4 into Eq. 3, we obtain:1306

Ri = zi ·
∑
j

dzj · wij (5)1307

And the replacing dzj by its value from Eq. 2, we 1308

finally get: 1309

Ri = zi ·
∑
j

Rj

zj
· wij (6) 1310

And by rearranging terms: 1311

Ri =
∑
j

zi·wij

zj
·Rj □ (7) 1312

Hence we have shown that using Gradient×Input 1313

one can implement the LRP-ϵ rule with ϵ = 0. 1314

Using the Gradient×Input strategy presents even 1315

an advantage over an explicit implementation of 1316

the LRP-ϵ rule. Indeed with Gradient×Input no 1317

fraction is involved in the computation, and hence 1318

no denominator needs to be stabilized, while with 1319

explicit LRP one has to use a non-zero ϵ stabilizer, 1320

which might introduces some noise or dampen the 1321

explanation process, as the ϵ value is kind of arbi- 1322

trary, and its impact will be higher the lower the 1323

magnitude of the denominator‘s value. 1324

D.2 LRP-identity rule for element-wise 1325

activation layers 1326

Given an element-wise activation layer of the form: 1327

zj = g(zi), with g being the activation function. 1328

The LRP-identity rule redistributes the relevance 1329

identically from the layer’s output to the layer’s 1330

input, thus Ri = Rj . 1331

Now let’s define a modified forward function for 1332

the layer of the form: 1333

ẑj = zi · [g(zi)zi
]
detach()

(8) 1334

Obviously it holds that ẑj = zj , so the forward 1335

pass outcome remains unchanged. 1336

Using elementary rules of differentiation and the 1337

chain rule it holds: 1338

dzi = [g(zi)zi
] · dẑj (9) 1339

Now assuming we compute the relevances at the 1340

layer’s output as well as at the layer’s input with 1341

Gradient×Input using the modified layer, we get: 1342

Ri = dzi · zi = [g(zi)zi
] · dẑj · zi (10) 1343

= g(zi) · dẑj = ẑj · dẑj (11) 1344

= Rj □ (12) 1345

Hence we have shown the LRP-identity rule can 1346

be implemented implicitly by using the modified 1347

Gradient×Input strategy. 1348
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Table 3: Prediction accuracy on subject-verb agreement, and model information.

Model prediction accuracy # params # layers # heads hidden size vocab size tokenizer

bert-base-uncased 0.969 110M 12 12 768 30522 WordPiece
bert-large-uncased 0.974 340M 24 16 1024 same same

GPT2-small 0.919 124M 12 12 768 50257 BPE
GPT2-XL 0.941 1.5B 48 25 1600 same same

Llama-3.2-1B 0.954 1B 16 32 2048 128256 tiktoken BPE
Llama-3.2-3B 0.956 3B 28 24 3072 same same

Moreover, note that one does not even need a1349

numerical stabilizer to handle a zero-valued input1350

in the activation layer. Indeed most considered1351

element-wise activation functions (such as GELU1352

or SiLU) have a zero-valued output when their in-1353

put is zero. Thus one possibility to deal with a1354

zero-valued input is to set the output manually to1355

zero for ẑj in this particular case (i.e., to a con-1356

stant), hence the resulting gradient will be zero1357

too. And as a consequence, the relevance using1358

the Gradient×Input strategy will be zero. This is1359

still meaningful for LRP as in such a case the out-1360

put’s relevance will be zero anyway, so there no1361

relevance to redistribute backward (indeed LRP1362

relevances are generally proportional to neurons’1363

contributions in the forward pass, and for a sub-1364

sequent linear layer a zero-valued input does not1365

contribute to the output, hence receiving no rele-1366

vance).1367

D.3 LRP-signal-take-all rule for product1368

layers1369

Given a product layer of the following form: zj =1370

zg · zs, where zg is a gate neuron and zs is a signal1371

neuron (in the MHA attention layer the former will1372

be the attention weight, and the latter a component1373

of the value vector).1374

The LRP-signal-take-all rule redistributes all the1375

relevance to the signal neuron, i.e. Rs = Rj and1376

Rg = 0.1377

And let’s define the following modified product1378

layer:1379

ẑj = [zg]detach() · zs (13)1380

Obviously ẑj = zj .1381

Now assuming we compute the relevances at the1382

layer’s output and input via Gradient×Input, thus1383

it holds: 1384

Rj = dẑj · ẑj (14) 1385

Rs = dzs · zs (15) 1386

Rg = dzg · zg (16) 1387

Per definition of elementary rules of differentia- 1388

tion and the chain rule, we have: 1389

dzs = dẑj · zg (17) 1390

dzg = 0 (18) 1391

By incorporating Eq. 17&18 into Eq. 15&16, we 1392

finally get: 1393

Rs = dẑj · zg · zs = dẑj · ẑj (19) 1394

Rg = 0 (20) 1395

Und by using Eq. 14: 1396

Rs = Rj (21) 1397

Rg = 0 □ (22) 1398

Hence we have shown the LRP-signal-take-all rule 1399

can be implemented implicitly by using the modi- 1400

fied Gradient×Input strategy. 1401

D.4 LRP rule for normalization layers 1402

We illustrate this rule using the Pytorch LayerNorm 1403

layer, which is defined by: 1404

zj =
zi−E[zi]√
V ar[zi]+ϵ

· γ + β (23) 1405

where the parameters of the layers ϵ, γ and β are 1406

constants. 1407

In order to extend LRP to Transformers Ali et al. 1408

(2022) propose to treat the standard deviation of the 1409

Layernorm as a constant, which can be achieved 1410

by modifying the layer in the following way: 1411

ẑj =
zi−E[zi]

[
√

V ar[zi]+ϵ]detach()

· γ + β (24) 1412
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Obviously ẑj = zj .1413

Further the modified layer is now a linear layer1414

(since all operations in the layer such as the mean1415

operation are now linear). Hence the layer can be1416

treated similarly to Section D.1. □1417

So overall we have shown that the LRP rule1418

proposed for normalization layers in Transformers1419

can be implenmented with Gradient×Input.1420

D.5 AttnLRP rule for softmax layers1421

Let us introduce some new notations to match1422

closely the ones from Achtibat et al. (2024). So1423

far we have mainly dealt with single neurons, now1424

we deal with vectors. So let the input vector be x1425

and the output vector be s, and both can be indexed1426

either by i or j.1427

Per defintion of the softmax operation we have:1428

sj(x) =
exj∑
i e

xi
(25)1429

Using elementary rules of differentiation one can1430

show that:1431

∂sj
∂xi

=

{
sj(1− sj) for i = j

−sjsi for i ̸= j
(26)1432

Now assuming the input’s and output’s rele-1433

vances are computed via Gradient×Input, i.e.:1434

Rsj = dsj · sj (27)1435

Rxi = dxi · xi (28)1436

Using the chain rule it holds that:1437

Rxi = dxi · xi (29)1438

=
∑
j

∂sj
∂xi

· dsj · xi (30)1439

By incorporating Eq. 31 into Eq. 30, one obtains:1440

Rxi =
∑
j

{
sj(1− sj) · dsj · xi for i = j

−sjsi · dsj · xi for i ̸= j

(31)

1441

By identifying the term from Eq. 27:1442

Rxi =
∑
j

{
(xi − sj · xi) ·Rsj for i = j

−si · xi ·Rsj for i ̸= j

(32)

1443

Hence we finally arrived at the LRP rule proposed1444

for the softmax layer in Achtibat et al. (2024). □1445

Thus, in summary, we have provided a complete 1446

set of proofs that all LRP, resp. AttnLRP, rules 1447

used in Transformers can be implemented via a 1448

Gradient×Input approach, by simply modifying 1449

adequately parts of the non-linear layers (namely 1450

product, normalization and element-wise activation 1451

layers) and keeping all linear layers unmodified. 1452
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Figure 2: Exemplary heatmaps for the ALTI-Logit and AttnLRP attribution methods, we highlight the verb in green,
positive relevance is mapped to red, negative to blue.
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