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ABSTRACT 
Currently, Transformer-based prohibited object detection methods 
in X-ray images appear constantly, but there are still some 
shortcomings such as poor performance and high computational 
complexity for prohibited object detection with heavily occlusion. 
Therefore, a coarse to fine detection method for prohibited object 
in X-ray images based on progressive Transformer decoder is 
proposed in this paper. Firstly, a coarse to fine framework is 
proposed, which includes two stages: coarse detection and fine 
detection. Through adaptive inference in stages, the computational 
efficiency of the model is effectively improved. Then, a position 
and class object queries method is proposed, which improves the 
convergence speed and detection accuracy of the model by fusing 
the position and class information of prohibited object with object 
queries. Finally, a progressive Transformer decoder is proposed, 
which distinguishes high and low score queries by increasing 
confidence thresholds, so that high-score queries are not affected 
by low-score queries in the decoding stage, and the model can 
focus more on decoding low-score queries, which usually 
correspond to prohibited object with severe occlusion. The 
experimental results on three public benchmark datasets (SIXray, 
OPIXray, HiXray) demonstrate that compared with the baseline 
DETR, the proposed method achieves the state-of-the-art 
detection accuracy with a 21.6% reduction in model 
computational complexity. Especially for prohibited objects with 
heavily occlusion, accurate detection can be carried out. 

CCS CONCEPTS 
•Computing methodologies~Artificial intelligence~Computer 
vision~Computer vision problems~Object detection 

KEYWORDS 
X-ray Image, Prohibited Object Detection, Coarse to Fine, 
Position and Class Object Queries, Progressive Transformer 
Decoder 

1 INTRODUCTION 
In airports, train stations, and port terminals, to effectively 
mitigate the security risks posed by controlled knives, explosives, 
firearms, chemicals, and other prohibited objects, X-ray machines 

are commonly used to inspect passengers' luggage, ensuring travel 
safety. Currently, the analysis of X-ray images primarily relies on 
manual inspection, which is susceptible to the influence of 
security personnel's condition and experience, and can easily lead 
to missed or false detections of prohibited objects, posing 
significant hidden dangers to passenger safety. To enhance the 
accuracy and efficiency of security checks, researchers have 
begun to explore various methods to achieve automatic and 
accurate detection of prohibited objects in X-ray images. However, 
compared with natural images, X-ray images exhibit many unique 
characteristics, such as the lack of inherent color, insufficient 
texture information, mutual occlusion between objects, clutter 
from surrounding items, and high similarity in imaging among 
some objects, which bring significant challenges and difficulties 
in detecting prohibited objects in X-ray images. 

With the rapid development of deep learning, researchers have 
applied it to the detection of prohibited objects in X-ray images, 
significantly improving detection accuracy and efficiency. But in 
general, the detection performance for heavily occluded 
prohibited objects remains suboptimal. In recent years, the 
application of Transformer-based models in the detection of 
prohibited objects in X-ray images has achieved significant 
breakthroughs, showing great potential in addressing occluded 
prohibited object detection. Nevertheless, existing methods still 
need improvement in the following aspects: 

(1) The detection speed is slow. The input tokens of the 
Transformer are sequential vectors, and in object detection tasks, 
the length of the token sequence is positively correlated with the 
size of the feature map. The length of the sequence has an 
exponential impact on the computational complexity, resulting in 
a significant increase in computational complexity. Therefore, it is 
necessary to research more efficient Transformer model structures 
or optimization methods to improve detection speed.  

(2) Insufficient mining of object position and class information. 
Object detection methods based on Transformers rarely consider 
the object's position and class information when generating object 
queries, which not only makes network training difficult to 
converge quickly but also hinders further improvement of 
detection performance. Therefore, more effective methods for 
generating object queries need to be explored.  

(3) The impact of low-score queries on detection results is 
ignored. In the Transformer decoder, low-score queries usually 
correspond to objects with severe occlusion in X-ray images, 
negatively affecting detection results. Therefore, it is necessary to 
design better learning strategies to reduce the impact of low-score 
queries to high-score queries during training and fully exploit the 
features of low-score queries to improve the detection accuracy of 
heavily occluded objects. 

To solve the above problems, a coarse to fine prohibited object 
detection method in X-ray images based on Progressive 
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Transformer Decoder (PTD) is proposed in this paper, which 
effectively improves the detection accuracy of severe occlusion 
prohibited object by using the global modeling capability of 
Transformer. The main innovations include: 

(1) A novel Coarse To Fine Framework (CTFF) is proposed 
for prohibited object detection, which performs staged adaptive 
inference. This framework not only enhances the computational 
efficiency of the model but also improves the detection accuracy.  

(2) A novel method for generating object queries is introduced, 
namely the Position and Class Object Queries (PCOQ) method. 
This method integrates the position and class information of 
prohibited objects with object queries, enabling the model to 
locate the position and class of prohibited objects more accurately. 
This integration significantly enhances the model's convergence 
speed and detection accuracy.  

(3) The PTD is proposed, which distinguishes high and low-
score queries through increasing confidence threshold levels, thus 
shielding high-score queries from the influence of low-score 
queries during the decoding stage, and making the network more 
focused on decoding low-score queries, effectively improving the 
detection performance for severely occluded prohibited objects. 

The remainder of the paper is arranged as follows: Section 2 
introduces Related Work, and Section 3 introduces the method 
proposed in this paper. Section 4 is the Experimental Results and 
Analysis, and Section 5 is the Conclusion. 

2 RELATED WORK 
Prohibited object detection in X-ray images is a typical object 
detection problem. At present, object detection framework based 
on natural images is widely used. Existing prohibited object 
detection methods can be roughly divided into CNN-based 
methods and Transformer-based methods. The following are 
introduced separately. 

2.1 CNN-based prohibited object detection in X-
ray image 

CNN-based prohibited object detection methods in X-ray images 
primarily include one-stage and two-stage detection approaches. 
One-stage methods generally employ architectures such as the 
YOLO [22] and SSD [15], which directly regress coordinates to 
determine the position of prohibited objects. Two-stage methods 
commonly use the R-CNN series [23] architecture, which detect 
prohibited objects based on region proposals. 

Zhang et al. [39] adopts an improved Mask R-CNN [6], which 
integrates low-level features into high-level features to improve 
feature representation capability, and adopts SoftNMS [1] instead 
of traditional NMS [19] to overcome the missed detection 
problem of overlapping objects. Chen et al. [4] found that the 
atomic number Z information of objects with different materials is 
obviously different in X-ray images, which is very important to 
suppress the interference of irrelevant background information by 
mining material clues. Therefore, the authors proposed an atomic 
number Z Prior Guided Network (ZPGNet), which uses the 
atomic number Z information to mine objects and materials to 
reduce irrelevant background information. However, the authors 

only pay attention to the atomic number Z information and does 
not fully consider the edge contour information of prohibited 
object, so it cannot solve the occlusion problem well. 

To this end, Liu et al. [12] designed three mechanisms. Firstly, 
the authors proposed a scale interaction module, which makes the 
features of adjacent scales interact once or more times to enhance 
the perception ability of the model. Then, a cross-image weakly 
supervised semantic analysis model is designed, which uses 
collaborative attention mechanism to perceive similar and 
different objects, and breaks through the information bottleneck of 
isolated detection of a single image. Finally, they introduced a 
multi-task learning module, which optimizes the model at both 
global level and pixel level. In order to solve the occlusion 
problem and class imbalance problem at the same time, Liu et al. 
[14] proposed a dual multi-instance attention network named 
DMA-Net, which uses two different attention mechanisms, 
namely, image block-based and proposal-based multi-instance 
attention mechanisms, so as to extract the features of key 
instances. Based on image block attention mechanism, local 
information in X-ray image can be extracted and multiple instance 
features can be generated. The attention mechanism based on 
proposal can adaptively select important feature regions, so that 
the network can pay more attention to these regions. 

X-ray images usually contain a large number of blank areas, so 
sending the whole image directly into the network for training is 
not only time-consuming, but also has poor detection effect. To 
solve this problem, Nguyen et al. [20] proposed a task-driven 
image cropping scheme called Task-Driven Cropping (TDC). It 
can adaptively clip the X-ray image, and quickly identify the 
importance of each pixel by using the depth feature extractor. 
Only the areas related to the detection task will be reserved and 
passed to the subsequent detectors. 

CNN-based prohibited object detection methods in X-ray 
images are better at capturing the spatial location information of 
objects, providing advantages in object localization. However, 
these methods generate a large number of candidate boxes, for 
which Non-Maximum Suppression (NMS) is typically used to 
filter the candidate boxes. NMS itself is a greedy algorithm and 
cannot guarantee a globally optimal solution, potentially leading 
to missed or false detections. Moreover, the threshold for NMS 
needs to be manually set, usually based on experience and 
experimental results, making it difficult to generalize across 
different datasets and tasks. 

2.2 Transformer-based prohibited object detection 
in X-ray image 

In recent years, the Transformer has made significant progress in 
various fields such as object detection and semantic segmentation, 
and Transformer-based prohibited object detection methods in X-
ray images [28] have also been emerging. DETR [2] is one of the 
earliest benchmark studies to apply the Transformer to object 
detection. This method first uses a CNN network as the backbone 
to extract image features, then flattens the output feature map to 
serve as a sequence input to the Transformer, and finally outputs 
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in parallel after processing by the Transformer, used for 
predictions to obtain the final results. 

Besides DETR architecture, some researchers also tried to 
embed Transformer into object detection architecture based on 
CNN, and achieved good results. For example, Wang et al. [32] 
used an improved Transformer structure to optimize YOLO 
architecture. They replace the convolution layer in the original 
YOLO with a Transformer encoder, and add a Transformer 
decoder in the detection header to generate detection boxes and 
class predictions. This improved structure is helpful for the 
network to better deal with the relationship and context 
information between prohibited object, thus improving the 
detection accuracy. Wang et al. [31] proposed an object detection 
method called YOLOv4-T, which combines YOLOv4 with 
Transformer and optimizes the multi-scale object detection. The 
method has high robustness and good resistance to noise, 
illumination and other disturbances. 

In order to solve the problem of class imbalance, Divya et al. 
[29] combined focus loss with Transformer, and implemented a 
weakly supervised location method based on Class Activation 
Map (CAM), which can help the model identify areas containing 
prohibited object. In order to make full use of X-ray images with 
multiple views, Brian et al. [7] proposed a prohibited object 
detection method based on multi-view Transformer, which can 
combine image information from multiple views to improve 
detection performance.  

To improve the detection accuracy of small objects in X-ray 
images, Wang et al. [34] first added Transformer to the low-level 
of YOLOv5 [10] to make full use of shallow features. Then global 
attention mechanism is used to enhance the extracted features. 
Finally, an adaptive spatial feature fusion module is proposed to 

enhance the utilization of feature map and strengthen the 
connection between pixels. Similarly, Wang et al. [33] proposed a 
method for detecting small prohibited objects in X-ray images 
called TB-YOLOv5. This method also embeds a Transformer 
module in the backbone of YOLOv5, uses an attention-enhanced 
BiFPN instead of the PANet structure in the neck, and integrates 
the BiFPN structure with coordinate attention to enhance the 
extraction capabilities of image features.  

Compared with CNN-based methods for X-ray image 
detection, Transformer-based detection methods do not produce a 
large number of redundant boxes, thereby eliminating the need for 
NMS post-processing, which significantly reduces the possibility 
of missing objects. Additionally, since these methods do not 
require the pre-setting of anchors, they can largely avoid the 
impact of human factors on detection performance. As such, they 
are increasingly being applied to the detection of occluded 
prohibited objects, showing great potential. However, these 
methods also have high model complexity, which is not conducive 
to practical application deployment. To address this, CTFF is 
proposed for prohibited object detection in this paper, which not 
only reduces computational complexity but also enhances 
detection accuracy. 

3 PROPOSED METHOD 
To balance detection accuracy and speed, CTFF is proposed for 
prohibited object detection, as shown in Figure 1, which reduces 
the computational complexity by reducing the input token 
dimension of Transformer encoder. Then PCOQ is proposed to 
improve the object queries in order to speed up the convergence 
of the network and improve the detection accuracy. Finally, PTD 

 
Figure 1: The pipeline of the proposed method. It consists of the CTFF, PCOQ module, and PTD. In this structure, CTFF 
comprises two stages: coarse detection stage and fine detection stage. Given the characteristics of X-ray images, CTFF effectively 
reduces the computational complexity of the model. PCOQ provides relatively accurate initial values for object queries, which can 
accelerate network convergence. PTD is designed to handle prohibited object with severe occlusion. By segregating high and low 
score queries, the model can focus more on heavily occluded prohibited object, thereby enhancing the overall detection accuracy 
of the network. Note that F, F1, and F2 denote intermediate feature maps, CAM stands for Class Activation Map, and Th 
represents the confidence threshold. 



 
 

is proposed to reduce the influence of low-score queries on high-
score queries by progressively distinguishing queries. In the 
following sections, we will cover each part and the loss function 
separately. 

3.1 Coarse to fine framework for prohibited object 
detection 

Some simples and complex prohibited object examples are shown 
in Figure 2, which show that there is a significant variation in the 
backgrounds of X-ray images. Processing these images with a 
uniform approach would inevitably result in the wastage of 
resources. Inspired by this, a prohibited object detection 
framework that progresses from coarse to fine is proposed in this 
paper. Different methods are utilized for processing based on the 
complexity of the backgrounds in X-ray images. 

The core of Transformer-based object detection framework is 
self-attention mechanism, in which each input element has a 
corresponding query, key and value vector, which is calculated by 
linear transformation. The attention scores are obtained by 
computing the dot product between the query and key vectors, and 
these scores are then used to perform a weighted average with the 

value vectors, yielding the final output. This process can be 
viewed as a self-alignment of each element in the input sequence, 
enabling the model to better capture the relationships between 
elements at different positions within the sequence. As shown in 
Table 1, by analyzing the computational complexity of each 
component of Transformer, it can be seen that the maximum 
computational complexity of the whole method lies in the encoder 
part, and its computational complexity is usually positively 
correlated with the dimension of input token. 

Based on the observations above, an adaptive prohibited object 
detection framework is proposed in this paper. For prohibited 
objects with simple imaging characteristics, lower-dimensional 
tokens are sufficient for effective representation. However, for 
objects with complex imaging characteristics, when low-
dimensional tokens are inadequate to encapsulate all features, 
higher-dimensional tokens are utilized for representation. 

The specific process is shown in Figure 1, which is mainly 
divided into two stages: coarse detection and fine detection. In the 
coarse detection stage, the input image is first fed into a ResNet50 
model pre-trained on ImageNet for feature extraction. After 
obtaining the feature map F, the size of it is reduced by a 
reduction coefficient α, where α=1/2 in this paper. The reduced 
feature map is then merged with positional encoding, followed by 
processing through a 1×1 convolution. The processed features are 
used as tokens and sent to the Transformer for detection. The 
detection results are then evaluated, if the confidence level 
exceeds the threshold Th, it is concluded that the network has 
successfully detected the prohibited object, and this result is 
output as the final result. If the confidence level is below Th, it is 
determined that the network has failed to detect the prohibited 
object correctly, necessitating the second stage of fine detection. 

After the coarse detection stage, the network has identified the 
approximate locations of the prohibited objects. Therefore, in the 
fine detection stage, the results from the coarse detection can be 
reused. The location information from these results is fed into the 
Grid Decision (GD) module, which further refines the feature map 
F based on these results. 

The specific workflow of the GD module is illustrated in 
Figure 3. Firstly, the feature map F1 is divided into 9 large 
regions arranged in a 3×3 grid. Subsequently, depending on their 
positions, these large regions are subdivided into multiple 
subregions, labeled A, B, C, and D. Finally, based on the locations 
identified during the coarse detection, different regions are 
selected for further refinement. 

The subdivision rules are as follows:  
• When the coarse detection object is located in Region A, 

refine Region D, the region containing the detection point, 
and the two adjacent regions of B+C. 

      

      
Simple prohibited object Complex prohibited object 

Figure 2: Simple and Complex prohibited object in X-ray 
Images. It can be seen that for some complex prohibited 
object, it is difficult for even the human eye to distinguish. 

Table 1: Comparison of Computational Complexity of 
Different Components in Transformer. 

Component GFLOPs 
Encoder 132G 
Decoder 22G 

 

 
Figure 3: Grid Decision Module. Based on the object positions 
during the coarse detection stage, different refinement rules 
are applied. For specific details, please refer to Section 3.1. 

 

Figure 4: Calculation method of class activation map. By 
using a pre-trained prohibited object classification model, it 
can provide object queries with better prior information. 
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• When the coarse detection object is located in Region B, 
refine Region D, the area containing the detection point, 
and the two adjacent regions of A. 

• When the coarse detection object is located in Region C, 
refine Region D, the area containing the detection point, 
and the adjacent regions of A and B+C. 

• When the coarse detection object is located in Region D, 
refine the adjacent regions of A and the regions of B+C. 
For instance, if the coarse detection object (indicated by a 
red dot in the figure) is located in D1, then refine A1, 
B1+C1+C2, B2+C3+C4, and D1+D2+D3+D4, resulting 
in the feature map F2. 

After selecting the four refined regions, the remaining five 
regions are proportionally reduced according to the size of the 
refined subregions. These, along with the refined regions, are then 
processed by a 1×1 convolution to generate a sequence of tokens. 
Following the principle of reuse, these tokens are fused with the 
output from the Transformer encoder during the coarse detection 
stage, and the combined tokens are then reintroduced into the 
Transformer encoder for further processing. In the decoding stage, 
the outputs from the Transformer decoder during the coarse 
detection stage are also merged with the inputs from the fine 
detection stage to form the new object queries for input. 

3.2 Position and Class Object Queries 
In DETR architectures, object queries are often difficult to 
interpret and lack concrete physical meaning. During training, the 
lack of association between object queries and the actual features 
of objects leads to the network's inability to accurately narrow 
down the search area for objects, resulting in slower convergence 
and difficulty in achieving optimal detection accuracy. 

To address this problem, the PCOQ is proposed in this paper, 
as shown in the middle part of Figure 1. This method utilizes 
CAM method to determine the approximate position and class of 
objects, providing a better positional prior and class information 
for subsequent object queries. In the training stage, the object 
regions from the input images are first extracted and trained using 
ResNet-18 to create a prohibited object classification network for 
X-ray images. Subsequently, the position and class vectors of the 
objects are used as object queries for training the decoder. 

During the testing stage, input images are directly fed into the 
trained X-ray image prohibited object classification network to 
generate class activation maps. From these maps, the implied 
object position and class vectors are extracted, with subsequent 
steps consistent with those in the training stage. The CAM method 
used in this paper is illustrated in Figure 4. 

As shown in the figure, the input image is sent to ResNet-18, 
and the global average pooling is performed on the feature map 
before the final output layer, which is taken as the weight of each 
layer. According to the different output categories, the weights of 
different classes are weighted and summed with feature map, and 
the class activation map of corresponding categories can be 
obtained. Through this simple network structure, the weight of the 
output layer can be projected onto the convolution feature map to 
determine the importance of the object region. 

From the analysis above, it is evident that the PCOQ method 
proposed in this paper provides a better initial distribution for the 
network, allowing different queries to associate with specific 
positions and classes, which can facilitate faster convergence of 
the network. 

3.3 Progressive Transformer Decoder 
The Transformer architecture employs an encoder-decoder 
structure. Within the encoder, each point in the feature map 
interacts with surrounding points, allowing the network to learn a 
substantial amount of global semantic information. Subsequently, 
the output from the encoder is fed into the decoder to produce the 
final output results. 

Research by Zheng et al. [42] demonstrates that when the 
output confidence of a query in the decoder exceeds a certain 
threshold, the majority of the Bounding Boxes (BBoxes) predicted 
are true positives. However, as the output confidence decreases, 
the number of false positives gradually increases. To effectively 
reduce the impact of low-score queries on high-score ones, this 
paper introduces a progressive Transformer decoder structure. 
This approach distinguishes queries by incrementally increasing 
confidence thresholds, isolating high-score queries for decoding in 
subsequent stages of the decoder. This method not only allows the 
decoder to focus more on extracting information from low-score 
queries but also prevents high-score queries from being influenced 
by these lower-score ones in later stages of decoding. 

The structure of progressive Transformer decoder in this paper 
is shown in Figure 5 and comprises six decoders. In this structure, 
PE represents Positional Encoding, MSM represents the Multi-
scale Self-attention Module, and MDM represents the Multi-scale 
Deformable-attention Module. QS represents the Query Selector, 
and QIE represents the Query Information Extractor. 

The QS module is calculated as follows: 

 (1) 

 (2) 

where t denotes the stage sequence number, Dt-1 denotes the 
predicted set of all queries in t-1 stage,  denotes the set of 

high-score queries, and  denotes the set of low-score queries. 
bi denotes high score prediction box, si denotes confidence, and s 
denotes confidence threshold. 

The QIE module is calculated as follows: 

 (3) 

 (4) 

 (5) 

where N(bi) denotes the neighbor of bi, bj denotes the low-score 
prediction box, O denotes the computational IoU operation,  
denotes the spatial position encoding, f denotes the geometric 
relation of the spatial position encoding, H denotes the generated 
geometric relation feature, MaxPool denotes the maximum 
pooling operation, F(qi) denotes the feature generated by queries, 
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FC denotes the fully connected operation, and R denotes the 
extracted relation feature. 

The outputs from the Transformer encoder, along with the 
object queries, are fed into the Progressive Transformer Decoder. 
After passing through three decoder stages, a large number of 
high-score queries have been obtained. Therefore, QS and QIE 
modules are added after the fourth and fifth stages. The specific 
workflow is as follows: 

Firstly, the QS module is used to evaluate the output of the 
previous stage. If it exceeds a certain threshold, it is considered 
that this query is a high-score query and reserved. Otherwise, it is 
regarded as a low-score query. Then, the low-score query is sent 
into the QIE module, and it is evaluated whether the high-score 
query is contained around the low-score query. If so, the low-
score query is discarded to avoid redundant detections. Otherwise, 
the low-score query will continue to be fed into the subsequent 
stage. Finally, the outputs of high-score queries from the third and 
fourth decoders are combined with the output from the fifth 
decoder and sent to the sixth decoder as final prediction result. 

After the progressive decoding process, the model primarily 
focuses on decoding low-score queries, which typically 
correspond to the most severely occluded objects. Therefore, 
combined with the Transformer's global attention mechanism, this 
method effectively addresses the detection of prohibited object 
with significant occlusion. 

3.4 Loss 
The loss calculation in this paper consists of two parts: one is 
object detection box matching loss, and the other is the loss 
between matched BBoxes. It can be expressed as: 

 (6) 

The detection box matching loss is expressed as: 

 (7) 

 (8) 

where ci denotes the class of the i-th BBox, and  denotes a 

value of 1 when the class is non-background. σ(i) denotes the 
index of the i-th prediction box, and  denotes the class 
probability of prediction. bi denotes the coordinates of Ground 
Truth, and  denotes the coordinates of predicted BBox. λIOU and 
λL1 are two hyperparameters, and LIOU represents GIoU loss [24]. 

The loss between matched BBox can be expressed as: 

 (9) 

where N denotes the number of BBox matched.  

4  EXPERIMENTAL RESULTS AND ANALYSIS 

4.1 Datasets and Evaluation Criteria 
In order to verify the performance of the proposed method, 
experiments are carried out on three common benchmark datasets, 
namely SIXray, OPIXray and HiXray. And mean Average 
Precision (mAP) are often utilized as the evaluation metrics in 
object detection tasks[9, 40], thus, we also strictly follow these 
metrics in our experiments. 

Next, the experimental results and analysis are introduced. 

4.2 Implementation Details 
The hardware configuration of the experiment is: 11th Gen Intel 
(R) Core (TM) i7-11700K @ 3.60 GHz, the graphics card is 
Quadro RTX 6000, 24G video memory and 32G memory. The 
network is built, trained and tested on PyTorch platform.  

The ResNet-50 pre-trained on ImageNet as the backbone 
network in this paper. The model trains 50 epoch, and the learning 
rate becomes one tenth of the original when epoch is 40. Adam 
optimizer is used in the training process, and the initial learning 
rate is set to 2e-4, the weight decay is set to e-4, and the batch size 
is 1. No data enhancement operation is carried out. 

4.3 Comparison with State-of-the-art Methods 
In order to verify the effectiveness of the proposed method, we 
compare it with many existing object detection methods, 
including CNN-based methods and Transformer-based methods, 
among which CNN-based methods include: One-stage methods: 
YOLO v5 [10]*, FCOS[27]*, FA [35], MCIA-FPN [30], POD[17], 
Chang et al. [3], FA [35], ATSS+LAreg [41], Assails [41], 
ZPGNet [4], DOAM [36], LIM[26] and YOLO X[5]. Two-stage 
methods: Faster R-CNN [23]*, Grid R-CNN [16]*, Dynamic R-
CNN [38], Dh_Faster R-CNN [37]*, Sparse R-CNN [25]* and 
DetectoRS [21]*. Transformer-based methods: Deformable 
DETR[44]*, Conditional DETR[18]*, DN DETR[11]*, DAB 
DETR[13]*, H Deformable DETR[8]* and Focus-DETR [43]. 

Table 2 shows the experimental results using different object 
detection methods on three datasets, where * represents the result 
reproduced under the same experimental conditions. The optimal 
results are represented in red font, and the suboptimal results are 
represented in blue font. It can be seen from the table that the 
proposed method achieves the best detection performance across 
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Figure 5: Progressive Transformer Decoder. By segregating 
high and low score queries, the model can focus more on 
heavily occluded prohibited object. 
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all datasets. On the three public benchmark datasets, the mAP 
values are higher than those of existing methods by 1.99% to 
11.09%, 1.57% to 11.37%, and 1.35% to 14.35%, reaching 
92.39%, 92.47%, and 85.75%, respectively. The comparison 
results indicate that Transformer-based methods generally achieve 
superior detection performance compared with CNN-based 
methods, especially for objects with severe occlusion. However, 
due to the lack of inductive bias, Transformer-based methods 
usually rely on large-scale annotation data. In HiXray dataset, 
compared with other categories, the number of NL category is 
relatively small, so most Transformer-based methods have poor 
detection effect. However, PCOQ can give object queries a more 
accurate initial value in advance, so it can still carry out better 
detection even if the number of labeled data is small. 

To validate the efficiency of the proposed method, we 
compared its computational complexity and parameters with other 
detection methods. It is evident that this method has significant 
advantages in terms of computational complexity and model 
parameters compared with others. In terms of inference speed, the 
method surpasses most DETR-like methods without requiring 
additional model parameters. Considering the accuracy of the 
model, it is evident that the proposed method achieves an 
effective trade-off between precision and speed. 

4.4 Ablation Studies 
To further validate the effectiveness of each component within the 
proposed method, we conducted ablation studies. Table 3 shows 
the comparative results obtained by incorporating different 
modules across multiple datasets. Where baseline refers to the 
original DETR model. 

It can be clearly seen that the computational complexity of the 
model was effectively reduced after using the CTFF. The 

inference time decreased from 0.0834 seconds to 0.0510 seconds, 
a substantial reduction of 38.85%. Furthermore, FLOPs were 
reduced from 221.81G to 167.45G, achieving a computational 
saving of 24.51%, and the model's parameter size decreased from 
46.70MB to 41.28MB, saving 14.69%. Despite these reductions, 
thanks to our feature reuse mechanism, the overall detection 
performance was minimally impacted, with an average decrease 
of just 0.29%. 

After incorporating PCOQ and PTD, there was a significant 
improvement in detection accuracy, particularly with PTD, which 
increased accuracy by 1.26% on the SIXray dataset, 1.18% on the 
OPIXray dataset, and 1.62% on the HiXray dataset. Following the 
implementation of PCOQ, accuracy also increased by 0.95%, 
1.03%, and 1.24%, respectively. Ultimately, with a 21.6% 
reduction in computational complexity, the method achieved 
optimal detection accuracy across all three datasets, thoroughly 
demonstrating its effectiveness. The OPIXray and HiXray datasets, 
which are more complex, were most affected by the CTFF, 
showing the largest declines in detection accuracy. However, 
thanks to the positional and class information provided by PCOQ, 
the models were still able to achieve the best detection accuracy. 

To further investigate the various modules proposed in this 
paper, we conducted more detailed ablation studies using the 
SIXray dataset as an example. 

4.4.1 Effect of different CTFF parameters on model 
performance. To explore the impact of different stages on 
detection performance in CTFF, the performance before and after 
the incorporation of the fine detection stage are compared, as 
shown in Table 4. In this table, "Baseline" refers to the results 
after removing the CTFF, "Coarse" indicates the coarse detection 
stage, and "Fine" denotes the fine detection stage. The data 
reveals that when only the coarse detection is performed, there is a 

Table 2: Performance comparison results using different object detection methods on SIXray, OPIXray, and HiXray datasets.  

Type Method Year Backbone 
Datasets Inference 

Time(s) 
GFLOPs Parameters(MB) 

SIXray OPIXray HiXray 

CNN 

Two-stage 

Faster R-CNN [23]* 2016 ResNet-50 82.8 81.9 / 0.0343 210.47 41.09 
Grid R-CNN [16]* 2019 ResNet-50 83.7 83.6 / 0.0861 328.84 64.32 

Dynamic R-CNN [38]* 2020 ResNet-50 83.3 81.1 / 0.0439 215.44 41.14 
Dh_Faster R-CNN [37]* 2020 ResNet-50 83.7 82.6 / 0.2568 490.02 47.12 

Sparse R-CNN [25]* 2021 ResNet-50 81.3 81.8 / 0.1010 236.31 125.06 
DetectoRS [21]* 2021 ResNet-50 83.1 82.0 / 0.0588 228.01 93.47 
POD-F-R [17] 2023 ResNet-50 86.1 84.9 / 0.1498 334.12 118.23 
POD-F-X [17] 2023 ResNeXt-50 86.9 86.1 / 0.1563 337.44 119.67 

One-stage 

YOLO v5 [10]* 2021 CSPDarknet-53 86.7 87.9 81.7 0.0415 101.32 44.10 
FA [35] 2021 ResNet-50 85.8 87.7 / / / / 

MCIA-FPN [30] 2022 ResNet-101 85.23 85.89 / / / / 
YOLOX-L[5] 2021 Modified CSP v5 / / 84.1 / / / 
ZPGNet [4] 2023 DarkNet-53 / 85.4 84.4 / / / 
POD-Y [17] 2023 CSPDarknet-53 90.4 90.9 / 0.0422 108.10 47.19 

Transformer 

Deformable DETR [44]* 2020 ResNet-50 89.94 89.76 80.77 0.0799 163.21 41.16 
Conditional DETR [18]* 2021 ResNet-50 90.14 89.68 83.18 0.0448 110.22 44.43 

DN DETR [11]* 2022 ResNet-50 89.88 90.07 80.32 0.0646 214.91 47.41 
DAB DETR [13]* 2022 ResNet-50 90.05 90.29 81.33 0.0604 207.12 45.67 
H D DETR [8]* 2023 ResNet-50 90.31 89.10 80.26 0.0796 218.90 47.98 

Focus-DETR [43]* 2023 ResNet-50 90.21 90.01 82.45 0.0601 179.48 47.84 
Ours / ResNet-50 92.39 92.47 85.75 0.0545 173.85 41.28 

 



 
 

significant drop in model accuracy, but the inference time is 
greatly reduced, with a decrease of up to 56%. After incorporating 
the fine detection stage, which adds more feature information and 
utilizes feature reuse, the model is able to capture a richer set of 
useful features, resulting in a substantial improvement in accuracy, 
with the mAP increasing by 1.48%. 

4.4.2 Effect of different backbone in PCOQ on model 
performance. In the PCOQ module, we initially trained a 
prohibited object classification network using X-ray images to 
evaluate the impact of different backbones on detection accuracy. 
We conducted comparative experiments with ResNet-18, ResNet-
34, ResNet-50, and ResNet-101, as shown in Table 5. The data 
indicates that the differences in classification accuracy among 
these backbones are very minimal, ranging only between 0.1% 
and 0.2%. Such slight variations have a negligible impact on the 
final detection outcomes. For the datasets we used, although 
switching to a larger capacity classification model could yield 
slightly better performance, it would come at the cost of increased 
computational complexity and model parameters. Therefore, 
considering the trade-off between speed and accuracy, ResNet-18 
was chosen as the backbone for PCOQ in this paper. 

4.4.3 Effect of different PTD parameters on model 
performance. After passing through the Transformer encoder, the 
input image is encoded into more abstract feature vectors, which 

need to be decoded to generate the final detection results. To 
determine the appropriate number of QS and QIE modules, we 
conducted ablation experiments. For ease of understanding, we 
refer to the serial combination of these two modules as the QS-
QIE module. When the number of QS-QIE modules is zero, it 
indicates that there is no segregation of high and low score queries. 
Since the segregation of queries occurs in the final stages of 
decoding, having one QS-QIE module means incorporating it 
before the sixth layer of the Transformer decoder. Two modules 
indicate insertion before the fifth and sixth layers of the 
Transformer decoder, and three modules indicate placement 
before the fourth, fifth, and sixth layers. The experimental results 
are shown in Table 6. 

The data reveals that model performance is the worst when not 
using any QS-QIE modules. This is because the Transformer 
decoder typically contains a large number of low-score queries 
mixed with high-score queries, introducing significant noise into 
the model's decoding process for high-score queries. As the 
number of QS-QIE modules increases, high and low score queries 
begin to be segregated, and the model focuses more on decoding 
low-score queries, thereby significantly improving detection 
accuracy. When the number reaches two, the mAP increases by 
1.26%. However, more QS-QIE modules are not always better. 
When the modules are added before the fourth layer of the 
Transformer decoder, the features from the Transformer encoder 
are not fully decoded yet, leading to inadequate judgment 
capability for distinguishing high and low score queries, thus 
slightly decreasing the mAP. 

5 CONCLUSIONS 
A coarse to fine detection method for prohibited object in X-ray 
images based on progressive Transformer decoder is proposed in 
this paper. Through comprehensive analysis of a vast array of 
experimental results, the following conclusions can be drawn: (1) 
The background complexity of X-ray images is very different, so 
different computing resources are given according to the difficulty 
of samples, which is conducive to both detection accuracy and 
speed. (2) Introducing as much prior knowledge about prohibited 
items as possible during the initialization of object queries can 
help the model converge more rapidly and enhance detection 
accuracy. (3) The Transformer decoding stage contains a large 
number of low-score queries, which usually correspond to the 
most occluded objects. By using a mechanism to separate high 
and low-score queries, the training process can minimize the 
impact of low-score queries on high-score ones, allowing the 
model to dedicate more resources to decoding low-score queries 
and thus enhancing the detection accuracy for heavily occluded 
prohibited objects. 

Table 3: The effect of different components of the proposed method on detection performance. 

Baseline CTFF PCOQ PTD SIXray OPIXray HiXray Inference Time(s) GFLOPs Parameters(MB) 
√    90.32 90.61 83.28 0.0904 221.81 46.70 
√ √   90.18 90.26 82.89 0.0510 167.45 37.84 
√ √ √  91.13 91.29 84.13 0.0522 170.11 41.01 
√ √ √ √ 92.39 92.47 85.75 0.0545 173.85 41.28 

 
Table 4: The impact of different stages on detection 
performance in CTFF. 

Baseline Coarse Fine mAP Inference Time(s) GFLOPs 
√   92.50 0.0958 229.21 
√ √  90.91 0.0424 151.23 
√ √ √ 92.39 0.0545 173.85 

Table 5: The impact of different backbone on model 
performance in PCOQ. 

Backbone Classification 
accuracy mAP Inference 

Time(s) GFLOPs 

ResNet-18 94.0 92.39 0.0545 173.85 
ResNet-34 94.2 92.40 0.0581 175.61 
ResNet-50 94.1 92.40 0.0600 176.20 

ResNet-101 94.2 92.41 0.0639 180.78 

Table 6: The impact of the number of QS-QIE modules on 
model performance. 

Number of QS-QIE 
modules mAP Inference Time(s) GFLOPs 

0 91.13 0.0522 170.11 
1 91.85 0.0531 171.91 
2 92.39 0.0545 173.85 
3 92.36 0.0573 175.79 
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