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Abstract

We study the non-contextual multi-armed bandit problem in a transfer learning setting:
before any pulls, the learner is given N ′

k i.i.d. samples from each source distribution ν′k,
and the true target distributions νk lie within a known distance bound dk(νk, ν

′
k) ≤ Lk. In

this framework, we first derive a problem-dependent asymptotic lower bound on cumulative
regret that extends the classical Lai–Robbins result to incorporate the transfer parameters
(dk, Lk, N

′
k). We then propose KL-UCB-Transfer, a simple index policy that matches

this new bound in the Gaussian case. Finally, we validate our approach via simulations,
showing that KL-UCB-Transfer significantly outperforms the no-prior baseline when
source and target distributions are sufficiently close.

Keywords: Multi-armed bandit; Transfer Learning; Problem-dependent optimality; Re-
gret analysis

1. Introduction

In many sequential-decision tasks, one often has access to historical data collected under
related but not identical conditions. Leveraging such data to speed up learning in a new
environment is the goal of transfer learning, a paradigm that has been successfully applied
in computer vision, reinforcement learning, and natural language processing. For example,
pre-trained image classifiers built on large, generic datasets can be adapted to medical
imaging; in robotics, policies learned in simulation help bootstrap real-world control; and
in agriculture, past yield records from neighboring fields guide crop-management decisions
in a new plot (Taylor and Stone, 2009).

In this work we study transfer in the simplest possible online setting: a non-contextual
multi-armed bandit with K arms and i.i.d. rewards. Before interacting with the target
bandit, the learner receives N ′

k i.i.d. samples from each source arm k, whose true reward
distribution we denote by ν ′k. The goal is to minimize cumulative regret on the target bandit,
whose arm k has distribution νk. We assume the learner knows a family of (pseudo-)distance
dk and upper bounds Lk > 0 such that each νk lies within distance Lk of ν ′k:

νk ∈
{
γ ∈ D : dk(γ, ν

′
k) ≤ Lk

}
, k = 1, . . . ,K.

Intuitively, small Lk makes source samples informative; large N ′
k reduces noise. This

departs from prior transfer-bandit work assuming contextual, causal, or multi-task structure
Rahul and Katewa (2024b); Wang et al. (2022). Instead, we study a minimal non-contextual
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setting with i.i.d. samples per arm and transfer via known distance bounds (dk, Lk). This
captures scenarios (e.g., warm-start from historical data or sim-to-real) while enabling sharp
analysis. This non-contextual transfer bandit setting raises two key questions:

1. Characterize the transfer-aware minimal regret. Extend the classical Lai–Robbins
lower bound on the regret Lai and Robbins (1985) so it explicitly depends on the trans-
fer parameters (dk, Lk, N

′
k), yielding the minimal asymptotic cost any algorithm must

pay.

2. Design a matching policy. Propose a simple index strategy that incorporates the
N ′

k prior samples and achieves the transfer-aware lower bound.

Our contributions

• We derive a problem-dependent lower bound on cumulative regret which holds for any
algorithm with prior data {N ′

k, ν̂
′
k, dk, Lk} (see Section 4, Theorem 3).

• Focusing on Gaussian rewards with known variance, we introduce in Section 5.2 KL-
UCB-Transfer, a minor modification of the KL-UCB index that adds a KL-penalty
term for the source data. We prove that the regret of KL-UCB-Transfer matches
our lower bound (see Section 6, Theorem 6). In the regret analysis, one must carefully
handle potentially large or T -dependent N ′

k: the index should leverage prior samples
to avoid redundant exploration while preserving sufficient exploration when necessary.

• We validate via simulations that KL-UCB-Transfer can achieve substantial regret
reductions when the priors on suboptimal arms are accurate, and we highlight the
delicate short-term trade-offs when priors are placed on the optimal arm in Section 7.

By keeping our setting minimal—no contexts, fixed variances—we obtain a clean, intu-
itive theory and a useful algorithm for studying transfer learning.

2. Related Work

Classical non-contextual bandits. The stochastic multi-armed bandit was first studied
by Thompson (1933) and rigorously analyzed by Robbins (1952). Lai and Robbins (1985)
proved the fundamental problem-dependent asymptotic lower bound on regret, and a range
of algorithms—such as KL-UCB Maillard et al. (2011); Cappé et al. (2013), IMED Honda
and Takemura (2015), DMED Honda and Takemura (2010), and Thompson Sampling Kauf-
mann et al. (2012)—are known to match this bound.

Contextual transfer and causal approaches. Transfer in contextual bandits has been
extensively studied: Deng et al. (2025) leverages causal transportability to handle covariate
shift in latent contextual settings; Cai et al. (2024) derives minimax optimal rates under
covariate shift; Bellot et al. (2023) proposes a transport-aware Thompson Sampling policy
using graphical causal models; Zhang and Bareinboim (2017) analyzes a causal MAB with
latent confounders and provides a problem-dependent lower bound under specific structural
assumptions. However, these approaches rely on contextual or causal-structure assumptions
and do not address the non-contextual offline–online transfer setting where one first observes
i.i.d. source samples per arm, nor do they derive a problem-dependent lower bound, and
consequently lack any algorithm matching such a bound in that regime.
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Non-contextual transfer bandits. Several recent works consider transfer in the clas-
sical (non-contextual) bandit setting, but under different task structures Gheshlaghi azar
et al. (2013); Saber et al. (2021). Wang et al. (2022) study a multi-task regime where mul-
tiple bandits run in parallel and Thompson Sampling borrows posterior mass across tasks
for robustness, yielding minimax-style guarantees. Rahul and Katewa (2024b,a) analyze
a sequential-task framework: they assume known “adjacent similarity” bounds to transfer
raw reward samples via UCB, and in their follow-up work they learn the similarity radius
online, each time achieving improved instance-dependent regret over no-transfer baselines.

By contrast, we consider a single target bandit and first receive N ′
k i.i.d. samples from

each source arm. We give the first problem-dependent asymptotic lower bound in this of-
fline, non-contextual transfer setting (see Theorem 3) and design a KL-UCB–style index
that matches it exactly in the Gaussian case (see Theorem 6).

While our setting may appear overly simplified, deriving a problem-dependent lower
bound that explicitly accounts for arbitrary prior sample sizes N ′

k is non-trivial and not
covered by existing approaches, which often merge prior and online data without regard to
lower-bound tightness. Also, despite the generic formulation, this setting has received little
direct attention in the literature.

3. Problem formulation

In this section, we first recall the classical stochastic multi-armed bandit framework, then in-
troduce our offline non-contextual transfer setting with prior samples from a related source.

Classical setting We consider a known family of distributions D and unknown arm
distributions ν = (ν1, . . . , νK) ∈ DK with means µk. At each round t, a learner selects arm
at and observes reward Xt ∼ νat . Assume w.l.o.g. that arm 1 has the highest mean. Let
1{·} denote the indicator. the cumulative regret is

RT =
K∑
k=1

E[Nk(T )] (µ1 − µk), where Nk(T ) =
T∑
t=1

1{at = k}.

A strategy is consistent if for each suboptimal arm k, E[Nk(T )] = o(Tα) for all α > 0.
For any consistent algorithm and suboptimal arm k, the following asymptotic lower bound
holds Lattimore and Szepesvári (2020):

lim inf
T→∞

inf
ν̃k∈D

E[ν̃k]>µ1

E[Nk(T )] KL(νk, ν̃k)

lnT
≥ 1, (1)

results the following lower bound on the regret

RT ≥ lnT

 K∑
k=2

(µ1 − µk) sup
ν̃k∈D

E[ν̃k]>µ1

1

KL(νk, ν̃k)

+ o(lnT )
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Transfer learning setting Before interacting with the target ν, we observe N ′
k i.i.d.

samples from related source distributions ν ′ = (ν ′1, . . . , ν
′
K) ∈ D′K satisfying dk(νk, ν

′
k) ≤ Lk.

The regret on ν remains RT as defined above. Our goal is to derive a transfer-aware lower
bound analogous to (Eq(1)), explicitly involving (dk, Lk, N

′
k), and to design a KL-UCB–type

algorithm that matches this bound.

4. Lower Bounds

In this section, we derive fundamental limits on cumulative regret in our offline transfer
setting. Specifically, we extend the classical Lai–Robbins bound (Eq(1)) to incorporate the
transfer parameters (dk, Lk, N

′
k), showing that no consistent algorithm can beat this rate

(see Theorem 3), and we discuss several important special cases.

Remark 1 In the rest of the paper, all o(·) and O(·) notation refer to the limit T → ∞.
Since offline sample sizes N ′

k may depend arbitrarily on T (or even be +∞), any o(·) or
O(·) usage must explicitly account for possible dependence on N ′

k.

4.1. General Lower Bound in the Transfer Setting

Definition 2 An algorithm is said to be consistent (w.r.t. (D,D′, d, L,N ′)) if for every
pair (ν, ν ′) ∈ DK ×D′K and every suboptimal arm k,

∀α > 0, E[Nk(T )] = o(Tα) (T → ∞).

Theorem 3 Let a consistent algorithm operate under (D,D′, d, L,N ′). For any suboptimal
arm k,

lim inf
T→∞

inf
ν̃k∈D, ν̃′k∈D

′

E[ν̃k]>µ1, dk(ν̃k,ν̃
′
k)≤Lk

E[Nk(T )] KL(νk, ν̃k) +N ′
k KL(ν ′k, ν̃

′
k)

lnT
≥ 1.

Equivalently, defining Kinf(ν
′
k; dk, ν̃k, Lk) := inf {KL(ν ′k, ν̃

′
k) | ν̃ ′k ∈ D′, dk(ν̃k, ν̃

′
k) ≤ Lk},

lim inf
T→∞

inf
ν̃k∈D

E[ν̃k]>µ1

E[Nk(T )] KL(νk, ν̃k) +N ′
k Kinf(ν

′
k; dk, ν̃k, Lk)

lnT
≥ 1.

Offline sample size N ′
k: We allow N ′

k to be any non-negative integer (possibly depending
on T ) or even +∞. If N ′

k = 0 or N ′
k = o(lnT ), the offline term is negligible and the equation

(1) is recovered; if N ′
k = ∞, then either Kinf(ν

′
k; dk, ν̃k, Lk) = 0 (reducing to equation (1))

or consistency imposes no constraint on E[Nk(T )], allowing E[Nk(T )] = o(lnT ).

Prior radius Lk: If Lk → ∞, then for any ν̃k the constraint dk(ν̃k, ν̃
′
k) ≤ Lk becomes

vacuous, so Kinf(ν
′
k; dk, ν̃k, Lk) → 0 and the classical bound is recovered. If Lk = 0 and

dk(ν, ν
′) = 0 =⇒ ν = ν ′, then ν ′k = νk and

E[Nk(T )] KL(νk, ν̃k) +N ′
k KL(ν ′k, ν̃k) = (E[Nk(T )] +N ′

k) KL(νk, ν̃k),

yielding the classical bound (1) with effective sample size E[Nk(T )] +N ′
k.
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General implications: Since N ′
k Kinf(ν

′
k; dk, ν̃k, Lk) ≥ 0, Theorem 3 is tighter than the

classical bound; prior data on the optimal arm do not affect this lower bound, as the optimal
arm is pulled linearly and its mean is estimated arbitrarily well online.
The proof of Theorem 3 is deferred to Appendix A.

4.2. Gaussian case with mean-based distance

We now instantiate Theorem 3 when both target and source families are univariate Gaus-
sians with known variances. We use a mean-based distance:

D = {N (µ, σ2)}, D′ = {N (µ, σ′2)}, dk(N (µ, σ2),N (µ̃, σ′2)) = |µ− µ̃|.

Hence the constraint |µ̃k − µ̃′
k| ≤ Lk. We will also note (x)+ := max{x, 0}.

Corollary 4 (Gaussian lower bound) Under the Gaussian setting with known variances
and mean-based distance defined above, any consistent algorithm satisfies for each subopti-
mal arm k:

lim inf
T→∞

E[Nk(T )]

lnT

(µ1 − µk)
2

2σ2
+

N ′
k

lnT

(µ1 − µ′
k − Lk)

2
+

2σ′2 ≥ 1. (2)

Proof [Sketch of proof] Apply Theorem 3 with

KL(N (µ, σ2),N (µ̃, σ2)) =
(µ− µ̃)2

2σ2
,

and similarly for source-to-source KL. Constraining E[ν̃k] > µ1 yields the first term in the
bound, while enforcing |µ̃k − µ̃′

k| ≤ Lk produces the (·)+ in the second term.

Equivalently, solving for the expected number of pulls yields:

E[Nk(T )] ≥
2σ2

(µ1 − µk)2

(
lnT −N ′

k
(µ1−µ′

k−Lk)
2
+

2σ′2

)
+
+ o(lnT ). (3)

5. KL-UCB Algorithm

In this section we first recall the classical KL-UCB algorithm, we then introduce our KL-
UCB-Transfer variant, which augments the usual index with an extra penalty term to
account for prior offline samples and will match Equation 3.

5.1. Classical KL-UCB

For the classical bandit problem, the KL-UCB algorithm introduced in Maillard et al.
(2011) matches the asymptotic lower bound (Eq 1). The core idea of this algorithm is to
select the arm with the highest potential mean. To do so, we define an index Ua(t) for each
arm a, and pull the arm with the highest index:

Ua(t) := max {E[ν] | Na(t) KL(πD(ν̂a(t)), ν) ≤ δt, ν ∈ D}

where πD(ν̂k(t)) is the projection of the empirical distribution ν̂k(t) onto the space of ad-
missible distributions D. This algorithm is optimal for bounded reward distributions (see
Garivier and Cappé (2011); Cappé et al. (2013)). We typically choose δt to be of the order
of ln t, possibly with an additional lower-order term depending on D.
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5.2. KL-UCB-Transfer

In our transfer learning setting, assuming Gaussian distributions with known variance as in
Section 4.2, we define the cost function with respect to the prior data as follows:

f+
a (q) := N ′

a

(q − (µ̂′
a(t) + La))

2
+

2σ′2

In this setting, the index becomes:

Ua(t) := max

{
q

∣∣∣∣ Na(t)
(q − µ̂a(t))

2
+

2σ2
+ f+

a (q) ≤ δt

}
, (4)

with δt = ln t + 3 ln(max(1, ln t)), we compute Ua(t) each turn and pull the arm with
highest index; the positive part ensures a non-empty set. An explicit form of Ua(t) is
given in the supplement, enabling O(1) computation. The idea behind the algorithm is
to incorporate the cost of deviating from the prior information into the estimation of the
highest potential mean. Thus, we recover the lower bound given in section 4.2.

Remark 5 If there is no prior data, KL-UCB-Transfer reverts to classical KL-UCB.

Design challenges and points of attention The key challenge inKL-UCB-Transfer
is to balance prior and online data without merging them: unlike Rahul and Katewa (2024b),
which fuses means from different but similar distributions, we keep empirical and prior
means separate, using the positive part in f+

a (q) to ensure a non-empty confidence set while
penalizing exceedances above the prior.

6. Regret bound

Working in the setting of section 4.2 with our KL-UCB-Transfer algorithm, we have
control over the number of pulls for each suboptimal arm through the following theorem.

Theorem 6 (KL-UCB-Transfer Regret Bound) Suppose for each arm k we have N ′
k

i.i.d. samples from ν ′k = N (µ′
k, σ

′2) and that the true target law is νk = N (µk, σ
2) with

|µk − µ′
k| ≤ Lk. Then under KL-UCB-Transfer, every suboptimal arm a satisfies

E[Na(T )] ≤ 2σ2

(µ1 − µa)2

(
lnT −N ′

a

(
µ1 − (µ′

a + La)
)2
+

2σ′2

)
+

+O
(
(lnT )2/3

)
.

Hence, we recover optimality according to Eq (3). The exact expression of theO
(
(lnT )2/3

)
term can be derived in the proof of Theorem 6 in the Appendix B. The main challenge is
handling N ′

a, which may be arbitrarily large and depend on T .

7. Experiments

We evaluate KL-UCB-Transfer in three simulations on a 6-armed bandit with unit-
variance Gaussian rewards and true means

µ = (1.0, 0.9, 0.8, 0.7, 0.6, 0.5),

so arm 1 is optimal. When injecting prior data on arm k, we use N ′
k = 1000 synthetic

samples from N (µ′
k, 1) to observe a noticeable improvement in the lower bound (Eq. (3)).
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Exploration bonus in simulations Instead of δt = log t + 3 log log t, we set δt = (1 +
ε) log t with ε = 1

20 , as in Cappé et al. (2013). This reduces over-exploration (ε log T ≤
3 log log T for T < 10152) and inflates the log T regret term by only a factor 1+ε. Adapting
the theory to this choice of δt is straightforward, and simulations confirm its improved
performance.

Simulation 1: Priors on all arms

In this study we apply the same prior shift (δ, L) to every arm. A prior on arm k yields
asymptotic improvement whenever µ1 > µ′

k + Lk. Concretely, we set

µ′
k = µk + δ, Lk = L for k = 1, . . . , 6,

and sweep through four increasingly accurate settings:

(δ, L) ∈ {(0.20, 0.40), (0.11, 0.20), (0.05, 0.10), (0.00, 0.05)}.

We plot five curves: the no-prior baseline (N ′
k = 0 for all arms) plus one for each (δ, L). In

the first setting (0.20, 0.40), for every suboptimal arm k we have µ1 < µ′
k+Lk, so there is no

long-term regret benefit. In the last three (tighter) settings, some arms satisfy µ1 > µ′
k+Lk,

hence those priors do improve long-term regret. Figure 1(a) shows that only when (δ, L) is
small enough does KL-UCB-Transfer outperform the no-prior baseline.

Simulation 2: Priors only on the optimal arm

As shown in (Eq (4)), adding prior data for arm a reduces its index Ua(t); hence a prior
on a suboptimal arm is beneficial, while a prior on the optimal arm may not be. In our
simulations, we focus on the effect of a prior placed only on the optimal arm. We restrict
priors to the optimal arm (k = 1) and compare three configurations:
• No prior (baseline).
• Mildly optimistic (Prior 1): µ′

1 = µ1 + 0.001, L1 = 0.004.
• Pessimistic (Prior 2): µ′

1 = µ1 − 0.010, L1 = 0.210.
Define the hardship parameter η := L1−(µ′

1−µ1) (see proof of Theorem 6). Although both
priors are asymptotically harmless, a small η significantly slows early learning. Figure 1(b)
illustrates that a very small η (mildly optimistic prior) leads to higher initial regret, whereas
a larger η (pessimistic prior) grants an early advantage, even though both settings converge
to the same asymptotic performance.

Simulation 3: Comparison with AST-UCB

We compare our algorithm KL-UCB-Transfer to AST-UCB from Rahul and Katewa
(2024b). AST-UCB is designed for an episodic non-contextual bandit: the learner plays a
sequence of episodes on the same arms, where at the start of each episode the arm means
may shift by at most L from their values in the previous episode; AST-UCB uses past-
episode data to compute the index in the new episode. In this simulation we use the third
prior setting from Simulation 1, namely (δ, L) = (0.05, 0.10) on all arms, since it tightens
the lower bound (Eq. (3)) and allows us to compare how efficiently our algorithm and AST-
UCB leverage the prior data. We runAST-UCB with its matching episodic-shift parameter
L = 0.10. Figure 1(c) demonstrates that KL-UCB-Transfer yields substantially lower
regret than AST-UCB under this prior.



PREVOST MATHIEU MAILLARD

100 101 102 103 104 105 106

T

0

100

200

300

400

500

600
R T

No Prior
Prior 1
Prior 2
Prior 3
Prior 4

(a) Simulation 1 with Regret
up to T = 106. Same pri-
ors on all arms.
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(b) Simulation 2 with Regret
up to T = 104. Priors on
the optimal arm only.
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(c) Simulation 3, with Regret
up to T = 106 with prior
(δ, L) = (0.05, 0.10).

Figure 1: Mean regret and error bars (100 runs per plot).

Takeaway message Overall, these simulations confirm that KL-UCB-Transfer can
harness identical priors on every arm to reduce regret when the priors are accurate, reveal
the nuanced short-term trade-offs when the prior is applied solely to the optimal arm, and
consistently outperforms existing baselines in this transfer setting.

8. Conclusion

Asymptotic Lower Bound and KL-UCB-Transfer. In this work we have derived a
sharp, problem-dependent asymptotic lower bound on cumulative regret that holds for any
algorithm operating under arbitrary offline prior data. Focusing on the Gaussian bandit
setting, we then introduced KL-UCB-Transfer, a simple modification of KL-UCB that
incorporates priors via an extra KL penalty. We proved that KL-UCB-Transfer matches
the general lower bound exactly when all arms are Gaussian with known variance and the
prior samples N ′

k are fixed, i.i.d. observations.

Simulation Results and Trade-offs. Our simulations confirm that, in regimes where
the priors on suboptimal arms are sufficiently accurate, KL-UCB-Transfer enjoys strictly
lower regret than the classical, no-prior KL-UCB. We also highlighted the short-term trade-
offs that arise when one supplies priors on the optimal arm.

Future Directions. Looking forward, it would be interesting to extend our analysis beyond
Gaussian rewards to exponential or bounded families, and to design transfer-aware algo-
rithms that optimally balance prior bias against data-driven exploration in non-stationary
or structured bandit environments. Moreover, in our current setting the prior sample sizes
N ′

k are non-random and the prior data are assumed i.i.d. A promising direction for future
work is to study the case where prior data come from another online bandit process.

More broadly, our results offer a clean and tractable foundation to better understand
transfer in simple settings, which can serve as a stepping stone toward principled transfer
algorithms in richer and more realistic environments.
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Appendix A. Proof of Theorem 3

We now prove Theorem 3. For this, we begin with the following lemma.

Lemma 7 Let (ν, ν ′) and (ν̃, ν̃ ′) be two sets of arm distributions in our setting. Denote
by P(ν,ν′)π,T the canonical probability measure of the bandit model using strategy π and arm
distributions (ν, ν ′) up to time T . Then,

KL(P(ν,ν′)π,T ,P(ν̃,ν̃′)π,T ) =
K∑
k=1

E(ν,ν′) [Nk(T )] KL(νk, ν̃k) +
K∑
k=1

N ′
k KL(ν ′k, ν̃

′
k).

This lemma parallels Lemma 15.1 in Lattimore and Szepesvári (2020), except for the term∑K
k=1N

′
k KL(ν ′k, ν̃

′
k) accounting for initial offline data.

Proof [of Theorem 3]

Let k be a suboptimal arm for (ν, ν ′). Consider a modification (ν̃, ν̃ ′) ∈ D × D′ such
that arm k becomes optimal, while keeping the distributions (νi, ν

′
i)i ̸=k unchanged. Then,

using the data-processing inequality (e.g., (Maillard, 2019, Lemma 3.3)) combined with the
KL decomposition of Lemma 7, we get:

E(ν,ν′) [Nk(T )] KL(νk, ν̃k) +N ′
k KL(ν ′k, ν̃

′
k) ≥ kl

(E(ν,ν′)[Nk(T )]

T
,
E(ν̃,ν̃′)[Nk(T )]

T

)
.

Now using that for all p, q ∈ (0, 1) we have

kl(p, q) = (1− p) ln

(
1

1− q

)
+ p ln(1/q)︸ ︷︷ ︸

≥0

+ p ln(p) + (1− p) ln(1− p)︸ ︷︷ ︸
≥− ln 2

,

we have that E(ν,ν′) [Nk(T )] KL(νk, ν̃k) +N ′
k KL(ν ′k, ν̃

′
k) is lower bounded by(

1−
E(ν,ν′)[Nk(T )]

T

)
ln

(
T

T − E(ν̃,ν̃′)[Nk(T )]

)
− ln(2)

Using the consistency of the strategy π, we have for any α > 0:

• E(ν,ν′)[Nk(T )] = o(Tα),

• T − E(ν̃,ν̃′)[Nk(T )] = o(Tα).

Therefore, for any α > 0,

E(ν,ν′)[Nk(T )] KL(νk, ν̃k) +N ′
k KL(ν ′k, ν̃

′
k)

lnT
≥ (1− o(T−(1−α)))(1− α) + oT→∞(1).

Since this is true for all α > 0, taking the infimum over all (ν̃, ν̃ ′) ∈ D × D′ such that
arm k becomes optimal (with all other arms unchanged) yields the result in Theorem 3.
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Proof of Lemma 7

Proof

We follow the same idea as in the proof of Lemma 15.1 from Lattimore and Szepesvári
(2020). Let p(ν,ν′)π,T denote the density of P(ν,ν′)π,T , the probability of the space of T turn
under the policy π with the arm distribution (ν, ν ′). Let x′ be the offline data. Then,

p(ν,ν′)π,T (x
′, a1, x1, ..., aT , xT ) = pν′(x

′)

T∏
t=1

πt(at | x′, a1, x1, ..., at−1, xt−1)pνat (xt)

=
K∏
k=1

N ′
k∏

i=1

pν′k(x
′
i,k)

T∏
t=1

πt(at | x′, a1, x1, ..., at−1, xt−1)pνat (xt).

Taking the likelihood ratio with p(ν̃,ν̃′)π,T gives:

p(ν,ν′)π,T (x
′, a1, x1, ..., aT , xT )

p(ν̃,ν̃′)π,T (x′, a1, x1, ..., aT , xT )
=

K∏
k=1

N ′
k∏

i=1

pν′k(x
′
i,k)

pν̃′k(x
′
i,k)

T∏
t=1

pνat (xt)

pν̃at (xt)
.

Taking the log of both sides:

ln
P(ν,ν′)π,T

P(ν̃,ν̃′)π,T
(x′, a1, x1, ..., aT , xT ) =

K∑
k=1

N ′
k∑

i=1

ln
pν′k(x

′
i,k)

pν̃′k(x
′
i,k)

+

T∑
t=1

ln
pνat (xt)

pν̃at (xt)
.

Taking expectation under (ν, ν ′) yields:

E(ν,ν′)

[
ln

P(ν,ν′)π,T

P(ν̃,ν̃′)π,T

]
=

K∑
k=1

N ′
k KL(ν ′k, ν̃

′
k) +

T∑
t=1

E(ν,ν′) [KL(νat , ν̃at)]

=
K∑
k=1

N ′
k KL(ν ′k, ν̃

′
k) +

T∑
t=1

E(ν,ν′)

[
K∑
k=1

1(At = k)KL(νk, ν̃k)

]

=
K∑
k=1

N ′
k KL(ν ′k, ν̃

′
k) +

K∑
k=1

E(ν,ν′) [Nk(T )] KL(νk, ν̃k).

Appendix B. Proof of Theorem 6

We will use the shorthand

f+
a (q) = N ′

a

(
q − (µ̂′

a + La)
)2
+

2σ′2 , d(a, b) =
(b− a)2

2σ2
, d+(a, b) =

(b− a)2+
2σ2

.

We use the following lemmas. Lemma 8 is proved in Section B.1; proof sketches for Lem-
mas 9, 10, and 11 appear in Sections B.2, B.3, and B.4, with full proofs in the Supplement.
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Lemma 8 For all T > 1, for all arm a ̸= 1, we have the inequality

T∑
t=1

1 (At = a, µ1 ≤ U1(t)) ≤
T∑

s=1

1
(
s d+(µ̂a,s, µ1) + f+

a (µ1) ≤ δT
)
.

Lemma 9 For every δt −→
T→+∞

+∞ and for all arm a ̸= 1, we have the inequality

E
[
(δT − f+

a (µ1))+
]
≤

(
δT −N ′

a

(µ1 − (µ′
a + La))

2
+

2σ′2

)
+

+O(
√

δT ).

Lemma 10 There exists C ′ > 0 that depends only on σ, σ′, L1, µ1, µ
′
1, such that:

E
[
exp

(
f+
1 (µ1)

)]
≤ C ′.

Lemma 11 For all t ≥ 1, using the choice δt := ln t+ 3 ln(max(1, ln t)),

P(µ1 > U1(t)) = O

(
E[ef

+
1 (µ1)]

t ln t

)
.

We bound the expected pulls of a suboptimal arm a by splitting into two cases:
1. Times when the upper confidence bound of the optimal arm underestimates its true

mean (µ1 > U1(t)). By choosing δt appropriately and using Lemma 10 and 11, this case
contributes only o(lnT ) to the regret.

2. Times when U1(t) is above µ1 but arm a is still selected. Here one applies Lemma 8
to show that after a random threshold M , further pulls of a become unlikely, yielding the
main lnT order term (up to lower-order corrections from Lemma 9).

Combining these two bounds gives the desired logarithmic bound on E[Na(T )].
The changes in the proof, compared to that in Garivier and Cappé (2011); Cappé et al.
(2013), include additional conditioning steps, Lemma 9, and Lemma 10, which arise from
the inclusion of prior data.
Proof [of Theorem 6]

We begin by bounding the expected number of pulls of a suboptimal arm a:

E [Na(T )] = E

[
T∑
t=1

1 (At = a)

]
≤

T∑
t=1

P (µ1 > U1(t)) +E

[
T∑
t=1

1 (At = a, µ1 ≤ U1(t))

]
(5)

Now using Lemmas 10 and 11 we get:

T∑
t=1

P (µ1 > U1(t)) =

T∑
t=1

O

(
1

t ln t

)
= O(ln lnT ) (6)

For the second term in (5), using Lemma 8, define the random quantity:

M :=
(δT − f+

a (µ1))+
(1− ε)2d(µa, µ1)
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Then:

E

[
T∑
t=1

1 (At = a, µ1 ≤ U1(t))

]
(7)

(a)
= E

[
T∑

s=1

P
(
s d+(µ̂a,s, µ1) + f+

a (µ1) ≤ δT

∣∣∣f+
a

)]

≤ E

[
M − 1 +

T∑
s=M

P
(
s d+(µ̂a,s, µ1) + f+

a (µ1) ≤ δT

∣∣∣f+
a

)]

≤ E

[
M − 1 +

T∑
s=M

P
(
d+(µ̂a,s, µ1) ≤

δT − f+
a (µ1)

M

∣∣∣f+
a

)]
(b)

≤ E

[
M − 1 +

T∑
s=M

P
(
d+(µ̂a,s, µ1) ≤ (1− ε)2d(µa, µ1)

)]

≤ E [(δT − f+
a (µ1))+]

(1− ε)2d(µa, µ1)
− 1 +

T∑
s=1

P
(
d+(µ̂a,s, µ1) ≤ (1− ε)2d(µa, µ1)

)
, (8)

where (a) follows by Lemma 8 and by conditioning and (b) by the definition of M .
We now apply a standard Chernoff bound for Gaussian tails for the first inequality:

T∑
s=1

P
(
d+(µ̂a,s, µ1) ≤ (1− ε)2d(µa, µ1)

)
=

T∑
s=1

P (µ̂a,s ≥ µa + ε(µ1 − µa))

≤
T∑

s=1

exp

(
−ε2(µ1 − µa)

2

2σ2
s

)
≤ 1

1− exp
(
− ε2(µ1−µa)2

2σ2

)
= O(ε−2). (9)

Using Equations (8), (9) and Lemma 9, we finally obtain

E

[
T∑
t=1

1 (At = a, µ1 ≤ U1(t))

]
≤

(
δT −N ′

a
(µ1−(µ′

a+La))
2
+

2σ′2

)
+

(1− ε)2d(µa, µ1)
+O(ε−2) +O(

√
lnT )

=
2σ2

(µ1 − µk)2

(
lnT −N ′

a

(µ1 − (µ′
a + La))

2
+

2σ′2

)
+

+O(ε lnT ) +O(ε−2) +O(
√
lnT ).

By taking ε = (lnT )−
1
3 we get

E

[
T∑
t=1

1 (At = a, µ1 ≤ U1(t) ≤)

]
≤ 2σ2

(µ1 − µk)2

(
lnT −N ′

a

(µ1 − (µ′
a + La))

2
+

2σ′2

)
+

+O
(
(lnT )

2
3

)
.

(10)
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Combining Equations (5), (6), and (10), we conclude that,

E [Na(T )] ≤
2σ2

(µ1 − µk)2

(
lnT −N ′

a

(µ1 − (µ′
a + La))

2
+

2σ′2

)
+

+O
(
(lnT )

2
3

)
.

B.1. Proof of Lemma 8

The proof mimes the one of Lemma 7 in Garivier and Cappé (2011)

Proof If At = a and µ1 ≤ U1(t), then Ua(t) ≥ U1(t) ≥ µ1, and therefore:

Na(t)d
+(µ̂a(t), µ1) + f+

a (µ1) ≤ Na(t)d
+(µ̂a(t), Ua(t)) + f+

a (Ua(t)) = δt ≤ δT

Hence,

T∑
t=1

1 (At = a, µ1 ≤ U1(s)) ≤
T∑
t=1

1
(
At = a,Na(t)d

+(µ̂a(t), µ1) + f+
a (µ1) ≤ δT

)
=

T∑
t=1

t∑
s=1

1
(
Na(t) = s,At = a, sd+(µ̂a,s, µ1) + f+

a (µ1) ≤ δT
)

=
T∑

s=1

1
(
sd+(µ̂a,s, µ1) + f+

a (µ1) ≤ δT
) T∑
t=s

1 (Na(t) = s,At = a)

≤
T∑

s=1

1
(
sd+(µ̂a,s, µ1) + f+

a (µ1) ≤ δT
)

B.2. Proof Sketch of Lemma 9

Proof [Proof Sketch] Let

X := δt −
N ′

a

2σ′2
(
µ1 − (µ̂′

a + La)
)2
+
, ξ := µ1 − La − µ′

a, β := ξ
√
N ′

a/σ
′2.

Using that µ̂′
a is gaussian we got E[X+] =

∫ δt

0
Φ
(√

2(δt − t) − β
)
dt =: I(β, δt). Writing

δ = δt, after some calculations one obtains the closed form

I(β, δ) =
2δ − β2 − 1

2
Φ(

√
2δ − β) +

β2 + 1

2
Φ(−β) +

√
2δ + β

2
ϕ(
√
2δ − β)− β

2
ϕ(β).

Analyzing the three regimes β ≤ 0, 0 ≤ β ≤
√
2δ, and β ≥

√
2δ gives

I(β, δ) ≤
(
δ − β2

+

2

)
+

+ O(
√
δ).
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B.3. Proof Sketch of Lemma 10

Proof [Proof Sketch] Let Z = µ′
1 − µ̂′

1 ∼ N (0, σ′2/N ′
1) and set

η := L1 − (µ′
1 − µ1), a :=

η

σ′/
√
N ′

1

> 0, W :=
Z
√

N ′
1

σ′ ∼ N (0, 1).

Then
f+
1 (µ1) =

N ′
1

2σ′2

(
µ1 − (µ̂′

1 + L1)
)2
+
= 1

2 (W − a)2+,

so

E
[
ef

+
1 (µ1)

]
=

∫ a

−∞
φ(w) dw+

∫ ∞

a
e
1
2 (w−a)2φ(w) dw = Φ(a)+

∫ ∞

a

1√
2π

e−aw+
a2

2 dw = Φ(a)+
φ(a)

a
.

Since a ≥ η
σ′ > 0, Φ(a) + φ(a)/a ≤ 1 + σ′

η
√
2π

=: C ′ < ∞. This completes the proof.

B.4. Proof Sketch of Lemma 11

Proof [Proof Sketch] Denote for simplicity f := f+
1 (µ1). Then

P(µ1 > U1(t)) = E
[
P(µ1 > U1(t) | f)

]
≤ E

[
1f≥δt + 1f<δt P

(
N1(t)d

+(µ̂1, µ1) > δt − f | f
)]
.

When f < δt, use peeling arguments with N1(t) ∈ (nm−1, nm] with nm = ⌈γm⌉, γ =
δt/(δt − 1), M := ⌈ln t/ ln γ⌉ ≤ ⌈δt ln t⌉. In block m, set

εm :=

√
2σ2(δt − f)

nm
, Si :=

i∑
j=1

Xj .

Using the martingale Wλ,i := exp(λSi − iϕ(λ)), ϕ(λ) = λµ1 +
λ2σ2

2 , pick λ = −εm/σ2. By
Doob’s maximal inequality,

P(∃i ∈ (nm−1, nm] : Si ≤ i(µ1 − εm)) ≤ exp
(
−(nm−1 + 1)(δt − f)/nm

)
≤ exp

(
−(δt − f)/γ

)
.

Summing m = 1, . . . ,M gives

P(µ1 > U1(t) | f) ≤ 1f≥δt +Me−(δt−f)/γ ≤ 1f≥δt + ⌈δt ln t⌉e−(δt−f)/γ = 1f≥δt +O
( ef

t ln t

)
.

Since 1f≥δt ≤ ef−δt = O(ef/(t ln3 t)),

P(µ1 > U1(t)) = O

(
E[ef

+
1 (µ1)]

t ln t

)
.
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