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Extended Abstract

The simplicity bias of gradient-based training algorithms towards learning simpler solutions
has been suggested as a key factor for the superior generalization performance of overpa-
rameterized neural networks (Hermann and Lampinen, 2020; Hu et al., 2020; Nakkiran
et al., 2019; Neyshabur et al., 2014; Pezeshki et al., 2021; Shah et al., 2020). At the same
time, it is conjectured to make neural networks vulnerable to learning spurious correlations
frequently found in real-world datasets (Sagawa et al., 2019; Sohoni et al., 2020). Neural
networks trained with gradient-based methods can exclusively rely on simple spurious fea-
tures that are highly correlated with a class in the training data but are not predictive of
the class in general, and remain invariant to the predictive but more complex core features
(Shah et al., 2020). This results in a poor worst-group test accuracy on groups of examples
where the spurious correlations do not hold (Shah et al., 2020; Teney et al., 2022).

An effective way to mitigate a spurious correlation and improve the worst-group test
accuracy is to upweight examples that do not contain the spurious feature during training
(Sagawa et al., 2019). However, inspecting all training examples to find such examples
becomes prohibitive in real-world datasets. This has motivated a growing body of work on
group inference: separating majority groups exhibiting spurious correlation with a class,
from minority groups without the spurious correlation (Liu et al., 2021; Sohoni et al., 2020;
Ahmed et al., 2020; Creager et al., 2021). Despite their success on simple benchmark
datasets, we show that such methods suffer from several issues: (1) they often misidentify
minority examples as majority and mistakenly downweight them; then, (2) to counteract
the spurious correlation they need to heavily upweight their small inferred minority group.
This magnifies milder spurious correlations that may exist in the minority group (Li et al.,
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2023) and harms the performance; as (3) there is no theoretical guideline for finding the time
of group inference and group weights, such that methods rely on extensive hyperparameter
tuning. This limits their applicability and scalability.

In this work, we make several theoretical and empirical contributions towards addressing
the above issues. First, we prove that the simplicity bias of gradient descent can be leveraged
to identify spurious correlations. We analyze a two-layer fully connected neural network
trained with SGD, and leverage recent results showing its early-time learning dynamics can
be mimicked by training a linear model on the inputs (Hu et al., 2020). We show that
the contribution of a spurious feature to the network output in the initial training phase
increases linearly with the amount of spurious correlation. Thus, minority and majority
groups can be provably separated based on the model’s output, early in training (Figure
1). This enables more accurate identification of minorities, and limits the range of group
inference to the first few training epochs, without extensive hyperparameter tuning.

Next, we show that once the initial linear model converges, if the noise-to-signal ratio
of a spurious feature is lower than that of the core feature in a class, the network will not
learn the core features of the majority groups. This explains prior empirical observations
(Shah et al., 2020), by revealing when and why neural networks trained with gradient al-
most exclusively rely on spurious features and remain invariant to the predictive but more
complex core features. To the best of our knowledge, this is the first analysis of the effect
of SGD’s simplicity bias on learning spurious vs core features.



Finally, we propose an efficient and lightweight method, SPARE (SePArate early and
REsample), that clusters model’s output early in training, and leverage importance sam-
pling based on inverse cluster sizes to mitigate spurious correlations. This results in a
superior worst-group accuracy on more challenging tasks, without increasing the training
time, or requiring extensive hyperparameter tuning. Unlike existing methods, SPARE can
operate without a group-labeled validation data, which allows it to discover unknown spu-
rious correlations.

Our extensive experiments (Table 1) confirm that SPARE achieves up to 42.9% higher
worst-group accuracy over state-of-the-art on most commonly used benchmarks (Alain et al.,
2015; Sagawa et al., 2019; Liu et al., 2015; Li et al., 2023) while being up to 12x faster.
Applied to Restricted ImageNet, a dataset without known spurious correlations or group-
labeled validation set available for hyperparameter tuning, identifies the spurious correlation
much more effectively than the state-of-the-art group inference methods and improves the
model’s accuracy on minority groups by up to 23.2% higher than them after robust training.

Broader Impact Statement

This research addresses the challenge of spurious correlations in machine learning models,
particularly those trained with gradient-based algorithms. The positive societal impacts
of our work include enhancing the fairness and reliability of Al systems by reducing their
reliance on misleading features. This is particularly crucial in high-stakes applications such
as healthcare, criminal justice, and hiring, where biases can have profound consequences.
Considering the nature and goals of our research, we anticipate no direct negative conse-
quences stemming from our work. Our methodologies are designed to proactively identify
and address spurious correlations without compromising the performance of the models.
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