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Abstract

Large language models (LLMs) have demon-
strated strong machine translation capabilities
for English-centric language pairs but under-
perform in direct non-English (x2x) translation.
This work addresses this limitation through a
synthetic data generation framework that lever-
ages models’ established English-to-x (en2x)
capabilities. By extending English parallel
corpora into omnidirectional datasets and de-
veloping an English-referenced quality evalu-
ation proxy, we enable effective collection of
high-quality x2x training data. Combined with
preference-based optimization, our method
achieves significant improvement across 72 x2x
directions for widely used LLMs, while gen-
eralizing to enhance en2x performance. The
results demonstrate that strategic exploitation
of English-centric strengths can bootstrap com-
prehensive multilingual translation capabilities
in LLMs.

1 Introduction

Recent advances in large language models (LLMs)
have propelled significant progress in machine
translation (Alves et al., 2024; Xu et al., 2023).
This is largely attributed to the incorporation of
multilingual data alongside predominantly English
data during pre-training, enabling models to de-
velop multilingual capabilities. While LLMs can
typically achieve competent translation abilities
between English and other languages through fine-
tuning with minimal parallel data, we observe
that these translation capabilities do not general-
ize effectively across non-English language pairs.
Specifically, direct translation capabilities between
non-English languages (x2x) substantially lag be-
hind their performance in English-centric transla-
tion (en2x), as illustrated in Figure 1. Despite the
critical importance for real-world applications re-
quiring multilingual communication beyond just
English. While using English as a pivot language
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Figure 1: COMET score of the Llama2 base model
on en2x and x2x language pairs with en-x supervised
fine-tuning and our x2x optimization (a), as well as per-
formance based on source language categorization (b).

offers a compromise solution, this approach often
suffers from error propagation and doubles the de-
coding overhead compared to direct translation,
motivating our exploration of methods to enhance
models’ omnidirectional translation capabilities.

A straightforward approach to improving mod-
els’ translation capabilities between non-English
languages would be to collect high-quality paral-
lel corpora for fine-tuning, similar to how we en-
hance English translation capabilities. However,
non-English language parallel data is scarce and
challenging to scale. This limitation stems from
the prohibitive costs of annotation in non-English
language directions (faced with a shortage of qual-
ified expert translators) and the quadratic growth
in language pairs as the number of languages in-
creases.

Synthetic data has emerged as a promising alter-
native to annotated corpora for enhancing multilin-
gual capabilities, with recent advancements demon-
strating its scalability and potential to augment var-
ious LLM functionalities (Long et al., 2024; Yu
et al., 2023; Huang et al., 2023). However, gen-
erating high-quality non-English parallel corpora
for translation tasks via LLMs remains nontrivial,
fundamentally constrained by two interconnected
challenges:



* Direct cross-lingual generation (x2x) between
low-resource languages suffers from LLMs’
limited native translation expertise, leading to
outputs with unsatisfactory quality.

* Synthetic data inherently lacks built-in qual-
ity guarantees, necessitating rigorous curation.
Yet, unlike English-centric tasks, x2x transla-
tion lacks reliable automatic evaluation met-
rics, making data filtering both critical and
methodologically underspecified.

To address these challenges, we propose our
method, EnAnchored-X2X, which leverages the
en2x capabilities of LLMs and abundant English
parallel corpora. First, we extend existing En-
glish parallel data into an omnidirectional dataset
through synthesis. At the generation, we provide
the model with both the source language text and its
English reference, effectively giving the model two
source texts (one being English) before requesting
translation into another language. This approach
allows the model to utilize its en2x capabilities dur-
ing translation, resulting in higher quality outputs.

Second, we develop an en2x evaluation model
using existing en-x parallel data and adapt it for
x2x assessment by transforming x2x evaluation
into en2x evaluation. Specifically, we substitute the
source text with its English reference and use the
model to evaluate the score between this English
reference and the target text as a proxy for the
original translation quality assessment.

Finally, integrating our translation synthesis and
evaluation strategies enables the collection of high-
quality x2x data. To further exploit the potential of
synthetic data, we retain lower-quality translations
to create preference pairs with high-quality trans-
lations, enabling preference-based optimization of
the model.

We apply our methodology across three distinct
base models and observe comprehensive improve-
ments in X2x translation capabilities, exemplified
by an average increase of 7 points in BLEURT
scores across 72 x2x language pairs for the Llama2
model. A particularly intriguing finding is the
sustained enhancement in en2x translation perfor-
mance, even though these language pairs are out-
side our optimization scope. Our investigation into
different optimization algorithms reveals that our
approach demonstrates increasingly significant ben-
efits with data scaling and exhibits robust gener-
alization of translation capabilities across diverse
linguistic contexts.

2 Generalization of Non-English
Language Translation

To examine the generalization of existing models
across non-English language pairs, we first con-
ducted supervised fine-tuning (SFT) using widely
available parallel corpora. Given the predomi-
nant English-centric alignment in existing multilin-
gual datasets, the models demonstrated predictable
robustness in English-centric (en2x/x2en) direc-
tions. However, our investigation focused on a
critical yet understudied phenomenon: whether
cross-lingual transfer between non-English lan-
guages (x2x) could emerge from such English-
anchored training paradigms.

We utilize TowerBlocks (Alves et al., 2024), en-
compassing parallel data between English and nine
languages, approximately 150k samples in total.
Figure 1 demonstrates the en2x and x2x perfor-
mance of the Llama2 base model (Touvron et al.,
2023) after SFT on the translation data. While the
model shows marked improvement in en2x per-
formance post-fine-tuning, the x2x performance
presents a more complex picture: only three lan-
guages (Spanish, French, and Italian) exhibit signif-
icant improvement, while the remaining languages
show negligible performance changes. We even
observe performance degradation in zh2x and de2x
directions. Overall, the SFT process leads to a
widening performance gap between en2x and x2x
translations, suggesting that the model’s transla-
tion capabilities between multiple languages are
not fully activated under the current training setup.

3 Methodology

To address the model’s generalization deficiencies
between non-English languages, there is an urgent
need to enrich the diversity of language pairs in
existing training data by extending current English-
centric parallel data to cover all language direc-
tions. Our data synthesis pipeline comprises three
components: Section 3.1 introduces our data syn-
thesis method based on English-Anchored transla-
tion, Section 3.2 presents our English-Anchored
data evaluation framework, and Section 3.3 details
our process for data selection and preference pair
construction. All these components leverage the
LLM’s inherent capabilities and existing parallel
data.



Parallel Data

@ (en) On Sunday, though, there is nobody to help you out of your hole.

(de) Am Sonntag gibt es aber niemanden, der dir aus deinem Loch hilft. @—————

,9\ Translate the following text from German into Chinese:
German: Am Sonntag gibt es aber niemanden, der dir aus deinem Loch hilft

@ Chinese: {B2FH, {RENZEATLRBRISHE.
@ P4 score: 75
\

Pivot

Direct Translation

Translate the following text from English into German:
English: On Sunday, though, there is nobody to help you out of your hole.

ﬂ]l Sampling Candidates

German Candidates

Candidate1: Am Sonntag ist aber niemand, der dich aus deinem Loch holt
Candidate2: Sonntag umgehen agiert aber nicht, Sieht niemand zu Hilfe auf.

Candidate3: Am Sonntag ist man dennoch nicht in der Lage, sie aus Ihrem Loch
2u helfen.

lﬁ\ Translate the following text from English into Chinese:
English: On Sunday, though, there is nobody to help you out of your hole.

(%), Chinese: {BRAH, {RHASKIRLA.
@ P14 score: 85

% Computing BLEURT with German reference

Scoring and Ranking

Cand Score Cand Score Canez score

BLEURT Scores: (751 > (s7t8) > (132

l Picking best and worst candidates

En-Anchored Translation

En2De Preference Pair

/2, Given a German text and its English version as a reference, translate the
source text into Chinese.
German: Am Sonntag gibt es aber niemanden, der dir aus deinem Loch hilft.
English: On Sunday, though, there is nobody to help you out of your hole.

(%), Chinese: (B, MEMYAALBIHINELEE,

@ P14 Score: 90

(@)

English Source:  On Sunday, though, there is nobody to help you out of your hole.

German Chosen: Am Sonntag ist aber niemand, der dich aus deinem Loch holt.
German Rejected: Sonntag umgehen agiert aber nicht, Sieht niemand zu Hilfe auf.

l Training reward model

(b)

Translation

. Given a German text and its English version as a reference, translate the
source text into Chinese.
German: Am Sonntag gibt es aber niemanden, der dir aus deinem Loch hilft.
English: On Sunday, though, there is nobody to help you out of your hole.

[ Chinese Candidates | & l Sampling Candidates

| om0
Candidatel: {82, BEHFHAMRBHTIEHFE,
Candidate2: B2EH, {RTABEK.
Candidate3: {82, BR, {ROBFHTE,

JComputing RM score with English eferen

Scoring and Ranking
Cand Score Candz Score Ganda score

RM Scores: 41 > (s9) > (sa3

l Picking best and worst candidates
De2Zh Prefe Pair

German Source: Am Sonntag gibt es aber niemanden, der dir aus deinem Loch hilft.

Chinese Chosen: {E2, FIBNRH ARERBENFEHIEER.

Chinese Rejected: {82, BR, {RASBFHFE.

l Training x2x model
(c)

ce

Figure 2: The overview of EnAnchored-X2X. Based on existing parallel data, the comparison of three methods for
synthesizing x2x translation data (a), the process of constructing reward model for en2x evaluation (b) and the x2x

preference data construction (c).

Synthetic Strategy = GPT4 Score
Direct 78.46 (22.43)
Pivot 79.58 (18.89)
EAXT 82.26 (18.41)

Table 1: The GPT4 quality scores (Kocmi and Feder-
mann, 2023) of the translations for synthetic methods,
along with the standard deviations are in parentheses.

3.1 English-Anchored x2x Translation (EAXT)

Given a parallel data pair (x;,,Zen) € D, where
xj, represents source text in language /1 and x, its
English annotation, and targeting language [, let
E?Zir“t ~ M (x|z;,) denote the model’s direct trans-
lation. Previous experiments have demonstrated
that direct x2x translation suffers from quality defi-
ciencies. Conversely, considering the model’s su-
perior performance in en2x translation, leveraging
this capability to generate data for x2x optimization
appears promising. One approach involves utiliz-
ing pivot translation, generating igvm ~ M (x|zen)
by translating through English. However, this in-
herits pivot translation’s drawbacks: lack of direct
alignment between pivot-translated text and source
text, and risk of error propagation.

We propose combining direct and pivot
translation to obtain higher quality translation
data through English-Anchored x2x Translation
(EAXT). Specifically, we simultaneously provide
the model with both the non-English source text
x;, and its English translation z., as reference,
then request translation into target language Io, i.e.,
fiAXT ~ M (z|xy,, Ten). During this process, the
model’s access to the English reference enables

flexible integration of its en2x translation capabili-
ties into the x2x translation process. As illustrated
in Figure 2 (a), we find that LLMs can excel at
this task without additional training, thanks to their
robust comprehension and instruction-following
capabilities.

We sampled 7,200 instances (100 per language
pair) and compared the quality of translations gen-
erated by these three synthesis methods. Lacking
human-annotated reference translations, we em-
ployed GPT-4 to evaluate the quality of the model-
generated x2x translations. Results are presented
in Table 1. The results demonstrate that EAXT-
generated data achieves higher quality on average
compared to other methods. Moreover, we ob-
served substantial score variations at the sample
level, indicating instability in synthetic data quality
across different samples, necessitating large-scale
evaluation and filtering.

3.2 English-Anchored x2x Evaluation (EAXE)

Without careful design and validation, synthetic
data may amplify existing biases, introduce new
ones, or even trigger model collapse (Seddik et al.,
2024). A common challenge in large-scale syn-
thetic data application is ensuring the factuality and
fidelity (Liu et al., 2024b). For translation tasks,
without proper evaluation and filtering of synthetic
translations, we cannot provide clear guidance for
model optimization, thereby limiting the ultimate
performance ceiling.

Obtaining evaluation scores directly for x2x di-
rections is a non-trivial problem, so we consider
converting x2x evaluation into en2x evaluation.



Ideally, s(zy,, Z;,) represents the quality score be-
tween the source text x;, and the generated transla-
tion z;,, measuring their alignment. Since the En-
glish reference x¢, for source text x;, is accessible,
we can assume that the semantic consistency be-
tween ¢, and translation 7;, correlates positively
with the consistency between z;, and 7, i.e.,

s(x1y, T1y) X S(Ten, Tiy)- (1)

Thus, by using s(xen,Z;,) as a proxy for
s(xy,, Z1,), we convert x2x evaluation into en2x
evaluation. Evaluating en2x translation quality is
relatively straightforward, as models already pos-
sess strong en2x translation capabilities after SFT,
suggesting its potential for en2x evaluation task.
Furthermore, we can again leverage existing en2x
parallel corpora to activate the model’s en2x evalu-
ation capabilities.

To enable models to assess translation quality
and output a score, we implement this idea through
Reward Modeling, a crucial component widely ap-
plied in reinforcement learning process. Its primary
task is to predict reward values based on given in-
puts, thereby guiding the direction of the learning
algorithm. For translation task, this reward value
can be considered as a score of quality.

Training a reward model requires a preference
dataset. For en2x evaluation (e.g., English to lan-
guage /1), we need to collect preference pairs
comprising a good and a bad translation in lan-
guage [; for each English source text, denoted
as (e, E§10n, %)

Based on existing parallel data (x;,, Zen) € D,
we provide z, as source text to the model, request-
ing translations to language [; and sampling n re-
sults ifl ~ M (x|zen), where i € [n]. The key dif-
ference with the x2x evaluation is that we can com-
pute quality scores s(xen,a’cfl) = bleurt(mll,:ifl)
for each translation ifl using the annotated refer-
ence translation x;,. Finally, we select the best
and worst translations from the samples to form
preference pairs:

~chosen 1
Ty " = arg max s(Zen, Ty, ),
z
1
_rejected . _i (2)
) = arg min s(Ten, 7, ).
jl
ly

To train with the preference data, the model is
required to score each preference pair, and a Rank-
ing Loss function is employed for optimization,

aiming to maximize the score margin between cho-
sen and rejected samples. The complete process is
illustrated in Figure 2 (b).

3.3 Preference Data Construction

In this section, we apply our advanced data synthe-
sis strategy and evaluation method to all possible
language pairs to construct large-scale, high-quality
x2x translation data.

For a given language pair [; — [, and parallel
data (xj,,%en) € D as the source, we utilize the
EAXT technique introduced in Section 3.1 to sam-
ple a batch of candidate translations in the target
language: zj, ~ M (x|xi,,Zen), @ € [n]. These
candidates are then scored using the reward model
constructed in Section 3.2. According to Eq. 1,
the quality score s° for candidate 5:%2 can be ap-
proximated using its score with x., as a proxy, i.e.,
st = r(Zen, :EfQ), where r(-,-) is the translation
quality score estimated using the reward model.

Now, with a clear landscape of the data qual-
ity, we can proceed with constructing training data.

At its simplest, we can retain the highest-scoring

; _chosen __ ~argmax; s’
candidate zy, = I,

to form parallel
data (mll,flcé"’se“) in pair [y — I for fine-tuning.
To more effectively utilize synthetic data, we sug-
gest additionally retaining the lowest-scoring can-

—rejected i.argmin,i s

didate T, , creating preference
2

2
_ _rejected . .
data (x,, :UIC;‘OS"'“, :L‘;?ec %), which provides clearer

signals for x2x optimization. Furthermore, pref-
erence confidence can be measured by the score
margin schosen _ greiected - By discarding samples
with low confidence, we can control the preference
accuracy of data.

Based on the collected preference data, we
perform Direct Preference Optimization (DPO,
Rafailov et al., 2023) training for the model. This
technique has been widely applied across various
tasks and has demonstrated superior generalization
compared to SFT.

4 Experiments

4.1 Experiment Settings

To systematically validate the effectiveness and
generalizability of our x2x translation framework,
we design experiments following a structured
pipeline: defining the task scope, selecting rep-
resentative models, preparing synthetic datasets,
and establishing comparative baselines. Below is
the detailed setup.



Task. Our primary focus is on 72 cross-
lingual (x2x) translation directions testsets from
the FLORES-200 benchmark (Costa-jussa et al.,
2022), which includes nine representative lan-
guages: German (de), French (fr), Dutch (nl),
Italian (it), Spanish (es), Portuguese (pt), Ko-
rean (ko), Russian (ru), and Chinese (zh). This
set includes intra-family scenarios (e.g., de—fr
within Indo-European) and cross-family cases (e.g.,
zh—ru between Sino-Tibetan and Slavic). We
also evaluate x2en (non-English—English) and
en2x (English—non-English) directions to analyze
cross-lingual knowledge spillover from x2x opti-
mization. For high-resource validation, we supple-
ment with WMT22 de2fr and fr2de (Kocmi et al.,
2022) test sets.

Metrics. Translation quality is measured using
two metrics: COMET-22 (Rei et al., 2022), a neu-
ral metric trained on human preferences to assess
semantic adequacy and fluency; and BLEURT-
20 (Sellam et al., 2020), a reference-based metric
optimized for low-resource languages.

Base Models. We instantiate our method on
three 7B-parameter models with diverse multilin-
gual baselines: (i) Llama2-7B (Touvron et al.,
2023), a vanilla open-source LLM; (ii) TowerBase-
7B (Alves et al., 2024), a Llama2 variant enhanced
with 1.2T tokens of multilingual pretraining (mono-
lingual + parallel data) for cross-lingual tasks; and
(iii) Qwen2.5-7B (Qwen et al., 2025), a Chinese-
optimized model with improved cross-lingual at-
tention for non-Latin scripts.

Seed Datasets and Implementation. For syn-
thesizing x2x training data, we utilize a translation
task subset from the TowerBlocks collection (Alves
et al., 2024) as our seed corpus. This dataset also
serves as the foundation for en-x fine-tuning of
base models and reward modeling in Section 3.2.
The seed corpus comprises about 150k parallel sen-
tences covering nine non-English languages. For
each non-English source text, we generate transla-
tions into the other eight languages, yielding ap-
proximately 1M data entries. We sample four can-
didate translations per entry and employ our evalu-
ation strategy to score them for constructing pref-
erence pairs. After filtering out low-confidence
preference pairs based on score margins, the final
preference data used for training consists of ap-
proximately 140k pairs for Llama2, 210k pairs for
Qwen?2.5 and 250k pairs for Tower. The training

hyperparameters and implementation details are
explained in Appendix A.

Baselines. We compare against the following
baselines representing diverse strategies:

* Base Model (untuned, 7B parameters): estab-
lishes a pretrained performance baseline.

* SFT Model: the base model fine-tuned on
150K en-x seed datasets, represents English-
centric optimization.

* FLORES x2x SFT: the SFT model further
fine-tuned on 72K human-annotated x2x pairs
with 1K per direction.

* Pivot Translation: two-stage translation strat-
egy via English intermediate.

* TowerInstruct-7B (Alves et al., 2024): This
model is fine-tuned from TowerBase using
640k multi-task annotated data, encompass-
ing tasks beyond translation such as paraphras-
ing, translation quality estimation, and named
entity recognition.

e M2M-100-12B (Fan et al., 2020): This work
constructed an x2x dataset through large-scale
mining, including 7.5 billion parallel data
entries across 100 languages, resulting in a
model capable of translation among 100 lan-
guages.

4.2 Main Results

Table 2 presents the average performance of our
method and baselines on the FLORES-200 test
set. We report the improvements on the individual
languages in Appendix B.

Our x2x optimization framework achieves sig-
nificant performance uplifts over English-centric
baselines. For Llama2-7B, the x2x BLEURT
score improves from 63.42 (Base) to 68.91 (+5.49),
with COMET gains of +4.31 points.  No-
tably, the optimized TowerBase-7B surpasses both
Towerlnstruct-7B (a multi-task fine-tuned model)
and M2M-100-12B on x2x tasks, achieving 72.95
BLEURT and 86.30 COMET, demonstrating that
our synthetic data pipeline can rival large-scale
mined datasets like M2M-100’s 7.5B pairs.

Despite focusing solely on x2x optimiza-
tion (without direct en2x and x2en supervi-
sion), our method induces collateral improve-
ments in English-related directions. Specifically,
the en2x BLEURT of Llama2-7B and Qwen2.5-
7B improves 4.50 and 3.03, and outperforms
their SFT counterparts (+1.01 and +0.96), re-
spectively. TowerBase-7B also achieves 76.73



x2en en2x X2x AVG
Models
BLEURT COMET BLEURT COMET BLEURT COMET BLEURT COMET
Towerlnstruct-7B 78.29 88.28 75.98 88.44 71.80 85.68 72.87 86.22
M2M-100-12B 75.44 85.86 72.61 82.90 69.57 85.03 70.46 84.90
Llama2-7B 75.24 86.34 68.56 83.20 63.42 79.65 65.12 80.68
Llama2-7B-SFT 76.78 87.43 72.05 85.91 61.92 80.05 64.42 81.38
w/ Pivot Trans. - - - - 68.53 83.41 - -
w/ FLORES x2x SFT 76.29 87.01 71.69 85.77 67.94 83.17 69.15 83.82
w/ EnAnchored-X2X 77.15 87.62 73.06 86.74 68.91 83.96 70.15 84.60
TowerBase-7B 73.75 86.79 76.98 87.47 62.76 80.57 65.28 81.88
TowerBase-7B-SFT 78.15 88.21 76.14 88.46 68.17 83.81 69.96 84.71
w/ Pivot Trans. - - - - 72.68 86.06 - -
w/ FLORES x2x SFT 77.58 87.80 75.44 88.09 71.99 85.72 72.89 86.16
w/ EnAnchored-X2X 78.36 88.33 76.73 88.86 72.95 86.30 73.87 86.76
Qwen2.5-7B 77.48 87.80 71.93 86.02 69.28 84.13 70.37 84.69
Qwen2.5-7B-SFT 77.75 87.96 74.00 87.23 70.20 84.72 71.34 85.29
w/ Pivot Trans. - - - - 70.69 84.89 - -
w/ FLORES x2x SFT 76.51 87.16 73.50 86.91 70.07 84.60 71.06 85.08
w/ EnAnchored-X2X 78.01 88.09 74.96 87.87 71.44 85.39 72.44 85.91

Table 2: Aggregated performance on FLORES-200 testset across 90 translation directions (9 for x2en, 9 for en2x

and 72 for x2x).

en2x BLEURT (+0.59 over its SFT version).
This suggests that our x2x optimization fosters a
more cohesive multilingual semantic space, where
cross-lingual knowledge transfer occurs implicitly
through English anchoring.

Fine-tuning on the FLORES devset (72K x2x
pairs) improves x2x performance for most models
— e.g., TowerBase gains +3.82 BLEURT points
— though Qwen shows no benefit. Critically, this
comes at the cost of x2en or en2x degradation (e.g.,
—0.7 BLEURT for en2x on TowerBase). This is
likely due to the low diversity of FLORES data,
causing overfitting to specific language pairs. De-
tailed analysis is in Section 4.4.

Although pivot translation achieves competitive
x2x scores on FLORES (Table 2), it underperforms
our EnAnchored-X2X on WMT?22 de2fr and fr2de
(Table 3). This discrepancy stems from FLORES’
annotation bias: non-English references are de-
rived from English source texts, giving pivot meth-
ods an inherent alignment advantage. In contrast,
WMT?22’s bidirectional data requires genuine cross-
lingual competence, where our en2x-anchored gen-
eration proves more robust.

4.3 Ablation Study

We first investigate the effects of two key com-
ponents: the English-Anchored x2x Transla-
tion (EAxT)-based data synthesis strategy and the
English-Anchored x2x Evaluation(EAXE)-driven
data selection mechanism. For EAXT ablation, we

Models de2fr fr2de
BLEURT COMET BLEURT COMET
Llama2-7B-SFT 64.19 79.33 72.08 82.07
w/ Pivot Trans. 6491 79.76 7234 82.10
w/ EnAnchored-X2X 65.85 80.18 73.80 83.27
TowerBase-7B-SFT 69.89 8246 76.29 85.53
w/ Pivot Trans. 70.13 8270 76.63 85.48
w/ EnAnchored-X2X 71.20 83.23 77.57 86.25
Qwen2.5-7B-SFT 67.53 81.34 7347 83.41
w/ Pivot Trans. 68.04 81.37 7430 83.60
w/ EnAnchored-X2X 69.18 82.20 74.96 84.09

Table 3: Performance on the WMT?22 de-fr testset.

substitute our method with direct translation out-
puts. When disabling the reward model for EAXE,
we randomly select translation candidates and per-
form standard fine-tuning rather than preference
optimization.

As shown in Table 4, without applying any of
our proposed methods, the improvements obtained
from fine-tuning on directly synthesized data are
quite limited. Each of our two proposed enhance-
ments contributed significantly to translation per-
formance improvement. In particular, the utiliza-
tion of the reward model effectively mitigate the
quality deficiencies in directly synthesized data,
highlighting the necessity of data selection and
cleaning for synthetic data.

Furthermore, we observe that performance im-
provements in en2x translation directions are also
achieved through preference data constructed via



x2en en2x x2x AVG
Models
BLEURT COMET BLEURT COMET BLEURT COMET BLEURT COMET
Llama2-7B-SFT 76.78 87.43 72.05 85.91 61.92 80.05 64.42 81.38
w/ Direct Trans. 76.70.0,03 87.39.(),04 71.75.0_30 85.60.0,31 62.99+1,o7 80.54+o_49 65.24+0,82 81.73+0,35
w/ EAXE  77.184040 87.671024 72.95:000 86.644073 68.041612 83.514346 69.45.503 84.24:236
w/ EAXT. 76.89.011 87.48.00s 71.53.050 8547044 67.714579 82.884283 69.01.450 83.60.222
w/ EAXE  77.154037 87.62:019 73.064101 86.744083 68.91i699 83.964301 70.154573 84.604322

Table 4: Ablation study evaluating English-Anchored x2x Translation and Evaluation mechanisms on the Llama2
model using the FLORES-200 testset. We labeled the performance delta of each combination with respect to the

SFT baseline.

Synthetic Strategy BLEURT COMET
Direct 68.04 83.51
Pivot 68.58 83.35
EAXT 68.91 83.96
Metric for EAXE

Random 67.71 82.88
PPL 67.78 82.85
KIWI 68.71 83.86
Direct RM 67.97 83.39
RM 68.91 83.96

Table 5: The x2x performance on the FLORES-200 test-
set of optimized Llama2 with different data synthesis
strategies and alternative metrics for preference con-
struction.

the reward model. This aligns with the emerging
consensus that reinforcement learning yields bet-
ter generalization compared to standard supervised
fine-tuning (Chu et al., 2025). We further validate
this hypothesis in Section 4.4.

Table 5 presents a comprehensive analysis of the
influence of three distinct data synthesis methods
on the resultant x2x translation performance met-
rics. Generally speaking, all methods effectively
construct preferences to enhance the model’s x2x
translation capabilities. Nevertheless, EAXT fur-
ther elevates the model’s performance ceiling.

We further consider available quality assessment
metrics as alternatives to the reward model. The
following baselines are evaluated:

* Random picking followed by fine-tuning.

* Translation model perplexity (PPL).

e COMETKIWI-XL (Rei et al., 2023), a model
specifically designed for translation quality
estimation without requiring reference trans-
lations.

In addition, we explore using our reward model

for direct evaluation of x2x translations (Direct
RM), with the wondering whether its evaluation ca-

—%— DPO
66.5 —e— SFT-chosen 719
~¥- SFT - FLORES

—#- DPO
~®— SFT - chosen
~¥— SFT - FLORES

akBk16k 32k 64k 96k 138K
Data Size

akBK16k 32k 64k 96k 138K
Data Size

(a) x2x (b) en2x

Figure 3: Performance on the FLORES-200 testset of
each optimization algorithm scaling with data size.

pabilities can transfer to x2x language pairs. Specif-
ically, we directly provide the source text x;, to the
reward model instead of its English reference, com-
puting the score as s* = r(xy,, Zj,).

As shown in Table 5, PPL performs comparably
to the random baseline, indicating that translation
models cannot be directly used for evaluation with-
out appropriate training to activate their assessment
capabilities, e.g., through reward modeling. Our
method slightly outperforms COMETKIWI, suggest-
ing the potential of LLM-driven quality assessment,
particularly given its independence from annotated
translation evaluation data. Finally, we observe that
the evaluation capabilities of our reward model can
partially generalize to x2x language pairs, although
this direct application is notably less effective than
the proxy evaluation approach.

4.4 Scaling with Synthetic Data

This section highlights the advantages of synthetic
data scaling, particularly comparing the translation
improvements through preference optimization ver-
sus vanilla supervised fine-tuning across varying
data scales, as well as their generalization dispari-
ties on unseen language pairs (en2x). Specifically,
we control the scale of preference data used for opti-
mization, and for comparison, we fine-tune only on
the chosen data from the preference data pairs. For



comprehensive evaluation, we additionally incor-
porated human-annotated data from the FLORES
devset.

Figure 3a illustrates the trend in translation per-
formance on x2x language pairs using different
optimization algorithms. Initially, DPO lags be-
hind SFT on small-scale data. However, as the data
size increases, DPO demonstrates continuous im-
provement, rapidly surpassing the SFT baselines
and maintaining its advantage with further scaling.
Although SFT trained on chosen data also improves
with scale, its gains are comparatively modest.

In the en2x translation scenario shown in Fig-
ure 3b, the performance advantage of DPO be-
comes even more pronounced, indicating superior
generalization effects for unseen language pairs.

For FLORES data, constraints of data scale ne-
cessitate text reuse across different language pairs,
introducing the risk of model overfitting. Conse-
quently, the limitations in data diversity manifest
as limited scalability with increased data size, and
even slight performance degradation, particularly
in en2x translation.

5 Related Work

LLM-Driven Data Synthesis LLM-driven syn-
thetic data generation has emerged as a promising
alternative to traditional human-dependent data col-
lection, demonstrating significant potential across
various applications. In the context of NLP tasks,
LLMs have been extensively integrated into data
generation pipelines, encompassing areas such as
question answering (Li and Callison-Burch, 2023),
text classification (Li et al., 2023), and general ca-
pabilities (Huang et al., 2023). These efforts have
underscored the importance of curation, evaluation,
and quality control of synthetic data. Addition-
ally, the paradigm of utilizing synthetic data to
replace human annotation has found applications
in domain-specific tasks (Tang et al., 2023) and
multimodal fields (Liu et al., 2024a).

Many-To-Many Translation Developing many-
to-many translation capabilities for machine trans-
lation models is a challenging task. Previous work
based on neural machine translation (NMT) has
explored a range of techniques, such as introduc-
ing representation alignment (Pan et al., 2021) or
achieving flexible combinations of language pairs
through shared encoders and decoders (Yuan et al.,
2023) or Mixture-of-Experts (Fan et al., 2020;
Costa-Jussa et al., 2022) architectures. Neverthe-

less, large-scale many-to-many translation datasets
obtained through mining remain essential (Yuan
et al., 2023; Fan et al., 2020; Costa-Jussa et al.,
2022).

For LLMs, prior research has demonstrated
that multilingual capabilities exhibit inherent im-
balances between English and non-English lan-
guages (Yuan et al., 2024). This disparity is pri-
marily attributed to the uneven language distribu-
tion in pretraining data. Consequently, existing
works aim to address the deficiencies of LLMs
in non-English languages and enhance many-to-
many translation capabilities through large-scale
continued pre-training (Lu et al., 2024; Zheng et al.,
2025). These efforts typically require substantial
monolingual and parallel data across many lan-
guages.

In contrast, we focus on post-training of LL.Ms.
Our findings suggest that even models enhanced
for multilingual capabilities, such as Tower (which
undergoes continued pretraining) or Qwen (which
uses more diverse multilingual data), may still am-
plify disparities between English and non-English
capabilities without delicated adjustments. Our re-
search complements existing approaches by fully
activating LLMs’ many-to-many translation capa-
bilities within the framework of their foundational
competencies.

6 Conclusion

In this work, we presented a novel approach to en-
hance x2x translation capabilities in large language
models without requiring extensive non-English
parallel data. By leveraging English parallel cor-
pora and the inherent en2x strengths of LLMs, we
proposed a synthesis and evaluation framework to
enhance x2x translation capabilities. This method
not only boosts x2x translation quality but also
unexpectedly enhances en2x performance, indicat-
ing robust generalization across languages. These
findings suggest promising directions for future
research in multilingual translation systems that
can operate effectively across all language pairs be-
yond English. By reducing the reliance on scarce
non-English parallel data, our approach offers a
practical solution to the challenges of building truly
omnidirectional translation systems.

Limitations

Our experiments have investigated the feasibility
of building many-to-many translation capabilities



among mainstream languages. However, we have
not yet explored the reaction of our approach when
applied to low-resource languages. In particular,
the implementation of our method may face sig-
nificant challenges due to the scarcity of English-
centric parallel data for low-resource languages.
This data deficiency presents a substantial obstacle
to the direct application of our approach in these
linguistic contexts.

One potential solution to address this limitation
would be to consider synthesizing parallel data
from English to low-resource languages. Never-
theless, this strategy might be constrained by the
model’s inherent translation capabilities between
English and these low-resource languages. The
quality of synthetic data would inevitably depend
on the model’s proficiency in translating between
these language pairs, which may be suboptimal
given the limited training resources available for
such languages.

Furthermore, the linguistic diversity and struc-
tural differences characteristic of many low-
resource languages may introduce additional com-
plexities that our current methodology does not
explicitly account for. Future work should system-
atically investigate adaptations of our approach to
accommodate the unique challenges presented by
low-resource language translation scenarios.
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tion 3.2, we employ a standard sampling strategy
with a temperature of 1 and top-p of 1. For the
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temperature at 0.9 and top-p at 0.6 to mitigate the
risk of quality degradation. For each input, we
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Training Setups We list the training hyperparam-
eters involved in each stage in Table 6. All train-
ing was conducted using 16 Ascend 910B NPUs,
equipped with bf16 mixed precision training, and
utilizes DeepSpeed ZeRO-3 for sharding. Follow-
ing the setup of Towerlnstruct (Alves et al., 2024),
we use the chatml template (Al, 2023) during both
training and inference, as well as instruction di-
versity, providing multiple zero-shot instruction
templates for the translation task.

B Results in Individual Languages

In Figures 4 and 5, we respectively delineate the
COMET and BLEURT performance across lan-
guages, presenting the performance improvements
of en-x SFT, and our x2x optimization.
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SFT onen-x SFT on FLORES SFT on chosen DPO

Global batch size 128 128 128 64

Train epoch 1 1 1 1
Learning rate 7e-6 le-6 4e-6 2e-7
Learning rate Decay cosine cosine cosine cosine
Warmup ratio 0.1 0.1 0.1 0.1
Optimizer AdamWT AdamWT AdamWT AdamWT
Weight Decay 0 0 0 0

Adam 3 0.9 0.9 0.9 0.9
Adam [, 0.999 0.999 0.999 0.999
Adam € 0 0 0 0

Max Seq Len 2048 2048 2048 2048
DPO - - - 0.4 (0.2 for Llama)
SFT coefficient! - - - 2.0

T Loshchilov and Hutter, 2019.
1 The supervised fine-tuning loss coefficient in DPO training.

Table 6: Hyperparameter configuration for SFT and DPO training.

Tower Qwen

en2x en2x

es2x ru2x es2x ru2x

fr2x pt2x

nl2x nl2x
—— Base ko2x —— Base ko2Xx —— Base ko2x
—— w/ en-x SFT —— w/ en-x SFT —— w/ en-x SFT
—— w/ EnAnchored-X2X —— w/ EnAnchored-X2X —— w/ EnAnchored-X2X
x2en x2en x2en

Xx2es x2ru

x2fr x2pt

Xx2ko Xx2ko x2ko

Figure 4: COMET?22 performance on FLORES-200 testset with each language as source or target.

12



Qwen

en2x

es2x ru2x es2x

fr2x pt2x fr2x

ni2x ni2x

—— Base ko2x —— Base ko2x —— Base ko2x
—— w/ en-x SFT —— w/ en-x SFT —— w/ en-x SFT
—— w/ EnAnchored-X2X —— w/ EnAnchored-X2X —— w/ EnAnchored-X2X

x2es

x2fr

x2ko x2ko x2ko

Figure 5: BLEURT performance on FLORES-200 testset with each language as source or target.
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