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Abstract001

Large language models (LLMs) have demon-002
strated strong machine translation capabilities003
for English-centric language pairs but under-004
perform in direct non-English (x2x) translation.005
This work addresses this limitation through a006
synthetic data generation framework that lever-007
ages models’ established English-to-x (en2x)008
capabilities. By extending English parallel009
corpora into omnidirectional datasets and de-010
veloping an English-referenced quality evalu-011
ation proxy, we enable effective collection of012
high-quality x2x training data. Combined with013
preference-based optimization, our method014
achieves significant improvement across 72 x2x015
directions for widely used LLMs, while gen-016
eralizing to enhance en2x performance. The017
results demonstrate that strategic exploitation018
of English-centric strengths can bootstrap com-019
prehensive multilingual translation capabilities020
in LLMs.021

1 Introduction022

Recent advances in large language models (LLMs)023

have propelled significant progress in machine024

translation (Alves et al., 2024; Xu et al., 2023).025

This is largely attributed to the incorporation of026

multilingual data alongside predominantly English027

data during pre-training, enabling models to de-028

velop multilingual capabilities. While LLMs can029

typically achieve competent translation abilities030

between English and other languages through fine-031

tuning with minimal parallel data, we observe032

that these translation capabilities do not general-033

ize effectively across non-English language pairs.034

Specifically, direct translation capabilities between035

non-English languages (x2x) substantially lag be-036

hind their performance in English-centric transla-037

tion (en2x), as illustrated in Figure 1. Despite the038

critical importance for real-world applications re-039

quiring multilingual communication beyond just040

English. While using English as a pivot language041
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Figure 1: COMET score of the Llama2 base model
on en2x and x2x language pairs with en-x supervised
fine-tuning and our x2x optimization (a), as well as per-
formance based on source language categorization (b).

offers a compromise solution, this approach often 042

suffers from error propagation and doubles the de- 043

coding overhead compared to direct translation, 044

motivating our exploration of methods to enhance 045

models’ omnidirectional translation capabilities. 046

A straightforward approach to improving mod- 047

els’ translation capabilities between non-English 048

languages would be to collect high-quality paral- 049

lel corpora for fine-tuning, similar to how we en- 050

hance English translation capabilities. However, 051

non-English language parallel data is scarce and 052

challenging to scale. This limitation stems from 053

the prohibitive costs of annotation in non-English 054

language directions (faced with a shortage of qual- 055

ified expert translators) and the quadratic growth 056

in language pairs as the number of languages in- 057

creases. 058

Synthetic data has emerged as a promising alter- 059

native to annotated corpora for enhancing multilin- 060

gual capabilities, with recent advancements demon- 061

strating its scalability and potential to augment var- 062

ious LLM functionalities (Long et al., 2024; Yu 063

et al., 2023; Huang et al., 2023). However, gen- 064

erating high-quality non-English parallel corpora 065

for translation tasks via LLMs remains nontrivial, 066

fundamentally constrained by two interconnected 067

challenges: 068
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• Direct cross-lingual generation (x2x) between069

low-resource languages suffers from LLMs’070

limited native translation expertise, leading to071

outputs with unsatisfactory quality.072

• Synthetic data inherently lacks built-in qual-073

ity guarantees, necessitating rigorous curation.074

Yet, unlike English-centric tasks, x2x transla-075

tion lacks reliable automatic evaluation met-076

rics, making data filtering both critical and077

methodologically underspecified.078

To address these challenges, we propose our079

method, EnAnchored-X2X, which leverages the080

en2x capabilities of LLMs and abundant English081

parallel corpora. First, we extend existing En-082

glish parallel data into an omnidirectional dataset083

through synthesis. At the generation, we provide084

the model with both the source language text and its085

English reference, effectively giving the model two086

source texts (one being English) before requesting087

translation into another language. This approach088

allows the model to utilize its en2x capabilities dur-089

ing translation, resulting in higher quality outputs.090

Second, we develop an en2x evaluation model091

using existing en-x parallel data and adapt it for092

x2x assessment by transforming x2x evaluation093

into en2x evaluation. Specifically, we substitute the094

source text with its English reference and use the095

model to evaluate the score between this English096

reference and the target text as a proxy for the097

original translation quality assessment.098

Finally, integrating our translation synthesis and099

evaluation strategies enables the collection of high-100

quality x2x data. To further exploit the potential of101

synthetic data, we retain lower-quality translations102

to create preference pairs with high-quality trans-103

lations, enabling preference-based optimization of104

the model.105

We apply our methodology across three distinct106

base models and observe comprehensive improve-107

ments in x2x translation capabilities, exemplified108

by an average increase of 7 points in BLEURT109

scores across 72 x2x language pairs for the Llama2110

model. A particularly intriguing finding is the111

sustained enhancement in en2x translation perfor-112

mance, even though these language pairs are out-113

side our optimization scope. Our investigation into114

different optimization algorithms reveals that our115

approach demonstrates increasingly significant ben-116

efits with data scaling and exhibits robust gener-117

alization of translation capabilities across diverse118

linguistic contexts.119

2 Generalization of Non-English 120

Language Translation 121

To examine the generalization of existing models 122

across non-English language pairs, we first con- 123

ducted supervised fine-tuning (SFT) using widely 124

available parallel corpora. Given the predomi- 125

nant English-centric alignment in existing multilin- 126

gual datasets, the models demonstrated predictable 127

robustness in English-centric (en2x/x2en) direc- 128

tions. However, our investigation focused on a 129

critical yet understudied phenomenon: whether 130

cross-lingual transfer between non-English lan- 131

guages (x2x) could emerge from such English- 132

anchored training paradigms. 133

We utilize TowerBlocks (Alves et al., 2024), en- 134

compassing parallel data between English and nine 135

languages, approximately 150k samples in total. 136

Figure 1 demonstrates the en2x and x2x perfor- 137

mance of the Llama2 base model (Touvron et al., 138

2023) after SFT on the translation data. While the 139

model shows marked improvement in en2x per- 140

formance post-fine-tuning, the x2x performance 141

presents a more complex picture: only three lan- 142

guages (Spanish, French, and Italian) exhibit signif- 143

icant improvement, while the remaining languages 144

show negligible performance changes. We even 145

observe performance degradation in zh2x and de2x 146

directions. Overall, the SFT process leads to a 147

widening performance gap between en2x and x2x 148

translations, suggesting that the model’s transla- 149

tion capabilities between multiple languages are 150

not fully activated under the current training setup. 151

3 Methodology 152

To address the model’s generalization deficiencies 153

between non-English languages, there is an urgent 154

need to enrich the diversity of language pairs in 155

existing training data by extending current English- 156

centric parallel data to cover all language direc- 157

tions. Our data synthesis pipeline comprises three 158

components: Section 3.1 introduces our data syn- 159

thesis method based on English-Anchored transla- 160

tion, Section 3.2 presents our English-Anchored 161

data evaluation framework, and Section 3.3 details 162

our process for data selection and preference pair 163

construction. All these components leverage the 164

LLM’s inherent capabilities and existing parallel 165

data. 166
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(en) On Sunday, though, there is nobody to help you out of your hole.

(de) Am Sonntag gibt es aber niemanden, der dir aus deinem Loch hilft.

Parallel Data

Direct Translation

Pivot Translation

En-Anchored Translation

Translate the following text from German into Chinese:
German: Am Sonntag gibt es aber niemanden, der dir aus deinem Loch hilft.

Chinese: 但是周日，你却没有人可以帮你挖出来。

GPT4 Score: 75

Translate the following text from English into Chinese:
English: On Sunday, though, there is nobody to help you out of your hole.

Chinese: 但是周日，你没有人来扶你出洞。

GPT4 Score: 85

Given a German text and its English version as a reference, translate the
source text into Chinese.
German: Am Sonntag gibt es aber niemanden, der dir aus deinem Loch hilft.
English: On Sunday, though, there is nobody to help you out of your hole.

Chinese: 但是，周日却没有人能帮助你爬出洞里。

GPT4 Score: 90

Candidate1: Am Sonntag ist aber niemand, der dich aus deinem Loch holt.

Candidate2: Sonntag umgehen agiert aber nicht, Sieht niemand zu Hilfe auf.

Candidate3: Am Sonntag ist man dennoch nicht in der Lage, sie aus Ihrem Loch
zu helfen.

Sampling Candidates

Direct Translation

Translate the following text from English into German:
English: On Sunday, though, there is nobody to help you out of your hole.

75.1 13.257.6

English Source: On Sunday, though, there is nobody to help you out of your hole.

German Chosen: Am Sonntag ist aber niemand, der dich aus deinem Loch holt.

German Rejected: Sonntag umgehen agiert aber nicht, Sieht niemand zu Hilfe auf.

> >

Cand1 Score Cand2 ScoreCand3 Score

En2De Preference Pair

BLEURT Scores:

Computing BLEURT with German reference

Picking best and worst candidates

Training reward model

(a) (b)

Scoring and Ranking

German Candidates

En-Anchored Translation

Given a German text and its English version as a reference, translate the
source text into Chinese.
German: Am Sonntag gibt es aber niemanden, der dir aus deinem Loch hilft.
English: On Sunday, though, there is nobody to help you out of your hole.

Sampling Candidates

Candidate1: 但是，周日却没有人能帮助你爬出洞里。

Candidate2: 但是周日，你无人能救。

Candidate3: 但是，周日，你的帮手却不在。

Chinese Candidates

Picking best and worst candidates

4.1 -5.3-5.9> >

Cand1 Score Cand3 ScoreCand2 Score

RM Scores:

Scoring and Ranking
Computing RM score with English reference

German Source: Am Sonntag gibt es aber niemanden, der dir aus deinem Loch hilft.

Chinese Chosen: 但是，周日却没有人能帮助你爬出洞里。

Chinese Rejected: 但是，周日，你的帮手却不在。

De2Zh Preference Pair

Training x2x model
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R
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Figure 2: The overview of EnAnchored-X2X. Based on existing parallel data, the comparison of three methods for
synthesizing x2x translation data (a), the process of constructing reward model for en2x evaluation (b) and the x2x
preference data construction (c).

Synthetic Strategy GPT4 Score

Direct 78.46 (22.43)
Pivot 79.58 (18.89)
EAxT 82.26 (18.41)

Table 1: The GPT4 quality scores (Kocmi and Feder-
mann, 2023) of the translations for synthetic methods,
along with the standard deviations are in parentheses.

3.1 English-Anchored x2x Translation (EAxT)167

Given a parallel data pair (xl1 , xen) ∈ D, where168

xl1 represents source text in language l1 and xen its169

English annotation, and targeting language l2, let170

x̄direct
l2

∼ M(x|xl1) denote the model’s direct trans-171

lation. Previous experiments have demonstrated172

that direct x2x translation suffers from quality defi-173

ciencies. Conversely, considering the model’s su-174

perior performance in en2x translation, leveraging175

this capability to generate data for x2x optimization176

appears promising. One approach involves utiliz-177

ing pivot translation, generating x̄
pivot
l2

∼ M(x|xen)178

by translating through English. However, this in-179

herits pivot translation’s drawbacks: lack of direct180

alignment between pivot-translated text and source181

text, and risk of error propagation.182

We propose combining direct and pivot183

translation to obtain higher quality translation184

data through English-Anchored x2x Translation185

(EAxT). Specifically, we simultaneously provide186

the model with both the non-English source text187

xl1 and its English translation xen as reference,188

then request translation into target language l2, i.e.,189

x̄EAxT
l2

∼ M(x|xl1 , xen). During this process, the190

model’s access to the English reference enables191

flexible integration of its en2x translation capabili- 192

ties into the x2x translation process. As illustrated 193

in Figure 2 (a), we find that LLMs can excel at 194

this task without additional training, thanks to their 195

robust comprehension and instruction-following 196

capabilities. 197

We sampled 7,200 instances (100 per language 198

pair) and compared the quality of translations gen- 199

erated by these three synthesis methods. Lacking 200

human-annotated reference translations, we em- 201

ployed GPT-4 to evaluate the quality of the model- 202

generated x2x translations. Results are presented 203

in Table 1. The results demonstrate that EAxT- 204

generated data achieves higher quality on average 205

compared to other methods. Moreover, we ob- 206

served substantial score variations at the sample 207

level, indicating instability in synthetic data quality 208

across different samples, necessitating large-scale 209

evaluation and filtering. 210

3.2 English-Anchored x2x Evaluation (EAxE) 211

Without careful design and validation, synthetic 212

data may amplify existing biases, introduce new 213

ones, or even trigger model collapse (Seddik et al., 214

2024). A common challenge in large-scale syn- 215

thetic data application is ensuring the factuality and 216

fidelity (Liu et al., 2024b). For translation tasks, 217

without proper evaluation and filtering of synthetic 218

translations, we cannot provide clear guidance for 219

model optimization, thereby limiting the ultimate 220

performance ceiling. 221

Obtaining evaluation scores directly for x2x di- 222

rections is a non-trivial problem, so we consider 223

converting x2x evaluation into en2x evaluation. 224
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Ideally, s(xl1 , x̄l2) represents the quality score be-225

tween the source text xl1 and the generated transla-226

tion x̄l2 , measuring their alignment. Since the En-227

glish reference xen for source text xl1 is accessible,228

we can assume that the semantic consistency be-229

tween xen and translation x̄l2 correlates positively230

with the consistency between xl1 and x̄l2 , i.e.,231

s(xl1 , x̄l2) ∝ s(xen, x̄l2). (1)232

Thus, by using s(xen, x̄l2) as a proxy for233

s(xl1 , x̄l2), we convert x2x evaluation into en2x234

evaluation. Evaluating en2x translation quality is235

relatively straightforward, as models already pos-236

sess strong en2x translation capabilities after SFT,237

suggesting its potential for en2x evaluation task.238

Furthermore, we can again leverage existing en2x239

parallel corpora to activate the model’s en2x evalu-240

ation capabilities.241

To enable models to assess translation quality242

and output a score, we implement this idea through243

Reward Modeling, a crucial component widely ap-244

plied in reinforcement learning process. Its primary245

task is to predict reward values based on given in-246

puts, thereby guiding the direction of the learning247

algorithm. For translation task, this reward value248

can be considered as a score of quality.249

Training a reward model requires a preference250

dataset. For en2x evaluation (e.g., English to lan-251

guage l1), we need to collect preference pairs252

comprising a good and a bad translation in lan-253

guage l1 for each English source text, denoted254

as (xen, x̄
chosen
l1

, x̄
rejected
l1

).255

Based on existing parallel data (xl1 , xen) ∈ D,256

we provide xen as source text to the model, request-257

ing translations to language l1 and sampling n re-258

sults x̄il1 ∼ M(x|xen), where i ∈ [n]. The key dif-259

ference with the x2x evaluation is that we can com-260

pute quality scores s(xen, x̄
i
l1
) = bleurt(xl1 , x̄

i
l1
)261

for each translation x̄il1 using the annotated refer-262

ence translation xl1 . Finally, we select the best263

and worst translations from the samples to form264

preference pairs:265

x̄chosen
l1 = argmax

x̄i
l1

s(xen, x̄
i
l1),

x̄
rejected
l1

= argmin
x̄i
l1

s(xen, x̄
i
l1).

(2)266

To train with the preference data, the model is267

required to score each preference pair, and a Rank-268

ing Loss function is employed for optimization,269

aiming to maximize the score margin between cho- 270

sen and rejected samples. The complete process is 271

illustrated in Figure 2 (b). 272

3.3 Preference Data Construction 273

In this section, we apply our advanced data synthe- 274

sis strategy and evaluation method to all possible 275

language pairs to construct large-scale, high-quality 276

x2x translation data. 277

For a given language pair l1 → l2, and parallel 278

data (xl1 , xen) ∈ D as the source, we utilize the 279

EAxT technique introduced in Section 3.1 to sam- 280

ple a batch of candidate translations in the target 281

language: x̄il2 ∼ M(x|xl1 , xen), i ∈ [n]. These 282

candidates are then scored using the reward model 283

constructed in Section 3.2. According to Eq. 1, 284

the quality score si for candidate x̄il2 can be ap- 285

proximated using its score with xen as a proxy, i.e., 286

si = r(xen, x̄
i
l2
), where r(·, ·) is the translation 287

quality score estimated using the reward model. 288

Now, with a clear landscape of the data qual- 289

ity, we can proceed with constructing training data. 290

At its simplest, we can retain the highest-scoring 291

candidate x̄chosen
l2

= x̄
argmaxi s

i

l2
to form parallel 292

data (xl1 , x̄
chosen
l2

) in pair l1 → l2 for fine-tuning. 293

To more effectively utilize synthetic data, we sug- 294

gest additionally retaining the lowest-scoring can- 295

didate x̄
rejected
l2

= x̄
argmini s

i

l2
, creating preference 296

data (xl1 , x̄
chosen
l2

, x̄
rejected
l2

), which provides clearer 297

signals for x2x optimization. Furthermore, pref- 298

erence confidence can be measured by the score 299

margin schosen − srejected. By discarding samples 300

with low confidence, we can control the preference 301

accuracy of data. 302

Based on the collected preference data, we 303

perform Direct Preference Optimization (DPO, 304

Rafailov et al., 2023) training for the model. This 305

technique has been widely applied across various 306

tasks and has demonstrated superior generalization 307

compared to SFT. 308

4 Experiments 309

4.1 Experiment Settings 310

To systematically validate the effectiveness and 311

generalizability of our x2x translation framework, 312

we design experiments following a structured 313

pipeline: defining the task scope, selecting rep- 314

resentative models, preparing synthetic datasets, 315

and establishing comparative baselines. Below is 316

the detailed setup. 317
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Task. Our primary focus is on 72 cross-318

lingual (x2x) translation directions testsets from319

the FLORES-200 benchmark (Costa-jussà et al.,320

2022), which includes nine representative lan-321

guages: German (de), French (fr), Dutch (nl),322

Italian (it), Spanish (es), Portuguese (pt), Ko-323

rean (ko), Russian (ru), and Chinese (zh). This324

set includes intra-family scenarios (e.g., de→fr325

within Indo-European) and cross-family cases (e.g.,326

zh→ru between Sino-Tibetan and Slavic). We327

also evaluate x2en (non-English→English) and328

en2x (English→non-English) directions to analyze329

cross-lingual knowledge spillover from x2x opti-330

mization. For high-resource validation, we supple-331

ment with WMT22 de2fr and fr2de (Kocmi et al.,332

2022) test sets.333

Metrics. Translation quality is measured using334

two metrics: COMET-22 (Rei et al., 2022), a neu-335

ral metric trained on human preferences to assess336

semantic adequacy and fluency; and BLEURT-337

20 (Sellam et al., 2020), a reference-based metric338

optimized for low-resource languages.339

Base Models. We instantiate our method on340

three 7B-parameter models with diverse multilin-341

gual baselines: (i) Llama2-7B (Touvron et al.,342

2023), a vanilla open-source LLM; (ii) TowerBase-343

7B (Alves et al., 2024), a Llama2 variant enhanced344

with 1.2T tokens of multilingual pretraining (mono-345

lingual + parallel data) for cross-lingual tasks; and346

(iii) Qwen2.5-7B (Qwen et al., 2025), a Chinese-347

optimized model with improved cross-lingual at-348

tention for non-Latin scripts.349

Seed Datasets and Implementation. For syn-350

thesizing x2x training data, we utilize a translation351

task subset from the TowerBlocks collection (Alves352

et al., 2024) as our seed corpus. This dataset also353

serves as the foundation for en-x fine-tuning of354

base models and reward modeling in Section 3.2.355

The seed corpus comprises about 150k parallel sen-356

tences covering nine non-English languages. For357

each non-English source text, we generate transla-358

tions into the other eight languages, yielding ap-359

proximately 1M data entries. We sample four can-360

didate translations per entry and employ our evalu-361

ation strategy to score them for constructing pref-362

erence pairs. After filtering out low-confidence363

preference pairs based on score margins, the final364

preference data used for training consists of ap-365

proximately 140k pairs for Llama2, 210k pairs for366

Qwen2.5 and 250k pairs for Tower. The training367

hyperparameters and implementation details are 368

explained in Appendix A. 369

Baselines. We compare against the following 370

baselines representing diverse strategies: 371

• Base Model (untuned, 7B parameters): estab- 372

lishes a pretrained performance baseline. 373

• SFT Model: the base model fine-tuned on 374

150K en-x seed datasets, represents English- 375

centric optimization. 376

• FLORES x2x SFT: the SFT model further 377

fine-tuned on 72K human-annotated x2x pairs 378

with 1K per direction. 379

• Pivot Translation: two-stage translation strat- 380

egy via English intermediate. 381

• TowerInstruct-7B (Alves et al., 2024): This 382

model is fine-tuned from TowerBase using 383

640k multi-task annotated data, encompass- 384

ing tasks beyond translation such as paraphras- 385

ing, translation quality estimation, and named 386

entity recognition. 387

• M2M-100-12B (Fan et al., 2020): This work 388

constructed an x2x dataset through large-scale 389

mining, including 7.5 billion parallel data 390

entries across 100 languages, resulting in a 391

model capable of translation among 100 lan- 392

guages. 393

4.2 Main Results 394

Table 2 presents the average performance of our 395

method and baselines on the FLORES-200 test 396

set. We report the improvements on the individual 397

languages in Appendix B. 398

Our x2x optimization framework achieves sig- 399

nificant performance uplifts over English-centric 400

baselines. For Llama2-7B, the x2x BLEURT 401

score improves from 63.42 (Base) to 68.91 (+5.49), 402

with COMET gains of +4.31 points. No- 403

tably, the optimized TowerBase-7B surpasses both 404

TowerInstruct-7B (a multi-task fine-tuned model) 405

and M2M-100-12B on x2x tasks, achieving 72.95 406

BLEURT and 86.30 COMET, demonstrating that 407

our synthetic data pipeline can rival large-scale 408

mined datasets like M2M-100’s 7.5B pairs. 409

Despite focusing solely on x2x optimiza- 410

tion (without direct en2x and x2en supervi- 411

sion), our method induces collateral improve- 412

ments in English-related directions. Specifically, 413

the en2x BLEURT of Llama2-7B and Qwen2.5- 414

7B improves 4.50 and 3.03, and outperforms 415

their SFT counterparts (+1.01 and +0.96), re- 416

spectively. TowerBase-7B also achieves 76.73 417
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Models x2en en2x x2x AVG

BLEURT COMET BLEURT COMET BLEURT COMET BLEURT COMET

TowerInstruct-7B 78.29 88.28 75.98 88.44 71.80 85.68 72.87 86.22
M2M-100-12B 75.44 85.86 72.61 82.90 69.57 85.03 70.46 84.90

Llama2-7B 75.24 86.34 68.56 83.20 63.42 79.65 65.12 80.68
Llama2-7B-SFT 76.78 87.43 72.05 85.91 61.92 80.05 64.42 81.38

w/ Pivot Trans. - - - - 68.53 83.41 - -
w/ FLORES x2x SFT 76.29 87.01 71.69 85.77 67.94 83.17 69.15 83.82
w/ EnAnchored-X2X 77.15 87.62 73.06 86.74 68.91 83.96 70.15 84.60

TowerBase-7B 73.75 86.79 76.98 87.47 62.76 80.57 65.28 81.88
TowerBase-7B-SFT 78.15 88.21 76.14 88.46 68.17 83.81 69.96 84.71

w/ Pivot Trans. - - - - 72.68 86.06 - -
w/ FLORES x2x SFT 77.58 87.80 75.44 88.09 71.99 85.72 72.89 86.16
w/ EnAnchored-X2X 78.36 88.33 76.73 88.86 72.95 86.30 73.87 86.76

Qwen2.5-7B 77.48 87.80 71.93 86.02 69.28 84.13 70.37 84.69
Qwen2.5-7B-SFT 77.75 87.96 74.00 87.23 70.20 84.72 71.34 85.29

w/ Pivot Trans. - - - - 70.69 84.89 - -
w/ FLORES x2x SFT 76.51 87.16 73.50 86.91 70.07 84.60 71.06 85.08
w/ EnAnchored-X2X 78.01 88.09 74.96 87.87 71.44 85.39 72.44 85.91

Table 2: Aggregated performance on FLORES-200 testset across 90 translation directions (9 for x2en, 9 for en2x
and 72 for x2x).

en2x BLEURT (+0.59 over its SFT version).418

This suggests that our x2x optimization fosters a419

more cohesive multilingual semantic space, where420

cross-lingual knowledge transfer occurs implicitly421

through English anchoring.422

Fine-tuning on the FLORES devset (72K x2x423

pairs) improves x2x performance for most models424

— e.g., TowerBase gains +3.82 BLEURT points425

— though Qwen shows no benefit. Critically, this426

comes at the cost of x2en or en2x degradation (e.g.,427

−0.7 BLEURT for en2x on TowerBase). This is428

likely due to the low diversity of FLORES data,429

causing overfitting to specific language pairs. De-430

tailed analysis is in Section 4.4.431

Although pivot translation achieves competitive432

x2x scores on FLORES (Table 2), it underperforms433

our EnAnchored-X2X on WMT22 de2fr and fr2de434

(Table 3). This discrepancy stems from FLORES’435

annotation bias: non-English references are de-436

rived from English source texts, giving pivot meth-437

ods an inherent alignment advantage. In contrast,438

WMT22’s bidirectional data requires genuine cross-439

lingual competence, where our en2x-anchored gen-440

eration proves more robust.441

4.3 Ablation Study442

We first investigate the effects of two key com-443

ponents: the English-Anchored x2x Transla-444

tion (EAxT)-based data synthesis strategy and the445

English-Anchored x2x Evaluation(EAxE)-driven446

data selection mechanism. For EAxT ablation, we447

Models de2fr fr2de

BLEURT COMET BLEURT COMET

Llama2-7B-SFT 64.19 79.33 72.08 82.07
w/ Pivot Trans. 64.91 79.76 72.34 82.10
w/ EnAnchored-X2X 65.85 80.18 73.80 83.27

TowerBase-7B-SFT 69.89 82.46 76.29 85.53
w/ Pivot Trans. 70.13 82.70 76.63 85.48
w/ EnAnchored-X2X 71.20 83.23 77.57 86.25

Qwen2.5-7B-SFT 67.53 81.34 73.47 83.41
w/ Pivot Trans. 68.04 81.37 74.30 83.60
w/ EnAnchored-X2X 69.18 82.20 74.96 84.09

Table 3: Performance on the WMT22 de-fr testset.

substitute our method with direct translation out- 448

puts. When disabling the reward model for EAxE, 449

we randomly select translation candidates and per- 450

form standard fine-tuning rather than preference 451

optimization. 452

As shown in Table 4, without applying any of 453

our proposed methods, the improvements obtained 454

from fine-tuning on directly synthesized data are 455

quite limited. Each of our two proposed enhance- 456

ments contributed significantly to translation per- 457

formance improvement. In particular, the utiliza- 458

tion of the reward model effectively mitigate the 459

quality deficiencies in directly synthesized data, 460

highlighting the necessity of data selection and 461

cleaning for synthetic data. 462

Furthermore, we observe that performance im- 463

provements in en2x translation directions are also 464

achieved through preference data constructed via 465
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Models x2en en2x x2x AVG

BLEURT COMET BLEURT COMET BLEURT COMET BLEURT COMET

Llama2-7B-SFT 76.78 87.43 72.05 85.91 61.92 80.05 64.42 81.38

w/ Direct Trans. 76.70-0.08 87.39-0.04 71.75-0.30 85.60-0.31 62.99+1.07 80.54+0.49 65.24+0.82 81.73+0.35
w/ EAxE 77.18+0.40 87.67+0.24 72.95+0.90 86.64+0.73 68.04+6.12 83.51+3.46 69.45+5.03 84.24+2.86

w/ EAxT. 76.89+0.11 87.48+0.05 71.53-0.52 85.47-0.44 67.71+5.79 82.88+2.83 69.01+4.59 83.60+2.22
w/ EAxE 77.15+0.37 87.62+0.19 73.06+1.01 86.74+0.83 68.91+6.99 83.96+3.91 70.15+5.73 84.60+3.22

Table 4: Ablation study evaluating English-Anchored x2x Translation and Evaluation mechanisms on the Llama2
model using the FLORES-200 testset. We labeled the performance delta of each combination with respect to the
SFT baseline.

Synthetic Strategy BLEURT COMET

Direct 68.04 83.51
Pivot 68.58 83.35
EAxT 68.91 83.96

Metric for EAxE

Random 67.71 82.88
PPL 67.78 82.85
KIWI 68.71 83.86
Direct RM 67.97 83.39
RM 68.91 83.96

Table 5: The x2x performance on the FLORES-200 test-
set of optimized Llama2 with different data synthesis
strategies and alternative metrics for preference con-
struction.

the reward model. This aligns with the emerging466

consensus that reinforcement learning yields bet-467

ter generalization compared to standard supervised468

fine-tuning (Chu et al., 2025). We further validate469

this hypothesis in Section 4.4.470

Table 5 presents a comprehensive analysis of the471

influence of three distinct data synthesis methods472

on the resultant x2x translation performance met-473

rics. Generally speaking, all methods effectively474

construct preferences to enhance the model’s x2x475

translation capabilities. Nevertheless, EAxT fur-476

ther elevates the model’s performance ceiling.477

We further consider available quality assessment478

metrics as alternatives to the reward model. The479

following baselines are evaluated:480

• Random picking followed by fine-tuning.481

• Translation model perplexity (PPL).482

• COMETKIWI-XL (Rei et al., 2023), a model483

specifically designed for translation quality484

estimation without requiring reference trans-485

lations.486

In addition, we explore using our reward model487

for direct evaluation of x2x translations (Direct488

RM), with the wondering whether its evaluation ca-489

Data Size
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Figure 3: Performance on the FLORES-200 testset of
each optimization algorithm scaling with data size.

pabilities can transfer to x2x language pairs. Specif- 490

ically, we directly provide the source text xl1 to the 491

reward model instead of its English reference, com- 492

puting the score as si = r(xl1 , x̄
i
l2
). 493

As shown in Table 5, PPL performs comparably 494

to the random baseline, indicating that translation 495

models cannot be directly used for evaluation with- 496

out appropriate training to activate their assessment 497

capabilities, e.g., through reward modeling. Our 498

method slightly outperforms COMETKIWI, suggest- 499

ing the potential of LLM-driven quality assessment, 500

particularly given its independence from annotated 501

translation evaluation data. Finally, we observe that 502

the evaluation capabilities of our reward model can 503

partially generalize to x2x language pairs, although 504

this direct application is notably less effective than 505

the proxy evaluation approach. 506

4.4 Scaling with Synthetic Data 507

This section highlights the advantages of synthetic 508

data scaling, particularly comparing the translation 509

improvements through preference optimization ver- 510

sus vanilla supervised fine-tuning across varying 511

data scales, as well as their generalization dispari- 512

ties on unseen language pairs (en2x). Specifically, 513

we control the scale of preference data used for opti- 514

mization, and for comparison, we fine-tune only on 515

the chosen data from the preference data pairs. For 516
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comprehensive evaluation, we additionally incor-517

porated human-annotated data from the FLORES518

devset.519

Figure 3a illustrates the trend in translation per-520

formance on x2x language pairs using different521

optimization algorithms. Initially, DPO lags be-522

hind SFT on small-scale data. However, as the data523

size increases, DPO demonstrates continuous im-524

provement, rapidly surpassing the SFT baselines525

and maintaining its advantage with further scaling.526

Although SFT trained on chosen data also improves527

with scale, its gains are comparatively modest.528

In the en2x translation scenario shown in Fig-529

ure 3b, the performance advantage of DPO be-530

comes even more pronounced, indicating superior531

generalization effects for unseen language pairs.532

For FLORES data, constraints of data scale ne-533

cessitate text reuse across different language pairs,534

introducing the risk of model overfitting. Conse-535

quently, the limitations in data diversity manifest536

as limited scalability with increased data size, and537

even slight performance degradation, particularly538

in en2x translation.539

5 Related Work540

LLM-Driven Data Synthesis LLM-driven syn-541

thetic data generation has emerged as a promising542

alternative to traditional human-dependent data col-543

lection, demonstrating significant potential across544

various applications. In the context of NLP tasks,545

LLMs have been extensively integrated into data546

generation pipelines, encompassing areas such as547

question answering (Li and Callison-Burch, 2023),548

text classification (Li et al., 2023), and general ca-549

pabilities (Huang et al., 2023). These efforts have550

underscored the importance of curation, evaluation,551

and quality control of synthetic data. Addition-552

ally, the paradigm of utilizing synthetic data to553

replace human annotation has found applications554

in domain-specific tasks (Tang et al., 2023) and555

multimodal fields (Liu et al., 2024a).556

Many-To-Many Translation Developing many-557

to-many translation capabilities for machine trans-558

lation models is a challenging task. Previous work559

based on neural machine translation (NMT) has560

explored a range of techniques, such as introduc-561

ing representation alignment (Pan et al., 2021) or562

achieving flexible combinations of language pairs563

through shared encoders and decoders (Yuan et al.,564

2023) or Mixture-of-Experts (Fan et al., 2020;565

Costa-Jussà et al., 2022) architectures. Neverthe-566

less, large-scale many-to-many translation datasets 567

obtained through mining remain essential (Yuan 568

et al., 2023; Fan et al., 2020; Costa-Jussà et al., 569

2022). 570

For LLMs, prior research has demonstrated 571

that multilingual capabilities exhibit inherent im- 572

balances between English and non-English lan- 573

guages (Yuan et al., 2024). This disparity is pri- 574

marily attributed to the uneven language distribu- 575

tion in pretraining data. Consequently, existing 576

works aim to address the deficiencies of LLMs 577

in non-English languages and enhance many-to- 578

many translation capabilities through large-scale 579

continued pre-training (Lu et al., 2024; Zheng et al., 580

2025). These efforts typically require substantial 581

monolingual and parallel data across many lan- 582

guages. 583

In contrast, we focus on post-training of LLMs. 584

Our findings suggest that even models enhanced 585

for multilingual capabilities, such as Tower (which 586

undergoes continued pretraining) or Qwen (which 587

uses more diverse multilingual data), may still am- 588

plify disparities between English and non-English 589

capabilities without delicated adjustments. Our re- 590

search complements existing approaches by fully 591

activating LLMs’ many-to-many translation capa- 592

bilities within the framework of their foundational 593

competencies. 594

6 Conclusion 595

In this work, we presented a novel approach to en- 596

hance x2x translation capabilities in large language 597

models without requiring extensive non-English 598

parallel data. By leveraging English parallel cor- 599

pora and the inherent en2x strengths of LLMs, we 600

proposed a synthesis and evaluation framework to 601

enhance x2x translation capabilities. This method 602

not only boosts x2x translation quality but also 603

unexpectedly enhances en2x performance, indicat- 604

ing robust generalization across languages. These 605

findings suggest promising directions for future 606

research in multilingual translation systems that 607

can operate effectively across all language pairs be- 608

yond English. By reducing the reliance on scarce 609

non-English parallel data, our approach offers a 610

practical solution to the challenges of building truly 611

omnidirectional translation systems. 612

Limitations 613

Our experiments have investigated the feasibility 614

of building many-to-many translation capabilities 615
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among mainstream languages. However, we have616

not yet explored the reaction of our approach when617

applied to low-resource languages. In particular,618

the implementation of our method may face sig-619

nificant challenges due to the scarcity of English-620

centric parallel data for low-resource languages.621

This data deficiency presents a substantial obstacle622

to the direct application of our approach in these623

linguistic contexts.624

One potential solution to address this limitation625

would be to consider synthesizing parallel data626

from English to low-resource languages. Never-627

theless, this strategy might be constrained by the628

model’s inherent translation capabilities between629

English and these low-resource languages. The630

quality of synthetic data would inevitably depend631

on the model’s proficiency in translating between632

these language pairs, which may be suboptimal633

given the limited training resources available for634

such languages.635

Furthermore, the linguistic diversity and struc-636

tural differences characteristic of many low-637

resource languages may introduce additional com-638

plexities that our current methodology does not639

explicitly account for. Future work should system-640

atically investigate adaptations of our approach to641

accommodate the unique challenges presented by642

low-resource language translation scenarios.643
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Training Setups We list the training hyperparam-836

eters involved in each stage in Table 6. All train-837

ing was conducted using 16 Ascend 910B NPUs,838

equipped with bf16 mixed precision training, and839

utilizes DeepSpeed ZeRO-3 for sharding. Follow-840

ing the setup of TowerInstruct (Alves et al., 2024),841

we use the chatml template (AI, 2023) during both842

training and inference, as well as instruction di-843

versity, providing multiple zero-shot instruction844

templates for the translation task.845

B Results in Individual Languages846

In Figures 4 and 5, we respectively delineate the847

COMET and BLEURT performance across lan-848

guages, presenting the performance improvements849

of en-x SFT, and our x2x optimization.850

11



SFT on en-x SFT on FLORES SFT on chosen DPO

Global batch size 128 128 128 64
Train epoch 1 1 1 1
Learning rate 7e-6 1e-6 4e-6 2e-7
Learning rate Decay cosine cosine cosine cosine
Warmup ratio 0.1 0.1 0.1 0.1
Optimizer AdamW† AdamW† AdamW† AdamW†

Weight Decay 0 0 0 0
Adam β1 0.9 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999 0.999
Adam ϵ 0 0 0 0
Max Seq Len 2048 2048 2048 2048
DPO β - - - 0.4 (0.2 for Llama)
SFT coefficient†† - - - 2.0
† Loshchilov and Hutter, 2019.
†† The supervised fine-tuning loss coefficient in DPO training.

Table 6: Hyperparameter configuration for SFT and DPO training.
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Figure 4: COMET22 performance on FLORES-200 testset with each language as source or target.
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Figure 5: BLEURT performance on FLORES-200 testset with each language as source or target.
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