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Abstract001

The reward model has become increasingly im-002
portant in alignment, assessment, and data con-003
struction for large language models (LLMs).004
Most existing researchers focus on enhancing005
reward models through data improvements, fol-006
lowing the conventional training framework for007
reward models that directly optimizes the pre-008
dicted rewards. In this paper, we propose a009
hybrid alignment framework HAF-RM for re-010
ward model training by introducing an addi-011
tional constraint on token-level policy probabil-012
ities in addition to the reward score. It can si-013
multaneously supervise the internal preference014
model at the token level and optimize the map-015
ping layer of the reward model at the sequence016
level. Experiment results on five datasets suf-017
ficiently show the validity and effectiveness of018
our proposed hybrid framework for training a019
high-quality reward model. By decoupling the020
reward modeling procedure and incorporating021
hybrid supervision, our HAF-RM framework022
offers a principled and effective approach to023
enhancing the performance and alignment of024
reward models, a critical component in the re-025
sponsible development of powerful language026
models. We release our code at https://haf-rm-027
anonymized.github.io.028

1 Introduction029

Recent periods have witnessed a continuous evolu-030

tion of Large Language Model (LLM) techniques,031

especially in pre-training (Devlin et al., 2019; Rad-032

ford et al., 2019; Brown et al., 2020) and instruc-033

tion tuning (Wei et al., 2021; Wang et al., 2022;034

Yue et al., 2023). As these models advance, re-035

searchers have shifted their focus from generating036

correct responses to aligning outputs more closely037

with human preferences (Russell, 2014) through038

Reinforcement Learning from Human Feedback039

(RLHF) (Ouyang et al., 2022). As an efficient alter-040

native to human feedback, reward models for gener-041

ative language models emerge, facilitating scalable042
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Figure 1: HAF model structure. It retains the policy
layer which outputs the token-level probability.

alignment in training (Christiano et al., 2017; Sti- 043

ennon et al., 2020), response generation (Gao et al., 044

2023; Mudgal et al., 2024; Jinnai et al., 2024), and 045

data construction(Yuan et al., 2023) etc. 046

Despite the availability of numerous sophisti- 047

cated reward models (Kopf et al., 2023; Zhu et al., 048

2023), several key limitations remain. First, many 049

reward models are proprietary and closed-source, 050

originating from industry, which restricts their fur- 051

ther training and transfer. Second, prior studies 052

have highlighted incorrect and ambiguous pref- 053

erences within the training data of these reward 054

models (Bai et al., 2022; Pitis, 2023). These two 055

issues both limit the quality and generalizability of 056

existing reward models, necessitating further en- 057

hancement either from the data perspective or the 058

training process. Recent efforts primarily focus on 059

enriching data sources to improve reward models, 060

including incorporating external tools or informa- 061

tion sources to enhance generalization (Li et al., 062

2023a; Sun et al., 2023) or leveraging fine-grained 063

signals (Wu et al., 2023; Cao et al., 2024) and their 064

combinations (Go et al., 2023; Lai et al., 2024). In 065

contrast, this work aims to improve the training 066

framework of reward models. 067
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A reward model is typically structured with two068

components: a transformer-based model (referred069

to as the “internal preference model”), and a projec-070

tion module called “reward layer” (usually a linear071

layer). The former outputs preference vectors for072

each token, while the latter maps these vectors to073

sequence-level rewards. We argue that the standard074

practice for training the reward model may cause075

insufficient supervision for preference modeling,076

which can be improved by performing hybrid su-077

pervision of both token-level and sequence-level.078

Given that a policy model also relies on an inter-079

nal preference model to predict expected rewards080

for each action or token, essentially acting as a Q-081

function under token-level supervision (Rafailov082

et al., 2024), we propose a Hybrid Alignment083

Framework (HAF). This framework jointly opti-084

mizes the reward model and the policy model by085

sharing the internal preference model. With an ad-086

ditional policy loss, we can directly supervise the087

internal preference model at the token level, while088

simultaneously optimizing the mapping layer of089

the reward model using the reward loss, enabling090

more effective alignment of the reward model.091

We provide massive empirical experiments with092

an intuitional justification to demonstrate the ef-093

fectiveness of our HAF. In the experiment section,094

we compare the performance of reward models095

trained using our framework against those result-096

ing from traditional baseline and DPO approaches097

across five public datasets. The results highlight098

the advantage of HAF with different policy losses099

integrated. Further analysis reveals that using ad-100

ditional policy loss can improve the performance101

of policy model calibration, which opens a new102

horizon for training high-quality reward models.103

2 Hybrid Alignment Framework104

In this section, we first introduce the necessary105

notations (Section 2.1). Then we derive the forma-106

tion of reward loss and policy loss as well as their107

practical calculation methods (Section 2.2), and108

propose HAF to effectively utilize the similarity be-109

tween the reward model and the policy model (Sec-110

tion 2.3). Finally, we provide an intuition-based111

explanation for why HAF works (Section2.4).112

2.1 Notation113

The objective of our framework is to train the re-114

ward model r based on a pairwise comparison115

dataset (also known as “preference dataset”) D,116

following typical reward model training settings. 117

• D = {(xi, yi, y′i)}
n
i=1 represents the dataset 118

used to train the reward model, where xi, yi and 119

y′i are the query, preferred and non-preferred 120

responses respectively. 121

• P = {(x, y) | (x, y, y′) ∈ D} ∪ {(x, y′) | 122

(x, y, y′) ∈ D} is the set of query-response 123

pairs from the dataset D. 124

• r is the reward model which can be split into 125

two parts as r(x, y) = F◦ϕ (x, y), to output the 126

reward of a response y given a query x. Here, 127

ϕ (·, ·) denotes the model’s internal preference 128

model, while F serves as the reward prediction 129

layer mapping the model’s internal preference to 130

the final reward. We use the symbol ◦ to signify 131

function nesting, i.e., F◦ϕ (x, y) = F (ϕ (x, y)). 132

• π is the policy model, and π (x, y) is the gen- 133

eration probability of y given x. It can also be 134

divided into two parts as π (x, y) = K ◦ϕ (x, y) 135

where the policy prediction layer K maps the 136

model’s internal preference to the generation 137

probability. 138

• The Oracle value is denoted as the cor- 139

responding letter with an asterisk such as 140

r∗(Oracle reward model), ϕ∗(Oracle model pref- 141

erence), F∗(Oracle reward prediction layer) and 142

K∗(Oracle policy prediction layer). 143

2.2 Basic Loss Functions 144

We use D1 to represent the distribution discrepancy 145

between the reward model’s output and the oracle 146

reward model’s output, and D2 for the outputs of 147

the policy model and the oracle policy model. 148

Reward Loss The standard reward loss Ls con- 149

siders the precision of rewards alone, being a sim- 150

ple and direct metric to quantify the quality of a 151

reward model. 152

Ls := E
d
[D1 (r (d) , r

∗ (d))] (1) 153

We use d to denote (x, y) for notational simplicity. 154

In avoiding the issue of uncertain reward val- 155

ues, there is consensus on the use of the Bradley- 156

Terry model (Bradley and Terry, 1952) to trans- 157

form the reward modeling problem into a proba- 158

bility optimization problem (Stiennon et al., 2020; 159

Rafailov et al., 2023; Meng et al., 2024), which 160

yields the popular form of a binary classification 161
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Figure 2: HAF training framework. We add the reward layer to the language model while retaining its policy layer.
During training, we optimize both the token-level rewards and sequence-level rewards for the input triplets by
maximizing the reward differences between better responses and worse responses.

cross-entropy loss:162

Ls ← E
(x,y,y′)∼D

[
− log σ

(
r (x, y)− r

(
x, y′

))]
(2)163

where σ (·) is the sigmoid function (derivation can164

be found in Appendix C.1).165

Policy Loss Similar to the reward loss, the stan-166

dard policy loss aims to measure the error of the167

policy model.168

LP := E
d
[D2 (π (d) ,π∗ (d))] (3)169

Here, we use DPO (Rafailov et al., 2023) for170

calculating policy loss since its derivation is similar171

to that made for the reward loss (as detailed in172

Appendix C.2).173

LP ← E
(x,y,y′)∼D

[− log σ (τ (pdwin − pdlose))]

(4)174

pdwin = log π(x,y)
πref (x,y)

, pdlose = log π(x,y′)
πref (x,y′)

.175

πref is the reference policy model and τ is the176

hyperparameter set to 0.1.177

2.3 HAF Implementation178

Hybrid Alignment Loss To fully leverage the179

similarity between the reward model and the policy180

model, we incorporate an additional supervising181

term D2 on the policy model into the loss func-182

tion. By calibrating the shared preference space,183
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Figure 3: HAF tends to assign higher scores to the
responses it generates. The x-axis represents the score
difference between the ideal reward model’s evaluation
of the content generated by HAF’s policy head and the
content generated by the model trained with DPO. The y-
axis indicates the score difference when HAF evaluates
these two outputs. Different colors represent different
model checkpoint selection strategies.

we effectively align the model in a hybrid manner: 184

LH := E
d
[D1 (r (d) , r

∗ (d))

+α · D2 (π (d) ,π∗ (d))]

= E
d
[D1 (F ◦ ϕ (d) ,F∗ ◦ ϕ∗ (d))

+α · D2 (K ◦ ϕ (d) ,K∗ ◦ ϕ∗ (d))]

(5) 185

where α is a hyperparameter to balance losses from 186

the reward and policy model, ϕ is the shared in- 187

ternal preference model which receives gradients 188

from both loss terms. 189

Model structure The most commonly used 190

decoder-only LLM consists of stacked transformer 191
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blocks (Vaswani et al., 2017) or similar structures,192

and a linear layer for policy projection. In the re-193

ward model, only the shape of the final linear layer194

is adjusted to match the format of the reward value195

output compared to the policy model (Stiennon196

et al., 2020). We retain two linear layers for our197

model, enabling it to output rewards and probabili-198

ties simultaneously, as shown in Figure 1.199

2.4 Why HAF is Better?200

Figure 3 shows the consistency between the reward201

model and the policy model in preference learning.202

Despite possessing similar generation quality, the203

policy model which shares parameters with the204

reward model is rated higher, indicating that the205

two models do have resembling preferences when206

they have the same internal preference model. We207

will elaborate on this finding in Appendix E.1.208

Besides, we provide an intuitive explanation of209

why the hybrid alignment loss can yield a better210

solution than simply using the standard reward loss.211

Claim 1. The model learned from the joint cali-212

brated loss outperforms the one learned solely from213

the preference space using the standard reward loss.214

Details can be found in Appendix D.215

Claim 2. Policy loss can act as a regularization216

term preventing the inner representation from de-217

grading, so HAF tends to outperform the tradi-218

tional training framework.219

3 Experimental Setup220

3.1 Datasets221

We comprehensively evaluate the performance222

of our framework using five public datasets:223

Anthropic-HH-Harmless (HH-harmless) (Bai et al.,224

2022), Anthropic-HH-Helpful (HH-Helpful) (Bai225

et al., 2022), Beaver Safe (BS) (Ji et al., 2023), Al-226

paca Human Pref (AHP) (Dubois et al., 2023), and227

Chatbot Arena (CA) (Zheng et al., 2023). Since228

AHP and CA do not provide original data split for229

evaluation, we randomly extract 10% from the orig-230

inal data as the test set. Detailed statistics of our231

used datasets for training are shown in Table 1.232

3.2 Compared Models233

Baseline We compare our framework with the234

standard training approach, wherein the reward235

model only has a reward layer dedicated to reward236

prediction and is optimized only with reward loss,237

as delineated in Eq. 2.238

Dataset Size #Word/QA #Token/QA

Harmless 12,915 42.9 61.5
Helpful 13,543 54.3 77.2
BS 47,625 69.3 88.5
AHP 8,722 59.6 81.9
CA 19,466 165.5 257.6

Table 1: Statistics of the Training Subsets.

DPO DPO can implicitly convert model’s out- 239

puts into reward values (Rafailov et al., 2023), 240

so the model can also function as a reward 241

model (Rafailov et al., 2024). Following the work 242

of Lambert et al. (2024), we evaluate the model 243

trained with DPO loss. 244

HAF Under our framework, the reward model 245

has both a reward layer and a policy layer for 246

predicting sequence-level rewards and providing 247

token-level probabilities. 248

Our framework is implemented based on three 249

different backbone LLMs including both pre- 250

trained and fine-tuned models: Phi-2-2.7B (Java- 251

heripi et al., 2023), Mistral-7B-base-v0.3 and 252

Mistral-7B-Instruct-v0.2 (Jiang et al., 2023). 253

We train Phi-2 and Mistrals using full-parameter 254

and Low-rank Adaptation (LoRA) (Hu et al., 2022) 255

strategies, respectively. More implementation de- 256

tails can be found in Appendix A. 257

4 Experiment Results 258

4.1 Intrinsic Performance of Reward Models 259

The primary function of a reward model is to eval- 260

uate the quality of responses to a given question, 261

which involves accurately comparing pairs of an- 262

swers to the same question. To demonstrate the 263

effectiveness of our HAF in training reward mod- 264

els, we first conduct several experiments evaluat- 265

ing the intrinsic performance of our trained reward 266

model, specifically by taking judgment accuracy as 267

the evaluation metric. 268

4.1.1 Overall Performance 269

Table 2 presents the overall results of our HAF com- 270

pared to two basic approaches across five datasets. 271

We observe that DPO and the baseline method 272

show similar performance on average but there 273

is significant variability in individual compar- 274

isons. This suggests that the two methods focus 275

on different features when learning preferences. In 276

contrast, HAF consistently outperforms both, in- 277
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Method Helpful Harmless CA BS AHP Avg

DPO(Phi-2) 69.70 66.30 66.80 87.80 52.60 68.64
Baseline(Phi-2) 64.30 69.50 79.30 76.00 58.40 69.50
HAF (Phi-2) 76.40 70.40 79.00 84.00 60.80 74.12

DPO(Mistral-base) 64.60 69.90 68.80 91.70 53.80 69.76
Baseline(Mistral-base) 72.60 69.80 64.20 78.30 50.40 67.06
HAF (Mistral-base) 73.00 70.00 74.40 85.40 56.30 71.82

DPO(Mistral) 74.29 70.30 81.90 92.70 60.30 75.90
Baseline(Mistral) 76.20 72.70 79.80 80.80 56.30 73.16
HAF (Mistral) 75.80 73.10 81.90 88.70 63.10 76.52

Table 2: Overall results (accuracy) for each dataset, by calculating the proportion that the better response is scored
higher. The best performance is highlighted in boldface and the suboptimal result is underlined.

dicating its ability to effectively integrate features278

from both approaches to better learn preferences.279

Specifically, Mistral-base performs poorly on280

the Helpful, CA, and AHP datasets because these281

datasets require preferences related to the quality282

of responses. Since the base model has not under-283

gone instruction tuning, it lacks the representa-284

tion of relevant features, making it difficult to ac-285

curately judge response quality. In contrast, the286

extensively trained base model is capable of distin-287

guishing between benign and harmful content, al-288

lowing it to perform comparably to Mistral-Instruct289

on the safety-related BS and Harmless datasets.290

Nevertheless, HAF demonstrates promising results291

even for these challenging preferences.292

Notably, DPO achieves the highest performance293

on BS across all three models, which is probably294

caused by DPO’s “concentrated” data-fitting man-295

ner (Azar et al., 2023). This is evident from the296

much lower variance in token-level perplexity for297

good and bad responses in the BS dataset compared298

to other datasets, indicating a more concentrated299

distribution respectively of these two subsets (refer300

to Appendix E.2 for detailed illustration). By inte-301

grating DPO loss, our HAF partially captures this302

“concentrated” data-fitting characteristics, leading303

to a more nuanced improvement on BS compared304

to the baseline methods. However, DPO’s concen-305

trated data-fitting may potential lead to over-fitting306

issues, whereas HAF and the baseline demonstrate307

better generalization ability, which we will elabo-308

rate on in the following experiments.309

4.1.2 Evaluation on Mixed Data310

To illustrate HAF ’s effectiveness in training re-311

ward models on mixed data, we construct a dataset312

by evenly sampling and combining examples from313

all five datasets. As shown in Figure 4, our pro-314

posed hybrid alignment framework achieves the 315

best overall performance across all reward models 316

when evaluated on the mixed data distribution. This 317

suggests that HAF is more effective at learning the 318

diversity within the combined datasets. 319

Specifically, compared to the individual results 320

on corresponding datasets in Table 2 (shown as 321

lightly shaded bars in Figure 4), we observe that 322

both the baseline method and HAF replicate 323

their performance in learning individual prefer- 324

ences better than DPO when applied to mixed 325

preference learning. Notably, DPO’s performance 326

drops significantly on the CA and Helpful datasets, 327

suggesting that DPO tends to fit the most promi- 328

nent features of the overall data distribution. This 329

also aligns with the finding of Chen et al. (2024) 330

that DPO would optimize the margins of correct 331

data rather than the wrong ones. 332

4.1.3 Transferability to OOD Data 333

We further evaluate the generalizability of our 334

framework to entirely held-out out-of-distribution 335

(OOD) datasets to simulate distribution shifts 336

in real-world applications. Specifically, the 337

five datasets are grouped into two categories: 338

“Safety” (BS, Harmless) and “Chat” (AHP, CA, 339

Helpful). We train the model on one dataset and 340

evaluate its performance within the same category. 341

The evaluation data comes from two sources, in- 342

cluding the “internal” source referring to different 343

datasets within the same category, and an “exter- 344

nal” source, consisting of test data on related topics 345

from RewardBench. 346

As shown in Table 3, HAF achieves a higher 347

internal accuracy compared to both Baseline and 348

DPO, demonstrating HAF ’s strong ability to learn 349

preferences and effectively generalize to similar 350

preference distributions, even with notable differ- 351
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Figure 4: The performance differences of HAF / baseline / DPO under mixed preference training, with light shading
indicating the upper bound performance of individually trained reward models on each dataset.

Acc(%) AHPC CAC HelpfulC BSS HarmlessS Avg.

internal

Phi-2 67.50(1.20↑)
(23.70↑) 62.45(1.35↓)

(11.60↑) 66.10(0.90↑)
(19.80↑) 70.60(5.60↑)

(4.60↑) 76.90(1.50↑)
(8.60↑) 68.71(1.57↑)

(13.66↑)

Mistral-base 59.65(4.90↑)
(14.55↑) 56.35(2.15↓)

(6.00↑) 62.40(0.85↓)
(12.85↑) 69.60(0.50↑)

(3.30↑) 75.30(1.90↑)
(5.80↑) 64.66(0.86↑)

(8.50↑)

Mistral 72.20(8.40↑)
(12.75↑) 63.30(0.70↓)

(9.65↑) 67.40(0.20↓)
(14.25↑) 71.90(1.40↑)

(3.00↑) 76.70(2.40↑)
(5.70↑) 70.30(2.26↑)

(9.07↑)

external

Phi-2 85.14(1.36↑)
(65.88↑) 95.27(0.34↑)

(19.59↑) 89.86(6.08↑)
(74.66↑) 66.30(0.95↑)

(2.04↑) 66.44(0.38↓)
(4.62↑) 80.60(8.35↑)

(33.36↑)

Mistral-base 79.66(20.34↑)
(64.14↑) 93.79(21.03↑)

(33.45↑) 81.38(6.90↓)
(67.24↑) 70.40(3.27↑)

(8.73↑) 63.30(3.82↓)
(4.91↑) 77.70(6.79↑)

(35.69↑)

Mistral 91.55(32.77↑)
(53.37↑) 91.89(3.04↑)

(16.21↑) 82.43(1.69↑)
(63.51↑) 70.52(1.22↓)

(4.08↑) 73.37(2.72↑)
(5.17↑) 81.95(7.80↑)

(28.47↑)

Table 3: Results for out-of-distribution data. Subscripts C and S denote the subjects of training sets, where C
represents Chat and S represents Safety. “internal” refers to testing results among datasets sharing the same subject
category, while “external” refers to testing results on RewardBench. The displayed accuracies are for HAF , with
superscripts and subscripts indicating the performance differences relative to the baseline and DPO, respectively. ↑
denotes an improvement with HAF , while ↓ signifies a decline.

ences in language style and topic. As Touvron et al.352

(2023) noted, RLHF causes distributional shifts in353

the policy model during training, often requiring354

iterative training of the reward model. HAF ’s ro-355

bustness against these distributional shifts could356

potentially be a key factor in mitigating this issue.357

It is important to note that nearly all of DPO’s358

test outcomes converge around 50%, indicating a359

complete loss of modeling capability for OOD data.360

This likely stems from DPO’s inherent nature as361

a language model, where the generation process362

exhibits strong stylistic biases, favoring responses363

that align with its style (as reflected in generation364

probabilities and implicit reward values). When365

response distribution deviates from these stylis- 366

tic norms (e.g., responses that are too short, too 367

long, or use different vocabulary), DPO’s output 368

probabilities become highly inaccurate, rendering 369

it unsuitable as a conventional reward model. 370

From these three experiments, we conclude that 371

DPO learns features significantly different from 372

those learned by the baseline method. In contrast, 373

HAF inherits both the baseline method’s general- 374

ization ability and DPO’s stronger fitting capability. 375

4.2 Extrinsic Evaluation on Downstream Task 376

Intrinsic performance metrics offer only a partial 377

view of a reward model’s efficacy. To comprehen- 378
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Figure 5: Average win rates of responses selected by
the HAF reward model, baseline model and the DPO
reward model. Circles may overlap as different models
select the same response.

sively assess their practical applicability in real-379

world scenarios, it is crucial to evaluate how these380

models perform in downstream tasks that closely381

simulate practical applications.382

In this section, we evaluate the robustness and ef-383

fectiveness of HAF in such scenarios. Specifically,384

we explore its performance in two distinct down-385

stream tasks: best-of-N sampling, a training-free386

response generation strategy (Stiennon et al., 2020;387

Gao et al., 2023; Jinnai et al., 2024), and RLHF, a388

training-dependent alignment method.389

4.2.1 Best-of-N390

We demonstrate the reliability of our trained reward391

model through Best-of-N selection, where the re-392

ward model should pick the best response (the one393

with the highest reward) from several responses394

sampled from the same generative model. The395

backbone for the reward model and the genera-396

tion model is the same, with 8 and 4 responses397

are provided to the Mistral-Instruct reward model398

and the Phi-2 reward model, respectively. Because399

Phi-2 tends to generate more similar responses, re-400

ducing the need for 8 candidates. The prompts401

used for comparisons and ranking are listed in Ap-402

pendix F, referencing AlpacaEval (Li et al., 2023b).403

We report two evaluation metrics. Win rate: We404

use GPT-4-turbo to rank the responses from HAF ,405

DPO, and baseline reward model and report the win406

rate (Jang et al., 2023). Consistency: we use GPT-407

4-turbo to rank the sampled responses and calculate408

the recall of the top-1 and top-2 responses.409

As shown in Figure 5 and Table 4, HAF demon-410

strates significant advantages over the baseline and411

DPO reward models in selecting responses in terms412

of both evaluation metrics, especially taking Phi-2413

as the backbone. Notably, the recall scores of both414

DPO and baseline are close to those of random se-415

lection, indicating poor sensitivity and an inability416

Phi-2 Mistral
All Chat All Chat

Top-1

Random 25.00 25.00 12.50 12.50
Baseline 27.43 28.97 16.03 18.27
DPO 22.94 26.39 12.81 13.85
HAF 33.77 37.19 18.19 21.12

Top-2

Random 50.00 50.00 25.00 25.00
Baseline 49.71 53.39 30.64 35.13
DPO 46.22 51.59 29.05 31.56
HAF 58.28 64.23 34.89 39.96

Table 4: Top-k recalls of different reward models. Ran-
dom shows the recall when choosing responses ran-
domly. The results are averaged over the recall values
from all datasets. “Chat” indicates that the result in that
column is averaged over the AHP, CA, and Harmless
instead of all five datasets.

to discern between responses with minimal quality 417

differences. In contrast, the reward model trained 418

by HAF exhibits good discriminative ability. 419

Considering that the model primarily learn to 420

distinguish between harmful and non-harmful re- 421

sponses from the BS and Harmless datasets, and 422

the responses generated by Phi-2 and Mistral are 423

mostly benign, we also report average results on the 424

remaining three datasets. When the safety-related 425

datasets are excluded, all models show an improve- 426

ment in average performance. The detailed results 427

as well as the ArmoRM-judged results can be found 428

in the appendix in Table 11, Figure 10. 429

Figure 5 presents the win rates of each method. 430

We can observe that HAF consistently has the 431

highest probability of selecting the best response 432

(among the three methods), while DPO performs 433

the worst. The frequency with which the baseline 434

reward model and the HAF reward model select the 435

same optimal response is considerably higher than 436

their agreement with DPO. This difference is partly 437

due to their modeling approaches: both HAF and 438

the baseline reward model directly produce numer- 439

ical rewards, whereas DPO derives rewards from 440

token probabilities. 441

4.2.2 RLHF 442

We also test HAF in the standard RLHF process: 443

we train two reward models respectively with HAF 444

and the baseline method and then use them to train 445

policy models through RLHF. After training, GPT- 446

4 acts as the evaluator to compare the generations 447

from the two policy models. We conduct two sets 448

of experiments: one for training a Safety reward 449

7
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Figure 6: Win rates for the policy model trained with
the HAF reward model using RLHF compared to the
baseline reward model, with each comparison made at
the same training steps.

model using the BS and Harmless datasets; and the450

other for training a Chat reward model using the451

AHP, CA, and Helpful datasets. We compare the452

response quality of the policy models optimized453

after the same number of PPO steps by the baseline454

reward model and the HAF reward model.455

As shown in Figure 6, the improvement of HAF456

is particularly evident on the Chat dataset, with its457

win rate increasing throughout the training, high-458

lighting the superiority of the HAF reward model.459

In contrast, during safety training, the HAF reward460

model only shows a significant advantage over the461

baseline model primarily in the middle stages of462

training. This is likely because both models have463

largely achieved harmless responses on the test set,464

resulting in minimal differentiation between the465

two reward models.466

5 Related Work467

Reward model was proposed to modeling human468

language preferences (model that outputs pref-469

erence values based on questions and answers)470

(Christiano et al., 2017), then the explosive growth471

of research on reward models (McKinney et al.,472

2023) and large language models (Wei et al., 2022;473

Park et al., 2023; Zheng et al., 2023) emerged after474

the popularity of ChatGPT.475

From training to practical applications, an in-476

creasing number of studies have also featured the477

presence of quantifiable preferences(usually known478

as “reward”). For example, RLHF (Christiano et al.,479

2017; Stiennon et al., 2020) uses the PPO algo-480

rithm (Schulman et al., 2017) to maximize the re-481

ward of the policy model; RAFT (Dong et al., 2023)482

and RRHF (Yuan et al., 2023) remove substandard483

data by scoring the candidate responses with re-484

ward model; LLM-as-a-judge (Zheng et al., 2023) 485

employs GPT-4 to score the text. 486

Therefore, how to construct a model offering 487

explicit preference feedback has naturally become 488

a focal point of much research. To train a precise 489

and robust reward model, many studies start from 490

training with human preference data, and many 491

works in the data field are largely centered around 492

this. Touvron et al. (2023) and Zhao et al. (2022) 493

provided different methods for using ranking data; 494

Wang et al. (2024a) explored ways of measuring 495

the strength of the data; while concerning datasets 496

themselves, Azar et al. (2023), Knox et al. (2022) 497

and Hong et al. (2022) analyzed the impact of data 498

preference strength on training from theoretical 499

or practical perspectives. In addition, similar to 500

the RAG technique (Lewis et al., 2020) in large 501

language models, many methods (Li et al., 2023a; 502

Sun et al., 2023) using external tools or references 503

have also emerged, injecting new vitality into the 504

development of reward models. 505

Although many data-oriented methods have 506

greatly enhanced the performance of reward mod- 507

els, the field of reward model optimization has been 508

rarely explored. Currently, the training of reward 509

models basically follows the process proposed by 510

OpenAI (Christiano et al., 2017). Considering the 511

widespread practical applications of reward mod- 512

els, the attention given to their training paradigms 513

does not match their importance. 514

6 Conclusion 515

In this paper, we extend and improve the train- 516

ing framework of the current reward model. We 517

split the training mechanism of the reward model 518

into two stages: aligning model preference and 519

optimizing the reward layer. Through introducing 520

an additional constraint of policy loss, our hybrid 521

alignment framework supervises the internal prefer- 522

ence model at the token level while simultaneously 523

optimizing the mapping layer at the sequence level, 524

significantly improving the training effectiveness. 525

We theoretically verify the validity of our method 526

and demonstrate its reliability through systematic 527

experiments. 528

Our method allows for a consistent customiza- 529

tion of the reward model. In the future, we will thor- 530

oughly explore the potential of the reward model 531

and its variants across various tasks, and investigate 532

whether the logistic distribution is the optimal prior 533

for reward modeling. 534
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Impact Statements535

This paper presents work whose goal may benefit536

the training of large language models in the field537

of deep learning. Among the many possible conse-538

quences, we do not believe that there is a significant539

possibility of adverse effects on society.540

Limitations541

In this paper, we discuss the potential of enhancing542

the alignment process of reward models by incor-543

porating policy constraints, where the policy loss544

functions similarly to a regularization loss, acting545

as an auxiliary function to guide model training.546

However, since DPO can be directly used to train547

an implicit reward model, replacing the reward548

model with a DPO model for downstream tasks549

can also be a feasible approach, while we do not550

explore methods for combining the outputs of the551

policy layer and the reward layer, which remains a552

direction for our future research.553
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A Experiments Setup 850

Our default setup is shown in Table 5. 851
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as the policy loss in HAF and set policy ratio 853

α = 0.2. The learning rate is 1.0 × 10−5 for Phi- 854

2 and Mistral-Instruct with the baseline method, 855

3.0 × 10−5 for Mistral-Base and Mistral-Instruct 856

using other methods, and the batch size is set at 16. 857

These configurations are the optimal combination 858

of learning rates (among 1.0× 10−4, 3.0× 10−5, 859

1.0× 10−5, 3.0× 10−6) and batch sizes (among 4, 860
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setup value setup value setup value
lora rank 64 optimizer AdamW precision fp16
lora alpha 16 adam_beta1 0.9 max gradient norm 1.0

training steps 3200 adam_beta2 0.999 max sequence length 512
evaluation steps 0.025 weight_decay 0.0 global random seed 0

batch size 16 adam_epsilon 1e-5 framework PyTorch

Table 5: Default setup
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Figure 7: Results for different policy ratios. “margin” is the average difference between a better and worse response’s
rewards. A policy ratio of 0 equals to Baseline method.

16, 128). A single RTX A6000 with 48GB memory861

is used for training the reward model. The model862

used for testing is the checkpoint that achieves the863

highest reward on the validation set.864

For PPO training in Section 4.2.2, we set the865

total batch size at 16. The maximum number of866

new tokens generated is set to 256, and the learning867

rate is 2.0× 10−5. The training is conducted over868

a maximum of 100,000 episodes. All other settings869

follow the implementation in the LLaMA-Factory870

library. The generation config includes top_p=0.9,871

do_sample=True.872

B Discussions for Policy Loss Ratio873

Figure 7 reveals that incorporating even a mere 0.1x874

of policy loss can significantly impact the results.875

Using reward loss alone leads to slow training; to 876

achieve the same loss value, the model with policy 877

loss requires only a fraction of the time. However, 878

this rapid training characteristic also accelerates 879

overfitting, necessitating the use of early stopping 880

strategies to halt training in time. When the policy 881

loss ratio is negative, model performance deterio- 882

rates, and the variations in various metrics resemble 883

those of the baseline. This indicates a correlation 884

between the policy model and the reward model. 885

C Loss Functions 886

C.1 Deriving the Reward Loss Functions 887

In the Bradley-Terry model’s assumption, Oracle 888

reward model outputs rewards in connection with 889
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the win rates:890

E
p∼J

I(y > y′;x, p) = − log σ[r∗(x, y)−r∗(x, y′)]
(6)891

where p is a judge (annotator) sampled from the892

judge distribution J .893

As we only focus on the reward differences be-894

tween responses to the same prompt, there exists895

another metric denoted as D′
1 for calculating the896

reward loss:897

Ls = E
x,y,y′

D′
1[r(x, y)− r(x, y′),

r∗(x, y)− r∗(x, y′)]
898

As − log σ(·) is monotonically increasing, so899

there exists a metric D′′
1 , such that900

D′
1[r(x, y)− r(x, y′), r∗(x, y)− r∗(x, y′)]

=D′′
1[− log σ(r(x, y)− r(x, y′)),

− log σ(r∗(x, y)− r∗(x, y′))]

=D′′
1[− log σ(r(x, y)− r(x, y′)),

E
p∼J

I(y > y′;x, p)]

901

Let D′′
1 be the cross-entropy loss, and let902

P(x, y, y′) = − log σ(r(x, y)− r(x, y′)),903

Ls = E
x,y,y′

[P(x, y, y′) · E
p∼J

I(y > y′;x, p)

+ (1− P(x, y, y′)) · (1− E
p∼J

I(y > y′;x, p))]

= E
x,y,y′

p∼J

[P(x, y, y′) · I(y > y′;x, p)

+ (1− P(x, y, y′)) · (1− I(y > y′;x, p))]

904

which is exactly Eq. 2 when we sample from D.905

C.2 DPO as the Policy Loss906

The derivation for policy loss is the same as re-907

ward loss in their essence. The policy model can908

be treated as a reward model with sequence proba-909

bilities reflecting the rewards (Rafailov et al., 2023,910

2024). reward(x, y) = log[π(x, y)/πref (x, y)].911

From this perspective, the DPO loss and reward912

loss share the same assumption (Eq. 6). The reward913

model and the DPO-trained policy model are es-914

sentially doing the same task despite some formal915

differences (Rafailov et al., 2023, 2024).916

D Mathematical Enlightenment 917

D.1 Theoretical Explanation for the Claims 918

Inequality for claim 1. Unless K can exactly fit 919

K∗, there exists ϵ > 0, such that 920

E
d∼P

[D2(KH ◦ ϕH(d),K
∗ ◦ ϕ∗(d))]

⩽ min
K

E
d∼P

[D2(K ◦ ϕs(d),K
∗ ◦ ϕ∗(d))]− ϵ

α

921

holds for all α ∈ (0.1, 2), where KH , ϕH = 922

argmin
K,ϕ

LH in Equation 5 and ϕs = argmin
ϕ
Ls in 923

Equation 2. Here we use argmin to represent the 924

best models optimized with the corresponding loss 925

functions, so ϕH and ϕs are not equal to ϕ∗ al- 926

though ϕ∗ is the minimum mathematically. 927

Inequality for claim 2. Assume that ϕ∗ is unique, 928

K∗ is locally Lipschitz continuous, , and 0.1 < 929

α < 2, there exists k, δ > 0, such that 930

E
d∼P

[|ϕH(d)− ϕ∗(d)| − |ϕs(d)− ϕ∗(d)|] <

gmax − gmin

gmin
E

d∼P
|ϕs(d)− ϕ∗(d)|+ 2δ − ϵ

α · k
931

We obtain informally here an upper bound on 932

the model preference error. By tuning the hyperpa- 933

rameter α, the right term can be strictly negative. 934

D.2 Inequality Scaling 935

min
F,ϕ,K

E
d∼P

[D1(F ◦ ϕ(d),F∗ ◦ ϕ∗(d)) 936

+α·D2(K ◦ ϕ(d),K∗ ◦ ϕ∗(d))] 937

⩽ min
F=Fs
ϕ=ϕs

K

E
d∼P

[D1(F ◦ ϕ(d),F∗ ◦ ϕ∗(d)) 938

+α·L2(K ◦ ϕ(d),K∗ ◦ ϕ∗(d))] 939

= min
K

E
d∼P

[α ·D2(K ◦ ϕs(d),K
∗ ◦ ϕ∗(d))] 940

+ E
d∼P

[D1(Fs ◦ ϕs(d),F
∗ ◦ ϕ∗(d))] 941

With the definition of ϕH ,KH ,FH , we have: 942

E
d∼P

[D1(FH ◦ ϕH(d),F
∗ ◦ ϕ∗(d)) 943

+ α ·D2(KH ◦ ϕH(d),K
∗ ◦ ϕ∗(d))] 944

⩽ E
d∼P

[D1(Fs ◦ ϕs(d),F
∗ ◦ ϕ∗(d))] 945

+min
K

E
d∼P

[α ·D2(K ◦ ϕs(d),K
∗ ◦ ϕ∗(d))] 946

⩽ E
d∼P

[D1(FH ◦ ϕH(d),F
∗ ◦ ϕ∗(d))] 947

+min
K

E
d∼P

[α ·D2(K ◦ ϕs(d),K
∗ ◦ ϕ∗(d))] 948
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In practical settings, “⩽”s do not hold at the same949

time (simultaneously optimizing two objectives is950

preferable to optimizing them sequentially). With951

the premise that the model is fully optimized with952

the hybrid alignment loss for any α ∈ (0.1, 2),953

which means both of the objectives have an impact954

on the final optimization result, namely ϕH ̸= ϕs,955

there exists a little gap ϵ > 0 such that956

E
d∼P

[D1(FH ◦ ϕH(d),F
∗ ◦ ϕ∗(d))957

+ α ·D2(KH ◦ ϕH(d),K
∗ ◦ ϕ∗(d))]958

⩽ E
d∼P

[D1(FH ◦ ϕH(d),F
∗ ◦ ϕ∗(d))]959

+min
K

E
d∼P

[α ·D2(K ◦ ϕs(d),K
∗ ◦ ϕ∗(d))]− ϵ960

Then, there goes961

E
d∼P

[D2(KH ◦ ϕH(d),K
∗ ◦ ϕ∗(d))]

⩽ min
K

E
d∼P

[D2(K ◦ ϕs(d),K
∗ ◦ ϕ∗(d))]− ϵ

α

962

Here we get the first inequality.963

D.3 Derive the Final Inequality with the 3964

Properties965

Convergence:966

Since the trained model K◦ϕ is close to K∗ ◦ϕ∗,967

we can therefore linearize D2 with a certain positive968

number k:969

E
d∼P

[D2(K ◦ ϕ(d),K∗ ◦ ϕ∗(d))]

= E
d∼P

k|K ◦ ϕ(d)−K∗ ◦ ϕ∗(d)|
(7)970

971

Separating little disturbance:972

E
d∼P
|N ◦ ϕ(d)| < δ (8)973

holds for any fully-optimized model K ◦ ϕ with974

N := K−K∗. Given that the trained model and its975

preferences closely approximate those of the true976

model and preferences, we are able to scale down977

the error terms by a small margin.978

Gradient scaling:979

Intuitively, the optimal model is unique, so980

E
d∼P
|K∗ ◦ ϕ(d) − K∗ ◦ ϕ∗(d)| > 0. Here we981

make a slightly stronger assumption that K∗ is lo-982

cally gmax-Lipschitz continuous and has the lower983

bound gmin, which means for any ϕ that is close to984

ϕ∗, there exists985

gmin E
d∼P
||ϕ(d)− ϕ∗(d)||

< E
d∼P
|K∗ ◦ ϕ(d)−K∗ ◦ ϕ∗(d)|

<gmax E
d∼P
||ϕ(d)− ϕ∗(d)||

(9)986
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Figure 8: The distribution of the reward model’s and
DPO model’s outputs on test data when trained with
identical data.

Based on these three properties, we can derive 987

the result from Appendix D.1. 988

Inequality 2 989

Eq. 7
=⇒ E

d∼P
|KH ◦ ϕH(d)−K∗ ◦ ϕ∗(d)| 990

⩽ min
K

E
d∼P
|K ◦ ϕs(d)−K∗ ◦ ϕ∗(d)| − ϵ

α · k
991

Ineq. 8
=⇒ E

d∼P
|K∗ ◦ ϕH(d)−K∗ ◦ ϕ∗(d)| − δ 992

< E
d∼P
|K∗ ◦ ϕs(d)−K∗ ◦ ϕ∗(d)|+ δ − ϵ

α · k
993

Ineq. 9
=⇒ 994

gmin E
d∼P

[||ϕH(d)− ϕ∗(d)|| − ||ϕs(d)− ϕ∗(d)||] 995

< (gmax − gmin) E
d∼P
||ϕs(d)− ϕ∗(d)|| 996

+ 2δ − ϵ

α · k
997

E Experiment Results 998

E.1 Consistency 999

The x-axis in Figure 3 represents the reward differ- 1000

ence between the responses generated by the DPO 1001

model and those generated by the HAF model’s 1002

policy head. This difference is scored by the re- 1003

ward model trained on the same data distribution, 1004

which we refer to as the Oracle reward model. We 1005

retain the checkpoints from the training processes 1006

of both DPO and HAF model and identify potential 1007

model pairs with similar performance using five 1008

methods (corresponding to the five colors in the 1009

figure). This similarity in performance ensures that 1010

the higher reward is not a result of better response 1011

quality. The five methods include “reward” (similar 1012

scores from the Oracle reward model), “acc” (simi- 1013

lar binary classification accuracy), “loss” (similar 1014
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Model Metric Helpful Harmless CA BS AHP

Phi-2
ppwin 0.74 1.00 0.60 0.74 2.52
pplose 0.92 0.97 1.09 0.60 2.55

Mistral-base
ppwin 0.42 0.65 0.51 0.38 0.75
pplose 0.62 0.63 0.87 0.28 0.98

Mistral-Instruct
ppwin 3.50 5.13 2.33 1.58 1.98
pplose 6.08 5.81 3.52 1.31 2.67

Table 6: Variances of the corresponding metrics. “pp” means token-wise perplexity. The subscript “win” refers to
the better response while “lose” refers to the worse response.

ppwin pplose ppwin-pplose

corr −0.8166 −0.9492 −0.9064
p 0.0916 0.0136 0.0339

Table 7: The Pearson correlation coefficient between
the variance of the token-wise perplexity of Mistral-
Instruct and the difference in accuracy between the re-
ward model trained with DPO and the accuracy of the
baseline training. “corr” indicates the Pearson correla-
tion coefficient, while “p” indicates significance.

loss values), “margin” (similar average margins1015

of model predictions), and “step” (same training1016

steps).1017

It can be observed that the differences in HAF1018

scores are almost always higher than those from1019

the Oracle reward model. This suggests that the1020

preferences of the reward model are influenced1021

by the preferences of the shared parameter policy1022

model, providing some evidence for the existence1023

of an Internal Preference Model.1024

Also shown in Figure 8, we independently1025

trained a DPO model and a reward model using1026

the same data and observed a strong positive cor-1027

relation (even linearity) in their predictions on the1028

test data. This indicates a significant similarity1029

in the preference modeling processes of the DPO1030

model and the reward model. A response preferred1031

by the reward model will also be preferred by the1032

DPO model, which we introduce the concept of the1033

“Internal Preference Model” to explain.1034

E.2 Overall Performance1035

Table 6 shows the token-wise perplexity calculated
by each model for each dataset.

pp = − log Prob(sequence)

Length(sequence)

Another interesting finding is that the variance1036

of the token-wise perplexity (pp) values for Mistral-1037

Instruct shows a very strong negative correlation 1038

with the performance of the DPO reward model. 1039

Table 7 calculates the Pearson correlation coeffi- 1040

cient between the variance of the pp values and 1041

the performance difference between the DPO re- 1042

ward model and the baseline reward model, indi- 1043

cating that this negative correlation is highly signif- 1044

icant. This finding may provide valuable insights 1045

for aligning well-trained (but not yet well-aligned) 1046

models. 1047

E.3 Best of N 1048

In Table 11 we list the recall value on each dataset. 1049

We show in Figure 9 and Figure 10 the win rates on 1050

each dataset judged by gpt-4-turbo-2024-04-09 1051

and ArmoRM-Llama3-8B-v0.1 (Wang et al., 1052

2024b), respectively. 1053

F GPT Judgement 1054

Comparing two responses The prompt we used 1055

for judgement is listed in Table 9. The sen- 1056

tence between “<SYSTEM PROMPT>” is the sys- 1057

tem prompt, and the others are the user prompt. 1058

“{question}”, “{response 1}”, “{response 2}” will 1059

be replaced with the actual query or responses re- 1060

spectively. As GPT does not exhibit a strong “po- 1061

sitional bias” (Wang et al., 2023), so we just ran- 1062

domly interchange the order of the two responses 1063

rather than prompting twice with the responses 1064

swapped. 1065

Ranking responses Table 8 shows the consump- 1066

tion approximation for getting top-1, top-2 re- 1067

sponses and the complete order out of 4/8 re- 1068

sponses. We consider that performing a single sort- 1069

ing operation on eight responses with the model 1070

may result in a loss of precision. Besides, while 1071

binary comparisons exhibit high accuracy, repeated 1072

binary comparisons inevitably lead to cumula- 1073

tive errors and erroneous outcomes. Therefore, 1074
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Figure 9: Win rates on each dataset judged by gpt-4-turbo-2024-04-09
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Figure 10: Win rates on each dataset judged by ArmoRM-Llama3-8B-v0.1

17



Top-1 Top-2 Complete sort
# responses 4 8 4 8 4 8

binary comparison 6 3×2 14 7×2 8 4×2 20 10×2 10 5×2 32 16×2

rank 4 responses 4 1×4 12 3×4 4 1×4 12 3×4 4 1×4 20 5×4

rank 8 responses 4 1×4 8 1×8 4 1×4 8 1×8 4 1×4 8 1×8

Table 8: Approximation for resources consumption. The first column is three different ways of interacting with
GPT. The first row is the target response(s) and the second row is the number of candidate responses. “a× b” means
we should engage with GPT-3.5 a total of a times, with each interaction requiring an input of b responses. For
example, “6 3×2” means when using binary comparison, to get the top-1 response among 4 candidate responses, we
need 3 turns of interactions with each turn requiring an input of 2 responses, hence our expenditure amounts to
approximately 6 units

whether from a cost or accuracy standpoint, it1075

is not a favorable option. In practice, we obtain1076

the top 2 responses by ranking 4 responses with1077

gpt-4-turbo-2024-04-09 at once. For 8 candi-1078

date responses, we first evenly divide them into1079

two groups and use GPT to rank the responses of1080

each group, then we rank the two sets of the top1081

2 responses to get the top 2 responses among 81082

candidates.

Rank for Top-2

Rank for Top-2
Rank for Top-2

Figure 11: Three times of interactions with GPT to get
top-2 responses

1083

The prompt for ranking four responses is shown1084

in Table 10. GPT’s answer will be parsed in JSON1085

format.1086

1087

1088
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Prompt for comparing two responses.

<SYSTEM PROMPT>You are a helpful instruction-following assistant that prints the best model by
selecting the best outputs for a given instruction.<SYSTEM PROMPT>
Select the output (a) or (b) that best matches the given instruction. Choose your preferred output, which
can be subjective. Your answer should ONLY contain: Output (a) or Output (b).
Here’s an example:

# Example:
## Instruction:
Give a description of the following job: "ophthalmologist"

## Output (a):
An ophthalmologist is a medical doctor who pokes and prods at your eyes while asking you to read letters
from a chart.

## Output (b):
An ophthalmologist is a medical doctor who specializes in the diagnosis and treatment of eye diseases and
conditions.

## Which is best, Output (a) or Output (b)?
Output (b)

Here the answer is Output (b) because it provides a comprehensive and accurate description of the job of
an ophthalmologist. In contrast, output (a) is more of a joke.

# Task:
Now is the real task, do not explain your answer, just say Output (a) or Output (b).

## Instruction:
{question}

## Output (a):
{response 1}

## Output (b):
{response 2}

## Which is best, Output (a) or Output (b)?

Table 9: We use 1-shot for response comparison.
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Prompt for ranking four responses.

<SYSTEM PROMPT>You are a helpful assistant, that ranks models by the quality of their an-
swers<SYSTEM PROMPT>
I want you to create a leaderboard of different models. To do so, I will give you the instructions (prompts)
given to the models, and the responses of four models. Please rank the models based on which responses
would be preferred by humans. All inputs and outputs should be python dictionaries.

Here is the prompt:
{

"instruction": {question},
}

Here are the outputs of the models:
[

{
"model": "model_1",
"answer": {output_1}

},
{

"model": "model_2",
"answer": {output_2}

},
{

"model": "model_3",
"answer": {output_3}

},
{

"model": "model_4",
"answer": {output_4}

}
]

Now please rank the models by the quality of their answers, so that the model with rank 1 has the best
output. Then return a list of the model names and ranks, i.e., produce the following output:
[

{"model": "model_1", "rank": <model-rank>},
{"model": "model_2", "rank": <model-rank>},
{"model": "model_3", "rank": <model-rank>},
{"model": "model_4", "rank": <model-rank>}

]

Your response must be a valid Python dictionary and should contain nothing else because we will directly
execute it in Python. Please provide the ranking that the majority of humans would give.

Table 10: We rank four responses in order of quality in a single interaction.

AHP BS CA Helpful Harmless
Top-1 Top-2 Top-1 Top-2 Top-1 Top-2 Top-1 Top-2 Top-1 Top-2

Phi-2HAF 28.67 52.51 32.49 53.06 37.46 65.94 45.44 74.25 24.79 45.67
Phi-2DPO 20.85 45.62 17.68 39.71 31.89 56.07 26.42 53.07 17.87 36.67
Phi-2baseline 15.45 34.63 32.85 50.90 27.84 51.64 43.62 73.91 17.41 37.48

MistralHAF 22.86 41.95 14.61 25.38 24.12 42.69 16.39 35.24 12.99 29.23
MistralDPO 14.57 32.91 10.00 24.61 13.68 30.62 13.31 31.14 12.52 25.98
Mistralbaseline 14.82 30.40 13.07 24.61 25.05 43.85 14.95 31.14 12.29 23.20

Table 11: Top-k recall for best-of-N sampling on each dataset. The results are presented as the percentage of the
chosen responses included in top-k responses.
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