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Abstract

In cooperative Multi-Agent Reinforcement Learning (MARL), it is a common
practice to tune hyperparameters in ideal simulated environments to maximize co-
operative performance. However, policies tuned for cooperation often fail to main-
tain robustness and resilience under real-world uncertainties. Building trustworthy
MARL systems requires a deep understanding of robustness, which ensures stability
under uncertainties, and resilience, the ability to recover from disruptions—a con-
cept extensively studied in control systems but largely overlooked in MARL. In this
paper, we present a large-scale empirical study comprising over 82,620 experiments
to evaluate cooperation, robustness, and resilience in MARL across 4 real-world
environments, 13 uncertainty types, and 15 hyperparameters. Our key findings are:
(1) Under mild uncertainty, optimizing cooperation improves robustness and re-
silience, but this link weakens as perturbations intensify. Robustness and resilience
also varies by algorithm and uncertainty type. (2) Robustness and resilience do not
generalize across uncertainty modalities or agent scopes: policies robust to action
noise for all agents may fail under observation noise on a single agent. (3) Hyper-
parameter tuning is critical for trustworthy MARL: surprisingly, standard practices
like parameter sharing, GAE, and PopArt can hurt robustness, while early stopping,
high critic learning rates, and Leaky ReLLU consistently help. By optimizing hyper-
parameters only, we observe substantial improvement in cooperation, robustness
and resilience across all MARL backbones, with the phenomenon also generalizing
to robust MARL methods across these backbones. Code and results available at
https://github.com/BUAA-TrustworthyMARL/adv_marl_benchmark,

1 Introduction

Cooperative Multi-agent reinforcement learning (MARL) [[1}, 12, 13} 14} 15, 6. [7, I8} 19} [10] has demon-
strated significant success across various complex simulation environments, including StarCraft [[11]],
turbulent flow modeling [12], and network control [13]. However, real-world deployment of MARL
systems introduce uncertainties unseen in simulation environments. These uncertainties spans from
observation errors [14}15]], action perturbations [16} 17, and environmental unpredictability [[18}[19],
which degrade the performance of MARL significantly.

In this paper, we study two fundamental ways to deal with uncertainties in real-world deployment:
robustness and resilience. Robustness measures the ability of MARL to withstand uncertainties in the
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real-world, enabling MARL systems to maintain functionality despite partial system failures [20].
Resilience, on the other hand, is the ability of MARL to recover from disruptions. For example, robot
swarms may lose coordination due to communication interference, or smart grids may collapse during
natural disasters. After the disruption, the system should be able to recover from such external shock.
While robustness and resilience are complementary, their distinction has been extensively studied in
fields such as control theory [21]], ecology [22]], and economics [23], but remains underexplored in
MARL. Current MARL research often conflates these concepts [24, 25 126, neglecting their critical
differences and failing to account for resilience in evaluation.

Another challenge in dealing with real-world uncertainties lies in understanding the role of hyperpa-
rameters. While often overlooked in theoretical analyses, careful selection of hyperparameters can
play a more critical role than the algorithms themselves. In single-agent RL, hyperparameters account
for most of the observed empirical differences between TRPO and PPO [27]]. Similarly, in MARL,
MAPPO achieves state-of-the-art performance largely due to its emphasis on hyperparameters [3],
including parameter sharing and five PPO-specific choices. Consequently, it is common practice for
MARL researchers to tune hyperparameters to optimize cooperative performance.

However, such tuning is effective only in the ide- Task: Dexhands ShadowHandScissors
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large-scale empirical study involving 82,620 ex-

periments across 4 real-world environments, 13 uncertainty types, and 15 hyperparameters. Our main
findings are as follows:

Episode Reward

Cooperation Robustness Resilience

1. While improving cooperation can enhance robustness and resilience under mild uncertainty, this
relationship weakens as perturbations intensify. This trend holds across diverse uncertainty types
and agent configurations. Moreover, algorithm sensitivity varies: MADDPG is more robust to action
noise, whereas MAPPO and HAPPO perform better under observation uncertainty.

2. Robustness in MARL can not generalize across uncertainty types or scopes. Policies trained to
handle action noise may still fail under observation and environment shifts, and defenses against
group-level perturbations may break down under attacks against single agent. Trustworthy MARL
must account for diverse uncertainty modalities and agent-level effects.

3. Hyperparameter tuning plays a critical role in robustness and resilience. Surprisingly, common
practices such as parameter sharing, GAE, and PopArt can hurt performance under uncertainty,
while techniques like early stopping, critic-dominant learning rates, and Leaky ReLU consistently
improve it. By combining these hyperparameters, we observe an average improvement of 52.60%
in cooperation, 34.78% in robustness and 60.34% in resilience. This same set of hyperparameters
generalizes to robust MARL methods on the same backbones, yielding average improvements of
89.43% on cooperation, 65.83% on robustness, 82.96% on resilience.

2 Related Work

Uncertainties in RL and MARL Robustness against uncertainties has been extensively studied
within the framework of robust RL and MARL, as summarized in [28]]. In reinforcement learning,
uncertainties in deployment are typically categorized into state [29} 30, [31]], action [32], and envi-
ronment uncertainties [33,[18]. MARL follows a similar taxonomy but incorporates the multi-agent
dynamic. For observation uncertainties, noise can be introduced to each agent [34} |15/ 35]] or applied
to specific agents [[14]]. Action uncertainties often arise when one or more agents deviate from their



optimal policy [16}136, (37, [17]]. Environment uncertainties in MARL are typically analogous to those
seen in single-agent RL [38,[19]]. The primary focus of robust RL and MARL is to make algorithms
robust against the worst-case adversaries chosen in the uncertainty set. In our paper, we select a
set of representative methods derived from these studies for robustness evaluation. For resilience,
the MARL literature often overlook its distinct role from robustness, using the term resilience and
robustness interchangeably [25) 39| 26| |40]. In this paper, we draw in fields such as control theory
[21], ecology [22], and economics [23] to formally define resilience in MARL.

The Importance of hyperparameters. It is a well-known fact that implementation matters for RL
and MARL. In RL, [27] highlighted the surprising finding that variations in performance among RL
algorithms often stem from hyperparameters rather than fundamental algorithmic differences. This
notion was further explored by [41]], who provided a comprehensive set of recommendations for RL
implementation through large-scale experimentation. In MARL, Epymarl [42] introduced the first
extensive benchmark suite, while MAPPO [3] significantly boosted Epymarl’s performance by simply
optimizing the implementation. Similarly, Pymarlv2 [43] demonstrated that state-of-the-art results in
the SMAC environment can be achieved by fine-tuning QMIX [2]. [24] and [44] offer preliminary
evaluations of RL/MARL under uncertainty, but are limited to simple simulation experiments in a
small scale. The works most similar to ours are RRLS [45] and Robust Gymnasium [46], which
provide integrated codebases for evaluating the robustness of single- and multi-agent RL. Our work
differs by presenting the relations between cooperation, robustness and resilience under multiple real
world environments, algorithms, and diverse uncertainties based on over 82,620 experiments.

3 Robustness and Resilience

Preliminaries. We formulate MARL as a decentralized partially observable Markov decision process
(Dec-POMDP) [47]], defined as a tuple:

g:<N3870707~A;PaR7’7>' (1)

Here N' = {1,..., N} is the set of N agents, S is the global state space, O = x;cn O’ is the
observation space, O is the observation emission function. At each timestep, each agent selects an
action a® € A*, with A = x;ecnr A’ is the joint action space, forming a joint action a € A. The
environment proceeds following the state transition probability P : S x A — A(S), and each agent
receives a shared reward function r(s,a) : S X A — R in the training environment, v € [0, 1) is the
discount factor. Each agent owns a state-action trajectory 7° € T' = (O° x A%)*, and make decisions
using a (stochastic) policy 7¢(a|7%) : T — A(A?). Let po be the initial state distribution, the goal of
the joint policy 7 is to maximize the objective J () = Eqp [Er[> o v el S0]]-

A Motivating Example: Robustness versus Resilience. We use a metropolitan power grid to
illustrate robustness and resilience under both small and large uncertainties. Under normal conditions,
the grid faces minor perturbations such as sensor noise, voltage fluctuations, or local demand changes,
where it should exhibit robustness, maintaining stable operation despite small disturbances. Yet
even mild perturbations can temporarily degrade performance, requiring resilience to recover normal
functionality. In contrast, rare but severe events like earthquakes or major short circuits may cause
large-scale blackouts. Here, robustness measures how much performance is retained under extreme
conditions, while resilience captures the grid’s ability to re-stabilize and resume operation after
recovery. Together, they describe a system’s capacity to withstand and recover from perturbations.

Robustness. Robustness has been a central concept in control systems, which refers to the stability
of the algorithm under uncertainties [48]]. In MARL, the study of robustness relies on defining an
uncertainty set { in the decision process. During the deployment of MARL policies, such uncertainty
set U can be defined as a distribution over uncertainty realizations, where each v € U represents a
perturbation on observation [14]], action [34} 40| or environments [38]]. Let 7 be a fixed policy, and
po the initial state distribution, we define the robustness of 7 as:
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Resilience. When uncertainties cannot be handled by algorithms alone, robustness alone may become
insufficient. In such cases, resilience—i.e., the ability of systems to recover from external shocks
[49]—becomes crucial. As illustrated in Fig. [2] resilience and robustness are complementary: while
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Figure 2: Relation between cooperation, robustness, and resilience under uncertainty. Cooperative
MARL is trained without perturbations, but must be robust and resilient when they occur.

robustness allows a system to maintain functionality under small perturbations, resilience ensures
recovery when perturbations exceed the limits of robustness [50]. This complementary relationship
has been extensively explored across various fields, including control theory [21]], ecology [22],
economics [23], and complex networks [S1].

Despite this, the MARL literature often conflates resilience with robustness, overlooking their distinct
roles. For instance, [24] frame resilience as an inherent feature of robustness, while [25}[39] label
their approaches as resilient MARL but ground their methodologies in robust RL. Similarly, [26] and
[40] use the terms resilience and robustness interchangeably, failing to distinguish between the two.
To explicitly define resilience as the capacity to recover from uncertainties, we propose a framework
in which an episode begins at a perturbed state s,, at timestep t,,, where the perturbation is induced
by uncertainty » € Y. From this perturbed state, the system evolves without additional uncertainties.
Formally, let s,, ~ p,, denote the initial state distribution, we define the resilience of 7 as:
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We view resilience as a practically grounded form of generalization, emphasizing recovery and stabil-
ity under unknown perturbations. In reinforcement learning, generalization measures a policy’s ability
to sustain performance across variations in initial states or environment dynamics, typically bounded
or randomized during training [52]]. In contrast, resilience concerns recovery after unexpected
disturbances, characterized by a post-uncertainty state distribution s“ that arises from real-world
perturbations and often lies beyond standard generalization settings. Thus, resilience addresses a
narrower yet practically crucial challenge for deployment and opens algorithmic directions toward
policies that actively adapt or recover from disturbed states.

Difference Between Robustness and Resilience. We conduct two case studies to illustrate the
distinction between robustness and resilience in multi-agent reinforcement learning. A system is
resilient but non-robust if it recovers well from a variety of initial states, including those following
adversarial perturbations, but fails under persistent uncertainties such as external forces or observation
noise. In such cases, the policy may succeed at high-level task execution but lacks the fine-grained
control needed for precise behavior, as small perturbations consistently mislead action selection.
Conversely, a system is robust but non-resilient if it performs reliably under continuous uncertainty,
yet fails to recover when initialized in perturbed or atypical states—often due to limited exposure
to such states during training. In both cases, we observe evidence of state aliasing, where similar
observation histories require subtly different responses, but the policy fails to distinguish them,
resulting in degraded performance. Additional examples, results, visualizations, and analysis are
provided in Appendix [B.2]

4 Experiment Procedure

In this section, we describe the hyperparameters, types of uncertainties, environments, algorithms
used for our evaluation. Our full experiment takes ~230K GPU hours, measured in GTX 4090.

Algorithms. To align with the continuous control requirements of our real-world environments, we
evaluate the impact of hyperparameters on three widely used MARL algorithms that support continu-
ous control: MADDPG [1], MAPPO [3], and HAPPO [4]], with HAPPO representing heterogeneous-
agent-based methods. Our study focuses on commonly used algorithms to ensure broad applicability
while prioritizing an in-depth analysis of hyperparameters. Our modular codebase enables easy
integration of new algorithms via predefined interfaces, supporting future extensions.



Hyperparameters. For generality, we General hyperparameters

pick hyperparameters that are used Choices Choice Range

. Network Hidden Size {64, 128, 256}
by most methods. Specifically, we Discount Factor (7) 709,095 0.99]
consider both general and algorithm- Activation Function _ {ReLU, Leaky_ReLU, SELU, Sigmoid, Tanh}
speciﬁc hyperparameters‘ General hy_ Initialization Method {Orthorgonal, Xavier}
perparameters includes network hidden Neural Network Type (MLP, RNN}

N . R X Learning Rate (LR) {5e-5, 5e-4, 5e-3}
size, discount factor, activation func- Critic Learning Rate {505, 54, 503
tion, initialization method, neural net- Feature Normalization {True, False}
work type, learning rate, critic learn- Share Parameters {True, False}

. ] . Early Stop {True, False}

ing rate, feature normalization, share MADDPG Specific hyperparameters
parameters and early stop. For MAD- TD Steps (N Step) (5,20,25)
DPG, algorithm-speciﬁc choices in- Exploratory noise @(‘).001, 0.01,0.1,0.5, 1}

. . MAPPO/HAPPO Specific hyperparameters

cludes N'Step TD and exploratton nozise. Entropy Coefficient {0.0001, 0.001, 0.01, 0.1}
For MAPPO and HAPPO, algorithm- Use GAE {True, False}
specific choices includes entropy coeffi- Use PopArt {True, False}

cient, Use GAE and Use PopArt. The de-
scriptions of each hyperparameters and
the reasons for selecting them are de-
ferred to Appendix[A.T.T} The values of
each hyperparameters are shown in Table. [Il We use bold font to denote the default choices, which
are shared for all algorithms and environments. This leads to 15 different hyperparameters. In each
time, we vary one different hyperparameters to test its effect, resulting in 34 models with different
implementations. Other hyperparameters used in our experiments are listed in Appendix. [A.T.2]

Table 2: Overview of evaluated environments.

Table 1: General and algorithm-specific hyperparameters
shared for all methods. Default choices are shown in bold
font, which is shared by all algorithms and environments.

Environment Task Type Control Mode Episode Len. Engine/Source Data Source Challenge
DexHand  Multi-robot Manipulation ~Continuous ~80 Isaac Gym Real-world Robots Precise Control
Quads Multi-robot Navigation ~ Continuous ~1600 OpenAl Gym  Real-world Robots ~ Long-range Task Assignment
Traffic Network Control Discrete ~1000 SUMO Real-world Traffic Long-range Control
Voltage Network Control Continuous ~200 IEEE Standard Real-world Power Grid Complex and Noisy Dynamics

Real-World Environments. Unlike conventional benchmarks that consider solely simulation en-
vironments, our study incorporates four real-world environments encompassing diverse task types,
control modes, episode lengths, simulation engines, data sources, and control challenges, as summa-
rized in Table. 2] The first two environments, Dexterous Hand Manipulation (Dexhand) [53] and
Quadrotor Swarm Control (Quad) [54] are grounded in real-world applications, allowing policies
learned in simulation to be directly transferred to physical robots with the same dynamic. We use
these environments for tasks that requires robustness in precise control. We select six tasks in each
environment. The remaining two environments, Intelligent Traffic Control (Traffic) [55]] and Active
Voltage Control (Voltage) [50] are constructed from real-world data, ensuring high-fidelity replication
of real-world dynamics. We use these environments for tasks that requires robustness in adaptive
control when cooperators are unavailable. We select all three tasks with homogeneous observation
and action space for Traffic and all three tasks for Voltage, resulting in 18 tasks in total. See detailed
descriptions of environments and tasks in Appendix. [A.2]

Types of Uncertainties. We evaluate the robustness and resilience of MARL algorithms under 13
distinct uncertainties spanning observation, action, and environment. For observation uncertainties
(obs), we consider three types: Gaussian noise, greedy worst-case attacks using white-box, gradient-
based methods to generate perturbations [30], and learned optimal attacks via MARL [[14}[15]. These
uncertainties are applied either to all agents with a small perturbation budget (¢ = 0.1) or to a single
agent with a large budget (¢ = 0.2), resulting in six scenarios. For action uncertainties (act), we
assess three types: random policies, greedy worst-case policies [34]], and learned optimal policies
[16]. Action perturbations are modeled as €7 + (1 — €)m, where 7 represents the perturbed policy.
Similar to observation uncertainties, these are applied across all agents (e = 0.1) or to a single agent
(e = 0.2), yielding six scenarios. For environmental uncertainties (env), following [57, 15859} 60],
we sample 50 rollouts uniformly from uncertainty sets over environmental hyperparameters (e.g.,
mass, velocity) and report the worst-case result. In total, our study includes 6 observations, 6 actions,
and 1 environmental uncertainty, totaling 13 distinct scenarios. We assess both robustness and
resilience under these uncertainties, resulting in 27 evaluation settings: 1 cooperative baseline, 13
robustness evaluations, and 13 resilience evaluations. Further details are provided in Appendix. [A.3]

Experiment Procedures. In each experiment, we first train all algorithms and tasks using default
hyperparameters. Then, for each hyperparameter in Table. |I} we vary one setting at a time to create a
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Figure 3: Correlation between cooperation, robustness, and lated to robustness and resilience linearly
resilience under uncertainty types and algorithms. depends on the severity of the attack.

set of cooperative models. To evaluate robustness, we fix all cooperative models and measure their
performance under uncertainties. Finally, we evaluate resilience by initializing a new episode from
the perturbed state reached by cooperative models after encountering uncertainties. We then assess
their performance from this state, measuring their ability to recover from uncertainties. We train all
cooperative models using 5 random seeds, and report the robustness and resilience results on the same
five seeds as the cooperative model. In total, our study includes 5 (random seeds) x 27 (uncertainty
settings) x 18 (tasks) x 34 (hyperparameters) = 82620 experiments.

Architecture. For practitioners to evaluate the robustness and resilience in their own settings, our
codebase allows users to easily integrate custom algorithms and environments by adhering to a well-
defined interface. This flexible architecture ensures that users can seamlessly adapt our framework to
their specific requirements. We defer these details to Appendix. [A.4]

5 Experiment Results and Takeaways

In this section, we thoroughly analyze the data gained in our experiments and summarize our key
findings as takeaways for MARL practitioners and researchers. A concise summarization of our
finding is shown in Table. [3] To account for variations in reward scaling across tasks, we use
normalizations for different analysis, with details in Appendix. [B.I} We report statistically significant
results to mitigate the randomness introduced by diverse test conditions, while noting that these
findings reflect general trends and may not hold in every individual case.

Table 3: Recommended practices for handling different scenarios in MARL.

Scenario Suggestion Reference
Small uncertainties Optimize cooperation Section|5.1
Large uncertainties Requires dedicated robustness/resilience strategies Section|5.1]
Obs. uncertainties MAPPO/HAPPO best Section[5.1]
Action uncertainties MADDPG best Section[3.1|
Modalities Evaluate obs/env/action separately Section[3.]
Agent scopes Test both individual/global perturbations Section|[5.7]
Early stop On Section|53|
Critic LR > Actor LR Section|53|
Activation Leaky ReLU Section[5.3]
GAE Off Section[5.3]
PopArt Off Section[5.3]
Param sharing On (homogeneous), Off (heterogeneous) Section[3.3]
Exploration High (MAPPO/HAPPO), Moderate (MADDPG) Section|5 3|

5.1 Are Cooperation, Robustness, and Resilience Correlated?

Our first evaluation investigates the relationship between cooperation, robustness, and resilience. We
compute the Pearson correlation among these metrics to determine whether maximizing cooperation
naturally leads to higher robustness and resilience. The results are shown in Fig. 3]

1. The correlation of cooperation with robustness, and resilience depends on the severity of
the attack. At the first glance, robustness and resilience seems highly correlated with cooperation
(Fig. [3), particularly under observation and environmental uncertainties. However, further analysis
reveals that this correlation is strongly influenced by the severity of the uncertainty. Specifically,
Fig. {]illustrates the relationship between correlation strength and the percentage of performance
degradation under varying uncertainties. The results show a clear linear trend: as the severity of the
attack increases, the Pearson correlation between cooperation and robustness (r = 0.85, p < .001)
and between cooperation and resilience (r = 0.76, p < .001) weakens significantly. This suggests
that mild uncertainties in MARL can be countered by simply maximizing cooperative performance,
but their impact becomes critical when perturbation is severe. Similarly, while robustness and



Correlation Between Impact of Uncertainties on Robustness Correlation Between Impact of Uncertainties on Resilience

096 | 094 [0.73 | 093 | 072 NUETIEEE .36 -022 009 025 029 6 086 092 08 . X 38 043 036 028

100 095 [075 | 092 | 074 WUEEREEE .38 -020 010 -024 031 5 087 093 . X 042 037 028

089 0.93 0. .
89 1.00 | 0.86 0.71 WX . X 38 028
3 086 100 088 m 035 . . 36 030

0.8 . X .35 035

0.75

095 100 | 0.80 091 | 074 MUEZEESE .38 -020 0.1 -024 031 044 035 029
075 | 080 1.00 071 074 MY 47 -0.07 008 012 028
092 091 [071| 1.00 | 076 UEEREE .38 -025 001 028 032

074 | 074 | 074 | 076 1.00 NFZAENE 020 016 -023 038

034 037 033 100 069 093 [0 . [N 030

. . . .33 U um- .13 M 0.06 | 0.50
0.19 016 nzsﬂ X X .75 nnl-mu . 033 XN

071 097 .13 006 | 0.53

021

& 036 038 4 72
z‘f‘b [p\ 3 038 047 038 0.7:
&7 S ¢
> & 022 020 -020 -0.07 -025 -0.20 0.51 EKCEE 0.17
$ ¥

7§00 010 011 008 011 016 013 -002 019 -

022 009 025 -0:

040 013 043

036 037 035 038 036 0.35

028 028 029 028 030 035 030 006 033

089 | 0.86 MOEIN 0.84 NOEE) . X
N ’ : : . -1.00
1)

>
&7 Q&‘ 025 024 024 012 028 -023 048 0.16
S

& o029 031 031 028 032 038 017 -025 025 - 0.06
P

& B § e r:

Figure 5: The self-correlation between 13 types of uncertainties in terms of robustness and resilience.
Correlations in uncertainties differ significantly across modalities (observations, actions, environ-
ments) and scope of agents (applied to individual or all agents).

resilience seem correlated, such correlation is small under large uncertainties, indicating that these
two properties behave independently and should not be treated interchangeably.

2. Linearity across uncertainty types, agent scopes, and attack strategies. A closer look
reveals strong correlations under random, greedy, and optimal attacks, as well as under observation
uncertainty and perturbations affecting either single or all agents (r > 0.6, p < .05). In the case of
environment uncertainty, correlations remain strong (r > 0.85) but lack statistical significance. Under
action uncertainty, MADDPG exhibits greater robustness than MAPPO and HAPPO, resulting in
weak overall correlations. When MADDPG is excluded, MAPPO and HAPPO show strong linearity
with robustness under action uncertainty (r > 0.69, p < .05). See full results in Appendix. [B.3]

3. Algorithms exhibit similar overall robustness and resilience, but differ in sensitivity to uncer-
tainty types. While no significant differences are observed in overall robustness and resilience across
algorithms, we find that MADDPG is more resilient to action uncertainties, whereas MAPPO and
HAPPO perform better under observation uncertainties. This discrepancy stems from their training
methods: MAPPO and HAPPO leverage a centralized critic, which improves sample efficiency and
robustness against noisy observations. While these on-policy methods experience high randomness
for max-entropy learning at the beginning of training, the policy becomes more deterministic as
policy converge, making it still non-robust against action noise. As for MADDPG, the exploration
noise is maintained throughout training. As training progresses, MADDPG continues to inject noise
in the action space, which contributes to its greater robustness to action perturbations, especially in
late-stage policies that retain some level of stochastic behavior.

Takeaway. Cooperation improves robustness and resilience under mild uncertainty, but this corre-
lation weakens as attack severity increases. The phenomenon holds across most uncertainty types,
agent scopes, and attack strategies. MADDPG is preferable for action uncertainties, while MAPPO
and HAPPO are better suited for observation uncertainties.

5.2 Uncertainty Diversity Matters

We next examine the relationships among 13 types of uncertainties to determine whether robustness
against a single uncertainty type generalize to all other types. To achieve this, we compute the Pearson
correlation between all pairs of uncertainties, conditioned on robustness and resilience. The key
findings are summarized below:

1. Observation, environment, and action uncertainties are uncorrelated. As shown in Fig. EI,
compared to the 6 subtypes of uncertainties within observation and action categories, the three
modalities of uncertainties—observation, environment, and action—exhibit significantly lower corre-
lations. A one-way ANOVA confirms this effect is statistically significant for robustness(F' (2,153 =
9.53,p < .001) and resilience (F'(2,153) = 14.51, p < .001). This indicates that robustness against
one modality does not imply robustness against other modalities. Such phenomenon is observed in
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Figure 6: Percentage change in cooperation, robustness, and resilience caused by varying hyperpa-
rameters. A 5% winsorization is applied to limit extreme value within two standard deviations.

EIR-MAPPO [40], where policies trained to be robust against action uncertainties remain vulnerable
to observation uncertainties.

2. Uncertainties applied to individual agents and all agents are uncorrelated. Similarly, we find
that the correlations between uncertainties applied to individual agents and those applied to all agents
are significantly different. A one-way ANOVA confirms this effect for robustness (F'(1,142) =
4.36,p < .05) and resilience (F(1,142) = 7.00,p < .05). This explains the issue encountered in
M3DDPG [34], where agents trained to be robust against small uncertainties applied uniformly across
all agents fail when exposed to large uncertainties applied to individual agents.

Takeaway. Robustness and resilience in MARL can not generalize across uncertainty modalities
or agent scopes. Trustworthy MARL systems must therefore evaluate against diverse types of
uncertainty, and account for both individual and group-level perturbations.

5.3 What hyperparameters are effective?

In this section, we examine the impact of hyperparameters on cooperation, robustness, and resilience.
This is motivated by our preliminary study, where two-way ANOVA shows hyperparameters have a
stronger effect than MARL algorithms in 9 of 18 tasks (p < 0.001), highlighting the need to quantify
their influence on trustworthy MARL. Due to space constraints, detailed results are presented in
Appendix. [B:4] To identify broadly effective hyperparameters, we assign equal weight to each task
and apply 5% winsorization to limit extreme values within two standard deviations. Figure. [ reports
the percentage change in cooperation, robustness, and resilience due to change of hyperparameters.
The results are summarized as follows.

1. Early stopping is generally effective. During MARL training, after the convergence of cooperative
performance, robustness and resilience may continue to evolve. As shown in Fig. [7] we implement
an early stopping criterion that saves models based on their combined performance in cooperation,
robustness, and resilience. This ensures the saved model performs no worse than the model at the
final training round. In contrast, existing codebases [42] [3]] save model in the final timestep, which is
significantly worse than our early stopping criterion (£(161) = 6.16,p < .001, paired t-test).
2. Use a higher learning rate (LR) for the 0 Visualization Of Barly 0D csssscssnns .

ogs . . .. | Early Stop |
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3. Use Leaky ReLU for activation. Leaky

ReLU consistently outperforms ReLLU in cooperation, robustness, and resilience (¢(161) = 6.31,p <
.001, paired t-test). For cooperation, Leaky ReLU avoids the dead neuron problem inherent in ReL.U,
enabling better representation learning. For robustness and resilience, ReLU’s dead neurons can
become unexpectedly activated under distribution shifts caused by uncertainties, introducing errors
into the network. In contrast, Leaky ReLU maintains stable gradients, preventing such issues.

4. GAE and PopArt do not improve performance. Despite being standard in modern RL and
MARL, GAE (¢(107) = 7.44,p < .001) and PopArt (¢(107) = 4.84,p < .001) reduce cooperation,
robustness, and resilience in our benchmark (paired t-test). To verify this counterintuitive finding,
we conduct additional experiments on several widely used MARL benchmarks (Appendix [B.5)),
confirming that while effective in Multi-Agent MuJoCo, these methods have limited impact in
MPE and SMAC. We hypothesize that GAE performs well in MuJoCo due to its dense and stable
reward structure, whereas in real-world environments, sparse and highly variable rewards amplify
bootstrapping errors for GAE. See Appendix. [B.6|for an example. As for PopArt, its normalization
benefits may be unnecessary when reward scales remain stable, leading to inconsistent effectiveness
across different tasks.

5. Parameter sharing does not improve overall performance. Although parameter sharing is
highlighted by MAPPO as a key technique for its success [3l], our findings show that it often reduces
cooperation, robustness, and resilience (¢(161) = 7.01, p < .001, paired t-test). Further evaluation
on MPE, SMAC and Multi-Agent Mujoco reveals that improvements from parameter sharing are
limited to SMAC tasks (see Appendix [B.5]for details). While parameter sharing improves sample
efficiency, it hinders the learning of agent-specific features, particularly in environments like Voltage
and Traffic, where heterogeneous nodes require distinct strategies. Additionally, parameter sharing
assumes that all agents follow the same policy, making the shared policy more vulnerable to attacks
when other agents are impacted by uncertainties. Our claim can be reinforced by HATRPO [4]], where
it construct a negative example showing parameter sharing brings exponentially worse performance.

6. Exploration benefits MAPPO and HAPPO. Increasing exploration improves the cooperation,
robustness and resilience of PPO-based methods (¢(107) = 6.64,p < .001, paired t-test). The
entropy bonus in these methods naturally arises as a consequence of the optimal solution in maximum
entropy RL [64], and provably enhances robustness against environmental uncertainties [65]. Greater
exploration also increases state space coverage, which enhances resilience. Our results confirm these
benefits in MARL. For MADDPG, however, it does not enjoy such theoretical advantages and the
impact of increased exploration is task-dependent. These differences reflect distinct exploration
schemes. In MAPPO/HAPPO, entropy regularization acts as a soft constraint, which encourage
exploration at the beginning, while the policy can still converge to a relatively deterministic policy
to reach optimal cooperation. In contrast, MADDPG relies on additive action noise that typically
persists throughout training. With large exploratory noise, a well-trained policy can be perturbed to
low-value or unstable regions, degrading policy quality.

7. Discussions on task-specific choices. We do not find universal preference for learning rates,
hidden state sizes, discount factors, use of RNN, or network initialization methods. However, these
choices may significantly impact performance and should be tuned based on the task applied.

Takeaways. We recommend following our guidance when applying MARL to new environments with
uncertainties. Notably, several findings challenge established assumptions in RL/MARL literature,
including the use of parameter sharing, GAE, and PopArt. These discrepancies likely stem from the
narrow task and environment focus of previous studies, highlighting the task-dependent nature of
MARL performance.

5.4 TImproving Robustness and Resilience

In this section, we demonstrate that robustness and resilience can be significantly improved through
hyperparameters alone. For each task, we identify the best set of hyperparameters that maximize
the combined performance of cooperation, robustness, and resilience. Again, we apply a 5% win-
sorization to suppress outliers. As shown in Fig. [8| optimizing hyperparameters during training
leads to substantial performance improvements, with increases of 52.60% in cooperation, 34.78% in
robustness, and 60.34% in resilience.
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To show the generality of hyperparameter tuning, we train ERNIE [[66], a general-purpose robust
MARL method on all backbones, using default hyperparameters and our selected best hyperpararme-
ters on non-robust backbones above. As shown in Fig. [0 the improvement of hyperparameter
generalize to robust MARL methods under various backbones and environments, with an average
improvement of 89.43% on cooperation, 65.83% on robustness, 82.96% on resilience.

Post-hoc analysis of the interactions among hyperparameters was conducted using ordinary least
squares regression, a statistical method that quantifies the significance of each factor’s contribution.
Results show it is beneficial to use parameter sharing for homogeneous agents (p < .05), smaller
discount factors for short episodes (p < .001), higher critic LR in policy gradient methods (p < .05)
and always use early stop (p < .001). See full results in Appendix.

6 Conclusions

In this paper, we conducted a large-scale empirical study on the robustness and resilience of MARL,
yielding several meaningful insights: (1) Optimizing for cooperation improves robustness and
resilience under mild uncertainty, but this relationship weakens as perturbations intensify, with
performance differing across algorithms and uncertainty types. (2) Robustness and resilience do not
transfer across uncertainty modalities or agent scopes; a policy robust to action noise affecting all
agents may still fail under observation noise targeting a single agent. (3) Hyperparameter tuning
plays a central role in trustworthy MARL. Surprisingly, widely used practices like parameter sharing,
GAE, and PopArt can degrade robustness, while strategies such as early stopping, higher critic
learning rates, and Leaky ReLLU offer consistent improvements. By optimizing hyperparameters
only, we observe substantial improvement in cooperation, robustness and resilience across all MARL
backbones, with the phenomenon also generalizing to robust MARL methods across these backbones.
A limitation of our paper is the focus of MARL algorithms based on policy gradient, since many
environments requires continuous control. This can be mitigated by integrating new algorithms into
our codebase, which supports custom environments and algorithm integration.
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APPENDIX FOR “EMPIRICAL STUDY ON ROBUSTNESS
AND RESILIENCE IN COOPERATIVE MULTI-AGENT RE-
INFORCEMENT LEARNING"

A Appendix for Experiment details

A.1 Additional Details on hyperparameters

In this section, we first discuss the key hyperparameters that significantly affect the performance of the
MARL algorithms evaluated in our benchmark. Next, we provide an overview of all hyperparameter
settings used across the different algorithms and highlight configurations specific to each algorithm.

A.1.1 Introduction on hyperparameters

The following subsections provide a brief description of the critical hyperparameters and settings
that impact the implementation of the MARL algorithms. As no universal set of hyperparameters
exists for multi-agent reinforcement learning (MARL) algorithms, our selections are informed by
established practices in reinforcement learning, with particular reference to the codebases of MAPPO
[3]] and HAPPO [67]. These codebases provide carefully designed hyperparameter configurations that
perform well across environments such as MPE, SMAC, and MAMujoco, though the optimal settings
vary by task. Building on this, we conducted a pilot study to identify a subset of hyperparameters that
consistently work well across most of our real-world tasks, while adopting alternative configurations
for the remaining parameters as needed.

1. Network Hidden Sizes: This refers to the size of the actor networks and critic networks
used in the MARL algorithms, which determines the number of neural units per layer. The
choices are {64, 128, 256}, with the default value being 128.

2. Discount Factor: The standard parameter in RL, which controls the importance of future
rewards during training, with a choice set of {0.9, 0.95, 0.99}. The default value is 0.99.

3. Activation Function: Various activation functions in neural networks, including ReL.U,
Leaky ReLLU, SELU, Sigmoid, and Tanh. The default function is ReL.U.

4. Initialization Method: The initialization of network weights is conducted using either
Orthogonal or Xavier initialization. Orthogonal initialization is the default choice.

5. Neural Network Type: This parameter denotes the network architecture of actor and critic
in MARL algorithms, with options including MLP (Multi-Layer Perceptron) and RNN
(Recurrent Neural Network). The default architecture is MLP.

6. Learning Rate: The learning rate for training the actor network is selected from the set
{5e-5, 5e-4, 5e-3}, with a default value of Se-4.

7. Critic Learning Rate: The critic network learning rate is chosen from the same set as the
actor network, {5e-5, 5e-4, 5e-3}, with 5e-4 as the default value.

8. Feature Normalization: This applies Layer Normalization to standardize the features of
each sample, ensuring they have a mean of 0 and a variance of 1. This helps stabilize training
and improve convergence. Feature normalization is enabled by default.

9. Share Parameters: This parameter specifies whether multiple agents share the same neural
network parameters for their policy functions. The default setting is False. Note that
HAPPO inherently assumes heterogeneous agents, and do not support parameter sharing.

10. TD Steps (MADDPG): TD steps determine the number of steps used in Temporal Difference
(TD) learning for updating the value estimates. The choices available are {5, 20, 25}, with a
default value of 20.

11. Exploratory Noise (MADDPG): This parameter controls the scale of noise added to the
actions generated by the actor network, in order to encourage exploration during training.
The options available are {0.001, 0.01, 0.1, 0.5, 1}, with a default value of 0.1.
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12. Entropy Coefficient (MAPPO/HAPPQ): Controls the entropy regularization strength in
the MAPPO/HAPPO objective, which affects exploration. The selection set is {0.0001,
0.001, 0.01, 0.1}, with a default value of 0.01.

13. Use GAE (MAPPO/HAPPO):Whether Generalized Advantage Estimation (GAE) is used
for estimating the advantage of a state-action pair. The default is True.

14. Use PopArt (MAPPO/HAPPO): PopArt is a normalization technique used to rescale value
targets dynamically to improve training stability. The default choice is True.

15. Early Stop: We use early stop as a model selection criterion. At each evaluation period, we
evaluate the cooperation, robustness and resilience of algorithms, and save the model with
maximum cooperation + robustness + resilience. Baseline model save the model at their last
round of evaluation. The default choice is False.

A.1.2 Other Default Hyperparameters

The following table summarizes the default hyperparameters used across the various MARL algo-
rithms. We first describe the general hyperparameters that are common across all algorithms, followed
by algorithm-specific parameters.

Table 4: Hyperparameters for all MARL algorithms.

Number Hyperparameter MAPPO HAPPO MADDPG
General Hyperparameters
1 Neural network type MLP MLP MLP
2 Network hidden sizes [128, 128] [128, 128] [128, 128]
3 Activation function ReLU ReLU ReLU
4 Discount factor (v) 0.99 0.99 0.99
5 Actor learning rate 0.0005 0.0005 0.0005
6 Critic learning rate 0.0005 0.0005 0.0005
7 Feature normalization True True True
8 Share parameters False False False
9 Weight initialization method Orthogonal ~ Orthogonal  Orthogonal
10 Recurrent layers (if use RNN) 1 1 1
11 Use max gradient norm True True True
12 Max gradient norm 10.0 10.0 10.0
13 Linear learning rate decay False False False
MAPPO and HAPPO Shared Hyperparameters

14 Entropy coefficient 0.01 0.01 N/A
15 Use PopArt True True N/A
16 Use GAE True True N/A
17 GAE parameter () 0.95 0.95 N/A
18 PPO epochs 5 5 N/A
19 Critic epochs 5 5 N/A
20 Clip parameter 0.05 0.1 N/A
21 Use clipped value loss True True N/A
22 Value loss coefficient 1.0 1.0 N/A

Product of Product of

23 Action aggregation probabilities  probabilities N/A
24 Use huber loss True True N/A
25 Huber delta 10.0 10.0 N/A
Algorithm-Specific Hyperparameters
26 Exploration noise N/A N/A 0.1
27 TD steps N/A N/A 20
28 Buffer size N/A N/A 5000
29 Batch size N/A N/A 1000
30 Polyak averaging factor N/A N/A 0.005

Continued on next page
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Table 4: Hyperparameters for all MARL algorithms.

Number Hyperparameter MAPPO HAPPO MADDPG
31 Warmup steps N/A N/A 50000
32 Update per training step N/A N/A 1
33 Final activation function N/A N/A Tanh

A.2 Additional Details on Environments

Our benchmark study is grounded on four real-world environments, as illustrated in Fig. [T0] The first
two, Dexterous Hand Manipulation (Dexhand) [53]] and Quadrotor Swarm Control (Quad) [54], are
rooted in real-world robotics, enabling seamless policy transfer from simulation to physical systems.
In dexterous hand control and quadrotor swarm control, the MARL algorithm needs to control the
low-level actions made by robot, where a small variation might leads to large change in robot actions,
requiring robust control in precise manipulations. Each environment comprises six tasks. The other
two environments, Intelligent Traffic Control (Traffic) [55)] and Active Voltage Control (Voltage) [56],
are based on real-world data, are derived from real-world data, providing high-fidelity simulations
of complex systems. In intelligent traffic control and active voltage control, each agents in MARL
algorithm are highly responsible for the performance of the overall system, requiring adaptive control
with uncertainties. These environments feature four tasks and three tasks, respectively, resulting in a
total of 19 tasks across all environments (6 for Dexhand + 6 for Quad + 3 for Traffic + 3 for Voltage
= 18 tasks). The following subsections offer a more detailed description of the environments and
tasks included in our benchmark.

(c) Traffic Control (d) Active Voltage Control

Figure 10: Illustration of four real-world environments in the benchmark.

A.2.1 Dexterous Hand Manipulation

The Bimanual Dexterous Hand Manipulation environment (DexHand) is a comprehensive simulation
platform designed to mimic human dexterity through reinforcement learning. Using two anatomically
realistic Shadow Hands, each with 24 degrees of freedom (DoF), it tackles tasks ranging from basic
object manipulation to advanced bimanual coordination like stacking, catching, and reorientation.
These tasks are designed to match different levels of human motor skills according to cognitive
science literature, and demand precise control, adaptability, and synchronized multi-agent cooperation.
Powered by the Isaac Gym simulator, Bi-DexHands combines physical realism with challenging,
multi-agent tasks, presenting a high level of difficulty for learning and mastering these tasks.
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In this work, six typical tasks are considered for the deployment of all the MARL algorithms and
attacks in our benchmark. These tasks include: PushBlock, SwingCup, Re-Orientation, BlockStack,
HandCatchUnderarm and HandCatchOver2Underarm. Below, we provide a brief description of
these 6 tasks. For more details, we direct readers to the official project page of Bi-DexHands
https://github.com/PKU-MARL/DexterousHands,

* PushBlock: This task requires both hands to touch the block and push it forward.
* SwingCup: This task requires two hands to hold the cup handle and rotate it 90 degrees.

* Re-Orientation: This task involves two hands and two objects. Each hand holds an object
and we need to reorient the object to the target orientation.

¢ BlockStack: This task involves dual hands and two blocks, and we need to stack the block
as a tower.

* HandCatchUnderarm: In this problem, two shadow hands with palms facing upwards are
controlled to pass an object from one palm to the other. What makes it more difficult is that
the hands’ translation and rotation degrees of freedom are not frozen but are added into the
action space.

* HandCatchOver2Underarm: In this task, the object needs to be thrown from the vertical
hand to the palm-up hand.

A.2.2 Quadrotor Swarm Control

The Quadrotor Swarm Control (Quad) environment is designed to train RL policies for controlling
quadrotor swarms. In this environment, each quadrotor is controlled by an individual RL agent, en-
abling the development of sophisticated swarm behaviors. These include performing tight maneuvers
in formation, avoiding collisions, adapting to dynamic obstacles, and collaborating in pursuit-evasion
tasks. The environment simulates realistic quadrotor flight physics, accurately capturing the complex
dynamics of aerial movement and multi-agent interactions. This ensures that the policies learned
within the simulator can be generalized to real-world systems.

The environment includes several key scenarios to assess the quadrotors’ abilities in different
contexts. These tasks focus on the control, coordination, and safety of the swarm under vari-
ous challenging conditions. Our benchmark experiments consist of six tasks: static_diff_goal,
Static_same_goal, o_static_same_goal, o_random, o_swap_goals, and swarm_vs_swarm, where
o_ denotes environments with a moving obstacle. A more detailed description of these six
tasks is provided below, and additional information can be found on the official project page at
https://sites.google.com/view/swarm-rl,

« static_diff_goal: In this task, quadrotors are trained to fly in close formation while maintain-
ing a cohesive structure and avoiding collisions. The target formation, which remains fixed
throughout the episode, can take various geometric shapes (e.g., 2D grid, circle, cylinder,
and cube). The separation r between goals within the formation is randomly chosen.

* static_same_goal: This is a special case of the static_diff_goal scenario, where the separa-
tion between goals is zero (r = 0). In this case, the goal locations for all quadrotors coincide,
creating a dense formation with a high probability of collisions. This task requires enhanced
coordination and decentralized control to ensure safe flight compared to the static_diff _goal
task.

» o_static_same_goal: This task is similar to the static_same_goal task but takes place in an
environment with dense cylindrical obstacles. The quadrotors must maintain their formation
while avoiding collisions with the obstacles.

* o_random: In this task, each quadrotor’s position in the formation is randomly sampled
within the environment, which contains dense cylindrical obstacles. Every quadrotor needs
to reach its own target position as fast as possible.

» o_swap_goals: This is a kind of dynamic formation control task. Given a predefined
formation, the target positions of the quadrotors are randomly swapped multiple times during
the episode. Additionally, the quadrotors must avoid collision with the dense obstacles in
the environment.
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» swarm_vs_swarm: In this task, the swarm is split into two groups, then the target formations
of quadrotors in these two groups are swapped several times per episode, which requires two
teams of quadrotors to fly through each other while avoid head-on collisions at high speed.

A.2.3 Intelligent Traffic Control

The Intelligent Traffic Control (Traffic) environment focuses on training MARL agents to manage
networked traffic systems. It supports various real-world traffic tasks, including Adaptive Traffic
Signal Control (ATSC) and Cooperative Adaptive Cruise Control (CACC). In this environment,
each agent represents either a traffic signal or a vehicle. Agents adjust their policies based on local
observations and messages from neighboring agents, aiming to optimize overall traffic flow and safety.
For ATSC tasks, agents control traffic signals at intersections, dynamically adjusting green/red light
timings in response to local traffic conditions (e.g., vehicle density, wait times) and messages from
adjacent intersections. In CACC tasks, agents simulate cooperative vehicle control, adjusting their
speeds to either follow or close the gap with a leading vehicle, ensuring smooth, coordinated traffic
flow.

This environment is capable of simulating both synthetic and real-world traffic networks, offering
challenging scenarios for traffic signal and cooperative vehicle control tasks. Its versatility makes
it an ideal platform for capturing the complexities of real-world traffic systems, such as partial
observability, non-stationary dynamics, and decentralized control. In our benchmark, we evaluate
performance across four tasks within this environment: ATSC Grid, ATSC Monaco, CACC Catch-up,
and CACC Slow-down. A detailed description of these tasks can be found in the original paper [S5]]
and on the official project page https://github.com/cts198859/deeprl_network.

* ATSC Grid: This task simulates traffic signal control within a synthetic 5x5 grid-based
traffic network. Each intersection in the grid is controlled by an agent, which adjusts
its signal timings based on local traffic conditions (e.g., vehicle density, wait times) and
messages from neighboring agents. The task aims to optimize traffic flow and reduce
congestion in this synthetic environment.

* ATSC Monaco: This task models adaptive traffic signal control in a real-world 28-
intersection network, specifically based on the traffic system of Monaco city. Agents
control traffic signals in this dynamic environment, addressing complex traffic patterns and
interactions between intersections. The learned policies must effectively manage these com-
plexities, focusing on reducing congestion, enhancing traffic throughput, and ensuring safe
driving conditions. However, this task requires agents to have heterogeneous observation
and action spaces. We thus omit this in our evaluation.

* CACC Catch-up: In this task, agents simulate CACC systems in a network of 8 vehicles.
The goal is for each vehicle to follow and "catch up" with a leading vehicle by adjusting its
speed based on the relative position and velocity of the vehicle ahead. This task emphasizes
the importance of coordination between agents to maintain efficient vehicle spacing and
flow.

* CACC Slow-down: This task simulates a CACC system in which 7 agents follow a leading
vehicle and slow down appropriately. Agents adjust their speeds based on the behavior of
the leading vehicle, ensuring safe distances while reducing speed when necessary. This
scenario highlights the challenges of safely managing the traffic flow in situations where
deceleration is required.

A.2.4 Active Voltage Control

The Active Voltage Control (Voltage) environment provides a simulation platform for training RL
policies to manage voltage in power distribution networks. It specifically targets the challenges posed
by the integration of distributed energy resources, such as rooftop photovoltaics (PVs), into power
grids, where excess power generation can cause voltage fluctuations. These fluctuations may exceed
acceptable grid limits, as outlined by [68 169], necessitating effective voltage regulation.

The primary objective of the Voltage environment is to mitigate these voltage fluctuations by con-
trolling the reactive power generated by PV inverters. Each agent in the system corresponds to a PV
inverter, which adjusts the reactive power to regulate the voltage at its respective bus. However, since
the voltage at each bus is influenced by the power at all other buses, and not all buses are equipped

21


https://github.com/cts198859/deeprl_network

with PV inverters, agents must collaborate to ensure that the voltage across the entire network remains
within a safe range. Given that each agent has limited visibility and can only observe the state of the
local zone, the problem is naturally framed as a Decentralized Partially Observable Markov Decision
Process (Dec-POMDP), requiring coordinated decision-making under uncertain conditions.

The Voltage environment includes three distinct scenarios based on real public data, each with
different scales, ranging from small systems with 6 agents to larger systems with 38 agents. These
scenarios vary in complexity, and our benchmark tests the robustness and scalability of multiple
MARL algorithms across all three. The scenarios are referred to as the 33-Bus System, 141-Bus
System, and 322-Bus System. A brief overview of each follows, with further details regarding the
configurations and complexities available in the original paper [56]:

* 33-Bus System: This scenario models a small-scale distribution network with 6 PV agents,
which cooperate to regulate the voltage across 32 loads distributed over 4 regions. The
challenge is to maintain voltage within a safe range while minimizing power loss in a system
with relatively fewer agents and simpler interactions.

¢ 141-Bus System: This scenario involves a medium-scale distribution network with 22 PV
agents that must coordinate to control voltage across 84 loads in 9 regions. The agents must
manage more complex interactions and larger variations in power generation, requiring
advanced coordination strategies.

» 322-Bus System: This scenario simulates a large-scale distribution network with 38 agents
controlling voltage across 337 loads in 22 regions. This complex environment emphasizes
scalability and robustness, as agents must manage a larger network with greater uncertainty.
Coordinating actions efficiently to maintain voltage stability is critical, despite the challenges
posed by a large number of loads and agents, along with more dynamic power fluctuations.
This scenario tests the performance and adaptability of MARL algorithms in large-scale
control tasks.

A.3 Additional Details on Type of uncertainties

In this section, we detail the type of observation, action and environment uncertainties considered in
our paper.

A.3.1 Observation uncertainty

Observation uncertainty arises when agents’ sensing capabilities are flawed, inaccurate, or maliciously
perturbed by attackers [29] 14} [15]. We consider the following types of uncertainties:

* Gaussian noise. Gaussian noise is ubiquitous in real-world systems, arising from sources
such as thermal fluctuations, sensor inaccuracies, and environmental errors. While simple
and relatively easy to mitigate, Gaussian noise serves as an essential baseline for our
benchmark. Depending on the settings, we either apply small perturbations to all agents
or larger perturbations to a single agent, denoted as Gaussian-all and Gaussian-single,
respectively.

* Greedy worst-case attacks. Early research in robust RL and MARL introduced heuristic-
based attacks to exploit vulnerabilities in agents’ policies at individual timesteps. These
methods specify a detrimental policy distribution and use gradient-based approaches, such
as PGD [70], to generate observation perturbations that mislead agents. For instance, [[29]
proposed maximizing the KL divergence between the original policy and the perturbed
policy at a given timestep. Other works explored alternative heuristics [[71} [72, [73]. SA-
MBDP [30]] formalized this problem as a state-adversarial MDP and proved the existence of a
worst-case adversary. In our study, we adopt the Maximal Action Difference (MAD) attack
from SA-MDP [30], which generalizes [29] by perturbing observations to maximize the
KL divergence, maxz Dy, (7(+|s)||7w(:|8)), where § is the perturbed state. For MARL, as
only observations are available, perturbations are applied to the observation space. Attacks
targeting all agents are denoted as Greedy-all, while attacks targeting a single agent are
denoted as Greedy-single.

* Optimal learned attacks. Moving beyond heuristic approaches, subsequent research
developed adversarial policies using RL to optimize long-term attack efficacy. ATLA [74]]
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pioneered this area by learning a policy 7(5|s) to generate perturbed states from the current
state. PA-AD [75] improved ATLA by introducing a two-step process: first learning a target
action for the perturbation to induce, and then applying gradient-based methods to craft state
perturbations that guide the policy towards the target action. This approach is advantageous
because actions often have lower dimensionality than states, simplifying the RL learning
process. Similar to greedy attacks, we denote attacks against all agents as Optimal-all and
those targeting a single agent as Optimal-single.

A.3.2 Action uncertainty

Action uncertainties are a critical area of study in MARL because, in multi-agent systems, individual
agents often take actions during deployment that deviate from optimal actions defined in simulation
environments. These deviations can arise from various factors, such as external forces causing abrupt
action changes, slight mismatches in robot weight compared to simulation models, or loss of control
due to adversarial interference. We consider the following types of action uncertainties in MARL:

* Random policies. Agents may adopt random policies due to actuator errors, defaulting to
random actions under limited computational resources, communication failures, or power
fluctuations. To evaluate the robustness of MARL systems, we use random actions as
a baseline. Depending on the setting, all agents may take random actions with a small
probability, denoted as Random-all, or a single agent may take random actions with a large
probability, denoted as Random-single.

* Greedy worst-case policies. Extending the concept of greedy worst-case perturbations
in observations, we define greedy worst-case policies as those leading to the worst-case
outcomes. Unlike observation perturbations, policy manipulations directly alter the action
distribution, allowing for more targeted interventions. When the Q-function is available, we
perturb policies to take actions that minimize the Q-value. If the Q-function is unavailable,
policies are perturbed to take actions with the lowest probability. Depending on the setting,
all agents may adopt greedy worst-case policies with a small probability, denoted as Greedy-
all, or a single agent may do so with a large probability, denoted as Greedy-single.

* Optimal learned policies. Since policy perturbations naturally align with the RL/MARL
framework, it is feasible to train a parameterized worst-case agent to generate perturbed
policies. [32] formulated this as an action-robust MDP and used RL algorithms to learn
worst-case perturbations. [16]] studied this in two-agent zero-sum games, demonstrating how
adversarial policies can easily exploit opponents. In MARL, [76, 40] learned worst-case
policies to minimize cooperative rewards. Depending on the setting, all agents may take
learned worst-case policies with a small probability, denoted as Optimal-all, or a single
agent may do so with a probability of 1, denoted as Optimal-single.

A.3.3 Environment uncertainty

Environment uncertainty has been a critical area of research since the inception of the robust RL
framework [77,[78]]. Given the inevitable discrepancies between simulation environments and real-
world conditions, addressing uncertainties in environmental dynamics is a long-standing challenge
in RL and MARL. In MARL, theoretical studies on this topic have been conducted by [38} [19],
though these works lack empirical evaluation. To systematically evaluate the impact of environment
uncertainties in MARL, we adopt approaches commonly used in RL [57, 58159} 160]. Specifically,
we define uncertainty sets over key environment parameters such as velocity and mass to simulate
potential environmental variations. The uncertainties we use are listed in Table. [5]

The following provides an explanation of the meanings of these uncertainty sets within their respective
environments:
* Quadrotor Swarm Control:

— quads_collision_hitbox_radius: This parameter defines the effective radius used for
collision detection in quadrotor swarms, ranging from [1.5, 2.5]. When two quadrotors
come within this distance, they are considered to have collided, prompting evasive
maneuvers to ensure the swarm’s safety.
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Table 5: Uncertainty sets for environment uncertainties

Environment Uncertain Set Range
Quadrotor Swarm Control quads_collision_hitbox_radius 1.5,2.5]
quads_collision_falloff_radius 0.7,1.3]
quads_obst_density —0.2,0.2]
quads_obst_size 0.7,1.3]
quads_collision_reward —0.3,0.3]
quads_collision_smooth_max_penalty 7,13
quads_episode_duration 10, 20]
quads_obst_collision_reward —0.3,0.3]
replay_buffer_sample_prob 0.5,1]
Active Voltage Control pv_scale 0.7,1.3]
demand_scale 0.7,1.3]
V_upper 0.705, 1.305]
v_lower 0.65,1.25]
q_weight 0,0.2]
action_bias —0.5,0.5]
action_scale 0.4,1.2]
demand_scale 0.5, 1.5]
Dexterous Hand Manipulation  startPositionNoise —0.005, 0.005]
transition_scale 0.2,0.8]
orientation_scale —0.2,0.4]
rotRewardScale 0.7,1.3]
startRotationNoise —0.5,0.5]
resetPositionNoise —0.3,0.3]
resetRotationNoise 0.0,0.01]
resetDofPosRandomInterval 0,0.4]
resetDofVelRandomInterval —0.2,0.2]
Intelligent Traffic Control norm_wave 0.7, 1.3]
norm_wait -1.2,-0.8]
init_density —0.3,0.3]
COOp_gamma 0.5,1.1]
headway_min 0.5, 1.5]
headway_st 4.5,6.5]
headway_go 30, 40]
speed_max 25, 35)
accel_max 2,3
accel_min —3,-2]

— quads_collision_falloff radius: The falloff radius determines how collision effects

diminish with increasing distance between quadrotors, with a range of [0.7, 1.3]. Within
this radius, the interference forces decrease gradually, affecting flight dynamics and
reducing abrupt changes in quadrotor behavior during near collisions.

quads_obst_density: This parameter, ranging from [—0.2, 0.2], represents the relative
density of obstacles in the environment. Positive values indicate a denser obstacle
field, increasing the difficulty of navigation, while negative values suggest a sparser
environment, facilitating smoother flight.

quads_obst_size: The size of obstacles is represented by this parameter, with a range of
[0.7,1.3]. Larger obstacles necessitate more substantial avoidance maneuvers, whereas
smaller obstacles, despite being easier to evade individually, may pose challenges when
present in large numbers.

quads_collision_reward: This parameter defines the reward value associated with
collisions between quadrotors, with a range of [—0.3, 0.3]. Negative values penalize
collisions, encouraging the control algorithm to prioritize collision avoidance. The
magnitude of the reward/penalty influences the aggressiveness of the avoidance maneu-
vers.
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quads_collision_smooth_max_penalty: This parameter specifies the maximum
penalty for non-smooth collision avoidance maneuvers, with a range of [7,13]. It
ensures that the quadrotors’ movements remain smooth and controlled, even when
avoiding collisions. Higher penalties encourage more gradual and stable maneuvers,
reducing the likelihood of abrupt changes in velocity or direction.
quads_episode_duration: This parameter defines the duration of each control episode,
ranging from [10, 20] seconds. It determines the time horizon over which the control
algorithm must manage the quadrotor swarm. Longer durations require more robust
and sustained control strategies, while shorter durations allow for more aggressive
maneuvers.

quads_obst_collision_reward: This parameter defines the reward value associated
with collisions between quadrotors and obstacles, with a range of [—0.3, 0.3]. Negative
values penalize such collisions, encouraging the control algorithm to prioritize obstacle
avoidance. The magnitude of the reward/penalty influences the aggressiveness of the
avoidance maneuvers.

replay_buffer_sample_prob: This parameter defines the probability of sampling from
the replay buffer in reinforcement learning algorithms, with a range of [0.5,1]. It
affects how frequently the algorithm revisits past experiences stored in the replay buffer.
Higher sampling probabilities ensure that the algorithm makes better use of historical
data, improving its learning efficiency and ability to generalize from past experiences.

* Active Voltage Control:

pv_scale: This parameter adjusts the proportion of photovoltaic (PV) power generation
in the grid, with values ranging from [0.7, 1.3]. A value above 1 indicates an increased
PV capacity, potentially enhancing voltage support, whereas values below 1 suggest
reduced PV contributions, requiring supplementary power sources.

demand_scale: The scaling factor for electricity demand ranges from [0.7, 1.3]. Higher
values signify increased power demand, complicating voltage regulation, while lower
values ease the control requirements due to reduced demand.

v_upper: This parameter sets the upper voltage limit, with a range of [0.705, 1.305].
Ensuring grid voltage stays below this threshold is critical to prevent overvoltage-related
equipment damage and maintain grid stability.

v_lower: The lower voltage limit ranges from [0.65, 1.25]. Maintaining voltage above
this threshold is essential to prevent equipment malfunctions and avoid voltage collapse,
thus ensuring reliable grid performance.

q_weight: This parameter represents the weighting factor for reactive power control,
with values ranging from [0,0.2]. A higher weight emphasizes the importance of
reactive power management in the control strategy, helping to maintain voltage stability
through reactive power compensation.

action_bias: The bias term for control actions ranges from [—0.5, 0.5]. This parameter
introduces a baseline offset in the control actions, which can be used to adjust the
default behavior of the control algorithm. Positive values shift the control actions
towards more active interventions, while negative values reduce the aggressiveness of
the control actions.

action_scale: This parameter scales the magnitude of control actions, with values
ranging from [0.4, 1.2]. A higher scale factor increases the impact of control actions on
the system, allowing for more significant adjustments to voltage levels. Conversely, a
lower scale factor results in more conservative control actions.

demand_scale: The scaling factor for electricity demand ranges from [0.5, 1.5]. This
updated range indicates a broader variation in power demand, with higher values
representing significantly increased demand scenarios that pose greater challenges for
voltage regulation. Lower values, closer to 0.5, suggest reduced demand conditions
that may simplify control requirements.

* Dexterous Hand Manipulation:

startPositionNoise: This parameter introduces initial position noise in dexterous hand
manipulation tasks, ranging from [—0.005, 0.005]. It simulates minor deviations in the
hand’s starting position, increasing the complexity of the task and requiring precise
control adjustments.
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transition_scale: The scaling factor for state transitions ranges from [0.2, 0.8]. Higher
values result in more dynamic state changes, demanding robust control strategies, while
lower values yield smoother transitions, facilitating easier manipulation.

orientation_scale: This parameter, ranging from [—0.2, 0.4], adjusts the amplitude of
object orientation changes. Positive values enhance orientation variations, challenging
control precision, while negative values dampen these changes.

rotRewardScale: The rotation reward scaling factor, with a range of [0.7,1.3], in-
fluences the prioritization of rotational actions in control algorithms. Higher values
incentivize exploring rotational strategies, potentially improving manipulation perfor-
mance.

startRotationNoise: This parameter introduces initial rotation noise in the hand’s
orientation, ranging from [—0.5, 0.5]. It simulates variability in the starting orientation
of the hand, adding complexity to the task and requiring the control algorithm to adapt
to different initial conditions.

resetPositionNoise: This parameter specifies the noise added to the hand’s position
during resets, with values ranging from [—0.3, 0.3]. It introduces randomness in the
hand’s position at the beginning of each trial, making the task more challenging and
requiring the control algorithm to handle a wider range of initial positions.

resetRotationNoise: This parameter defines the noise added to the hand’s rotation
during resets, with values ranging from [0.0, 0.01]. It introduces small perturbations
in the hand’s orientation at the start of each trial, requiring the control algorithm to
correct for these initial deviations.

resetDofPosRandomlInterval: This parameter specifies the random interval for re-
setting the degrees of freedom (DoF) positions, ranging from [0, 0.4]. It introduces
variability in the initial joint positions of the hand, making the task more realistic and
challenging, as the control algorithm must adapt to different starting configurations.

resetDof VelRandomInterval: This parameter defines the random interval for resetting
the degrees of freedom (DoF) velocities, with values ranging from [—0.2,0.2]. It
introduces variability in the initial joint velocities of the hand, adding an additional
layer of complexity to the task and requiring the control algorithm to manage both
position and velocity adjustments.

¢ Intelligent Traffic Control:

norm_wave: This parameter represents normalized traffic flow fluctuations, ranging
from [0.7,1.3]. Larger values indicate greater variability in traffic flow, increasing
the complexity of traffic management, while lower values suggest more stable traffic
patterns.

norm_wait: The normalized waiting time parameter ranges from [—1.2, —0.8]. Nega-
tive values denote a reduction in average vehicle waiting times, typically resulting from
optimized control measures, thereby improving overall traffic efficiency.
init_density: This parameter, with a range of [—0.3,0.3], defines the initial traffic
density. Positive values indicate congested conditions that require advanced control
strategies, whereas negative values suggest lighter traffic, allowing simpler interven-
tions.

coop_gamma: This parameter, ranging from [0.5, 1.1], represents the cooperation
factor in traffic control. Higher values indicate stronger cooperation among vehicles or
traffic control systems, which can improve traffic flow efficiency. Lower values suggest
more independent behavior, potentially leading to less coordinated traffic patterns.

headway_min: The minimum headway distance between vehicles ranges from
[0.5,1.5] meters. This parameter defines the smallest safe distance that should be
maintained between vehicles to avoid collisions. A smaller minimum headway allows
for higher traffic density but increases the risk of accidents.

headway_st: The standard headway distance ranges from [4.5,6.5] meters. This
parameter represents the typical distance maintained between vehicles under normal
driving conditions. It affects the overall traffic flow and capacity of the road.

headway_go: The headway distance for vehicles in motion ranges from [30, 40]
meters. This parameter is particularly relevant for high-speed traffic and defines the
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Figure 11: Architecture of our codebase. The framework supports customized environments and
algorithms, provided they implement the required interfaces. The evaluation of hyperparameters on
robustness and resilience is integrated into an automated workflow.

safe distance required to maintain smooth traffic flow while allowing for safe stopping
distances.

- speed_max: The maximum allowable speed ranges from [25, 35] meters per second
(or approximately 90 to 126 kilometers per hour). This parameter sets the upper limit
for vehicle speeds, balancing traffic flow efficiency with safety considerations.

— accel_max: The maximum acceleration ranges from [2, 3] meters per second squared.
This parameter defines the highest rate at which vehicles can increase their speed,
affecting traffic dynamics and the ability to manage traffic flow efficiently.

— accel_min: The minimum acceleration (or maximum deceleration) ranges from
[—3, —2] meters per second squared. This parameter defines the highest rate at which
vehicles can decelerate, which is crucial for maintaining safe distances and avoiding
rear-end collisions.

These parameters are sampled randomly to reflect real-world variability. In MARL scenarios, as all
agents are equally influenced by environmental changes, we denote this type of uncertainty as env.

A.4 Additional Details on Architectures

In this section, we detail the overall architecture of our algorithm, as shown in Fig. @ Our framework
supports customized environments and algorithms, provided they implement the required interfaces.
The evaluation of hyperparameters on robustness and resilience is integrated into an automated
workflow. Our architecture design are also inspired by existing prominent codebase, including

3141179, 180L 81].

A.4.1 Environment Architecture

To ensure the comprehensiveness and utility of our codebase, we integrate three types of environments
to support diverse applications and research needs.

The first category includes environments that support real-world applications. For instance, in
Dexterous Hand Manipulation [33]], two agents collaboratively control a 24-DoF Shadow Hand
to perform complex tasks similar to those learned by infants. Similarly, in Quadrotor Swarm
Control [534]), multiple Crazyflie quadrotors [83]] are trained to execute advanced swarm robotics tasks.
Policies trained in these simulation environments can be directly deployed to real-world robots with
minimal Sim2Real gaps.
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The second category comprises environments constructed from real-world data to ensure high-
fidelity replication of real-world dynamics. For example, in Intelligent Traffic Control [535l], agents
optimize adaptive traffic signal control (ATSC) using real-world traffic data from Monaco and perform
cooperative adaptive cruise control (CACC), a critical task in autonomous driving. In Active Voltage
Control, agents regulate voltage fluctuations to remain within IEEE grid standards, as described by
[68l 169]. These environments provide high-fidelity simulations of real-world traffic systems and
voltage control scenarios.

The third category includes widely used benchmark environments in MARL research. These include
SMAC [84], SMAC v2 [85], MPE [1]], Multi-Agent Mujoco [86], and Google Research Football [87]].
We believe these benchmarks are representative of environments commonly used in MARL studies,
offering researchers a solid foundation for their work on robust MARL.

Finally, recognizing the rapid emergence of new MARL environments and the existence of proprietary
industrial environments, we designed our codebase to support customization. Our environment
interface accommodates custom environments as long as they implement two core APIs: reset () and
step(). The reset () function initializes a new episode, while step () advances the environment
to the next timestep based on agent actions. To evaluate the robustness and resilience against
environment uncertainties, our interface also take custom environment hyperparameters as inputs.

A.4.2 Agent Architecture

As for the architectures of each MARL agent, we aim to make our design general and adaptable,
accommodating customized code implementations and model weights. Our architecture is as follows:

To evaluate the robustness and resilience of MARL algorithms, we introduce an Agent class that
disentangles code implementations and model weights from the evaluation process. This approach
differs from previous codebases such as Epymarl [42]] and MAPPO [3], which separate agent
functionality into three classes: actor, critic, and mixer. Such a separation complicates integration,
making the pipeline less user-friendly, particularly for non-MARL researchers.

In our codebase, we abstract all functionalities required for MARL agents into a single Agent class.
This design allows users to integrate their custom code implementations and model weights into
our framework by implementing APIs that satisfy our requirements. Specifically, the Agent class
represents MARL agents interacting with the environment by receiving trajectories and outputting
joint actions. If training is not required during evaluation, users need only upload their code
implementation and model weights, and implement the following three APIs:

* restore(): Loads model weights into the code implementation.

* prep_rollout(): Initializes the decision-making agent, including clearing the hidden state
of RNNs and resetting the action distribution.

» perform(): Outputs the agent’s action distribution during testing.

If training with customized code implementations is required, users need to additionally implement
the following six APIs:

* collect(): Collects trajectory data for all agents, including state, individual observations,
and rewards.

* prep_training(): Initializes the decision-making agent for training, clearing RNN hidden
states and resetting the action distribution. Note that some algorithms, such as MADDPG,
use different action distributions for training and testing, which this API supports.

» sample(): Samples an action from the model output. This varies by algorithm (e.g., QMIX,
MAPPO, MADDPG).

* train(): Trains the model using data collected from the environment. While training meth-
ods differ across algorithms, all training is encapsulated within this single API, simplifying
integration.

* save(): Saves the trained model weights.

» forward(): Processes observation input and outputs an action distribution for all agents.
For Q-learning algorithms, this API returns Q-values for each action and agent.
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Although similar APIs exist in previous codebases, our work is the first to propose abstracting an
Agent class to enable seamless integration of customized implementations and model weights. This
abstraction simplifies previous approaches [42, |3]], which required the separate implementation of
actor, critic, and mixer classes. By consolidating functionalities, our framework enhances usability
and flexibility for both researchers and practitioners.

A.4.3 Uncertainty Architecture

Next, we describe the architecture for applying uncertainties to MARL systems. The primary design
principle is to ensure that uncertainties are simple to implement and operate in parallel with the
existing Environment and Agent classes, without interfering with their original functionality.

Uncertainties are introduced during the interaction between the Environment and Agent classes. As
illustrated in Fig. [TT] the three types of uncertainties are highlighted in orange and applied as follows:

* Observation uncertainty: This is added to the observation inputs of all agents. The
perturbations are applied after the agents collect trajectories from the environment.

* Action uncertainty: Actions, generated by the Agent class and passed to the Environment
class, are perturbed after the victim agent outputs its action probabilities.

* Environment uncertainty: These uncertainties are sampled from predefined external
uncertainty sets and applied by modifying the environment’s hyperparameters.

By structuring the addition of uncertainties in this manner, we achieve a concise and modular
implementation that integrates seamlessly with the existing architecture.

A.4.4 Efficient Evaluation Workflow

Given the extensive range of uncertainties, hyperparameters, tasks, and algorithms integrated into
our codebase, an efficient evaluation workflow is essential. Our system allows users to specify the
desired uncertainties, hyperparameters, tasks, and algorithms for evaluation. Once configured, the
workflow automatically generates a comprehensive set of shell commands, facilitating large-scale,
automated evaluations. This significantly reduces the time and effort required by users, streamlining
the evaluation process and enabling rapid experimentation at scale.

For example, to train and evaluate all hyperparameters under different uncertainties, one sample code
for generating all bash commands is:

Listing 1: Code for generating evaluation workflow.

python generate.py eval -e dexhands -s ShadowHandSwingCup -a mappo --
<~ extra="--headless" --stage 1

This automatically generates 256 commands for execution.

Listing 2: Generated bash commands for training and evalution.

CUDA_VISIBLE_DEVICES=0 python -u /root/adv_marl_benchmark/
single_train.py --algo mappo --env dexhands --env.task
ShadowHandSwingCup --algo.use_eval True --algo.log_dir ./
results --algo.slice True --load_victim ./results/dexhands/
ShadowHandSwingCup/single/mappo/default/seed
-00002-2024-11-24-00-23-30 --exp_name random_noise_default --
run perturbation --algo.num_env_steps O --algo.perturb_iters O
--algo.adaptive_alpha False --algo.targeted_attack False --
headless > out/logs/dexhands/ShadowHandSwingCup/mappo/default/
random_noise.log 2>&1
CUDA_VISIBLE_DEVICES=0 python -u /root/adv_marl_benchmark/
single_train.py --algo mappo --env dexhands --env.task
ShadowHandSwingCup --algo.use_eval True --algo.log_dir ./
results --algo.slice False --load_victim ./results/dexhands/
ShadowHandSwingCup/single/mappo/activation_func_leaky_relu/
seed-00002-2024-11-25-05-51-49 --exp_name
random_noise_activation_func_leaky_relu --run perturbation --
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algo.num_env_steps 0 --algo.perturb_iters 0O --algo.

adaptive_alpha False --algo.targeted_attack False --headless >
out/logs/dexhands/ShadowHandSwingCup/mappo/
activation_func_leaky_relu/random_noise.log 2>&1

RN

CUDA_VISIBLE_DEVICES=0 python -u /root/adv_marl_benchmark/

adaptive_alpha True --algo.targeted_attack False --adv_all
False --adv_eps 0.1 --headless > out/logs/dexhands/
ShadowHandSwingCup/mappo/use_recurrent_policy_True/
pert_obs_sin.log 2>&1

— single_train.py --algo mappo --env dexhands --env.task

< ShadowHandSwingCup --algo.use_eval False --algo.log_dir ./
— results --algo.slice False --load_victim ./results/dexhands/
< ShadowHandSwingCup/single/mappo/use_recurrent_policy_True/seed
— -00002-2024-11-26-01-18-24 --exp_name

<~ pert_obs_sin_use_recurrent_policy_True --run perturbation --
<~ algo.num_env_steps O --algo.perturb_iters 10 --algo.

c_>

(%

c_>

(%

B

Additional Details on Experiments and Takeaways

B.1 Details of Reward Normalization Methods

In reinforcement learning, the scale of episodic rewards can vary substantially across tasks. This
variability complicates the consistent evaluation of RL algorithms under different experimental
settings. To enable robust and systematic comparisons, we adopt three reward normalization methods.
These approaches ensure meaningful performance assessments across diverse uncertainties and

hyperparameters.

* Z-Score Normalization: To address task-specific variations in episodic rewards (R), we
employ z-score normalization on a per-task basis. Each reward value is transformed by
subtracting the mean reward for its respective task and dividing by the standard deviation of

the task’s rewards. The normalized reward is defined as:

R— Htask

O'task

Rnorm =

where R is the original reward, fu,sx denotes the mean reward for the task, and oy, is the
standard deviation of the task’s rewards. These statistics are calculated over the full reward
distribution for the task, encompassing rewards from both untrained models and models
trained with all algorithms under all uncertainties and hyperparameters in the benchmark. In
our analysis, unless otherwise specified, z-score normalization is applied wherever rewards
from different tasks are aggregated into a single distribution, such as in the correlation

analysis presented in Section[5.1]and the uncertainty diversity analysis in Section[5.2]

* Performance Normalization for hyperparameters: To examine the impact of hyperpa-
rameters on each task (as discussed in Section[B.4), we rescale the rewards to quantify the
variance caused by different hyperparameters. Specifically, for each task, we normalize the

rewards using the formula:

R _ Rimpl - Runlrain
norm —
Rdefault - Runtrain

where Rimpi is the episodic reward obtained under a specific hyperparameters, Rungrain 1S
the reward of the untrained model, and Rgefaure i the reward achieved using the default

hyperparameters for the task.

After normalizing the rewards, we aggregate the rewards across all algorithms, uncertainties,
and hyperparameters for each task. The resulting reward distribution is then averaged over
the dimensions of algorithms and uncertainties, ensuring that the remaining variance in
the reward distribution is solely attributed to differences in hyperparameters. Then, the
impact of hyperparameters can be quantified by computing the 95% confidence interval of

the normalized reward distribution for each task.
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Figure 12: Case study on agents that are robust but non-resilient. Evaluated in task static_diff goal
in Quads environment, under the uncertainty setting obs_greedy_all.

* Relative Performance Change by hyperparameters: To further examine the efficacy of
specific hyperparameters (see Section [5.3)), we calculate the relative performance change
of each hyperparameters with respect to the default implementation. This metric captures
the degree to which an hyperparameters improves or degrades task performance. The
normalized reward is defined as:

R o Rimpl - Rdefault

o Rdefault - Rumrain

In this equation, R;np is the reward achieved with a specific hyperparameters, Rcfaul; iS the

reward obtained using the default implementation, and R\rin 1S the reward of the untrained

model.

By explicitly quantifying relative performance changes, this method highlights hyperparam-
eters that significantly enhance or impair task performance. It offers a clear and interpretable
metric for evaluating the effectiveness of various implementation strategies under different
experimental conditions.

B.2 Examples on Differences Between Robustness and Resilience

In this section, we present two representative cases to illustrate the distinction between robustness
and resilience. Specifically, we provide examples of agents that are robust but not resilient, and
agents that are resilient but not robust. To ensure visual clarity, we restrict our analysis to the Quads
environment. Other environments, such as Traffic and Voltage, are excluded due to limitations in
rendering quality, while the fine-grained control of each finger joint required in Dexhands is difficult
to interpret intuitively.

Robust but non-resilient. We examine a case of robustness without resilience in the task
static_diff_goal within the Quads environment, under the uncertainty setting obs_greedy_all. This
task involves two quadrotors, each assigned a distinct goal state. The objective is to navigate each
quadrotor to its respective goal. The uncertainty obs_greedy_all introduces small observation noise
to all agents, perturbing their perceptions toward adversarial directions, as described in [30].

As shown in Fig.[T24] the system performs comparably well under cooperative and resilient conditions,
yet fails under robustness evaluations. In particular, in Fig. [I2b]and Fig. [I2d] agents behave similarly
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when initialized in cooperative configurations or when recovering post-attack, with both quadrotors
successfully navigating to their respective goals. However, under observation noise, as shown in Fig.
[12¢|the agents are still able to reach approximate goal regions but fail to maintain precise control.
The continuous perturbations in their observations lead to control errors that gradually displace the
quadrotors from their true goals. This inability to maintain fine control reflects a lack of robustness.
In contrast, a truly robust agent would complete the task accurately despite the presence of such
uncertainties—an essential requirement for real-world deployment.

Resilient but non-robust. We now consider a case that exhibits resilience but lacks robustness, under
the task o_static_same_goal in the Quads environment, with uncertainty env. This task features two
quadrotors, multiple obstacles, and a shared goal. The uncertainty env modifies the environment
dynamics by increasing the number and size of obstacles.

As shown in Fig. and the policy enables the agents to reach the goal even in the pres-
ence of added obstacles, albeit with minor collisions. This suggests a degree of robustness to
environment-level perturbations. However, when evaluating resilience in isolation (i.e., in the absence
of uncertainty), as shown in Fig. [I3d the quadrotors often take suboptimal trajectories, drifting
away from the goal and failing to reach it precisely. We attribute this failure to a mismatch in state
initialization: during resilience evaluation, both quadrotors begin in close proximity to the goal (Fig.
[I3d] 1)), whereas in cooperative and robustness evaluations, they are initialized farther away (Fig.
[13b] 1) and[T3c| 1)). This discrepancy leads to differing dynamics during execution.

In cooperative and robustness settings, the greater distance from the goal encourages smooth accel-
eration and stable convergence. In contrast, during resilience evaluation, the short initial distance
prompts one quadrotor to accelerate too quickly, overshooting the target and needing to reverse course
(Fig.[I3d]2)). Upon returning, both quadrotors struggle to stabilize at the goal—an issue not observed
under other evaluation conditions. This behavior consistently emerges across multiple rollouts. We
attribute this to state aliasing: the agents encounter observation histories that closely resemble those
seen during training, but differ in nuanced ways that demand distinct responses. The policy, unable to
disambiguate these subtle variations, fails to adapt its behavior accordingly—resulting in degraded
fine-grained control and impaired resilience performance (Fig. [[3d]3)).

B.3 Additional results on generality of linearity and further discussions

In this section, we discuss the linearity of correlation of performance degradation with robustness
and resilience, under different uncertainty types, agent scopes, and attack strategies. As shown
in Fig. [[4] while linearity does not hold universally, it is statistically significant (p < .05) in
most cases—including random, greedy, and optimal attacks, as well as observation uncertainty and
perturbations applied to single or all agents. For environment uncertainty, linearity holds (r = 0.99
for robustness, » = 0.85 for resilience) but lacks statistical significance. Nonetheless, cooperation
strongly correlates with both robustness and resilience under environment uncertainty (r > 0.88 and
r > 0.95,p < .001), suggesting that improving cooperation enhances robustness in this modality. In
contrast, action uncertainty shows weak linearity (e.g., 7 = 0.37, p = 0.19 for robustness), largely
due to MADDPG’s high resilience to single-agent perturbations. When these outliers are removed,
linearity improves significantly (r = 0.69, p < .05 for robustness; r = 0.91, p < .001 for resilience),
reflecting MADDPG’s off-policy training and robustness to exploratory noise.

B.4 How Important Are hyperparameters?

In this section, we highlight the importance of hyperparameters in MARL by analyzing their impact
across tasks. For each task, we quantify this impact as the 95% confidence interval of relative
performance changes due to hyperparameters (See details in Appendix [B.I). Our key findings are:

1. hyperparameters affect tasks unevenly. As shown in Fig. [T5] the impact of hyperparameters
varies widely. Cooperative performance can change by 190%, robustness by 1123%, and resilience
by 1058% with a single change in hyperparameters. This underscores the need of practitioners to
identify and focus on tasks highly sensitive to such changes.

2. hyperparameters often outweigh algorithms. In Fig. we highlight tasks in blue where a
two-way ANOVA shows that changing a single hyperparameters has a more significant effect than
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(a) Evaluation curve for cooperation, robustness and resilience.

(b) Cooperation. Quadrotors reach the goal consistently.

(c) Robustness. Quadrotors reach the goal despite several collisions.

(d) Resilience. Quadrotors are initialized in an unseen state closer to the goal, making a fast acceleration and
overshooting the target. This overshooting brings state aliasing in subsequent histories, resulting in imprecise
control.

Figure 13: Case study on agents that are Resilient but non-robust. Evaluated in task
o_static_same_goal in Quads environment, under the uncertainty setting env.
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Figure 14: Linearity of robustness and resilience correlations under different uncertainty types, agent
scopes, and attack strategies.
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Figure 15: The impact of hyperparameters varies across different tasks. Task names in blue indicate
cases where altering a single hyperparameters has a greater effect on performance than changing the
MARL algorithm itself (two-way ANOVA, p < .001).

Table 6: Examining the effect on the use of parameter sharing, GAE and PopArt on commonly used
benchmarks, including MPE, SMAC and Multi-Agent Mujoco (MA-Mujoco). In fact, while these
tricks are effective on SMAC, the performance gain is not consistent across all environments.

Environment Task Default Use_GAE_False Use_PopArt_False  Share_Param_False
MPE Speaker-Listener —11.48 —11.39 —11.39 —11.40
Spread —27.56 —26.12 —31.86 —27.25
3m 18.62 18.80 18.75 11.58
SMAC 2s3z 28.74 28.07 28.80 25.21
MA-Mujoco Ant-4x2 12256.34 8252.60 8715.61 17260.66
HalfCheetah-6x1  19272.95 6628.80 8876.22 28280.03

switching algorithms (p < .001). Remarkably, in 9 out of 18 tasks, the performance improvement
achieved by altering a single hyperparameters surpasses that of switching between MARL algorithms.

Takeaway. Practitioners should evaluate task sensitivity to hyperparameters and prioritize tasks with
high variability, as hyperparameters can have a profound impact on MARL performance.
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Figure 16: Verifying our hypothesis that GAE is ineffective. GAE works best in Multi-Agent Mujoco
with dense and predictable reward, while in Dexhand, the reward is less predictable.

B.5 Evaluating the Effectiveness of hyperparameters on Other Environments

To verify the counterintuitive conclusion that the use of parameter sharing, GAE and PopArt is not a
generally effective hyperparameters, we check the performance of these tasks in three commonly
used benchmarks, MPE, SMAC and Multi-agent Mujoco using MAPPO. We select two task for each
environment including speaker_listener and spread for MPE, 3m and 2s3z for MAPPO, and Ant-4x2,
HalfCheetah6x1 for Multi-Agent Mujoco. We report the results in 5 random seeds.

As shown in Table[6] we confirm MAPPO’s finding that parameter sharing is critical for SMAC
tasks. However, parameter sharing offers no benefit in Multi-Agent Mujoco, where the task involves
controlling highly diverse joints, and its impact is mild in MPE. Additionally, while GAE and PopArt
significantly improve performance in Multi-Agent Mujoco, they have negligible or even slightly
negative effects in MPE and SMAC. These findings support the statements in our main paper: (1)
parameter sharing is effective for SMAC and not universally beneficial, and (2) the effectiveness of
GAE and PopArt is task-dependent and not universally applicable.

B.6 Verifying the hypothesis of the ineffectiveness of GAE

In this section, we conduct a preliminary analysis to test our hypothesis that GAE improves per-
formance in Multi-Agent MuJoCo but is less effective for real-world tasks. As shown in Fig. [T6]
the rewards in Multi-Agent MuJoCo are dense, stable, and predictable within an episode. Conse-
quently, GAE effectively stabilizes learning and reduces variance. In contrast, Dexhand presents a
more complex task with highly variable and less predictable rewards over time. As a result, GAE
may introduce significant errors in estimating 4, leading to larger bootstrapping errors during value
function approximation.

B.7 Analyzing the synergy of hyperparameters

In this section, we analyze how individual hyperparameters interact when jointly applied, as shown
in Fig.[§] and identify those that remain consistently beneficial in combination.

To quantify their joint effect, we leverage the individual impact of each hyperparameter from Fig. [6]
(denoted as h;) and the combined performance when applying the best group of hyperparameters
from Fig. [8| (denoted as j). We fit an ordinary least squares (OLS) regression model, assigning a
weight w; to each individual hyperparameter v;, and minimize the squared error (j — >, hjw; — €;)?,
where €; is a random noise. While OLS shares similar formulation of standard linear regression, it
additionally enables significance testing by adding random noise, allowing us to filter out spurious
correlations and identify hyperparameters that offer consistent synergistic effects.

We apply this OLS analysis separately for cooperation, robustness, resilience, and the combined
dataset, using 5% winsorization to suppress outliers. A higher weight w; indicates a stronger
contribution of the corresponding hyperparameter when used in combination. Note that the learned
weights do not reflect global average performance, but rather the effectiveness of each hyperparameter
variation within its specific task. As a result, some variations may not perform well on average but
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Table 7: OLS Regression Coefficients for Each Hyperparameter Across Metrics, with statistical test
results denoted by *. x denotes p < .05, xx denotes p < .001.

Hyperparameter Cooperation Robustness Resilience  All metrics
use_popart_False 0.6688 1.6617** 1.1007 2.0496**
gamma_0.95 2.8845"* 1.1021** 1.0425** 1.5002**
gamma_0.9 2.7529** 0.5963*" 1.0765™ 1.3207**
activation_func_selu 3.7292** 0.2915 1.2928* 1.0862**
share_param_True 0.8536* 0.8999** 0.7935* 0.8932**
hidden_sizes_64_64 1.3729** 0.7576™* 0.1808 0.8097**
critic_Ir_0.005 0.9467** 0.4166™ 0.8912** 0.7751*"
hidden_sizes_256_256 —0.6873 0.9917** 0.5153* 0.7496™*
initialization_method_xavier_uniform —1.1196" 0.6602* 0.5090 0.7130**
entropy_coef_0.001 2.0065"* 0.6207" 0.2690 0.6972"*
n_step_5 —1.5451" 0.3846 0.3337 0.5887
expl_noise_0.01 —3.1952 0.7608 —1.3955 0.5136
entropy_coef_0.0001 0.3350 0.9233" 0.1412 0.4918"
use_feature_normalization_False —0.4857" 0.4671 0.4711% 0.3944*
use_recurrent_policy_True —0.7096" 0.5041* —0.2259 0.0402
expl_noise_1.0 0.0000 0.0000 0.0000 0.0000
activation_func_sigmoid —1.2446** 0.7742* —0.0398 —0.0698
n_step_25 —4.0924** 0.2335 0.2881 —0.0762
activation_func_tanh —0.4447 —0.1760 —0.1597 —0.2164
activation_func_leaky_relu —0.9681" —0.0915 —0.1567 —0.2396"
expl_noise_0.001 0.7439 —0.1964 —1.1622* —0.3811
use_gae_False —0.2794 —0.1803 —0.7281"*  —0.5672""
entropy_coef 0.1 —1.1006™* 1.2337** 0.1215 —0.6574"
expl_noise_0.5 —0.7096 —0.2485 —1.7288 —0.7314
Ir_5e-05 —0.9459* 0.4082 —0.1224 —0.7915"
Ir_0.005 —2.9178" —0.3520 —0.7945"*  —0.9257*"
critic_Ir_5e-05 —1.6991** —0.7381"  —0.9523"*  —0.9954™"

can be highly beneficial in particular environments. As shown in Table. [/| results are sorted by the
weights learned from the combined dataset. The findings are as follows.

1. share_param_true is effective for homogeneous agents. In our earlier analysis, parameter shar-
ing, as a hyperparameter originally emphasized by MAPPO as their core trick, appeared ineffective
when applied in isolation across all tasks. However, it proves beneficial in the Traffic environment,
where agents are homogeneous and share similar observations and objectives. Since we use the
best-performing hyperparameter set per task, parameter sharing consistently yields strong results
in this setting (p < .05). In contrast, in environments with heterogeneous agents, such as Dexhand,
Quads, and Voltage, agents have specialized roles, making parameter sharing less effective.

2. Small discount factor ~ benefits tasks with short episodes. Although smaller discount factors
show mixed results when applied individually, we find they perform well in combination with other
hyperparameters (p < .001 for both v = 0.9 and v = 0.95). Further analysis reveals that they are
particularly effective in tasks like Dexhand and Voltage, which have shorter episode lengths (80 and
200 steps, respectively). In such settings, lower v downweights distant rewards and promotes faster
convergence. In contrast, environments with longer episodes—such as Traffic (1000 steps) and Quads
(1600 steps)—benefit from higher v values to better account for long-term dependencies.

3. Higher critic learning rate brings consistent benefit. While beneficial as a standalone trick,
using a higher learning rate for the critic also consistently improves performance when combined
with other variations (p < .05). This result further supports the effectiveness of the two-timescale
actor-critic framework, where a faster-updating critic stabilizes training for a slower-updating actor.

4. The benefit of early stop remains consistent in hyperparameter synergy. Although early stop
is effective as a standalone technique, we find it remains consistently beneficial when combined with
other hyperparameters. Notably, we exclude it from Table /] as we save both the final model and the
best-performing checkpoint, allowing us to directly assess its impact. On average, early stop improves
cooperation by 2.85%, robustness by 13.62%, and resilience by 2.48%, with the improvement
statistically significant (paired ¢-test, p < .001). Its effectiveness is intuitive—early stopping selects
the best-performing model, making it generally applicable hyperparameter for trustworthy MARL.
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Takeaway. Use parameter sharing for homogeneous agents, smaller discount factors for short
episodes. Always use higher critic LR and early stop.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We have clearly stated all claims.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, in conclusions.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Code and data provided.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have provided the code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have provided code and data.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We have reported test results
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have reported them.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Yes, in main paper.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper focus on trustworthy MARL, so no possible risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited related assets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: We have open-sourced them.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: We use LLM to polish writing only.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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