
Under review as submission to TMLR

Sparsifying Bayesian neural networks with latent binary vari-
ables and normalizing flows

Anonymous authors
Paper under double-blind review

Abstract

Artificial neural networks are powerful machine learning methods used in many modern ap-
plications. A common issue is that they have millions or billions of parameters, and therefore
tend to overfit. Bayesian neural networks (BNN) can improve on this since they incorporate
parameter uncertainty. Latent binary Bayesian neural networks (LBBNN) further take into
account structural uncertainty by allowing the weights to be turned on or off, enabling infer-
ence in the joint space of weights and structures. Mean-field variational inference is typically
used for computation within such models. In this paper, we will consider two extensions
of variational inference for the LBBNN: Firstly, by using the local reparametrization trick
(LCRT), we improve computational efficiency. Secondly, and more importantly, by using
normalizing flows on the variational posterior distribution of the LBBNN parameters, we
learn a more flexible variational posterior than the mean field Gaussian. Experimental re-
sults on real data show that this improves predictive power compared to using mean field
variational inference on the LBBNN method, while also obtaining sparser networks. We
also perform two simulation studies. In the first, we consider variable selection in a lo-
gistic regression setting, where the more flexible variational distribution improves results.
In the second study, we compare predictive uncertainty based on data generated from two-
dimensional Gaussian distributions. Here, we argue that our Bayesian methods lead to more
realistic estimates of predictive uncertainty.

1 Introduction

Modern deep learning architectures can have billions of trainable parameters (Khan et al., 2020). Due to
the large number of parameters in the model, the network can overfit, and therefore may not generalize well
to unseen data. Further, the large number of parameters gives computational challenges both concerning
training the network and for prediction. The lottery ticket hypothesis (Frankle & Carbin, 2018; Pensia et al.,
2020) states that dense networks contain sparse subnetworks that can achieve the performance of the full
network. Even though the construction/training of such subnetworks is not necessarily simpler than training
the full network, substantial gains can be obtained in the prediction stage when using sparse subnetworks.

Bayesian neural networks (BNN, Neal, 1992; MacKay, 1995; Bishop, 1997) use a rigorous Bayesian method-
ology to handle parameter and prediction uncertainty. In principle, prior knowledge can be incorporated
through appropriate prior distributions, but most approaches within BNN so far only apply very simple
convenience priors (Fortuin, 2022). However, approaches where knowledge-based priors are incorporated
are starting to appear (Tran et al., 2022; Sam et al., 2024). Due to a more proper procedure for handling
uncertainty, the Bayesian approach does, in many cases, result in more reliable solutions with less overfit-
ting and better uncertainty measures. However, this comes at the expense of extremely high computational
costs. Until recently, inference on Bayesian neural networks could not scale to large multivariate data due to
limitations of standard Markov chain Monte Carlo (MCMC) approaches, the main quantitative procedure
used for complex Bayesian inference. Recent developments of variational Bayesian approaches (Gal, 2016)
allow us to approximate the posterior of interest and lead to more scalable methods.

1

Under review as submission to TMLR

In this work, we consider a formal Bayesian approach for obtaining sparse subnetworks by including latent
binary variables allowing the weights in the network to be turned on or off. This allows us to model structural
uncertainty and makes BNNs more robust to misspecification (Papamarkou et al., 2024). This also opens
the door for Bayesian model selection and averaging (Hubin & Storvik, 2019). The computational procedure
is based on variational inference. Earlier work (Hubin & Storvik, 2019; Bai et al., 2020; Hubin & Storvik,
2024), have considered similar settings approaches, our main contributions are

• improvements of computational efficiency in LBBNNs through the use of the local parametrization
trick (Kingma et al., 2015);

• extending the class of variational distributions to normalizing flows allowing modeling dependencies;

• demonstrating improvements in predictive power, sparsity, and variable selection through experi-
ments on real and simulated data;

• demonstrating robust performance in uncertainty quantification through the expected calibration
error for classification and Pinball loss for regression.

1.1 Literature background

The idea of using a mathematical model to imitate how the brain works was first introduced in McCulloch
& Pitts (1943). However, it was not until more recent years that the true power of these models could be
harnessed with the idea of using backpropagation (Rumelhart et al., 1986) to train the model with gradient
descent. With the advent of modern GPU architectures, deep neural networks can be scaled to big data, and
have shown to be very successful on a variety of tasks including computer vision (Voulodimos et al., 2018),
and natural language processing (Young et al., 2018). Modern deep learning architectures can have billions of
trainable parameters (Khan et al., 2020). Due to the large number of parameters in the model, the network
has the capacity to overfit, and therefore may not generalize well to unseen data. Various regularization
methods are used to try to deal with this, such as early stopping (Prechelt, 1998), dropout (Srivastava et al.,
2014) or data augmentation (Shorten & Khoshgoftaar, 2019). These techniques are heuristic and therefore
it is not always clear how to use them and how well they work in practice. It is also possible to reduce
the number of parameters in the network with pruning. This is typically done with the dense-to-sparse
method (Han et al., 2017). Here, a dense network is trained, while the importance of the weights (i.e.
their magnitude) is recorded. Then, the weights that fall below the sparsity threshold (a hyperparameter)
are removed. In Frankle & Carbin (2018), it is hypothesized that in randomly initialized dense networks,
there exists a sparse sub-network (the winning lottery ticket) that can obtain the same test accuracy as the
original dense network. Instead of training and pruning once, referred to as one-shot pruning, this process
is repeated sequentially several times, removing a certain percentage of the remaining weights each time,
which then results in networks that have a higher degree of sparsity than the ones found with one-shot
pruning. However, this comes at a higher computational cost. Further refinements to this are done in Evci
et al. (2020), where the network starts off dense, and dynamically removes the weights with the smallest
magnitude, while also adding new connections based on gradient information. Again, these approaches are
heuristic and lack a solid theoretical foundation. Another issue with deep learning models is that they often
make overconfident predictions. In Szegedy et al. (2013), it was shown that adding a small amount of noise
to an image can trick a classifier into making a completely wrong prediction (with high confidence), even
though the image looks the same to the human eye. The opposite is also possible, images that are white
noise can be classified with almost complete certainty to belong to a specific class (Nguyen et al., 2015).

Bayesian neural networks (BNNs) were presented by Neal (1992), MacKay (1995), and Bishop (1997). They
use a rigorous Bayesian methodology to handle parameter and prediction uncertainty. In many cases, this
results in more reliable solutions with less overfitting. Still, BNNs tend to be heavily over-parameterized
and difficult to interpret. It is therefore interesting to consider sparsity-inducing methods from a Bayesian
perspective. This is typically done by using sparsity-inducing priors, as in variational dropout (Kingma
et al., 2015; Molchanov et al., 2017), which uses the independent log uniform prior on the weights. This is an
improper prior, meaning that it is not integrable and thus not a valid probability distribution. As noted in
Hron et al. (2017), using this prior, combined with commonly used likelihood functions leads to an improper

2

Under review as submission to TMLR

Figure 1: A dense network on the left, one possible sparse structure on the right.

posterior, meaning that the obtained results can not be explained from a Bayesian modeling perspective. It
is argued that variational dropout should instead be interpreted as penalized maximum likelihood estimation
of the variational parameters. Additionally, Gale et al. (2019) finds that while variational dropout works
well on smaller networks, it gets outperformed by the heuristic (non-Bayesian) methods on bigger networks.
Another type of sparsity inducing prior is the independent scale mixture prior, where Blundell et al. (2015)
proposed a mixture of two Gaussian densities, where using a small variance for the second mixture component
leads to many of the weights having a prior around 0. Another possibility is to use the independent spike-
and-slab prior, most commonly used in Bayesian linear regression models. This prior is used in latent binary
Bayesian neural networks (LBBNN) introduced by Hubin & Storvik (2019; 2024) and concurrently in Bai
et al. (2020). The spike-and-slab prior for a special case of LBBNN with the ReLu activation function
was studied from a theoretical perspective in Polson & Ročková (2018). In Hubin & Storvik (2019) it was
empirically shown that using this prior will induce a very sparse network (around 90 % of the weights were
removed) while maintaining good predictive power. Using this approach thus takes into account uncertainty
around whether each weight is included or not (structural uncertainty) and uncertainty in the included
weights (parameter uncertainty) given a structure, allowing for a fully (variational) Bayesian approach to
network sparsification (see Figure 1). In this paper, we show that transforming the variational posterior
distribution with normalizing flows can result in even sparser networks while improving predictive power
compared to the mean field approach used in Hubin & Storvik (2019). Additionally, we demonstrate that
the flow network handles predictive uncertainty well, and performs better than the mean-field methods at
variable selection in a logistic regression setting with highly correlated variables, thus demonstrating higher
quality in structure learning.

2 The model

Given the explanatory variable x ∈ Rn, and the response variable y ∈ Rm, a neural network models the
function

y ∼ f(·; η(x))

where the distribution f(·; η) is parameterised by the vector η. The vector η is obtained through a compo-
sition of semi-affine transformations:

u
(l)
j = σ(l)

(n(l−1)∑
i=1

u
(l−1)
i γ

(l)
ij w

(l)
ij + b

(l)
j

)
, j = 1, . . . , n(l), l = 1, . . . , L, (1)

with ηj = u
(L)
j . Additionally, u(l−1) denotes the inputs from the previous layer (with u0 = x corresponding

to the explanatory variables), the w
(l)
ij ’s are the weights, the b

(l)
j ’s are the bias terms, and n(l) (and n(0) = n)

3

Under review as submission to TMLR

the number of inputs at layer l of a total L layers. Further, we have the elementwise non-linear activation
functions σ(l). The additional parameters γ

(l)
ij ∈ {0, 1} denote binary inclusion variables for the corresponding

weights.

Following Polson & Ročková (2018); Hubin & Storvik (2019); Bai et al. (2020), we consider a structure to
be defined by the configuration of the binary vector γ, and the weights of each structure conditional on
this configuration. To consider uncertainty in both structures and weights, we use the spike-and-slab prior,
where for each (independent) layer l of the network, we also consider the weights to be independent:

p(w(l)
ij |γ(l)

ij) = γ
(l)
ij N (w(l)

ij ; 0, (σ(l))2) + (1 − γ
(l)
ij)δ(w(l)

ij)

p(γ(l)
ij) = Bernoulli(γ(l)

ij ; α(l)).

We will use the nomenclature from Hubin & Storvik (2019) and refer to this as the LBBNN model. Here,
δ(·) is the Dirac delta function, which is considered to be zero everywhere except for a spike at zero. In
addition, σ2 and α denote the prior variance and the prior inclusion probability of the weights, respectively.
In practice, we use the same variance and inclusion probability across all the layers and weights, but this
is not strictly necessary. In principle, one can incorporate knowledge about the importance of individual
covariates or their co-inclusion patterns by adjusting the prior inclusion probabilities for the input layer or
specifying hyper-priors. This is common in Bayesian model selection literature (Fletcher & Fletcher, 2018),
but not yet within BNNs.

3 Bayesian inference

The main motivation behind using LBBNNs is that we are able to take into account both structural and
parameter uncertainty, whereas standard BNNs are only concerned with parameter uncertainty. By doing
inference through the posterior predictive distribution, we average over all possible structural configurations,
and parameters. For a new observation ỹ given training data, D, we have:

p(ỹ|D) =
∑

γ

∫
w

p(ỹ|w, γ, D)p(w, γ|D) dw.

This expression is intractable due to the ultra-high dimensionality of w and γ, and using Monte Carlo
sampling as an approximation is also challenging due to the difficulty of obtaining samples from the posterior
distribution, p(w, γ|D). Instead of trying to sample from the true posterior, we turn it into an optimization
problem, using variational inference (VI, Blei et al., 2017). The key idea is that we replace the true posterior
distribution with an approximation, qθ(w, γ), with θ denoting some variational parameters. We learn
the variational parameters that make the approximate posterior as close as possible to the true posterior.
Closeness is measured through the Kullback-Leibler (KL) divergence,

KL [qθ(w, γ)||p(w, γ|D)] =
∑

γ

∫
w

qθ(w, γ) log qθ(w, γ)
p(w, γ|D) dw. (2)

Minimizing the KL-divergence (with respect to θ) is equivalent to maximizing the evidence lower bound
(ELBO):

ELBO(qθ) = Eqθ(w,γ) [log p(D|w, γ)] − KL [qθ(w, γ)||p(w, γ)] . (3)

The objective is thus to maximize the expected log-likelihood while penalizing with respect to the KL
divergence between the prior and the variational posterior. How good the approximation becomes depends
on the family of variational distributions {qθ, θ ∈ Θ} that is chosen.

3.1 Choices of variational families

A common choice (Blundell et al., 2015) for the approximate posterior in (dense) Bayesian neural networks
is the mean-field Gaussian distribution. For simplicity of notation, denote now by W the set of weights
corresponding to a specific layer. Note that from here on, we drop the layer notation for readability, since

4

Under review as submission to TMLR

Figure 2: On the left, the mean-field variational posterior where the weights are assumed independent. On
the right, the latent variational distribution z allows for modeling dependencies between the weights.

the parameters at different layers will always be considered independent in both the variational distribution
and the prior. Then

qθ(W) =
nin∏
i=1

nout∏
j=1

N (wij ; µ̃ij , σ̃2
ij),

where nin and nout denote the number of neurons in the previous and current layer, respectively. Weights
corresponding to different layers are assumed independent as well. The mean-field Gaussian distribution for
Bayesian neural networks can be extended to include the binary inclusion variables following Carbonetto &
Stephens (2012):

qθ(W|Γ) =
nin∏
i=1

nout∏
j=1

(
γijN (wij ; µ̃ij , σ̃2

ij) + (1 − γij)δ(wij)
)

;

qα̃ij
(γij) = Bernoulli(γij ; α̃ij).

(4)

Here, Γ is the set of inclusion indicators corresponding to a specific layer. However, the mean-field Gaussian
distribution (Blundell et al., 2015) is typically too simple to be able to capture the complexity of the true
posterior distribution. We follow Ranganath et al. (2016), and introduce a set of auxiliary latent variables
z to model dependencies between the weights in q, and use the following variational posterior distribution:

qθ(W|Γ, z) =
nin∏
i=1

nout∏
j=1

(
γijN (wij ; ziµ̃ij , σ̃2

ij) + (1 − γij)δ(wij)
)

;

qα̃ij (γij) = Bernoulli(γij ; α̃ij),

(5)

where z = (z1, ..., znin) follows a distribution qϕ(z). For an illustration of the difference between the two
variational distributions in Equation (4) and Equation (5), see Figure 2. The novelty in our suggested
variational distribution is to combine both weight and structural uncertainty, in addition to modeling depen-
dencies between the weights. As for W, also z is a set of variables related to a specific layer and independence
between layers is assumed also for z’s. To increase the flexibility of the variational posterior, we apply nor-
malizing flows (Rezende & Mohamed, 2015) to qϕ(z). In general, a normalizing flow is a composition of
invertible transformations of some initial (simple) random variable z0,

zk = fk(zk−1), k = 1, ..., K.

5

Under review as submission to TMLR

The log density of the transformed variable z = zK is given as,

log q(z) = log q0(z0) −
K∑

k=1
log
∣∣∣∣det ∂zk

∂zk−1

∣∣∣∣ . (6)

We are typically interested in transformations that have a Jacobian determinant that is tractable, and fast
to compute, in addition to being highly flexible. Transforming the variational posterior distribution in a
BNN with normalizing flows was first done in Louizos & Welling (2017), who coined the term multiplicative
normalizing flows (BNN-FLOW), where the transformations were applied in the activation space instead of
the weight space. As the weights are of much higher dimensions, the number of flow parameters and thus the
number of parameters of variational distribution would explode quickly. We will follow Louizos & Welling
(2017) here. The main difference in our work is that by using the variational posterior in Equation (5), we
also get sparse networks.

For the normalizing flows, we will use the inverse autoregressive flow (IAF), with numerically stable updates,
introduced by Kingma et al. (2016). It works by transforming the input in the following way:

zk−1 = input
mk, sk = g(zk−1)

κk = sigmoid(sk)
zk = κk ⊙ zk−1 + (1 − κk) ⊙ mk,

(7)

where g is a neural network and ⊙ denotes elementwise multiplication. Assuming the neural network in
Equation (7) is autoregressive (i.e zk,i can only depend on zk,1:i−1), we get a lower triangular Jacobian and

log
∣∣∣∣det ∂zk

∂zk−1

∣∣∣∣ =
nin∑
i=1

log κk,i. (8)

3.2 Computing the variational bounds

Minimization of the KL in Equation (2) is difficult due to the introduction of the auxiliary variable z
in the variational distribution. In principle, z could be integrated out, but in practice this is difficult.
Following Ranganath et al. (2016), we instead introduce z as an auxiliary variable also in the posterior
distribution by defining

p(w, γ, z|D) = p(w, γ|D)r(z|w, γ)

where r(z|w, γ) in principle can be any distribution. We then consider the KL divergence in the extended
space for (w, γ, z):

KL [q(w, γ, z)||p(w, γ, z|D)] =
∫

z

∑
γ

∫
w

q(w, γ, z) log q(w, γ, z)
p(w, γ, z|D) dwdz

which, by utilizing the definitions of p(w, γ, z) and q(w, γ, z) can be rewritten to

KL [q(w, γ, z)||p(w, γ, z|D)]

=Eq(z)

[
KL [q(w, γ|z)||p(w, γ)] + log q(z)

]
− Eq(W,Γ,z)

[
log p(D|w, γ) + log r(z|w, γ)

]
+ log p(D). (9)

As shown in Ranganath et al. (2016),

KL [q(w, γ)||p(w, γ|D)] ≤ KL [q(w, γ, z)||p(w, γ, z|D)] , (10)

giving a looser than the original upper bound (see Ranganath et al. (2016) for a proof), but the dependence
structure in the variational posterior distribution can compensate for this.

6

Under review as submission to TMLR

After doing some algebra, we get the following contribution to the first term within the first expectation
in Equation (9) from a specific layer:

∑
ij

(
α̃ij

(
log σij

σ̃ij
+ log α̃ij

αij
− 1

2 + σ̃2
ij+(µ̃ijzi−0)2

2σ2
ij

)
+(1 − α̃ij) log 1−α̃ij

1−αij

)
.

Since we use autoregressive flows, the contribution to the second term in the first expectation simplifies to

log q(z) = log q0(z0) −
K∑

k=1

nin∑
i=1

log κk,i.

For the specific choice of r(z|w, γ), we follow Louizos et al. (2017) in choosing

rB(zB |w, γ) =
nin∏
i=1

N (νi, τ2
i).

We define the dependence of ν = (ν1, ..., νin) and τ 2 = (τ2
1 , ..., τ2

in) on w and γ similar to Louizos & Welling
(2017):

ν = n−1
out(d1sT)1, with s = ζ(eT (w ⊙ γ))

log τ 2 = n−1
out(d2sT)1.

(11)

Here, d1, d2 and e are trainable parameters with the same shape as z. For ζ, we use hard-tanh 1 , as opposed
to tanh (used in Louizos & Welling (2017)) as this works better empirically. For the last term of Equation
(9), we thus have:

log r (z|w, γ) = log rB (zB |w, γ) + log
∣∣∣∣det ∂zB

∂z

∣∣∣∣ .
This means that we must use two normalizing flows, one to get from z0 to z = zK , and another from z
to zB . Here, we have shown the inverse normalizing flow with only one layer, but this can in general be
extended to an arbitrary number of them just like in Equation (6).

For the biases of a given layer, we assume they are independent of the weights, and each other. We use the
standard normal prior with the mean-field Gaussian approximate posterior. As we do not use normalizing
flows on the biases, we only need to compute the KL-divergence between two Gaussian distributions:

KL [q(b)||p(b)] =
∑

ij

(
log

σbij

σ̃bij

− 1
2 +

σ̃2
bij

+ (µ̃bij
− 0)2

2σ2
bij

)
.

In practice, the ELBO is optimized through a (stochastic) gradient algorithm where the reparametrization
trick (Kingma & Welling, 2013) combined with mini-batch is applied. This involves sampling the large Γ
and W matrices.

4 Combining LBBNNs with the LCRT and MNF

The variational distribution in Equation (4) (used in both Hubin & Storvik (2019) and Bai et al. (2020))
has two major drawbacks when utilized in deep Bayesian neural networks. Firstly, each forward pass during
training requires sampling the large Γ and W matrices, consisting of all γij ’s, and wij ’s, to compute the
activations for each layer in the network, as opposed to standard BNNs that only require to sample W.
Additionally, due to the binary nature of the γij ’s, they must be approximated with a continuous distribution
in order to be able to propagate gradients through them using the reparametrization trick. Here, we will
show how to circumvent both of these issues by sampling the pre-activations hj (by which we mean the linear

1See https://pytorch.org/docs/stable/generated/torch.nn.Hardtanh.html for a definition.

7

https://pytorch.org/docs/stable/generated/torch.nn.Hardtanh.html

Under review as submission to TMLR

combination before the non-linear activation function is applied) given in Equation (1) directly, typically
referred to as the local reparametrization trick (Kingma et al., 2015, LCRT). The general idea behind the
LCRT is that if we have a sum of independent Gaussian random variables, the sum will also be (exactly)
Gaussian. In our variational approximation, we have a sum of independent random variables where each
member of the sum is, in turn, a product of a pair of discrete and a continuous random variable. The
central limit theorem still holds for a sum of independent random variables, as long as Lindeberg’s condition
(Billingsley, 2017) is satisfied. Thus, in order to apply the LCRT in our case, we must compute the mean and
variance of the (approximate) Gaussian pre-activations: Then, we still use the same stochastic variational
inference optimization algorithm as in Hubin & Storvik (2024).

E[hj] = E

[
bj +

N∑
i=1

oiγijwij

]
= µ̃bj

+
N∑

i=1
oiα̃ij µ̃ij

Var[hj] = Var
[

bj +
N∑

i=1
oiγijwij

]
= σ̃2

bj
+

N∑
i=1

o2
i α̃ij(σ̃2

ij + (1 − α̃ij)µ̃2
ij).

Here, o denotes the output from the previous layer, consisting of N neurons. Another advantage of using
the LCRT is that we get a reduction in the variance of the gradient estimates, as shown in Kingma et al.
(2015). Note also that the approximations induced by the sampling procedure for h also can be considered
as an alternative variational approximation directly for p(h|D).

For our second extension, we apply normalizing flows in the activation space to increase the flexibility of the
variational posterior. When using normalizing flows, the mean and the variance of the activation hj are:

E[hj] = µ̃bj
+

N∑
i=1

oiziα̃ij µ̃ij

Var[hj] = σ̃2
bj

+
N∑

i=1
o2

i α̃ij(σ̃2
ij + (1 − α̃ij)z2

i µ̃2
ij),

It should be noted that z affects both the mean and the variance of our Gaussian approximation, whereas in
Louizos & Welling (2017) it only influences the mean. Louizos & Welling (2017) also sample one z for each
observation within the mini-batch. We found that empirically it made no difference in performance to only
sample one vector and multiply the same z with each input vector. We do this, as it is more computationally
efficient.

5 Experiments

In this section, we demonstrate the robustness of our approach and show improvements with respect to the
closest baseline methods of Hubin & Storvik (2024), (denoted LBBNN-SSP-MF in their paper), denoted
LBBNN here, with the two approaches proposed in this paper. We consider both full Bayesian model
averaging (Hoeting et al., 1999), averaging over the posterior distribution for the inclusion variables, as well
as the use of the median probability model (Barbieri et al., 2018), only including weights with posterior
probabilities for inclusion variables above 0.5. Median probability models have the potential of giving huge
sparsity gains. We also compare it to other reasonable baseline methods. We are not interested in trying
to obtain state-of-the-art predictive results at all costs, hence all our experiments are run without using
ad-hoc tricks commonly found in the Bayesian deep learning literature that often improve on performance,
such as tempering the posterior (Wenzel et al., 2020) or clipping the variance of the variational posterior
distribution as done in Louizos & Welling (2017). Using these tricks (although tempting) would not allow
us to evaluate the pure contribution of the methodology. We provide comparisons to a standard BNN, and
to the multiplicative normalizing flow method (BNN-FLOW) introduced by Louizos & Welling (2017), as
these are closely related to the LBBNN and its two extensions detailed in this paper. The goal is to compare
results between frequentist and our Bayesian networks with the same architecture and hyper-parameters.
See Figure 3 for a graphical illustration of how the different methods are related to one another. We have a

8

Under review as submission to TMLR

Figure 3: Illustration of the relations between the different methods considered in this paper. Exactly one
design change is present between all direct neighbours disregarding the directions of the edges.

standard, frequentist neural network without any regularization (ANN), that corresponds to using maximum
likelihood to estimate the weights of the network. We also have a frequentist network with L2 regularization,
corresponding to the maximum a posteriori estimator (MAP) with independent Gaussian priors from a
standard BNN. We added a BNN approximated with a mean-field variational inference, which we also added
to comparisons. This standard BNN takes into account uncertainty in the weights, rather than finding a
point estimate allowing us to evaluate the benefit of it as compared to corresponding MAP estimates. From
there, we get to the LBBNN method by having an extra inclusion parameter for each weight, allowing for
a sparse BNN. For LBBNN exactly the same parameter priors (slab components) as in BNN were used,
allowing us to evaluate the effects of adding the structural uncertainty. The multiplicative normalizing flow
method (BNN-FLOW) is also closely related to a standard BNN, but here instead of sparsifying the network,
we allow the variational posterior distribution to be more flexible than a standard mean-field Gaussian, used
in BNNs. Further, using the local reparametrization trick (LBBNN-LCRT) is mainly a computational
advantage compared to the LBBNN method. Finally, LBBNN-FLOW (proposed in this paper) is related to
both BNN-FLOW and LBBNN-LCRT, in the sense that it can learn a sparse BNN, and in addition have a
more flexible posterior distribution than the mean-field Gaussian used in LBBNN-LCRT. In Hubin & Storvik
(2019), comprehensive classification experiments show that LBBNNs can sparsify Bayesian neural networks
to a large degree while maintaining high predictive power.

We demonstrate that increasing the flexibility of the variational posterior with normalizing flows improves
both predictive performance and sparsity levels against the mean-field approximations for LBBNN on a
set of addressed datasets. Additionally, we perform two simulation studies. In the first one, we consider
variable selection in a logistic regression setting, with highly correlated explanatory variables. In the second,
we generate data from clusters of two-dimensional Gaussian distributions and compare how the different
methods handle predictive uncertainty. All the experiments were coded in Python, using the PyTorch deep
learning library (Paszke et al., 2019). In addition to the results reported here, we also perform classification
experiments on various tabular datasets, taken from the UCI machine learning repository (Kelly et al., 2023).
The results (detailed in Appendix C), demonstrate that our suggested approach also works in these settings.
Additionally, for the UCI datasets, for an empirical measure of calibration, we report the expected calibration
error (ECE) Guo et al. (2017) on the classification problems. Further, we calculate Pinball loss (Gneiting,
2011) on regression problems, averaged across levels from 0.05 to 0.95 (see Tables 6 and 10 in AppendixC).
On the regression datasets, we include two additional baselines for comparison, Gaussian Processes, using an
out-of-the-box version of the package from Varvia et al. (2023), and BNNs fitted with Hamiltonian Monte
Carlo (HMC), using the package from Sharaf et al. (2020). While the former performed well and on par with
our methods, the latter was underperforming. Our flow method when both using the full (variational) model
averaging and the median probability model is demonstrating robust performance (one may with caution

9

Under review as submission to TMLR

Table 1: Performance metrics on the logistic regression variable selection simulation study.

CS LBBNN-LCRT LBBNN-FLOW
mean TPR 0.681 0.838 0.972
mean FPR 0.125 0.084 0.074

say even on par or better) compared to the baselines on these datasets. Finally for the UCI datasets, we
additionally check the internal parsimony of all of the Bayesian baselines through the pWAIC1 and pWAIC2

penalties from Gelman et al. (2014), metrics that also have been used as estimates of the effective number
of parameters.

5.1 Logistic regression simulation study

In this section, we do a variable selection experiment within a logistic regression setting. As logistic regression
is just a special case of a neural network with one neuron (and hence one layer), modifying the algorithms
is straightforward. We are limiting ourselves to the logistic regression context to be able to compare to
the original baseline method from Carbonetto & Stephens (2012), who have shown that the mean-field
variational approximation starts to fail the variable selection task when the covariates are correlated. As we
are only interested in comparing the mean-field variational approach against the variational distribution with
normalizing flows, we do not include comparisons with more traditional variable selection methods such as
Lasso (Tibshirani, 1996) or Elastic Net (Zou & Hastie, 2005). We use the same data as in Hubin & Storvik
(2018), consisting of a mix of 20 binary and continuous variables, with a binary outcome, and we have 2 000
observations. The covariates, x, are generated with a strong and complicated correlation structure between
many of the variables (see Figure 4). For more details on exactly how the covariates are generated, see
appendix B of Hubin & Storvik (2018). The response variable, y, is generated according to the following
data-generating process:

η ∼ N (βx, 0.5)

y ∼ Bernoulli
(

exp(η)
1 + exp(η)

)
with the regression parameters defined to be:

β = (−4, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1.2, 0, 37.1, 0, 0, 50, −0.00005, 10, 3, 0).

The goal is to train the different methods to select the non-zero elements of β. We consider the parameter βj

to be included if the posterior inclusion probability αj > 0.5, i.e. the median probability model of Barbieri
& Berger (2004). We fit the different methods 100 times (to the same data), each time computing the true
positive rate (TPR), and the false positive rate (FPR).

In this experiment we compare our approaches LBBNN-LCRT and LBBNN-FLOW against the algorithm
proposed by Carbonetto & Stephens (2012), denoted as CS henceforth. That method is very similar to
LBBNN-LCRT, as it uses the same variational distribution. But in CS, optimization is done with coordinate
ascent variational inference and without subsampling from the data. For the normalizing flows, we use flows
of length two with the neural networks having two hidden layers of 100 neurons each. We use a batch size of
400 and train for 500 epochs. We use standard normal priors for the weights and a prior inclusion probability
of 0.25 on the inclusion indicators for all three approaches. Hence, we are in the setting of a Bayesian logistic
regression, with variable selection.

The results are in Table 3. We also show a bar-plot (Figure 5) for each of the 20 weights over the 100 runs.
We see that LBBNN-FLOW performs best, with the highest TPR and the lowest FPR. It is especially good
at picking out the correct variables where there is a high correlation between many of them (for example

10

Under review as submission to TMLR

Figure 4: Plots showing the correlation between different variables in the logistic regression simulation study.

11

Under review as submission to TMLR

Figure 5: Bar-plots showing how often the weights are included over 100 runs.

β1 − β6). We might attribute this to the more flexible variational posterior distribution, as opposed to
the mean-field Gaussian distribution used in the other three methods. Carbonetto & Stephens (2012) also
discuss how the mean-field approach can only be expected to be a good approximation when the variables
are independent or at most weakly correlated.

5.2 Predictive uncertainty

A key motivation behind using a Bayesian approach is their ability to handle predictive uncertainty more
accurately than non-Bayesian neural networks. We therefore in this experiment want to illustrate how our
approaches LBBNN-LCRT and LBBNN-FLOW, as well as Monte Carlo dropout (Gal & Ghahramani, 2016),
and a regular (dense) BNN behave in terms of the predictive uncertainty. The purpose of this study is, thus,
illustrative rather than comparative and the methods are not competing here. For this experiment, we
simulate 5 clusters of data from two-dimensional Gaussian distributions. For the five Gaussians, we use the
means and covariances reported in Appendix B. The data is then transformed to be in the range between 0
and 1, for ease of visualization. The task is to classify to the correct class corresponding to a specific cluster.

We generate three datasets, with 10, 50, and 200 samples from each class, respectively. For all the methods,
we fit a network with one hidden layer consisting of 1000 neurons, meaning we are in a setting where the
number of trainable parameters is much larger than the number of observations, which is a typical scenario
for applications of Bayesian neural networks. For dropout, we use 0.5 for the dropout probability, and we
use 0.5 for the prior inclusion probabilities for LBBNN-LCRT and LBBNN-FLOW. We use flows of length
two, with the neural networks consisting of two hidden layers of 50 neurons each. For all the methods, we
use 10 samples for model averaging. To measure predictive uncertainty, we generate a test set over a grid
over [0, 1]2 and compute the entropy of the predictive distributions for each point in the grid. Maximum
entropy is attained when the predictive distribution is uniform, i.e. 0.2 for each class. The results are shown
in Figure 6, Figure 7, and Figure 8.

With little data, we see a stark difference between dropout and the Bayesian networks. Dropout predictions
are highly confident everywhere, except for at the decision boundaries between the classes. In contrast, the
Bayesian networks exhibit high uncertainty in most areas, especially where little data is observed. When
we increase the amount of data, we can see that the Bayesian networks gradually get more certain about
predictions, and the entropies (as desired) start to converge towards the data-generative ones, while for
dropout at a given rate, the uncertainties do not reduce. It should be noted that there is no under-fitting
happening, as we have close to 100% accuracy during training for all the methods. As a final observation, we
see that the dense BNN typically has slightly less uncertainty than LBBNN with LCRT and FLOW. However,
we can not say much about how good/bad this is, since it is difficult to obtain the true uncertainties for
our model, i.e. running a reversible jump MCMC (Green & Hastie, 2009) in the settings of LBBNN of a
reasonable size is currently just infeasible computationally.

Additionally, we perform an experiment where we generate 10 000 test samples (2 000 from each cluster), after
training with 50 samples (10 from each cluster). After training, we compute the entropy of the predictive
distribution on the test data and sort the data from lowest to highest entropy. We also sort the samples based

12

Under review as submission to TMLR

Figure 6: Entropy with 10 samples from each cluster

Figure 7: Entropy with 50 samples from each cluster

13

Under review as submission to TMLR

Figure 8: Entropy with 200 samples from each cluster

on the maximum class probability and compute the cumulative accuracy (with 100 data samples at a time).
By that, we mean that we start with the accuracy for the 100 most confident predictions, followed by 100
less confident predictions, and so on until we reach 100 of the least confident predictions. The results are in
Figure 9. With dropout, the maximum class probability is typically very high (i.e. we are extremely certain
about which class the sample belongs to). After the first 5 000 (sorted) samples, the output probability
for the most likely class is at around 95%. With LCRT and FLOW, on the other hand, it has dropped to
roughly 50%. This mirrors what we saw earlier, dropout has high certainty most of the time. Despite this,
we see that in this experiment the Bayesian methods have higher predictive accuracy than dropout for the
cases with the most uncertainty.

As a final illustration, we consider an experiment where we take the maximum model averaged pre-activation
output (pre-softmax) of the last layer (i.e. just before applying the softmax function) as a measure instead
of using entropy. We use the training data (m = 1000) to generate an empirical confidence interval for the
model-averaged pre-activation outputs for all the classes. We use a one-sided 95% confidence interval on the
upper bound. During testing, we generate a sample over a grid, now between -1 and 2 in both dimensions,
and take the highest model-averaged pre-activation output. We then check whether it falls within the
empirical confidence interval or not. The results are shown in Figure 10. We see that in the regions with
extremely low entropy, we can detect out-of-distribution data. This shows that using maximal entropy for
out-of-distribution data as suggested in Louizos & Welling (2017) might not be optimal. However, we still
see the potential of BNNs to differentiate between in and out-of-domain uncertainty using the pre-activation
values of the output of BNNs. We do not go any further here and leave this topic for future research. We
rather continue with some real data examples.

14

Under review as submission to TMLR

Figure 9: Top left, cumulative accuracy (100 samples at a time), where each point is the accuracy for the
corresponding data points. Top right, entropy sorted from low to high. Bottom, maximum class probability
sorted from high to low.

15

Under review as submission to TMLR

Figure 10: Out of distribution detection, where dark blue corresponds to the OOD data detected by the
BNN, and white is the in-distribution data.

5.3 Classification experiments

We perform two classification experiments, one with the same fully connected architecture as in Hubin &
Storvik (2019), and the other with a convolutional architecture (see appendix A for details on how this is
implemented, while the specifications on the architecture will be provided later in the text). In both cases,
we classify on MNIST (Deng, 2012), FMNIST (Fashion MNIST) (Xiao et al., 2017) and KMNIST (Kuzushiji
MNIST) (Clanuwat et al., 2018). MNIST is a database of handwritten digits ranging from 0 to 9. FMNIST
consists of ten different fashion items from the Zalando (Europe’s largest online fashion retailer) database.
Lastly, KMNIST also consists of ten classes, with each one representing one row of Hiragana, a Japanese
syllabary. All of these datasets contain 28x28 grayscale images, divided into a training and validation set
with 60 000 and 10 000 images respectively. MNIST and FMNIST are well-known and often utilized datasets,
so it is easy to compare performance when testing novel algorithms. KMNIST is a somewhat recent addition
and is considered a more challenging task than the classical MNIST digits dataset because each Hiragana
can have many different symbols.

For the experiments with the fully connected architecture, we have two hidden layers with 400 and 600
neurons respectively, ReLU (Agarap, 2018) activation functions. For fitting the models, we used the Adam
(Kingma & Ba, 2014) optimizer. We use a batch size of 100 and train for 250 epochs. All the experiments
are run 10 times, and we report the minimum, median, and maximum predictive accuracy over these 10
runs. In addition to the performance measure (accuracy), we also report the density of the network, defined
as the ratio of non-zero weights. The reported density (1-sparsity) is an average over these 10 runs. For the
UCI datasets, we also measure the computed pWAIC1 , and pWAIC2 from Gelman et al. (2014)), as these can
be argued to be a measure the effective number of parameters of the models. Although, according to Gelman
et al. (2014) the latter is only valid for normal linear models with large sample size, known variance, and
uniform prior distribution. The results are in Tables 7, 8, and 11 in Appendix C. For BNN and BNN-FLOW,
we use standard normal priors. For ANN + L2, we use the weight decay of 0.5, inducing a penalized likelihood,
which corresponds to MAP (maximum aposteriori probability) solutions of BNN and BNN-FLOW under
standard normal priors. For the LBBNN-LCRT and LBBNN-FLOW methods, we use the standard normal
prior for the slab components of all the weights and biases in the network, and a prior inclusion probability
of 0.10. For both q(z) and r(z|W, Γ), we use flows of length two, where the neural networks consist of two
hidden layers with 250 neurons each. For our second classification experiment, we use the LeNet-5 (LeCun
et al., 1998) convolutional architecture, but with 32 and 48 filters for the convolutional layers. We use the
same priors and normalizing flows as in the previous experiment, and the same datasets. We emphasize that
it is possible to use deeper and more complicated architectures (for example Resnet-18 (He et al., 2016)),
which may improve the results reported in this paper. As the goal here is not to try to approach (or hack
through tuning and engineering) state-of-the-art results, we do not experiment any further with this. To

16

Under review as submission to TMLR

Table 2: Performance metrics (accuracy and density) on the KMNIST, MNIST, FMNIST validation data,
for the fully connected architecture. For the accuracies (%), we report the minimum, maximum, and median
over the ten different runs. Density is computed as an average over the ten runs. The best median results
are bold.

KMNIST Median probability model Full model averaging
Method min median max density min median max density
LBBNN 89.22 89.59 89.98 0.113 89.43 89.76 90.21 1.000
LBBNN-LCRT 90.04 90.26 90.43 0.136 90.23 90.39 90.60 1.000
LBBNN-FLOW 90.64 91.12 91.46 0.096 91.16 91.30 91.61 1.000
BNN-FLOW - - - - 92.02 92.28 92.61 1.000
BNN - - - - 92.21 92.53 92.64 1.000
ANN - - - - 90.44 91.02 91.28 1.000
ANN + L2 - - - - 87.24 87.76 88.15 1.000

MNIST Median probability model Full model averaging
Method min median max density min median max density
LBBNN 98.01 98.10 98.20 0.098 98.03 98.14 98.23 1.000
LBBNN-LCRT 97.84 97.95 98.09 0.103 98.01 98.08 98.11 1.000
LBBNN-FLOW 98.14 98.36 98.42 0.074 98.23 98.42 98.53 1.000
BNN-FLOW - - - - 98.43 98.58 98.63 1.000
BNN - - - - 98.36 98.48 98.63 1.000
ANN - - - - 97.95 98.13 98.20 1.000
ANN + L2 - - - - 96.97 97.05 97.16 1.000

FMNIST Median probability model Full model averaging
Method min median max density min median max density
LBBNN 88.47 88.76 88.90 0.106 88.60 88.74 88.91 1.000
LBBNN-LCRT 87.51 87.82 87.94 0.141 87.88 87.94 88.14 1.000
LBBNN-FLOW 89.49 89.70 89.88 0.097 89.52 89.80 89.92 1.000
BNN-FLOW - - - - 89.19 89.42 89.53 1.000
BNN - - - - 90.07 90.20 90.43 1.000
ANN - - - - 88.75 89.51 89.88 1.000
ANN + L2 - - - - 86.85 87.37 87.54 1.000

measure predictive performance, we consider two approaches. First, the fully variational Bayesian model
averaging approach, where we average over 100 samples from the variational posterior distribution, taking
into account uncertainty in both weights and structures following Hubin & Storvik (2019). Secondly, we
consider the median probability model (Barbieri & Berger, 2004), where we only do model averaging over
the weights that have a posterior inclusion probability greater than 0.5, whilst others are excluded from the
model. This allows for significant sparsification of the network. We emphasize that this is possible because
we can go back to sampling the weights when doing inference, i.e. we sample only from the weights that
have a corresponding inclusion probability greater than 0.5. We also report the density, i.e. the proportion
of weights included in the median probability model. For the full variational model averaging approach we
consider the density to be equal to one since we do not explicitly exclude any weights when computing the
predictions (even though a large proportion of the weights may have a small inclusion probability and in
practice within any 10 samples over which we are marginalizing less than 100% of the weights will be used,
yet ideally one wants to average over more than 10 samples).

The results with the fully connected architecture can be found in Table 2 and for the convolutional archi-
tecture in Table 3. Firstly, we see that using the LBBNN-LCRT gives results that are comparable to the
baseline LBBNN method, except for FMNIST where it performs a bit worse both with the fully connected

17

Under review as submission to TMLR

Table 3: Performance metrics on the KMNIST, MNIST, FMNIST validation data, with the convolutional
architecture. See the caption in Table 2 for more details.

KMNIST Median probability model Full model averaging
Method min median max density min median max density
LBBNN 95.13 95.52 95.89 0.359 95.21 95.48 95.78 1.000
LBBNN-LCRT 94.73 94.94 95.16 0.429 95.07 95.42 95.65 1.000
LBBNN-FLOW 95.73 95.99 96.43 0.351 96.00 96.18 96.44 1.000
BNN-FLOW - - - - 96.14 96.42 96.64 1.000
BNN - - - - 95.19 95.34 95.58 1.000
ANN - - - - 94.18 94.95 95.27 1.000
ANN + L2 - - - - 92.00 92.51 92.77 1.000

MNIST Median probability model Full model averaging
Method min median max density min median max density
LBBNN 99.22 99.26 99.35 0.353 99.21 99.28 99.33 1.000
LBBNN-LCRT 99.11 99.26 99.31 0.406 99.20 99.28 99.34 1.000
LBBNN-FLOW 99.15 99.27 99.41 0.338 99.16 99.29 99.42 1.000
BNN-FLOW - - - - 99.26 99.32 99.41 1.000
BNN - - - - 99.21 99.30 99.36 1.000
ANN - - - - 99.01 99.15 99.23 1.000
ANN + L2 - - - - 97.93 98.30 98.40 1.000

FMNIST Median probability model Full model averaging
Method min median max density min median max density
LBBNN 91.14 91.31 91.48 0.352 91.10 91.26 91.44 1.000
LBBNN-LCRT 90.04 90.40 90.85 0.433 90.52 90.73 91.06 1.000
LBBNN-FLOW 90.52 91.54 91.75 0.367 91.38 91.71 92.04 1.000
BNN-FLOW - - - - 91.60 91.87 92.10 1.000
BNN - - - - 91.04 91.60 91.99 1.000
ANN - - - - 90.40 91.21 91.63 1.000
ANN + L2 - - - - 87.79 88.05 88.48 1.000

and with the convolutional architecture. It is no surprise that these results are similar, as using the LCRT
is mainly a computational advantage. Secondly, we note that the LBBNN-FLOW method performs better
than the other two methods, on both convolutional and fully connected architectures, while having the most
sparse networks. We also see that LBBNN-FLOW performs well compared to the BNN and BNN-FLOW
architectures, especially on the fully connected architecture where it gets comparable accuracy even with
very sparse networks. The higher density in general on the convolutional architectures is mainly a result
of them being already sparse in the beginning. However, these networks could also be sparsified further
by using more conservative priors on inclusions of the weights. The increased predictive power of using
normalizing flows comes at a computational cost. With the fully connected architecture, we observed that
it took around 4 seconds to train one epoch with LBBNN-LCRT, 13 seconds with LBBNN, and 17 seconds
with LBBNN-FLOW on an NVIDIA A10 GPU. On the convolutional architecture, it took 7 seconds per
epoch with the LBBNN-LCRT, 18 seconds with LBBNN, and 28 with normalizing flows. We note that the
frequentist networks perform slightly worse on these datasets with our chosen architectures. The results
could likely be improved by adding more regularization, such as dropout or batch-normalization, but we
do not do this here, as we are not interested in trying to obtain state-of-the-art results. Naturally, the
frequentist networks are much more computationally efficient, as they only have half the parameters of a
standard BNN.

18

Under review as submission to TMLR

6 Discussion

We have demonstrated that increasing the flexibility in the variational posterior distribution with normalizing
flows improves the predictive power compared to the baseline method (with mean-field posterior) while
obtaining more sparse networks, despite having a looser variational bound than the mean-field approach.
Also, the flow method performed best on a variable selection problem demonstrating better structure learning
performance, while the mean-field approaches struggle with highly correlated variables. More generally, we
argue that Bayesian neural networks (BNNs) are much better at obtaining realistic predictive uncertainty
estimates than their frequentist counterparts, as they have higher uncertainty when data is sparse. We do not
observe a big difference in the uncertainty estimates obtained with dense BNN compared to our approaches.
Also, calibration of uncertainties in predictive applications is similar with a slight advantage of the proposed
in this paper approach. Unlike dense BNNs, our methods have the additional advantage of being able to
perform variable selection. The downside is that LBBNNs have an extra parameter per weight, making them
less computationally efficient than dense BNNs. Using normalizing flows is a further computational burden
as we must also optimize over all the extra flow parameters. If uncertainty handling is not desirable, one
could gain the minimal number of predictive parameters using the model trained with flows by relying on
the posterior means of the median probability model’s parameters. This approach is studied for simpler
approximations in more detail in Hubin & Storvik (2024) but it is omitted in this paper.

In this paper, we use the same prior for all the weights and inclusion indicators, although this is not necessary.
A possible avenue of further research could be to vary the prior inclusion probabilities, to induce different
sparsity structures or to incorporate the actual prior knowledge about prior inclusion probabilities of the
covariates. Currently, we are taking into account uncertainty in weights and parameters, given some neural
network architecture. In the future, it may be of interest to see if it is also possible to incorporate uncertainty
in the activation functions. By having skip connections to the output, we could learn with uncertainties to
skip all non-linear layers if a linear function is enough, or if a constant estimate of the parameters of the
responses is enough (null model), or if one needs some nonlinear layers. This could lead to more transparent
Bayesian deep learning models. But the success in that task relies on sufficiently good structure learning,
where mean field-approximations are known to not work well (Carbonetto & Stephens, 2012).

A possible application is to do a genome-wide association study (GWAS), using our method. Combining
LBBNNs and GWAS has been proposed by Demetci et al. (2021), however, this only uses the mean-field
posterior. With our normalizing flow approach, we can easily model dependencies within each SNP set, in
addition to dependencies between the different SNP sets. Other set of promising applications are recovering
structural equations in nonlinear dynamical systems as the robust and uncertainty aware alternative to l1
penalty used in the Sindy approach (Brunton et al., 2016).

References
Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375, 2018.

Jincheng Bai, Qifan Song, and Guang Cheng. Efficient variational inference for sparse deep learning with
theoretical guarantee. Advances in Neural Information Processing Systems, 33:466–476, 2020.

Maria Maddalena Barbieri and James O Berger. Optimal predictive model selection. The annals of statistics,
32(3):870–897, 2004.

Marilena Barbieri, James O Berger, Edward I George, and Veronika Rockova. The median probability model
and correlated variables. arXiv preprint arXiv:1807.08336, 2018.

Patrick Billingsley. Probability and measure. John Wiley & Sons, 2017.

Christopher M Bishop. Bayesian neural networks. Journal of the Brazilian Computer Society, 4(1), 1997.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859–877, 2017.

19

Under review as submission to TMLR

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
network. In International conference on machine learning, pp. 1613–1622. PMLR, 2015.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data by
sparse identification of nonlinear dynamical systems. Proceedings of the national academy of sciences, 113
(15):3932–3937, 2016.

Peter Carbonetto and Matthew Stephens. Scalable variational inference for bayesian variable selection in
regression, and its accuracy in genetic association studies. Bayesian analysis, 7(1):73–108, 2012.

İlkay ÇINAR, Murat Koklu, and Şakir Taşdemir. Classification of raisin grains using machine vision and
artificial intelligence methods. Gazi Mühendislik Bilimleri Dergisi, 6(3):200–209, 2020.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David Ha.
Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718, 2018.

Cortez,Paulo, Cerdeira,A., Almeida,F., Matos,T., and Reis,J. Wine Quality. UCI Machine Learning Repos-
itory, 2009. DOI: https://doi.org/10.24432/C56S3T.

Pinar Demetci, Wei Cheng, Gregory Darnell, Xiang Zhou, Sohini Ramachandran, and Lorin Crawford. Multi-
scale inference of genetic trait architecture using biologically annotated neural networks. PLoS genetics,
17(8):e1009754, 2021.

Li Deng. The MNIST database of handwritten digit images for machine learning research [best of the web].
IEEE signal processing magazine, 29(6):141–142, 2012.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making
all tickets winners. In International Conference on Machine Learning, pp. 2943–2952. PMLR, 2020.

David Fletcher and David Fletcher. Bayesian model averaging. Model averaging, pp. 31–55, 2018.

Vincent Fortuin. Priors in bayesian deep learning: A review. International Statistical Review, 90(3):563–591,
2022.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Yarin Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine learning, pp. 1050–1059. PMLR, 2016.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

Andrew Gelman, Jessica Hwang, and Aki Vehtari. Understanding predictive information criteria for bayesian
models. Statistics and computing, 24:997–1016, 2014.

Tilmann Gneiting. Quantiles as optimal point forecasts. International Journal of forecasting, 27(2):197–207,
2011.

Peter J Green and David I Hastie. Reversible jump mcmc. Genetics, 155(3):1391–1403, 2009.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In
International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter Vajda,
Manohar Paluri, John Tran, Bryan Catanzaro, and William J. Dally. Dsd: Dense-sparse-dense training
for deep neural networks, 2017.

David Harrison Jr and Daniel L Rubinfeld. Hedonic housing prices and the demand for clean air. Journal
of environmental economics and management, 5(1):81–102, 1978.

20

Under review as submission to TMLR

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Jennifer A Hoeting, David Madigan, Adrian E Raftery, and Chris T Volinsky. Bayesian model averaging: a
tutorial (with comments by m. clyde, david draper and ei george, and a rejoinder by the authors. Statistical
science, 14(4):382–417, 1999.

Jiri Hron, Alexander G de G Matthews, and Zoubin Ghahramani. Variational gaussian dropout is not
bayesian. arXiv preprint arXiv:1711.02989, 2017.

Aliaksandr Hubin and Geir Storvik. Mode jumping MCMC for Bayesian variable selection in GLMM.
Computational Statistics & Data Analysis, 127:281–297, Nov 2018. ISSN 0167-9473. doi: 10.1016/j.csda.
2018.05.020. URL http://dx.doi.org/10.1016/j.csda.2018.05.020.

Aliaksandr Hubin and Geir Storvik. Combining model and parameter uncertainty in Bayesian neural net-
works. arXiv:1903.07594, 2019.

Aliaksandr Hubin and Geir Storvik. Sparse bayesian neural networks: Bridging model and parameter
uncertainty through scalable variational inference. Mathematics, 12(6):788, 2024.

Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The UCI machine learning repositoty. https:
//archive.ics.uci.edu, 2023.

Asifullah Khan, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. A survey of the recent architectures
of deep convolutional neural networks. Artificial Intelligence Review, 53(8):5455–5516, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes, 2013.

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization
trick. Advances in neural information processing systems, 28, 2015.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improved
variational inference with inverse autoregressive flow. Advances in neural information processing systems,
29, 2016.

Ron Kohavi. Census Income. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5GP7S.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Christos Louizos and Max Welling. Multiplicative normalizing flows for variational Bayesian neural networks.
In International Conference on Machine Learning, pp. 2218–2227. PMLR, 2017.

Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning. Advances in
neural information processing systems, 30:3288–3298, 2017.

David JC MacKay. Bayesian neural networks and density networks. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 354(1):
73–80, 1995.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5(4):115–133, 1943.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural net-
works. In International Conference on Machine Learning, pp. 2498–2507. PMLR, 2017.

21

http://dx.doi.org/10.1016/j.csda.2018.05.020
https://archive.ics.uci.edu
https://archive.ics.uci.edu

Under review as submission to TMLR

S. Moro, P. Rita, and P. Cortez. Bank Marketing. UCI Machine Learning Repository, 2012. DOI:
https://doi.org/10.24432/C5K306.

Nash,Warwick, Sellers,Tracy, Talbot,Simon, Cawthorn,Andrew, and Ford,Wes. Abalone. UCI Machine
Learning Repository, 1995. DOI: https://doi.org/10.24432/C55C7W.

Radford M Neal. Bayesian training of backpropagation networks by the hybrid Monte Carlo method. Tech-
nical report, Citeseer, 1992.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confidence
predictions for unrecognizable images. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 427–436, 2015.

IA Ozkan, M Koklu, and Rıdvan Saraçoğlu. Classification of pistachio species using improved k-nn classifier.
Health, 23:e2021044, 2021.

Theodore Papamarkou, Maria Skoularidou, Konstantina Palla, Laurence Aitchison, Julyan Arbel, David
Dunson, Maurizio Filippone, Vincent Fortuin, Philipp Hennig, Aliaksandr Hubin, et al. Position paper:
Bayesian deep learning in the age of large-scale ai. arXiv preprint arXiv:2402.00809, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems
32, pp. 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

Ankit Pensia, Shashank Rajput, Alliot Nagle, Harit Vishwakarma, and Dimitris Papailiopoulos. Optimal
lottery tickets via subset sum: Logarithmic over-parameterization is sufficient. Advances in neural infor-
mation processing systems, 33:2599–2610, 2020.

Nicholas G Polson and Veronika Ročková. Posterior concentration for sparse deep learning. Advances in
Neural Information Processing Systems, 31, 2018.

Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pp. 55–69. Springer,
1998.

Quinlan Quinlan. Credit Approval. UCI Machine Learning Repository, 2007. DOI:
https://doi.org/10.24432/C5FS30.

Rajesh Ranganath, Dustin Tran, and David Blei. Hierarchical variational models. In International conference
on machine learning, pp. 324–333. PMLR, 2016.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International con-
ference on machine learning, pp. 1530–1538. PMLR, 2015.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Dylan Sam, Rattana Pukdee, Daniel P Jeong, Yewon Byun, and J Zico Kolter. Bayesian neural networks
with domain knowledge priors. arXiv preprint arXiv:2402.13410, 2024.

Taysseer Sharaf, Theren Williams, Abdallah Chehade, and Keshav Pokhrel. Blnn: An r package for training
neural networks using bayesian inference. SoftwareX, 11:100432, 2020.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning. Journal
of Big Data, 6(1):1–48, 2019.

22

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Under review as submission to TMLR

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):
1929–1958, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 58(1):267–288, 1996.

Ba-Hien Tran, Simone Rossi, Dimitrios Milios, and Maurizio Filippone. All you need is a good functional
prior for bayesian deep learning. Journal of Machine Learning Research, 23(74):1–56, 2022.

UCI. Dry Bean Dataset. UCI Machine Learning Repository, 2020. DOI: https://doi.org/10.24432/C50S4B.

Petri Varvia, Janne Räty, and Petteri Packalen. mgpr: An r package for multivariate gaussian process
regression. SoftwareX, 24:101563, 2023.

Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopapadakis. Deep
learning for computer vision: A brief review. Computational intelligence and neuroscience, 2018, 2018.

Florian Wenzel, Kevin Roth, Bastiaan Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt, Jasper
Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the bayes posterior in
deep neural networks really? In International Conference on Machine Learning, pp. 10248–10259. PMLR,
2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent trends in deep learning based
natural language processing. IEEE Computational intelligence magazine, 13(3):55–75, 2018.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 67(2):301–320, 2005.

Supplementary material

The code used for the experiments can be found in the accompanying zip folder.

23

Under review as submission to TMLR

A Convolutional architectures

For convolutional layers, the variational distribution is defined to be:

qθ(W|Γ, z) =
nh∏
i=1

nw∏
j=1

nf∏
k=1

[γijkN (wijk; zkµ̃ijk, σ̃2
ijk) + (1 − γijk)δ(wijk)]

qα̃ijk
(γijk) = Bernoulli(γijk; α̃ijk),

(12)

where nh, nw, and nf denote the height, width, and number of filters in the convolutional kernel.

For the convolutional layers, we use the following for the inverse normalizing flows:

ν = ((Mat(W ⊙ Γ)e) ⊗ d1) (1 ⊙ (nhnw)−1)
log τ 2 = ((Mat(W ⊙ Γ)e) ⊗ d2) (1 ⊙ (nhnw)−1).

(13)

Here, Mat(·) denotes the matricisation operator (as defined in Louizos & Welling (2017)), i.e. changing the
shape of a multidimensional tensor into a matrix.

B Data for predictive uncertainty experiments

For the predictive uncertainty experiment, we generate data from the following Gaussian distributions:

G1 ∼ N
((

−8
−8

)
,

(
6 −1

−1 3.5

))
,

G2 ∼ N
((

6
6

)
,

(
0 3
3 0

))
,

G3 ∼ N
((

−7
8

)
,

(
−3 4
−5 1

))
,

G4 ∼ N
((

8
−8

)
,

(
0 5
4 2

))
,

G5 ∼ N
((

0
0

)
,

(
0 9
9 0

))
.

C Experiments on tabular datasets

In this experiment, we consider six classification datasets and three regression datasets. We compare our
approach LBBNN-FLOW against LBBNN-LCRT, LBBNN, a dense BNN, BNN-FLOW, ANN+L2, ANN,
and Monte Carlo (MC) dropout (with dropout rates corresponding to our prior inclusion probabilities), in
addition to Gaussian processes and Hamiltonian Monte Carlo for the regression datasets. For the neural
networks (except those trained with HMC), we use a single hidden layer with 500 neurons and again train
for 250 epochs with the Adam optimizer. For HMC, we use the default tuning parameters from Sharaf et al.
(2020) run single chains for 100000 iterations. We also use 10-fold cross-validation, and report the minimum,
mean and maximum accuracy over these 10 repetitions, in addition to the mean sparsity. We also report the
expected calibration error (ECE), in addition to pWAIC1 and pWAIC2 for the classification datasets, while for
the regression datasets we report RMSE, the pinball loss, pWAIC1 and pWAIC2 .

For the six classification datasets, most are taken from the UCI machine learning repository. The Credit
Approval dataset (Quinlan, 2007) consists of 690 samples with 15 variables, with the response variable being
whether someone gets approved for a credit card or not. The Bank Marketing dataset (Moro et al., 2012)
consists of data (45211 samples and 17 variables) related to a marketing campaign of a Portuguese banking
institution, where the goal is to classify whether the persons subscribed to the service or not. In addition to
this, we use the Census Income dataset (Kohavi, 1996) with 48842 samples and 14 variables, where we try
to classify whether someone’s income exceeds 50000 dollars per year. Additionally, we have three datasets

24

Under review as submission to TMLR

related to classifying food items. The first, the Raisins dataset (ÇINAR et al., 2020), consists of 900 samples
and 7 variables, where the goal is to classify into two different types of raisings grown in Turkey. Secondly,
we use the Dry Beans dataset (UCI, 2020), consisting of 13611 samples, 17 variables, and 7 different types
of beans. Lastly, the Pistachio dataset (Ozkan et al., 2021) consists of 2148 samples and 28 variables, with
two different types of Pistachios.

For the regression datasets, we use the abalone shell data (Nash,Warwick, Sellers,Tracy, Talbot,Simon,
Cawthorn,Andrew, and Ford,Wes, 1995), the wine quality dataset (Cortez,Paulo, Cerdeira,A., Almeida,F.,
Matos,T., and Reis,J., 2009), and the Boston housing data (Harrison Jr & Rubinfeld, 1978). To avoid model
misspecification, responses were standardized for the regression datasets. The variance of the responses was
then assumed fixed and equal to 1 in all of the models, while the mean parameter was modeled.

For the classification datasets, we see that our LBBNN-FLOW method typically performs well compared to
the LBBNN baseline, mostly having higher predictive power, also with the median probability model. It
also performs well compared to our other baseline methods. On calibration, we see that our method again
performs well compared to baselines. Finally, for the pWAIC1 and pWAIC2 , we see that using the median
probability model typically reduces this metric. We note that our method often has lower values than
BNN-FLOW and BNN, even though these methods have fewer parameters. As mentioned before, however,
it is unclear how good of an estimate this is for the effective number of parameters in highly non-linear
methods such as neural networks. For the regression examples, our method performs slightly worse than
some baselines in terms of RMSE and pinball loss, however, LBBNN-LCRT performs best (on average) on
one dataset. Here, it is worth noting that convergence checks for HMC were not satisfactory not allowing us
to claim the algorithms have converged. Tuning the parameters of the sampler and increasing the number
of chains were not helpful in this case.

25

Under review as submission to TMLR

Table 4: Performance results on the Credit Approval, Bank Marketing, and Census Income datasets, using
10-fold cross-validation. The minimum, mean and maximum accuracies are reported, in addition to the
density. The best results are bold.

Credit Approval Median probability model Full model averaging
Method min mean max density min mean max density
LBBNN 81.16 85.22 91.30 0.431 81.16 85.80 91.30 1.000
LBBNN-LCRT 81.16 86.23 92.75 0.347 81.16 86.23 91.30 1.000
LBBNN-FLOW 84.10 88.55 94.20 0.348 82.61 87.68 91.30 1.000
BNN-FLOW - - - - 82.61 86.23 89.86 1.000
BNN - - - - 78.26 83.33 88.41 1.000
ANN - - - - 78.26 83.19 91.30 1.000
ANN + L2 - - - - 73.91 83.19 89.86 1.000
ANN + MC dropout - - - - 81.16 86.52 92.75 1.000

Bank Marketing Median probability model Full model averaging
Method min mean max density min mean max density
LBBNN 89.75 90.66 91.74 0.430 89.75 90.61 91.43 1.000
LBBNN-LCRT 90.75 91.27 92.16 0.347 90.60 91.27 92.16 1.000
LBBNN-FLOW 90.58 91.38 92.08 0.347 90.75 91.36 92.03 1.000
BNN-FLOW - - - - 90.14 91.13 91.96 1.000
BNN - - - - 90.63 91.16 91.74 1.000
ANN - - - - 90.93 90.97 91.62 1.000
ANN + L2 - - - - 90.75 91.15 91.77 1.000
ANN + MC dropout - - - - 90.70 91.17 92.06 1.000

Cencus Income Median probability model Full model averaging
Method min mean max density min mean max density
LBBNN 85.24 85.74 86.49 0.431 85.52 85.85 86.69 1.000
LBBNN-LCRT 85.36 85.90 86.77 0.349 85.63 85.92 86.57 1.000
LBBNN-FLOW 85.60 86.04 86.43 0.349 85.57 86.05 86.49 1.000
BNN-FLOW - - - - 85.05 85.32 85.79 1.000
BNN - - - - 84.77 85.27 86.45 1.000
ANN - - - - 84.56 85.09 85.54 1.000
ANN + L2 - - - - 84.73 85.39 85.91 1.000
ANN + MC dropout - - - - 85.32 85.89 86.49 1.000

26

Under review as submission to TMLR

Table 5: Performance results on the Dry Beans, Pistachio, and Raisin datasets, using 10-fold cross-validation.
The minimum, mean and maximum accuracies are reported, in addition to the density. The best results are
bold.

Dry Beans Median probability model Full model averaging
Method min mean max density min mean max density
LBBNN 90.88 92.65 93.90 0.442 91.25 92.80 93.82 1.000
LBBNN-LCRT 91.62 93.18 94.41 0.349 91.69 93.34 94.34 1.000
LBBNN-FLOW 89.26 92.38 93.90 0.279 89.85 92.57 94.19 1.000
BNN-FLOW - - - - 91.32 93.05 94.19 1.000
BNN - - - - 91.47 93.35 94.63 1.000
ANN - - - - 91.47 93.37 94.71 1.000
ANN + L2 - - - - 91.54 93.38 94.71 1.000
ANN + MC dropout - - - - 91.40 92.96 94.04 1.000

Pistachio Median probability model Full model averaging
Method min mean max density min mean max density
LBBNN 91.12 93.46 96.26 0.433 91.12 93.36 95.33 1.000
LBBNN-LCRT 91.59 93.93 95.79 0.350 92.06 94.07 95.79 1.000
LBBNN-FLOW 91.12 93.46 95.33 0.350 91.12 93.46 95.33 1.000
BNN-FLOW - - - - 90.65 93.60 96.26 1.000
BNN - - - - 92.52 94.07 96.26 1.000
ANN - - - - 92.06 94.11 96.73 1.000
ANN + L2 - - - - 92.06 93.93 96.26 1.000
ANN + MC dropout - - - - 91.12 94.16 96.26 1.000

Raisins Median probability model Full model averaging
Method min mean max density min mean max density
LBBNN 83.33 87.00 92.22 0.439 83.33 86.78 92.22 1.000
LBBNN-LCRT 81.11 86.11 91.11 0.349 81.11 86.78 92.22 1.000
LBBNN-FLOW 83.33 86.67 92.22 0.349 82.22 86.56 92.22 1.000
BNN-FLOW - - - - 82.22 87.22 91.11 1.000
BNN - - - - 81.11 87.89 92.22 1.000
ANN - - - - 81.11 86.44 90.00 1.000
ANN + L2 - - - - 81.11 87.56 92.22 1.000
ANN + MC dropout - - - - 81.11 87.00 93.33 1.000

Table 6: Expected calibration error, with minimum, mean, and maximum values obtained using 10-fold cross-
validation. MPM denotes the medium probability model.

ECE (min, mean, max)
Method Credit Approval Bank Marketing Census Income Dry Beans Pistachio Raisins
LBBNN (0.056, 0.079, 0.127) (0.023, 0.031, 0.039) (0.005, 0.010, 0.015) (0.011, 0.016, 0.021) (0.012, 0.028, 0.047) (0.043, 0.073, 0.097)
LBBNN-MPM (0.035, 0.080, 0.122) (0.013, 0.025, 0.033) (0.006, 0.011, 0.016) (0.002, 0.015, 0.031) (0.014, 0.028, 0.043) (0.035, 0.069, 0.103)
LBBNN-LCRT (0.035, 0.071,0.097) (0.001, 0.016, 0.020) (0.006, 0.010, 0.012) (0.008, 0.014, 0.019) (0.014, 0.022, 0.034) (0.034, 0.070, 0.094)
LBBNN-LCRT-MPM (0.015, 0.073, 0.119) (0.011, 0.015, 0.018) (0.008, 0.012, 0.016) (0.007, 0.013, 0.025) (0.012, 0.025, 0.035) (0.057, 0.076, 0.115)
LBBNN-FLOW (0.030, 0.069, 0.103) (0.002, 0.007, 0.015) (0.007, 0.011, 0.016) (0.010, 0.017, 0.040) (0.011, 0.024, 0.045) (0.018, 0.068, 0.103)
LBBNN-FLOW-MPM (0.025, 0.071, 0.126) (0.003, 0.008, 0.012) (0.009, 0.012, 0.015) (0.008, 0.014, 0.026) (0.012, 0.030, 0.047) (0.038, 0.072, 0.096)
BNN-FLOW (0.025, 0.074, 0.123) (0.006, 0.012, 0.022) (0.020, 0.027, 0.047) (0.007, 0.014, 0.029) (0.010, 0.029, 0.055) (0.038, 0.069, 0.104)
BNN (0.046, 0.097, 0.195) (0.010, 0.015, 0.024) (0.020, 0.025, 0.031) (0.005, 0.013, 0.030) (0.010, 0.039, 0.057) (0.034, 0.070, 0.103)
ANN (0.072, 0.131, 0.188) (0.012, 0.017, 0.023) (0.020, 0.025, 0.031) (0.007, 0.013, 0.021) (0.027, 0.042, 0.056) (0.040, 0.074, 0.109)
ANN + L2 (0.020, 0.114, 0.178) (0.013, 0.018, 0.024) (0.015, 0.020, 0.026) (0.007, 0.013, 0.020) (0.014, 0.040, 0.053) (0.025, 0.066, 0.111)
ANN + MC dropout (0.028, 0.079, 0.115) (0.011, 0.014, 0.017) (0.008, 0.011, 0.018) (0.033, 0.039, 0.048) (0.016, 0.029, 0.051) (0.027, 0.069, 0.113)

27

Under review as submission to TMLR

Table 7: The pWAIC1 metric, on our six classification datasets, where the minimum, mean, and maximum
values are obtained with 10-fold cross-validation.

pWAIC1 (min, mean, max)
Method Credit Approval Bank Marketing Census Income Dry Beans Pistachio Raisins
LBBNN (0.620, 1.323, 2.595) (28.18, 31.15, 34,74) (22.98, 29.33, 37.14) (15.82, 23.18, 30.44) (2.594, 3.277, 4.762) (0.149, 0.271, 0.668)
LBBNN-MPM (0.000, 0.000, 0.000) (0.001, 0.002, 0.003) (0.002, 0.002, 0.003) (0.001, 0.002, 0.003) (0.000, 0.000, 0.000) (0.000, 0.000, 0.000)
LBBNN-LCRT (0.013, 0.026, 0.041) (0.575, 0.643, 0.725) (0.997, 1.144, 1.357) (9.937, 13.32, 20.12) (0.015, 0.034, 0.052) (0.011, 0.023, 0.043)
LBBNN-LCRT-MPM (0.011, 0.025, 0.043) (0.566, 0.645, 0.718) (1.013, 1.140, 1.180) (0.002, 0.002, 0.003) (0.016, 0.032, 0.054) (0.011, 0.024, 0.045)
LBBNN-FLOW (0.009, 0.021, 0.033) (0.486, 0.542, 0.608) (1.045, 1.216, 1.488) (12.83, 17.66, 26.65) (0.016, 0.034, 0.058) (0.011, 0.025, 0.052)
LBBNN-FLOW-MPM (0.009, 0.022, 0.037) (0.476, 0.544, 0.621) (1.065, 1.245, 1.501) (0.331, 0.420, 0.567) (0.013, 0.033, 0.055) (0.011, 0.026, 0.055)
BNN-FLOW (0.012, 0.029, 0.054) (0.523, 0.593, 0.655) (1.235, 1.398, 1.745) (0.402, 0.599, 1.089) (0.017, 0.039, 0.062) (0.012, 0.023, 0.045)
BNN (0.015, 0.055, 0.255) (0.580, 0.686, 0.760) (1.165, 1.352, 1.442) (0.005, 0.007, 0.009) (0.019, 0.048, 0.073) (0.011, 0.022, 0.034)
MC dropout (0.016, 0.058, 0.249) (0.536, 0.600, 0.687) (1.057, 1.201, 1.353) (75.99, 105.3, 133.2) (0.027, 0.040, 0.059) (0.011, 0.027, 0.042)

Table 8: The pWAIC2 metric, on our six classification datasets, where the minimum, mean, and maximum
values are obtained with 10-fold cross-validation.

pWAIC2 (min, mean, max)
Method Credit Approval Bank Marketing Census Income Dry Beans Pistachio Raisins
LBBNN (0.649, 1.367, 2.711) (28.18, 31.73, 35,74) (23.20, 65.55, 396.7) (16.69, 24.55, 32.75) (2.724, 3.485, 5.058) (0.150, 0.269, 0.647)
LBBNN-MPM (0.000, 0.000, 0.000) (0.001, 0.002, 0.003) (0.002, 0.002, 0.003) (0.001 0.002, 0.003) (0.000, 0.000, 0.000) (0.000, 0.000, 0.000)
LBBNN-LCRT (0.021, 0.058, 0.111) (1.016, 1.176, 1.437) (1.588, 2.981, 12.04) (10.38, 13.86, 20.86) (0.023, 0.078, 0.138) (0.015, 0.044, 0.101)
LBBNN-LCRT-MPM (0.017, 0.056, 0.114) (0.985, 1.188, 1.374) (1.1639, 2.041, 2.247) (0.002, 0.002, 0.003) (0.026, 0.073, 0.151) (0.016, 0.047, 0.112)
LBBNN-FLOW (0.014, 0.043, 0.072) (0.780, 0.926, 1.154) (1.718, 7.906, 21.91) (13.30, 18.88, 29.37) (0.025, 0.071, 0.137) (0.016, 0.058, 0.197)
LBBNN-FLOW-MPM (0.014, 0.047, 0.083) (0.755, 0.934, 1.193) (1.781, 8.940, 21.97) (0.331, 0.421, 0.569) (0.018, 0.070, 0.126) (0.016, 0.059, 0.188)
BNN-FLOW (0.020, 0.074, 0.199) (0.856, 1.049, 1.303) (2.230, 4.745, 12.83) (0.403, 0.601, 1.093) (0.030, 0.097, 0.178) (0.016, 0.046, 0.123)
BNN (0.024, 1.087, 10.14) (1.036, 1.307, 1.517) (2.052, 3.591, 12.34) (0.005, 0.007, 0.009) (0.034, 0.137, 0.244) (0.015, 0.039, 0.064)
MC dropout (0.027, 1.112, 10.13) (0.905, 1.059, 1.351) (1.767, 4.148, 12.03) (101.0, 148.4, 265.8) (0.054, 0.102, 0.216) (0.015, 0.064, 0.181)

28

Under review as submission to TMLR

Table 9: Root mean squared error, using 10-fold cross-validation. The minimum, mean and maximum are
reported, in addition to the density. Best results are bold.

Abalone Median probability model Full model averaging
Method min mean max density min mean max density
LBBNN 0.597 0.677 0.799 0.435 0.577 0.665 0.795 1.000
LBBNN-LCRT 0.564 0.644 0.736 0.350 0.560 0.641 0.722 1.000
LBBNN-FLOW 0.577 0.660 0.767 0.350 0.572 0.657 0.761 1.000
BNN-FLOW - - - - 0.585 0.654 0.733 1.000
BNN - - - - 0.579 0.651 0.759 1.000
ANN - - - - 0.575 0.657 0.801 1.000
ANN + L2 - - - - 0.572 0.652 0.764 1.000
ANN + MC dropout - - - - 0.579 0.655 0.759 1.000
Gaussian process - - - - 0.570 0.650 0.734 1.000
BNN-HMC - - - - 1.047 1.316 1.778 1.000

Wine Quality Median probability model Full model averaging
Method min mean max density min mean max density
LBBNN 0.768 0.805 0.854 0.435 0.757 0.799 0.845 1.000
LBBNN-LCRT 0.742 0.782 0.820 0.350 0.741 0.780 0.820 1.000
LBBNN-FLOW 0.751 0.788 0.822 0.351 0.750 0.787 0.823 1.000
BNN-FLOW - - - - 0.747 0.778 0.815 1.000
BNN-HMC - - - - 0.749 0.767 0.790 1.000
ANN - - - - 0.740 0.761 0.792 1.000
ANN + L2 - - - - 0.746 0.763 0.789 1.000
ANN + MC dropout - - - - 0.758 0.799 0.847 1.000
Gaussian process - - - - 0.700 0.739 0.777 1.000
BNN-HMC - - - - 0.937 1.172 1.451 1.000

Boston Housing Median probability model Full model averaging
Method min mean max density min mean max density
LBBNN 0.267 0.412 0.621 0.431 0.262 0.393 0.552 1.000
LBBNN-LCRT 0.245 0.374 0.560 0.350 0.233 0.366 0.534 1.000
LBBNN-FLOW 0.267 0.402 0.595 0.352 0.253 0.395 0.561 1.000
BNN-FLOW - - - - 0.241 0.363 0.524 1.000
BNN - - - - 0.240 0.351 0.481 1.000
ANN - - - - 0.247 0.364 0.597 1.000
ANN + L2 - - - - 0.234 0.346 0.487 1.000
ANN + MC dropout - - - - 0.244 0.371 0.502 1.000
Gaussian process - - - - 0.217 0.349 0.444 1.000
BNN-HMC - - - - 0.611 1.014 1.320 1.000

29

Under review as submission to TMLR

Table 10: Mean pinball loss on a grid between 0.05 and 0.95 in increments of 0.05. Min, mean, and max
values were obtained using 10-fold cross-validation.

Mean pinball (min, mean, max)
Method Abalone Wine Quality Boston Housing
LBBNN (0.210, 0.236, 0.260) (0.291, 0.310, 0.325) (0.100, 0.133, 0.164)
LBBNN-MPM (0.220, 0.242, 0.260) (0.296, 0.313, 0.328) (0.097, 0.137, 0.167)
LBBNN-LCRT (0.203, 0.227, 0.251) (0.289, 0.304, 0.316) (0.087, 0.121, 0.150)
LBBNN-LCRT-MPM (0.204, 0.228, 0.259) (0.290, 0.304, 0.318) (0.089, 0.123, 0.151)
LBBNN-FLOW (0.208, 0.232, 0.253) (0.289 0.306 0.321) (0.091, 0.132, 0.158)
LBBNN-FLOW-MPM (0.209, 0.231, 0.261) (0.290, 0.306 0.319) (0.092, 0.133, 0.154)
MNF (0.211, 0.232, 0.250) (0.293, 0.303, 0.317) (0.085, 0.120, 0.142)
BNN (0.210, 0.230, 0.255) (0.286, 0.295, 0.307) (0.084, 0.117, 0.145)
ANN (0.210, 0.231, 0.255) (0.279, 0.292, 0.301) (0.087, 0.119, 0.149)
ANN + L2 (0.208, 0.230, 0.255) (0.283, 0.293, 0.301) (0.083, 0.114, 0.142)
ANN + MC dropout (0.211, 0.231, 0.252) (0.295, 0.312, 0.328) (0.089, 0.125, 0.156)
Gaussian process (0.210, 0.231, 0.252) (0.267, 0.283, 0.295) (0.079, 0.117, 0.145)
BNN-HMC (0.358, 0.522, 0.749) (0.368, 0.464, 0.597) (0.223, 0.389, 0.503)

Table 11: The pWAIC1 and pWAIC2 metric, on our three regression datasets, where the minimum, mean and
maximum values are obtained with 10-fold cross-validation.

pWAIC1 (min, mean, max) pWAIC2 (min, mean, max)
Method Abalone Wine Quality Boston Housing Abalone Wine Quality Boston Housing
LBBNN (1.937, 4.486, 14.09) (6.304, 7.496, 8.617) (0.037, 0.202, 0.890) (1.987, 5.206, 20.01) (6.660, 7.832, 9.642) (0.038, 0.210, 0.933)
LBBNN-MPM (0.000, 0.001, 0.002) (0.001, 0.001, 0.003) (0.000, 0.000, 0.000) (0.000, 0.001, 0.002) (0.001, 0.001, 0.003) (0.000, 0.000, 0.000)
LBBNN-LCRT (0.766, 1.469, 2.228) (4.978, 5.620, 6.318) (0.013, 0.128, 0.483) (0.774, 1.528, 2.595) (5.112, 5.888, 6.989) (0.013, 0.133, 0.514)
LBBNN-LCRT-MPM (0.001, 0.001, 0.003) (0.003, 0.004, 0.006) (0.000, 0.000, 0.000) (0.001, 0.001, 0.003) (0.003, 0.004, 0.006) (0.000, 0.000, 0.000)
LBBNN-FLOW (0.563, 1.923, 7.515) (3.220, 4.202, 6.069) (0.025, 0.223, 1.025) (0.568, 2.191, 9.925) (3.273, 4.407, 7.352) (0.025, 0.238, 1.157)
LBBNN-FLOW-MPM (0.039, 0.147, 0.430) (0.171, 0.226, 0.268) (0.001, 0.012, 0.077) (0.039, 0.147, 0.432) (0.172, 0.226, 0.269) (0.001, 0.012, 0.078)
BNN-FLOW (0.074, 0.237, 0.468) (0.362, 0.609, 2.210) (0.003, 0.021, 0.062) (0.075, 0.238, 0.473) (0.363, 0.632, 2.415) (0.003, 0.021, 0.062)
BNN (0.002, 0.007, 0.045) (0.014, 0.019, 0.039) (0.000, 0.000, 0.000) (0.002, 0.007, 0.045) (0.014, 0.019, 0.039) (0.000, 0.000, 0.000)
MC dropout (7.295, 15.42, 44.78) (18.70, 22.81, 27.87) (0.344, 1.721, 6.331) (7.972, 56.82, 430.4) (20.35, 29.71, 71.86) (0.397, 2.658, 12.43)

30

	Introduction
	Literature background

	The model
	Bayesian inference
	Choices of variational families
	Computing the variational bounds

	Combining LBBNNs with the LCRT and MNF
	Experiments
	Logistic regression simulation study
	Predictive uncertainty
	Classification experiments

	Discussion
	Convolutional architectures
	Data for predictive uncertainty experiments
	Experiments on tabular datasets

