
MANDALA: Multi-Agent Network for Backdoor Detection using AST
Parsing and Large Language Models

Anonymous ACL submission

Abstract001

This paper presents MANDALA, a system002
that leverages locally deployed open-source003
large language models (LLMs) and multi-agent004
networks to enhance vulnerability detection in005
code bases. MANDALA uses an abstract syn-006
tax tree-based algorithm to parse code into di-007
gestible chunks for LLMs, generating code ex-008
planations and descriptions. A collaborative009
multi-agent network comprised of specialized010
agents such as static analysis, security man-011
agement, and user interaction agents then co-012
ordinate to analyze the codebase for poten-013
tial backdoors and vulnerabilities. Evaluations014
on open-source codebases demonstrate MAN-015
DALA’s ability to significantly reduce manual016
effort while increasing detection speed and ac-017
curacy over traditional methods across various018
test cases. MANDALA represents an innova-019
tive integration of LLMs and multi-agent sys-020
tems for efficient, scalable code vulnerability021
detection.022

1 Introduction023

The intersection of Natural Language Processing024

(NLP) and cybersecurity presents a promising op-025

portunity to leverage new developments in the area026

of large language models (LLMs). We have applied027

these advances in LLM to enhance the efficiency028

and effectiveness of security vulnerability detection029

and analysis in code bases to create MANDALA.030

By using the power of multiple LLMs within a031

multi-agent network and combining it with the Ab-032

stract Syntax Tree-based parsing algorithm with033

multiple LLMs, we aim to contribute significantly034

to the development of more secure software in-035

frastructure. Traditional methods of detecting vul-036

nerabilities struggle to keep pace with the rapid037

evolution of software development and are there-038

fore exposed to various cyber threats. We focus039

on specifically backdoor vulnerability detection,040

which is to identify weaknesses in systems that041

could allow unauthorized access, which are essen- 042

tially hidden entrances created either intentionally 043

or unintentionally. Recently, LLMs have demon- 044

strated strong context understanding, specifically 045

in inference and generating coherent output, mak- 046

ing them uniquely positioned to handle complex 047

problem solving scenarios in this domain. 048

Existing cybersecurity approaches, from man- 049

ual code reviews to automated static and dynamic 050

analysis tools, often involve substantial human in- 051

volvement and result in a lack of scalability. The 052

increasing size and complexity of software projects 053

makes the manual identification of backdoors in- 054

creasingly infeasible. Manual code reviews, while 055

thorough, are slow and not feasible for large code- 056

bases. Another major issue is that the code lengths 057

can be extensive, making it difficult for traditional 058

methods to process and analyze efficiently. Here, 059

the limitations of existing approaches become evi- 060

dent, necessitating a more advanced and scalable 061

solution. 062

The key insight of this project lies in the un- 063

tapped potential of LLMs to transform the cyberse- 064

curity space. LLMs understand patterns, logic, and 065

thus should be able to detect vulnerabilities within 066

software code by processing the text-based features. 067

This innovative approach leverages the power of 068

Multi-Agent Networks (MANs) where numerous 069

agents collaborate to achieve a common goal. By 070

combining the strengths of individual agents and 071

giving each agent an individual goal, this MAN 072

system offers outstanding adaptability and effec- 073

tiveness. For the second problem, to tackle the 074

challenge of long code length and the context con- 075

straint of LLMs, we utilize Abstract Syntax Trees 076

(ASTs). ASTs provide a structured representation 077

of the code, allowing for more efficient parsing and 078

analysis by LLMs. We check the length of every 079

node and iterate through to extract all functions in 080

the program and process them. Because these func- 081

tions are significantly smaller than the entire file, 082

1



the code size is exponentially reduced as it grows083

larger, making it manageable for LLMs to process.084

Based on this insight, we have proposed MAN-085

DALA: a Multi-Agent Network for Backdoor De-086

tection Using AST Parsing and Large Language087

Models System. This system integrates several ad-088

vanced technologies, including AutoGen (Wu et al.,089

2023) and CrewAI (Moura), to create this collabo-090

rative MAN framework. LiteLLM (Li et al., 2024)091

simplifies the integration and utilization of LLM092

APIs and Ollama (oll) provides a framework for093

running LLMs mentioned in the Table 1 locally.094

Our experiments have shown that this method not095

only improves the speed of vulnerability detection096

but also scales effectively with large codebases.097

The results show a significant reduction in man-098

ual human effort and an exponential increase in099

detection speed.100

We plan to open-source our code and data to101

facilitate future work in the broader NLP and cy-102

bersecurity community.103

2 Overview104

If we look at any industry software deployed in a105

production environment, it will have millions of106

lines of code, presenting a significant challenge to107

traditional cybersecurity methods. Manual code108

reviews are thorough, but they are impractical for109

such a vast amount of code. Automated tools also110

struggle with the complexity and sheer volume of111

the code, often missing critical vulnerabilities. In112

contrast, by using our proposed multi-agent LLM113

network, we aim to effectively parse, analyze, and114

detect these vulnerabilities in a fraction of the time115

and cost. MANDALA’s ability to break down116

the code into smaller, manageable functions using117

ASTs ensures that even the largest code projects118

can be analyzed efficiently.119

We want to improve the efficiency and effective-120

ness of vulnerability detection. We assume that121

the software code is accessible and can be parsed122

into ASTs. We have focused on Python code in123

MANDALA, but it can be expanded to support124

other languages through a modular architecture.125

MANDALA is also focused on code vulnerabili-126

ties that cause backdoors. By targeting code-based127

vulnerabilities, we aim to create a robust system128

that can ideally identify weaknesses before they are129

exploited.130

MANDALA uses two systems: Firstly, Code131

parsing using ASTs and secondly, Multi- Agent132

Figure 1: The figure shows the accuracy of models on
comprehension tasks.

Networks (MANs). MANs are multiple agents with 133

well defined individual goals collaborate to achieve 134

a common goal. This combines the strengths of 135

individual agents of code understanding to com- 136

pensate for their weaknesses of context length and 137

offers outstanding adaptability. We have created 138

MANDALA for vulnerability detection that scales 139

effectively with large codebases and this use of 140

LLMs addresses the scalability issue and reduces 141

manual human effort significantly. 142

AutoGen and CrewAI have introduced AI col- 143

laboration by defining specific roles and facilitating 144

teamwork towards shared objectives. Agents have 145

their own individual roles and tools that are specific 146

to them. LiteLLM simplifies the integration and 147

utilization of LLM APIs, and Ollama provides a 148

framework for running LLMs locally. The project’s 149

journey included assessing MemGPT (Packer et al., 150

2023) for context management, but due to instabil- 151

ity issues, we focused on the proven frameworks 152

of AutoGen and CrewAI, combined with LiteLLM 153

and Ollama. 154

MANDALA is based on locally implemented 155

LLMs that provide greater control over data pri- 156

vacy and security since the data does not leave the 157

local environment. This is extremely important 158

in the space of cybersecurity where sensitive in- 159

formation may be involved. Local LLMs can be 160

fine-tuned without much additional cost to serve 161

specific needs and contexts, which can enhance the 162

detection of vulnerabilities. Table 1 shows the 163

LLMs which have been tested in MANDALA. A 164

notable drawback is the need for substantial com- 165

putational resources, which makes local LLMs ex- 166

pensive and difficult to manage. As an alternative, 167

2



Model Name Parameters Description
Large World Model (lar) 6.74 billion Fine-tuned Llama2 model with a context length of 1 million tokens.
DeepSeekCoder (Guo et al., 2024) 6.74 billion Fine-tuned Llama2 model with a window size of 16,000. Excellent at coding.
Dolphin Mixtral (Research) 8 x 7 billion Uncensored fine-tuned Mixtral model specialized in coding tasks.
Gemma (Team et al., 2024) 8.54 billion A lightweight state-of-the-art open model built by Google DeepMind.
Llama2 (Touvron et al., 2023) 6.74 billion Meta’s older Llama model released in 2023, known for its SOTA performance.

Chosen to compare with Lama3 and assess improvements.
Llama3 (lla; Meta-Llama) 8.03 billion Meta’s latest model (2024) with claimed significant improvements over Llama2.
Llama3 (lla; Meta-Llama) 70.6 billion Chosen for its extensive parameter size to assess performance.
Mistral (AI, 2024) 7.25 billion A model by Mistral AI. Chosen for its efficiency and performance.
Mixtral (AI) 8 x 7 billion A mixture of experts model by Mistral AI consisting of 8 experts, each with

7 billion parameters. Chosen for its innovative mixture of experts approach.
Qwen (Alibaba Cloud) 7.72 billion a transformer-based LLM by Alibaba Cloud, pre-trained on a large volume of

data, including web texts, books, code, etc.
Qwen (Alibaba Cloud) 111 billion A larger version of Qwen with 111 billion parameters. Chosen for its

extensive parameter size to assess performance gains.
Yarn Lama2 (Ollama, 2024) 6.74 billion Extends Lama2’s context length up to 128,000 tokens.
White Rabbit Neo (Face) 13 billion Fine-tuned on cybersecurity data, used for offensive and defensive

cybersecurity testing. Chosen for its specialization in cybersecurity.

Table 1: Selected models.

the same code used for local LLMs can be sub-168

stituted by various internet LLM APIs like Ope-169

nAI, Google, or Anthropic. This flexibility allows170

for easy switching between local and more cutting171

edge models, leveraging the strengths of each ap-172

proach as needed.173

While newer language models like Gemini,174

Claude and ChatGPT boast substantially longer175

context lengths compared to previous generations,176

analyzing massive codebases consisting of mil-177

lions of lines can still overwhelm their capabili-178

ties. Therefore, MANDALA’s approach of lever-179

aging ASTs to methodically break down code into180

smaller, manageable components remains highly181

relevant. By reducing the token footprint exponen-182

tially as code size increases, this technique enables183

efficient processing by language models regard-184

less of their maximum context capacity. As such,185

MANDALA’s parsing algorithm complements the186

latest advances in language models, ensuring scal-187

able and thorough vulnerability analysis even for188

the most extensive software projects.189

Challenges Implementing LLMs in cybersecu-190

rity presents several challenges:191

1. Dependency on External Tools and Li-192

braries: The MAN relies on various exter-193

nal tools and libraries, such as duckduckgo194

search (DuckDuckGo), docker (Docker) and195

the LLMs, to perform its analysis tasks. The196

solution’s utilization of emerging technolo-197

gies, such as the Autogen framework and Cre-198

wai, introduces an element of uncertainty re-199

garding the stability of these components. The200

performance and reliability of these external201

components can directly impact the overall202

effectiveness of the solution.203

2. False Positives or Missed Vulnerabilities: 204

While the combination of static and dynamic 205

analysis techniques aims to provide a compre- 206

hensive assessment, there is always the pos- 207

sibility of false positives or missed vulnera- 208

bilities (false negatives), particularly in the 209

face of sophisticated and obfuscated backdoor 210

techniques. This is especially true when open- 211

sourced models with a short context length 212

are used. They can be extremely inaccurate 213

and not reliable for complex tasks. 214

3. High Computational Resources: Managing 215

the significant computational requirements of 216

LLMs is nontrivial. 217

3 Design 218

MANDALA is divided into two parts: the AST- 219

based code parsing algorithm and the MANs for 220

detection. 221

3.1 AST-based Code Parsing Algorithm 222

The AST-based parsing algorithm lies at the core of 223

our approach to efficiently process large codebases 224

so that it can produce detailed and full descriptions 225

and explanations of the code inside. The main tools 226

the algorithm uses to realize its objectives are ASTs, 227

systematic file and folder processing, and language 228

models deployed through the Ollama library. 229

3.1.1 Leveraging Abstract Syntax Trees 230

At the heart of the code parsing lies the utilization 231

of Abstract Syntax Trees (ASTs). ASTs present 232

a powerful model of the structure and semantics 233

that underlie the code of a programming language. 234

This is done using ASTs that enable the algorithm 235

to dig into the specific nodes/parts of the Python 236

3



Figure 2: Flowchart for the parsing algorithm.

code to extract essential elements required in the237

generation of descriptions and explanations.238

First, we transform the raw file content into an239

AST representation that uses the ast (Foundation)240

module in Python. We further refine the AST by241

applying custom formatting rules to various node242

types such as variable assignments, control flow243

statements, and function definitions. This step244

ensures that the extracted code segments are pre-245

sented in a clean and structured manner.246

The use of ASTs in the algorithm offers several247

key advantages:248

Structured Code Representation: By convert-249

ing the raw code into an AST, MANDALA gets an250

understanding of the underlying logical structure of251

the program including variables, control flow and252

function definitions. This structured representation253

allows for more precise and targeted extraction of254

relevant code elements.255

Extensibility: The modular design allows for256

easy expansion and customization of the AST pro-257

cessing rules. This makes the algorithm adaptable258

to handle different language constructs or evolving259

programming practices.260

3.1.2 Folder and File Processing261

The algorithm dives into the target directory and all262

its subdirectories. This allows the algorithm to run263

and provides a full analysis of the entire codebase.264

The flowchart in Figure 2 illustrates the systematic265

folder and file processing methodology employed266

by the parsing algorithm.267

For each file, a helper function analyzes the file268

extension to determine the programming language.269

This function has been configured to easily expand270

to support additional languages in the future.271

If the file is identified as a Python file, MAN-272

DALA parses the file to transform the code into a273

structured AST representation. This step uses the274

discussed AST processing to extract the essential275

Figure 3: Flowchart for processing python file.

code elements. Then it proceeds to the genera- 276

tion of descriptions and explanations. This next 277

step gives MANDALA scalability and efficiency 278

to handle large codebases without losing effective- 279

ness. 280

3.1.3 Generating Descriptions and 281

Explanations 282

The overall idea behind generating code explana- 283

tions, long descriptions and short descriptions, is 284

to handle very large codebases efficiently. Real 285

programs consist of a huge amount of long and 286

complex functions that MANDALA exponentially 287

reduces by leveraging their AST representations. 288

By breaking down the code into smaller compo- 289

nents, the process becomes more manageable and 290

allows for effective analysis and understanding. Re- 291

fer to the Figure 3. 292

3.1.4 Description Granularity 293

Figure 5 provides examples and statistics for the 294

code explanations, long descriptions, and short de- 295

scriptions generated as part of the parsing process. 296

Code Explanations: It reduces large functions 297

into a few lines of description. When these descrip- 298

tions are aggregated, they provide a comprehensive 299

narrative of the code’s flow and functionality. This 300

step is important to transform extensive code seg- 301

ments into manageable pieces which should fit in 302

the limited context window of the LLM. 303

Long Descriptions: Once the code has been bro- 304

ken down and explained at the AST node level, the 305

long description function generates a more holistic 306

description of the code. The goal here is to pro- 307

vide a thorough analysis that balances detail and 308

relevance. In contrast, the code explanation was 309

providing succinct descriptions for individual AST 310

4



nodes. The reduced size of explanations from the311

previous step enables this step to generate the long312

descriptions.313

Short Descriptions: After obtaining a detailed314

long description, MANDALA distills the infor-315

mation into a concise, one-sentence summary.316

This step provides a high-level understanding of317

the code’s purpose, allowing the LLM agents to318

quickly grasp the essence of the code without delv-319

ing into details. Hence, this preprocessing helps320

in managing huge codebases and provides agents321

with the essential information.322

By having these three different types of descrip-323

tion: code explanation, long description, and short324

description, the process ensures a thorough yet325

scalable approach to understanding and analyzing326

large codebases. Each type of description uses327

custom-configured LLM models, selected based on328

extensive testing to ensure optimal performance, as329

shown in Section 5.330

3.1.5 Access to Processed Data331

Upon completion of the file processing and de-332

scription generation, the algorithm saves the three333

dictionaries to JSON files. This storage of the gen-334

erated outputs allows for easy access, sharing and335

will help to combine both systems of parsing and336

the MAN together.337

3.2 Multi-Agent Model Design338

The detection of potential backdoors within a code-339

base involving both static and dynamic analysis340

techniques. To address this challenge, the provided341

solution incorporates a MAN and uses the strengths342

and specialized capabilities of individual agents to343

achieve a thorough and coordinated analysis of the344

target codebase.345

3.2.1 The Agents and their Roles346

The multi-agent network consists of the following:347

Static Analysis Agent: Responsible for conduct-348

ing a static analysis of the code to identify possible349

backdoors and other vulnerabilities. This agent fo-350

cuses on detecting any anomalies that deviate from351

standard coding practices. It also specifies the ex-352

act locations within the codebase where potential353

vulnerabilities are detected. It presents the analysis354

results to the Security Analysis Manager for further355

review.356

Security Analysis Manager Agent: Oversees357

the entire backdoor detection process and coor-358

dinates with the Static Analysis Agent and other359

Figure 4: Model performance.

agents. It reviews the findings from the Static Anal- 360

ysis Agent and integrates these insights to form 361

a comprehensive understanding of the codebase’s 362

security vulnerabilities. The manager synthesizes 363

information from various sources into a coherent 364

action plan and guides the MAN towards propos- 365

ing a mitigation strategy. It also ensures clear and 366

actionable communication of findings and recom- 367

mendations, fostering collaboration and informa- 368

tion sharing among the team. 369

User Proxy Agent: Serves as a placeholder for 370

the human user in the MAN. It is responsible for re- 371

ceiving the initial task description from the user and 372

initiating the chat within the network. It maintains 373

the overall context and flow of the analysis process, 374

ensuring that the user’s initial prompt requirements 375

are met. 376

Admin Agent: Provides an environment for ex- 377

ecuting code within the MAN. This agent exposes 378

a limited set of functionalities to the other agents, 379

allowing them to execute specific commands or ac- 380

cess files as needed. It also serves as a gatekeeper, 381

limiting the potential for malicious code execution 382

or unauthorized access. 383

Assistant Agent: Provides general support and 384

assistance to the other agents within the MAN. It 385

assists in tasks such as information retrieval, data 386

analysis, and task coordination using the tools at 387

its disposal. It does not actively contribute to the 388

group chat and works passively as an entity with 389

the sole objective of helping other agents. 390

3.2.2 The Multi-Agent Workflow 391

The MAN follows a non-sequential workflow and 392

the workflow depends on findings of the agents. 393

They all work towards the same goal and do an 394

analysis of the target codebase. This is a sample of 395

how the network works in practice: 396

Task Initiation and Preparation: The human 397

5



user initiates the task by providing a description of398

the codebase to be analysed and the requirement to399

detect potential backdoors. The User Proxy Agent400

receives the task description and sets up the ini-401

tial group chat with the other agents. The group402

chat provides a centralized communication channel403

for the agents to exchange information, coordinate404

their efforts, and share their findings.405

Static Analysis: The Static Analysis Agent406

takes the lead in conducting the initial static analy-407

sis of the codebase. The agent scans the code for408

patterns, functions or snippets that are commonly409

associated with backdoors or other security vul-410

nerabilities. The agent then presents the analysis411

results to the Security Analysis Manager within the412

group chat for further review and prioritization.413

Further analysis and Code Execution: Based414

on the initial static analysis findings, the Security415

Analysis Manager may request the execution or416

analysis of code after looking at the json from the417

parsing algorithm. The Admin Agent acts as a418

secure and controlled environment and facilitates419

the execution of the requested code if any, ensur-420

ing that it does not adversely affect the system or421

compromise the overall security. The Agents have422

specifically been instructed not to run the code423

from the code base but they use the terminal to run424

required static analysis tools at their disposal.425

Vulnerability Assessment and Prioritization:426

The Security Analysis Manager reviews the find-427

ings from both the Static Analysis Agent and po-428

tentially the dynamic analysis. We tested some429

dynamic analysis scenarios but the Agents were430

unreliable and unpredictable and posed a huge risk431

if not overseen by a human.432

Mitigation Planning and Reporting: Security433

Analysis Manager coordinates with the other agents434

to develop a detailed plan for mitigating the iden-435

tified security risks. The plan may include recom-436

mendations for code changes, the implementation437

of additional security controls or the adoption of438

best practices to address the detected vulnerabili-439

ties. There is often a back and forth with each file440

before they reach a conclusion. The report from the441

Security Analysis Manager is then presented to the442

human user in an “email-like” format that provides443

a clear and actionable roadmap for enhancing the444

security of the codebase.445

Figure 5: Time spent on individual tasks. The first
model in the name provides a short description, the
second a long description and the third focuses on code
explanations.

3.2.3 Human in the Loop for Secure Code 446

Execution 447

The successful execution of dynamic analysis tasks 448

within the MAN is facilitated by the Admin Agent, 449

which serves as a secure and controlled environ- 450

ment for code execution. For every execution, hu- 451

man intervention was activated. By restricting the 452

available functionalities and carefully controlling 453

the code execution environment, the Admin Agent 454

acts as a gatekeeper. 455

4 Evaluation 456

4.1 Experimental Setup 457

To evaluate the performance of MANDALA, we 458

conducted extensive experiments using a variety 459

of models. The hardware used for these exper- 460

iments included a high-performance computing 461

server equipped with NVIDIA A30 and 256 GB of 462

memory. 463

We constructed our data sets by collecting a di- 464

verse set of codebases from open-source reposi- 465

tories. To show the statistics, code parsing was 466

performed and tested on Vulpy (Portantier, 2024). 467

For showing the efficiency in compressing the code 468

into fewer tokens, we filtered out files with more 469

than 1,000 tokens and showed the comparison be- 470

tween all the files vs. under 1,000 token long files. 471

Metrics were calculated based on several key 472

performance indicators, including average tokens 473

generated, average duration to generate responses, 474

average accuracy, and average tokens per second to 475

select the LLMs for further testing. These metrics 476

provided a comprehensive overview of the mod- 477

els’ performance in terms of both efficiency and 478

effectiveness. 479

6



Figure 6: Code Parsing Output Statistics. Models are separated by underscores. Refer to Table 1 for detailed model
descriptions. The first model provides a short description, the second a long description and the third focuses on
code explanations.

4.2 Choosing the models480

Figure 1 categorizes the model responses into cor-481

rect, incorrect, and unrelated answers. Llama 2,482

Mistral, and Mixtral had the best outputs with483

the least amount of hallucinations. Gemma had484

the highest number of incorrect and unrelated re-485

sponses. We can see that the best ratio of correct486

to non-unrelated responses, indicating minimal hal-487

lucinations, was achieved by Mistral. However,488

some models performed poorly, such as Gemma489

and White Rabbit Neo, which had a high rate of490

incorrect responses and hallucinations.491

Figure 4 presents the average number of tokens492

generated, the average duration needed to generate493

responses, the average accuracy, and the average494

tokens per second for each model. All metrics were495

calculated based on a comprehension task in which496

multiple questions were asked about a passage and497

evaluated multiple times to avoid bias towards a498

single test. The results were then averaged.499

The Llama 3 (70b) model and the Large World500

Model (LWM) generated the least amount of to-501

kens, making them the best in terms of average502

number of tokens. Their accuracy was also among503

the best. Mistral had the highest accuracy, followed504

by Llama 2 and then Dolphin Mixtral.505

The yarn-Llama2 model took the longest time506

to generate responses, with an average duration507

exceeding 200 seconds due to the long output it508

generated, on average, despite not being the largest509

evaluated model. Mistral achieved the highest ac-510

curacy, approximately 0.6, followed by Llama 2511

and Dolphin Mixtral. The Llama 3:8b model had512

the highest token generation speed, followed by513

Llama 2, LWM and Qwen 7b.514

Looking at these statistics, for short descriptions,515

we chose the Large World Model, Llama 2, and 516

Mixtral. For long descriptions, Dolphin Mixtral, 517

Llama 2, and Mistral. For code explanations, we 518

chose Large World Model, DeepSeekCoder, Llama 519

2, Llama 3, Mixtral, and Qwen 7b. The choice of 520

these models was based on their performance in 521

terms of average token output and accuracy. The 522

Large World Model was particularly chosen for 523

short descriptions and code explanations due to its 524

lower token output and good accuracy. Long de- 525

scriptions used Llama 2 and Mistral due to their 526

high accuracy. Code explanations involved multi- 527

ple models, including those fine-tuned on Python 528

code like DeepSeekCoder, which were expected to 529

perform well. 530

The analysis reveals that accuracy decreases with 531

longer duration (correlation of -0.39) and has a 532

slight positive relationship with tokens per sec- 533

ond (correlation of 0.095) and size (correlation of 534

0.017). Duration and tokens per second have a 535

moderate negative correlation of -0.51, while du- 536

ration and size have a weak positive correlation of 537

0.2. The tokens per second and size show a strong 538

negative correlation of -0.54. 539

5 Discussion 540

Case Study 1: SQL Injection and Command 541

Injection Vulnerabilities 542

The task was to analyze a codebase that con- 543

tained an SQL injection vulnerability. Below are 544

the snippets from the codebase, flagged as vulner- 545

able by the Static Analysis Agent. The agent de- 546

tected that there is direct concatenation of user in- 547

put into an SQL query without proper sanitization 548

in the get_user_details function, which leads 549

to a SQL injection vulnerability. The agents were 550

7



able to give specific recommendations for the miti-551

gation of the vulnerability, such as using prepared552

statements with parameterized queries to properly553

handle user input.554

Case Study 2: Hidden Function and Model555

Hallucination556

In this case, the MAN analyzes a codebase557

where there is suspicion of a hidden function called558

hidden_func. The Static Analysis Agent flagged559

such functions as a possible backdoor since they560

are unusually named, and there is no usage of such561

a function anywhere else in the codebase.562

Here’s where the LLMs had started to halluci-563

nate the code. Specifically, the LLM started work-564

ing with a function that did not exist in the code-565

base. This hallucination was propagated across all566

agents in the MAN, leading them to create and ana-567

lyze non-existent content. This incident highlights568

a significant challenge in ensuring the reliability569

and accuracy of LLMs in real-world applications.570

In fact, responses that were not based on the real571

content of the codebase. The model began to make572

assumptions and hallucinations about the code due573

to an error during its access.574

This result emphasizes the necessity for a bal-575

anced approach with human oversight, combining576

automated analysis with manual review, to ensure577

that the impact of model hallucinations is mitigated578

over the entire analysis process.579

Case Study 3: Environmental Instability and580

Dependency Management581

In this case, the MAN exhibited environmental582

instability during analysis. During analysis of the583

codebase, an agent using the Crew AI architecture584

decided that it wanted to uninstall and reinstall the585

Python runtime. The cause of this agent behavior586

has been deduced to be the misconfiguration in587

the dependency management system that would588

not report conflicts between differing versions of589

Python packages. The agent tried to resolve these590

conflicts by uninstalling and reinstalling packages.591

For all of these case studies, while the MAN592

approach offers significant potential, it is essential593

to acknowledge and address the challenges posed594

by model hallucinations, environmental instability,595

and the need for human oversight.596

6 Limitations597

To address the limitations and enhance the capabil-598

ities of MANDALA:599

Docker sandbox: Docker sandboxed environ-600

ment would provide the agents with an isolated en- 601

vironment to conduct dynamic analysis free from 602

the interference by the host system, whereby they 603

work much efficiently in detection of vulnerabili- 604

ties. This will make dynamic analysis more reli- 605

able. 606

Expanding Language Support: Support for 607

other programming languages such as Java, C++ or 608

JavaScript can be implemented in conducting com- 609

prehensive analysis of software systems to identify 610

vulnerabilities involving many different kinds of 611

codebases. 612

Fine-tune models: With data for training, it 613

would make possible a set of specialized fine-tuned 614

models applied in forecasting, hence making more 615

precise and yielding effective forecasting possible. 616

Addressing Model Hallucinations: Addressing 617

this issue and ensuring reliability and effectiveness 618

would require techniques developed to mitigate 619

the effects through human oversight, best practices 620

in dependency management, and maintaining an 621

environment of stability while integrating human 622

expertise within the process of analysis. 623

7 Conclusion 624

In this work, we explored the design and implemen- 625

tation of an algorithm for code parsing and descrip- 626

tion generation, aimed at addressing multi-agent 627

network methods for detecting backdoors and vul- 628

nerabilities in Python code, to effectively analyze 629

target codebases. These descriptions were gener- 630

ated using language models integrated through the 631

ollama framework using multiple LLMs. A com- 632

parative analysis of descriptions generated by vari- 633

ous language models was performed, highlighting 634

their performance levels. A comparative analysis 635

of descriptions generated by various language mod- 636

els was performed, highlighting their performance 637

levels. The best combinations were of the Large 638

World Model with Llama 2 and dolphin-mixtral. 639

This work demonstrates a promising approach to 640

leveraging LLMs for cybersecurity, with potential 641

applications in various other industries. We plan to 642

open-source our code to contribute to the broader 643

NLP and cybersecurity community and encourage 644

further research and collaboration in this area. 645

References 646

Large world model. https://largeworldmodel. 647
github.io/. Accessed: 2024-06-15. 648

8

https://largeworldmodel.github.io/
https://largeworldmodel.github.io/
https://largeworldmodel.github.io/


Llama3. https://llama.meta.com/llama3/. Ac-649
cessed: 2024-06-15.650

Ollama. https://www.ollama.com/. Accessed: 15651
June 2024.652

Mistral AI. Mixtral of experts. https://mistral.ai/653
news/mixtral-of-experts/. Accessed: 2024-06-654
15.655

Mistral AI. 2024. Announcing mistral 7b. https:656
//mistral.ai/news/announcing-mistral-7b/.657
Mistral AI News.658

Alibaba Cloud. Qwen. https://www.alibabacloud.659
com/en/solutions/generative-ai/qwen?_p_660
lc=1. Accessed: 2024-06-15.661

Inc. Docker. Docker. https://www.docker.com.662
Software platform.663

DuckDuckGo. Duckduckgo search python664
module. https://pypi.org/project/665
duckduckgo-search/. Python Package Index666
(PyPI).667

Hugging Face. Whiterabbitneo. https://668
huggingface.co/WhiteRabbitNeo. Retrieved669
from Hugging Face.670

Python Software Foundation. Ast python mod-671
ule. https://docs.python.org/3/library/ast.672
html. Python Standard Library.673

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai674
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,675
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-676
feng Liang. 2024. Deepseek-coder: When the large677
language model meets programming – the rise of678
code intelligence. Preprint, arXiv:2401.14196.679

Haoran Li, Junqi Liu, Zexian Wang, Shiyuan Luo, Xi-680
aowei Jia, and Huaxiu Yao. 2024. Lite: Modeling681
environmental ecosystems with multimodal large lan-682
guage models. arXiv preprint arXiv:2404.01165.683

Meta-Llama. Llama3 Repository. https://github.684
com/meta-llama/llama3. Accessed: 2024-06-15.685

Joao Moura. Crewai. https://github.com/686
joaomdmoura/crewAI. GitHub repository.687

Ollama. 2024. Yarn llama2 library. https://ollama.688
com/library/yarn-llama2. Ollama library.689

Charles Packer, Vivian Fang, Shishir G Patil, Kevin690
Lin, Sarah Wooders, and Joseph E Gonzalez. 2023.691
Memgpt: Towards llms as operating systems. arXiv692
preprint arXiv:2310.08560.693

Fabrizio Portantier. 2024. Vulpy. https://github.694
com/fportantier/vulpy. GitHub repository.695

Nous Research. Dolphin mixtral. https://ollama.696
com/library/dolphin-mixtral. Retrieved from697
Ollama library.698

Gemma Team, Thomas Mesnard, Cassidy Hardin, 699
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, 700
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, 701
Juliette Love, et al. 2024. Gemma: Open models 702
based on gemini research and technology. arXiv 703
preprint arXiv:2403.08295. 704

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 705
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 706
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 707
Bhosale, et al. 2023. Llama 2: Open founda- 708
tion and fine-tuned chat models. arXiv preprint 709
arXiv:2307.09288. 710

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, 711
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang, 712
Xiaoyun Zhang, and Chi Wang. 2023. Auto- 713
gen: Enabling next-gen llm applications via multi- 714
agent conversation framework. arXiv preprint 715
arXiv:2308.08155. 716

9

https://llama.meta.com/llama3/
https://www.ollama.com/
https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/announcing-mistral-7b/
https://mistral.ai/news/announcing-mistral-7b/
https://mistral.ai/news/announcing-mistral-7b/
https://www.alibabacloud.com/en/solutions/generative-ai/qwen?_p_lc=1
https://www.alibabacloud.com/en/solutions/generative-ai/qwen?_p_lc=1
https://www.alibabacloud.com/en/solutions/generative-ai/qwen?_p_lc=1
https://www.alibabacloud.com/en/solutions/generative-ai/qwen?_p_lc=1
https://www.alibabacloud.com/en/solutions/generative-ai/qwen?_p_lc=1
https://www.docker.com
https://pypi.org/project/duckduckgo-search/
https://pypi.org/project/duckduckgo-search/
https://pypi.org/project/duckduckgo-search/
https://huggingface.co/WhiteRabbitNeo
https://huggingface.co/WhiteRabbitNeo
https://huggingface.co/WhiteRabbitNeo
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://github.com/meta-llama/llama3
https://github.com/meta-llama/llama3
https://github.com/meta-llama/llama3
https://github.com/joaomdmoura/crewAI
https://github.com/joaomdmoura/crewAI
https://github.com/joaomdmoura/crewAI
https://ollama.com/library/yarn-llama2
https://ollama.com/library/yarn-llama2
https://ollama.com/library/yarn-llama2
https://github.com/fportantier/vulpy
https://github.com/fportantier/vulpy
https://github.com/fportantier/vulpy
https://ollama.com/library/dolphin-mixtral
https://ollama.com/library/dolphin-mixtral
https://ollama.com/library/dolphin-mixtral

	Introduction
	Overview
	Design
	AST-based Code Parsing Algorithm
	Leveraging Abstract Syntax Trees
	Folder and File Processing
	Generating Descriptions and Explanations
	Description Granularity
	Access to Processed Data

	Multi-Agent Model Design
	The Agents and their Roles
	The Multi-Agent Workflow
	Human in the Loop for Secure Code Execution


	Evaluation
	Experimental Setup
	Choosing the models

	Discussion
	Limitations
	Conclusion

