MANDALA: Multi-Agent Network for Backdoor Detection using AST
Parsing and Large Language Models

Anonymous ACL submission

Abstract

This paper presents MANDALA, a system
that leverages locally deployed open-source
large language models (LLMs) and multi-agent
networks to enhance vulnerability detection in
code bases. MANDALA uses an abstract syn-
tax tree-based algorithm to parse code into di-
gestible chunks for LLMs, generating code ex-
planations and descriptions. A collaborative
multi-agent network comprised of specialized
agents such as static analysis, security man-
agement, and user interaction agents then co-
ordinate to analyze the codebase for poten-
tial backdoors and vulnerabilities. Evaluations
on open-source codebases demonstrate MAN-
DALA’s ability to significantly reduce manual
effort while increasing detection speed and ac-
curacy over traditional methods across various
test cases. MANDALA represents an innova-
tive integration of LLMs and multi-agent sys-
tems for efficient, scalable code vulnerability
detection.

1 Introduction

The intersection of Natural Language Processing
(NLP) and cybersecurity presents a promising op-
portunity to leverage new developments in the area
of large language models (LLMs). We have applied
these advances in LLM to enhance the efficiency
and effectiveness of security vulnerability detection
and analysis in code bases to create MANDALA.
By using the power of multiple LLMs within a
multi-agent network and combining it with the Ab-
stract Syntax Tree-based parsing algorithm with
multiple LLMs, we aim to contribute significantly
to the development of more secure software in-
frastructure. Traditional methods of detecting vul-
nerabilities struggle to keep pace with the rapid
evolution of software development and are there-
fore exposed to various cyber threats. We focus
on specifically backdoor vulnerability detection,
which is to identify weaknesses in systems that

could allow unauthorized access, which are essen-
tially hidden entrances created either intentionally
or unintentionally. Recently, LLMs have demon-
strated strong context understanding, specifically
in inference and generating coherent output, mak-
ing them uniquely positioned to handle complex
problem solving scenarios in this domain.

Existing cybersecurity approaches, from man-
ual code reviews to automated static and dynamic
analysis tools, often involve substantial human in-
volvement and result in a lack of scalability. The
increasing size and complexity of software projects
makes the manual identification of backdoors in-
creasingly infeasible. Manual code reviews, while
thorough, are slow and not feasible for large code-
bases. Another major issue is that the code lengths
can be extensive, making it difficult for traditional
methods to process and analyze efficiently. Here,
the limitations of existing approaches become evi-
dent, necessitating a more advanced and scalable
solution.

The key insight of this project lies in the un-
tapped potential of LLMs to transform the cyberse-
curity space. LLMs understand patterns, logic, and
thus should be able to detect vulnerabilities within
software code by processing the text-based features.
This innovative approach leverages the power of
Multi-Agent Networks (MANs) where numerous
agents collaborate to achieve a common goal. By
combining the strengths of individual agents and
giving each agent an individual goal, this MAN
system offers outstanding adaptability and effec-
tiveness. For the second problem, to tackle the
challenge of long code length and the context con-
straint of LL.Ms, we utilize Abstract Syntax Trees
(ASTs). ASTs provide a structured representation
of the code, allowing for more efficient parsing and
analysis by LLMs. We check the length of every
node and iterate through to extract all functions in
the program and process them. Because these func-
tions are significantly smaller than the entire file,

the code size is exponentially reduced as it grows
larger, making it manageable for LLMs to process.

Based on this insight, we have proposed MAN-
DALA: a Multi-Agent Network for Backdoor De-
tection Using AST Parsing and Large Language
Models System. This system integrates several ad-
vanced technologies, including AutoGen (Wu et al.,
2023) and CrewAl (Moura), to create this collabo-
rative MAN framework. LiteLLM (Li et al., 2024)
simplifies the integration and utilization of LLM
APIs and Ollama (oll) provides a framework for
running LLMs mentioned in the Table 1 locally.
Our experiments have shown that this method not
only improves the speed of vulnerability detection
but also scales effectively with large codebases.
The results show a significant reduction in man-
ual human effort and an exponential increase in
detection speed.

We plan to open-source our code and data to
facilitate future work in the broader NLP and cy-
bersecurity community.

2 Overview

If we look at any industry software deployed in a
production environment, it will have millions of
lines of code, presenting a significant challenge to
traditional cybersecurity methods. Manual code
reviews are thorough, but they are impractical for
such a vast amount of code. Automated tools also
struggle with the complexity and sheer volume of
the code, often missing critical vulnerabilities. In
contrast, by using our proposed multi-agent LLM
network, we aim to effectively parse, analyze, and
detect these vulnerabilities in a fraction of the time
and costt. MANDALA'’s ability to break down
the code into smaller, manageable functions using
ASTs ensures that even the largest code projects
can be analyzed efficiently.

We want to improve the efficiency and effective-
ness of vulnerability detection. We assume that
the software code is accessible and can be parsed
into ASTs. We have focused on Python code in
MANDALA, but it can be expanded to support
other languages through a modular architecture.
MANDALA is also focused on code vulnerabili-
ties that cause backdoors. By targeting code-based
vulnerabilities, we aim to create a robust system
that can ideally identify weaknesses before they are
exploited.

MANDALA uses two systems: Firstly, Code
parsing using ASTs and secondly, Multi- Agent

Evaluation Counts per Model

25 Evaluation
Correct

= Unrelated

W Incorrect

20

15

Count

eSS ESE BEREBEEREEREEE R BOR

£
=

deepseek-coder|
dolphin-mixtrall
gemma

llama2
llama3:8b
llama3:70b
mistral

mixtral
qwen:110b
qwen:7b
yarn-llama2
whiterabbitneo

Model

Figure 1: The figure shows the accuracy of models on
comprehension tasks.

Networks (MANs). MANSs are multiple agents with
well defined individual goals collaborate to achieve
a common goal. This combines the strengths of
individual agents of code understanding to com-
pensate for their weaknesses of context length and
offers outstanding adaptability. We have created
MANDALA for vulnerability detection that scales
effectively with large codebases and this use of
LLMs addresses the scalability issue and reduces
manual human effort significantly.

AutoGen and CrewAl have introduced Al col-
laboration by defining specific roles and facilitating
teamwork towards shared objectives. Agents have
their own individual roles and tools that are specific
to them. LiteLLM simplifies the integration and
utilization of LLM APIs, and Ollama provides a
framework for running LLMs locally. The project’s
journey included assessing MemGPT (Packer et al.,
2023) for context management, but due to instabil-
ity issues, we focused on the proven frameworks
of AutoGen and CrewAl, combined with LiteLLM
and Ollama.

MANDALA is based on locally implemented
LLMs that provide greater control over data pri-
vacy and security since the data does not leave the
local environment. This is extremely important
in the space of cybersecurity where sensitive in-
formation may be involved. Local LLMs can be
fine-tuned without much additional cost to serve
specific needs and contexts, which can enhance the
detection of vulnerabilities. Table 1 shows the
LLMs which have been tested in MANDALA. A
notable drawback is the need for substantial com-
putational resources, which makes local LLMs ex-
pensive and difficult to manage. As an alternative,

Model Name Parameters Description

Large World Model (lar) 6.74 billion Fine-tuned Llama2 model with a context length of 1 million tokens.

DeepSeekCoder (Guo et al., 2024) 6.74 billion Fine-tuned Llama2 model with a window size of 16,000. Excellent at coding.

Dolphin Mixtral (Research) 8 x 7 billion Uncensored fine-tuned Mixtral model specialized in coding tasks.

Gemma (Team et al., 2024) 8.54 billion A lightweight state-of-the-art open model built by Google DeepMind.

Llama?2 (Touvron et al., 2023) 6.74 billion Meta’s older Llama model released in 2023, known for its SOTA performance.
Chosen to compare with Lama3 and assess improvements.

Llama3 (lla; Meta-Llama) 8.03 billion Meta’s latest model (2024) with claimed significant improvements over Llama2.

Llama3 (lla; Meta-Llama) 70.6 billion Chosen for its extensive parameter size to assess performance.

Mistral (Al 2024) 7.25 billion A model by Mistral Al. Chosen for its efficiency and performance.

Mixtral (AI) 8 x 7 billion A mixture of experts model by Mistral Al consisting of 8 experts, each with
7 billion parameters. Chosen for its innovative mixture of experts approach.

Qwen (Alibaba Cloud) 7.72 billion a transformer-based LLM by Alibaba Cloud, pre-trained on a large volume of
data, including web texts, books, code, etc.

Qwen (Alibaba Cloud) 111 billion A larger version of Qwen with 111 billion parameters. Chosen for its
extensive parameter size to assess performance gains.

Yarn Lama2 (Ollama, 2024) 6.74 billion Extends Lama2’s context length up to 128,000 tokens.

White Rabbit Neo (Face) 13 billion Fine-tuned on cybersecurity data, used for offensive and defensive

cybersecurity testing. Chosen for its specialization in cybersecurity.

Table 1: Selected models.

the same code used for local LLMs can be sub-
stituted by various internet LLM APIs like Ope-
nAl, Google, or Anthropic. This flexibility allows
for easy switching between local and more cutting
edge models, leveraging the strengths of each ap-
proach as needed.

While newer language models like Gemini,
Claude and ChatGPT boast substantially longer
context lengths compared to previous generations,
analyzing massive codebases consisting of mil-
lions of lines can still overwhelm their capabili-
ties. Therefore, MANDALA'’s approach of lever-
aging ASTs to methodically break down code into
smaller, manageable components remains highly
relevant. By reducing the token footprint exponen-
tially as code size increases, this technique enables
efficient processing by language models regard-
less of their maximum context capacity. As such,
MANDALA'’s parsing algorithm complements the
latest advances in language models, ensuring scal-
able and thorough vulnerability analysis even for
the most extensive software projects.

Challenges Implementing LLMs in cybersecu-
rity presents several challenges:

1. Dependency on External Tools and Li-
braries: The MAN relies on various exter-
nal tools and libraries, such as duckduckgo
search (DuckDuckGo), docker (Docker) and
the LL.Ms, to perform its analysis tasks. The
solution’s utilization of emerging technolo-
gies, such as the Autogen framework and Cre-
wai, introduces an element of uncertainty re-
garding the stability of these components. The
performance and reliability of these external
components can directly impact the overall
effectiveness of the solution.

2. False Positives or Missed Vulnerabilities:
While the combination of static and dynamic
analysis techniques aims to provide a compre-
hensive assessment, there is always the pos-
sibility of false positives or missed vulnera-
bilities (false negatives), particularly in the
face of sophisticated and obfuscated backdoor
techniques. This is especially true when open-
sourced models with a short context length
are used. They can be extremely inaccurate
and not reliable for complex tasks.

3. High Computational Resources: Managing
the significant computational requirements of
LLMs is nontrivial.

3 Design

MANDALA is divided into two parts: the AST-
based code parsing algorithm and the MANSs for
detection.

3.1 AST-based Code Parsing Algorithm

The AST-based parsing algorithm lies at the core of
our approach to efficiently process large codebases
so that it can produce detailed and full descriptions
and explanations of the code inside. The main tools
the algorithm uses to realize its objectives are ASTS,
systematic file and folder processing, and language
models deployed through the Ollama library.

3.1.1 Leveraging Abstract Syntax Trees

At the heart of the code parsing lies the utilization
of Abstract Syntax Trees (ASTs). ASTs present
a powerful model of the structure and semantics
that underlie the code of a programming language.
This is done using ASTs that enable the algorithm
to dig into the specific nodes/parts of the Python

= Yes
Folder Python Process python
file? file
l No Short and long descnplmns[
Getfile |\ shortand long descriptions,
descriptions Gddobasinae

Next file folder?

Finished? — End

Figure 2: Flowchart for the parsing algorithm.

code to extract essential elements required in the
generation of descriptions and explanations.

First, we transform the raw file content into an
AST representation that uses the ast (Foundation)
module in Python. We further refine the AST by
applying custom formatting rules to various node
types such as variable assignments, control flow
statements, and function definitions. This step
ensures that the extracted code segments are pre-
sented in a clean and structured manner.

The use of ASTs in the algorithm offers several
key advantages:

Structured Code Representation: By convert-
ing the raw code into an AST, MANDALA gets an
understanding of the underlying logical structure of
the program including variables, control flow and
function definitions. This structured representation
allows for more precise and targeted extraction of
relevant code elements.

Extensibility: The modular design allows for
easy expansion and customization of the AST pro-
cessing rules. This makes the algorithm adaptable
to handle different language constructs or evolving
programming practices.

3.1.2 Folder and File Processing

The algorithm dives into the target directory and all
its subdirectories. This allows the algorithm to run
and provides a full analysis of the entire codebase.
The flowchart in Figure 2 illustrates the systematic
folder and file processing methodology employed
by the parsing algorithm.

For each file, a helper function analyzes the file
extension to determine the programming language.
This function has been configured to easily expand
to support additional languages in the future.

If the file is identified as a Python file, MAN-
DALA parses the file to transform the code into a
structured AST representation. This step uses the
discussed AST processing to extract the essential

v
Next node in
I AST
~ One Yes Add to
Input ———> < line code? — description
No
Get code
explanation
. Get long Yes 4 End No
——
: description : of file?
:Output) :
: Get short
description

Get File Descriptions

Figure 3: Flowchart for processing python file.

code elements. Then it proceeds to the genera-
tion of descriptions and explanations. This next
step gives MANDALA scalability and efficiency
to handle large codebases without losing effective-
ness.

3.1.3 Generating Descriptions and
Explanations

The overall idea behind generating code explana-
tions, long descriptions and short descriptions, is
to handle very large codebases efficiently. Real
programs consist of a huge amount of long and
complex functions that MANDALA exponentially
reduces by leveraging their AST representations.
By breaking down the code into smaller compo-
nents, the process becomes more manageable and
allows for effective analysis and understanding. Re-
fer to the Figure 3.

3.1.4 Description Granularity

Figure 5 provides examples and statistics for the
code explanations, long descriptions, and short de-
scriptions generated as part of the parsing process.

Code Explanations: It reduces large functions
into a few lines of description. When these descrip-
tions are aggregated, they provide a comprehensive
narrative of the code’s flow and functionality. This
step is important to transform extensive code seg-
ments into manageable pieces which should fit in
the limited context window of the LLM.

Long Descriptions: Once the code has been bro-
ken down and explained at the AST node level, the
long description function generates a more holistic
description of the code. The goal here is to pro-
vide a thorough analysis that balances detail and
relevance. In contrast, the code explanation was
providing succinct descriptions for individual AST

nodes. The reduced size of explanations from the
previous step enables this step to generate the long
descriptions.

Short Descriptions: After obtaining a detailed
long description, MANDALA distills the infor-
mation into a concise, one-sentence summary.
This step provides a high-level understanding of
the code’s purpose, allowing the LLLM agents to
quickly grasp the essence of the code without delv-
ing into details. Hence, this preprocessing helps
in managing huge codebases and provides agents
with the essential information.

By having these three different types of descrip-
tion: code explanation, long description, and short
description, the process ensures a thorough yet
scalable approach to understanding and analyzing
large codebases. Each type of description uses
custom-configured LLM models, selected based on
extensive testing to ensure optimal performance, as
shown in Section 5.

3.1.5 Access to Processed Data

Upon completion of the file processing and de-
scription generation, the algorithm saves the three
dictionaries to JSON files. This storage of the gen-
erated outputs allows for easy access, sharing and
will help to combine both systems of parsing and
the MAN together.

3.2 Multi-Agent Model Design

The detection of potential backdoors within a code-
base involving both static and dynamic analysis
techniques. To address this challenge, the provided
solution incorporates a MAN and uses the strengths
and specialized capabilities of individual agents to
achieve a thorough and coordinated analysis of the
target codebase.

3.2.1 The Agents and their Roles

The multi-agent network consists of the following:

Static Analysis Agent: Responsible for conduct-
ing a static analysis of the code to identify possible
backdoors and other vulnerabilities. This agent fo-
cuses on detecting any anomalies that deviate from
standard coding practices. It also specifies the ex-
act locations within the codebase where potential
vulnerabilities are detected. It presents the analysis
results to the Security Analysis Manager for further
review.

Security Analysis Manager Agent: Oversees
the entire backdoor detection process and coor-
dinates with the Static Analysis Agent and other

Model Performance Metrics

Average Tokens

)

2
=
[
H
&

llama2
lama370b
qwen110b
whiterabbitneo
yam-llama2

deepseek-coder

Figure 4: Model performance.

agents. It reviews the findings from the Static Anal-
ysis Agent and integrates these insights to form
a comprehensive understanding of the codebase’s
security vulnerabilities. The manager synthesizes
information from various sources into a coherent
action plan and guides the MAN towards propos-
ing a mitigation strategy. It also ensures clear and
actionable communication of findings and recom-
mendations, fostering collaboration and informa-
tion sharing among the team.

User Proxy Agent: Serves as a placeholder for
the human user in the MAN. It is responsible for re-
ceiving the initial task description from the user and
initiating the chat within the network. It maintains
the overall context and flow of the analysis process,
ensuring that the user’s initial prompt requirements
are met.

Admin Agent: Provides an environment for ex-
ecuting code within the MAN. This agent exposes
a limited set of functionalities to the other agents,
allowing them to execute specific commands or ac-
cess files as needed. It also serves as a gatekeeper,
limiting the potential for malicious code execution
or unauthorized access.

Assistant Agent: Provides general support and
assistance to the other agents within the MAN. It
assists in tasks such as information retrieval, data
analysis, and task coordination using the tools at
its disposal. It does not actively contribute to the
group chat and works passively as an entity with
the sole objective of helping other agents.

3.2.2 The Multi-Agent Workflow

The MAN follows a non-sequential workflow and
the workflow depends on findings of the agents.
They all work towards the same goal and do an
analysis of the target codebase. This is a sample of
how the network works in practice:

Task Initiation and Preparation: The human

user initiates the task by providing a description of
the codebase to be analysed and the requirement to
detect potential backdoors. The User Proxy Agent
receives the task description and sets up the ini-
tial group chat with the other agents. The group
chat provides a centralized communication channel
for the agents to exchange information, coordinate
their efforts, and share their findings.

Static Analysis: The Static Analysis Agent
takes the lead in conducting the initial static analy-
sis of the codebase. The agent scans the code for
patterns, functions or snippets that are commonly
associated with backdoors or other security vul-
nerabilities. The agent then presents the analysis
results to the Security Analysis Manager within the
group chat for further review and prioritization.

Further analysis and Code Execution: Based
on the initial static analysis findings, the Security
Analysis Manager may request the execution or
analysis of code after looking at the json from the
parsing algorithm. The Admin Agent acts as a
secure and controlled environment and facilitates
the execution of the requested code if any, ensur-
ing that it does not adversely affect the system or
compromise the overall security. The Agents have
specifically been instructed not to run the code
from the code base but they use the terminal to run
required static analysis tools at their disposal.

Vulnerability Assessment and Prioritization:
The Security Analysis Manager reviews the find-
ings from both the Static Analysis Agent and po-
tentially the dynamic analysis. We tested some
dynamic analysis scenarios but the Agents were
unreliable and unpredictable and posed a huge risk
if not overseen by a human.

Mitigation Planning and Reporting: Security
Analysis Manager coordinates with the other agents
to develop a detailed plan for mitigating the iden-
tified security risks. The plan may include recom-
mendations for code changes, the implementation
of additional security controls or the adoption of
best practices to address the detected vulnerabili-
ties. There is often a back and forth with each file
before they reach a conclusion. The report from the
Security Analysis Manager is then presented to the
human user in an “email-like” format that provides
a clear and actionable roadmap for enhancing the
security of the codebase.

Time Spent on Each Task for Each Model
3500
3000

2500

2000

1500

Total Duration (s)

1000

500

LWM Dolphin DeepSeek
LWM Dolphin LWM

LWM Llama2 DeepSeek
LWM Llama2 LWM

LWM Llama2 Llama2
LWM Llama2 Llama3
LWM Llama2 Mixtral
LWM Llama2 Qwen

Model

Figure 5: Time spent on individual tasks. The first
model in the name provides a short description, the
second a long description and the third focuses on code
explanations.

3.2.3 Human in the Loop for Secure Code
Execution

The successful execution of dynamic analysis tasks
within the MAN is facilitated by the Admin Agent,
which serves as a secure and controlled environ-
ment for code execution. For every execution, hu-
man intervention was activated. By restricting the
available functionalities and carefully controlling
the code execution environment, the Admin Agent
acts as a gatekeeper.

4 Evaluation

4.1 Experimental Setup

To evaluate the performance of MANDALA, we
conducted extensive experiments using a variety
of models. The hardware used for these exper-
iments included a high-performance computing
server equipped with NVIDIA A30 and 256 GB of
memory.

We constructed our data sets by collecting a di-
verse set of codebases from open-source reposi-
tories. To show the statistics, code parsing was
performed and tested on Vulpy (Portantier, 2024).
For showing the efficiency in compressing the code
into fewer tokens, we filtered out files with more
than 1,000 tokens and showed the comparison be-
tween all the files vs. under 1,000 token long files.

Metrics were calculated based on several key
performance indicators, including average tokens
generated, average duration to generate responses,
average accuracy, and average tokens per second to
select the LLMs for further testing. These metrics
provided a comprehensive overview of the mod-
els’ performance in terms of both efficiency and
effectiveness.

Mean Tokens for Each Stage with Original Tokens Mean (No Filter)

Mean Tokens for Each Stage with Original Tokens Mean (Filtered, Original Tokens Only)

Figure 6: Code Parsing Output Statistics. Models are separated by underscores. Refer to Table 1 for detailed model
descriptions. The first model provides a short description, the second a long description and the third focuses on

code explanations.

4.2 Choosing the models

Figure 1 categorizes the model responses into cor-
rect, incorrect, and unrelated answers. Llama 2,
Mistral, and Mixtral had the best outputs with
the least amount of hallucinations. Gemma had
the highest number of incorrect and unrelated re-
sponses. We can see that the best ratio of correct
to non-unrelated responses, indicating minimal hal-
lucinations, was achieved by Mistral. However,
some models performed poorly, such as Gemma
and White Rabbit Neo, which had a high rate of
incorrect responses and hallucinations.

Figure 4 presents the average number of tokens
generated, the average duration needed to generate
responses, the average accuracy, and the average
tokens per second for each model. All metrics were
calculated based on a comprehension task in which
multiple questions were asked about a passage and
evaluated multiple times to avoid bias towards a
single test. The results were then averaged.

The Llama 3 (70b) model and the Large World
Model (LWM) generated the least amount of to-
kens, making them the best in terms of average
number of tokens. Their accuracy was also among
the best. Mistral had the highest accuracy, followed
by Llama 2 and then Dolphin Mixtral.

The yarn-Llama2 model took the longest time
to generate responses, with an average duration
exceeding 200 seconds due to the long output it
generated, on average, despite not being the largest
evaluated model. Mistral achieved the highest ac-
curacy, approximately 0.6, followed by Llama 2
and Dolphin Mixtral. The Llama 3:8b model had
the highest token generation speed, followed by
Llama 2, LWM and Qwen 7b.

Looking at these statistics, for short descriptions,

we chose the Large World Model, Llama 2, and
Mixtral. For long descriptions, Dolphin Mixtral,
Llama 2, and Mistral. For code explanations, we
chose Large World Model, DeepSeekCoder, Llama
2, Llama 3, Mixtral, and Qwen 7b. The choice of
these models was based on their performance in
terms of average token output and accuracy. The
Large World Model was particularly chosen for
short descriptions and code explanations due to its
lower token output and good accuracy. Long de-
scriptions used Llama 2 and Mistral due to their
high accuracy. Code explanations involved multi-
ple models, including those fine-tuned on Python
code like DeepSeekCoder, which were expected to
perform well.

The analysis reveals that accuracy decreases with
longer duration (correlation of -0.39) and has a
slight positive relationship with tokens per sec-
ond (correlation of 0.095) and size (correlation of
0.017). Duration and tokens per second have a
moderate negative correlation of -0.51, while du-
ration and size have a weak positive correlation of
0.2. The tokens per second and size show a strong
negative correlation of -0.54.

5 Discussion

Case Study 1: SQL Injection and Command
Injection Vulnerabilities

The task was to analyze a codebase that con-
tained an SQL injection vulnerability. Below are
the snippets from the codebase, flagged as vulner-
able by the Static Analysis Agent. The agent de-
tected that there is direct concatenation of user in-
put into an SQL query without proper sanitization
in the get_user_details function, which leads
to a SQL injection vulnerability. The agents were

able to give specific recommendations for the miti-
gation of the vulnerability, such as using prepared
statements with parameterized queries to properly
handle user input.

Case Study 2: Hidden Function and Model
Hallucination

In this case, the MAN analyzes a codebase
where there is suspicion of a hidden function called
hidden_func. The Static Analysis Agent flagged
such functions as a possible backdoor since they
are unusually named, and there is no usage of such
a function anywhere else in the codebase.

Here’s where the LLMs had started to halluci-
nate the code. Specifically, the LLM started work-
ing with a function that did not exist in the code-
base. This hallucination was propagated across all
agents in the MAN, leading them to create and ana-
lyze non-existent content. This incident highlights
a significant challenge in ensuring the reliability
and accuracy of LLMs in real-world applications.
In fact, responses that were not based on the real
content of the codebase. The model began to make
assumptions and hallucinations about the code due
to an error during its access.

This result emphasizes the necessity for a bal-
anced approach with human oversight, combining
automated analysis with manual review, to ensure
that the impact of model hallucinations is mitigated
over the entire analysis process.

Case Study 3: Environmental Instability and
Dependency Management

In this case, the MAN exhibited environmental
instability during analysis. During analysis of the
codebase, an agent using the Crew Al architecture
decided that it wanted to uninstall and reinstall the
Python runtime. The cause of this agent behavior
has been deduced to be the misconfiguration in
the dependency management system that would
not report conflicts between differing versions of
Python packages. The agent tried to resolve these
conflicts by uninstalling and reinstalling packages.

For all of these case studies, while the MAN
approach offers significant potential, it is essential
to acknowledge and address the challenges posed
by model hallucinations, environmental instability,
and the need for human oversight.

6 Limitations

To address the limitations and enhance the capabil-
ities of MANDALA:
Docker sandbox: Docker sandboxed environ-

ment would provide the agents with an isolated en-
vironment to conduct dynamic analysis free from
the interference by the host system, whereby they
work much efficiently in detection of vulnerabili-
ties. This will make dynamic analysis more reli-
able.

Expanding Language Support: Support for
other programming languages such as Java, C++ or
JavaScript can be implemented in conducting com-
prehensive analysis of software systems to identify
vulnerabilities involving many different kinds of
codebases.

Fine-tune models: With data for training, it
would make possible a set of specialized fine-tuned
models applied in forecasting, hence making more
precise and yielding effective forecasting possible.

Addressing Model Hallucinations: Addressing
this issue and ensuring reliability and effectiveness
would require techniques developed to mitigate
the effects through human oversight, best practices
in dependency management, and maintaining an
environment of stability while integrating human
expertise within the process of analysis.

7 Conclusion

In this work, we explored the design and implemen-
tation of an algorithm for code parsing and descrip-
tion generation, aimed at addressing multi-agent
network methods for detecting backdoors and vul-
nerabilities in Python code, to effectively analyze
target codebases. These descriptions were gener-
ated using language models integrated through the
ollama framework using multiple LLMs. A com-
parative analysis of descriptions generated by vari-
ous language models was performed, highlighting
their performance levels. A comparative analysis
of descriptions generated by various language mod-
els was performed, highlighting their performance
levels. The best combinations were of the Large
World Model with Llama 2 and dolphin-mixtral.
This work demonstrates a promising approach to
leveraging LLMs for cybersecurity, with potential
applications in various other industries. We plan to
open-source our code to contribute to the broader
NLP and cybersecurity community and encourage
further research and collaboration in this area.

References

Large world model. https://largeworldmodel.
github.io/. Accessed: 2024-06-15.

https://largeworldmodel.github.io/
https://largeworldmodel.github.io/
https://largeworldmodel.github.io/

Llama3. https://1lama.meta.com/1lama3/. Ac-
cessed: 2024-06-15.

Ollama. https://www.ollama.com/. Accessed: 15
June 2024.

Mistral Al. Mixtral of experts. https://mistral.ai/
news/mixtral-of-experts/. Accessed: 2024-06-
15.

Mistral Al. 2024. Announcing mistral 7b. https:
//mistral.ai/news/announcing-mistral-7b/.
Mistral AI News.

Alibaba Cloud. Qwen. https://www.alibabacloud.
com/en/solutions/generative-ai/qwen?_p_
lc=1. Accessed: 2024-06-15.

Inc. Docker. Docker.
Software platform.

https://www.docker.com.

DuckDuckGo. Duckduckgo search python
module. https://pypi.org/project/
duckduckgo-search/. Python Package Index
(PyPI).

Hugging Face. Whiterabbitneo. https://
huggingface.co/WhiteRabbitNeo. Retrieved
from Hugging Face.

Python Software Foundation. Ast python mod-
ule. https://docs.python.org/3/library/ast.
html. Python Standard Library.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming — the rise of
code intelligence. Preprint, arXiv:2401.14196.

Haoran Li, Junqi Liu, Zexian Wang, Shiyuan Luo, Xi-
aowei Jia, and Huaxiu Yao. 2024. Lite: Modeling
environmental ecosystems with multimodal large lan-
guage models. arXiv preprint arXiv:2404.01165.

Meta-Llama. Llama3 Repository. https://github.
com/meta-1lama/llama3. Accessed: 2024-06-15.

Joao Moura. Crewai. https://github.com/
joaomdmoura/crewAl. GitHub repository.

Ollama. 2024. Yarn llama2 library. https://ollama.
com/library/yarn-1lama2. Ollama library.

Charles Packer, Vivian Fang, Shishir G Patil, Kevin
Lin, Sarah Wooders, and Joseph E Gonzalez. 2023.
Memgpt: Towards llms as operating systems. arXiv
preprint arXiv:2310.08560.

Fabrizio Portantier. 2024. Vulpy. https://github.
com/fportantier/vulpy. GitHub repository.

Nous Research. Dolphin mixtral. https://ollama.
com/library/dolphin-mixtral. Retrieved from
Ollama library.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

https://llama.meta.com/llama3/
https://www.ollama.com/
https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/announcing-mistral-7b/
https://mistral.ai/news/announcing-mistral-7b/
https://mistral.ai/news/announcing-mistral-7b/
https://www.alibabacloud.com/en/solutions/generative-ai/qwen?_p_lc=1
https://www.alibabacloud.com/en/solutions/generative-ai/qwen?_p_lc=1
https://www.alibabacloud.com/en/solutions/generative-ai/qwen?_p_lc=1
https://www.alibabacloud.com/en/solutions/generative-ai/qwen?_p_lc=1
https://www.alibabacloud.com/en/solutions/generative-ai/qwen?_p_lc=1
https://www.docker.com
https://pypi.org/project/duckduckgo-search/
https://pypi.org/project/duckduckgo-search/
https://pypi.org/project/duckduckgo-search/
https://huggingface.co/WhiteRabbitNeo
https://huggingface.co/WhiteRabbitNeo
https://huggingface.co/WhiteRabbitNeo
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://github.com/meta-llama/llama3
https://github.com/meta-llama/llama3
https://github.com/meta-llama/llama3
https://github.com/joaomdmoura/crewAI
https://github.com/joaomdmoura/crewAI
https://github.com/joaomdmoura/crewAI
https://ollama.com/library/yarn-llama2
https://ollama.com/library/yarn-llama2
https://ollama.com/library/yarn-llama2
https://github.com/fportantier/vulpy
https://github.com/fportantier/vulpy
https://github.com/fportantier/vulpy
https://ollama.com/library/dolphin-mixtral
https://ollama.com/library/dolphin-mixtral
https://ollama.com/library/dolphin-mixtral

	Introduction
	Overview
	Design
	AST-based Code Parsing Algorithm
	Leveraging Abstract Syntax Trees
	Folder and File Processing
	Generating Descriptions and Explanations
	Description Granularity
	Access to Processed Data

	Multi-Agent Model Design
	The Agents and their Roles
	The Multi-Agent Workflow
	Human in the Loop for Secure Code Execution

	Evaluation
	Experimental Setup
	Choosing the models

	Discussion
	Limitations
	Conclusion

