LINKAGE-GUIDED GENETIC VARIATION: OVERCOM-ING OPERATOR BLINDNESS IN GENETIC ALGORITHMS

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

024

025

027028029

031

033

034

037

038

040

041

042

043 044

046

047

048

049

050 051

052

Paper under double-blind review

ABSTRACT

The core bottleneck of Genetic Algorithms is operator blindness: crossover and mutation locations are chosen at random, routinely breaking valuable building blocks. We introduce the Evolving Locus Linkage Graph (ELLG), which embeds the linkage principle (keep strong segments intact, recombine at weak boundaries) into operator design. At each generation, ELLG updates per-locus linkage weights from observed fitness, producing a task-specific linkage map that tells the algorithm which segments to keep intact and where to cut; as generations proceed, these protected regions and preferred cut sites become increasingly well-defined. A simple monotone transformation converts the learned weights into placement probabilities for crossover and mutation, replacing uniform randomness with targeted, structure-aware operator placement. We integrate ELLG as a plug-in to a standard GA without changing the problem encoding or operator semantics. We benchmark ELLG against a large pool of state-of-the-art evolutionary methods across two domains: classical multi-objective optimization suites and Neural Architecture Search, ELLG achieves higher final solution quality in experiments.

1 Introduction

Classical genetic algorithms (GAs) (Golberg, 1989) typically apply crossover and mutation at randomly chosen loci. Although simple, such location-agnostic variation may disrupt cooperative gene fragments and slow convergence, especially in high-dimensional or rugged search spaces. Many subsequent variants have sought to adjust the intensity and direction of search, for example, by annealing mutation rates (Smith & Fogarty, 1997; Wang et al., 2021; Marjit et al., 2023; Ni & Spector, 2024), biasing selection pressure (Baker, 2014; Halim et al., 2021; Yang et al., 2024), or reshaping the search with reference vectors (Srinivas & Patnaik, 2002; Xue et al., 2022b; Qiao et al., 2022; Xue et al., 2022a), decomposition (Goldberg & Deb, 1991; Xie et al., 2022), indicators (Phan & Suzuki, 2013; Li et al., 2019), and grid-based strategies (Corne et al., 2001) — yet they seldom articulate a testable and updatable principle for answering the fundamental questions of where recombination should occur and which regions should be preserved. In contrast, population genetics points to a block-boundary structure: loci that frequently co-occur within a block are best inherited together, whereas recombination is most effective at boundaries where dependence is weak. Building on this insight, a learnable location rule is formulated that makes crossover and mutation dependenceaware, preserves high-dependence fragments, and places recombination at low-dependence boundaries, while retaining the standard selection-crossover-mutation backbone.

This biological principle is formalized through the concept of Linkage Disequilibrium (LD), which measures the non-random association of alleles across loci. As empirically demonstrated in Fig. 1, this non-randomness creates a distinct structure: regions of high LD manifest as the tightly-coupled Haplotype Blocks, while regions of low LD correspond to the Recombination Hotspots that form boundaries between them. This observed architecture provides a direct guideline for evolutionary search: preserve the high-dependence blocks and preferentially place crossover at the low-dependence boundaries.

To operationalize this principle, we introduce the Evolving Locus Linkage Graph (ELLG), a learnable structure designed to make genetic operators aware of inter-locus dependencies. As illustrated in Figure 1(c), the ELLG translates linkage disequilibrium (LD) patterns from the population into a dynamic graph that guides crossover and mutation. As shown, regions of high LD, which define

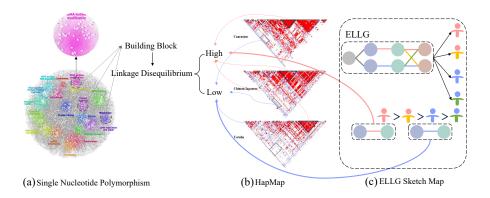


Figure 1: From Functional Networks to the 'Block-Boundary' Architecture of the Genome. (a) SNP Network (Consortium, 2003): A network of interacting SNPs where colored clusters represent functional gene groups that form the basis of Haplotype Blocks. (b) presents empirical data from the HapMap project (Consortium, 2005), visualizing the population-level consequence across three human populations. High-LD (red) regions form triangular Haplotype Blocks—these are the 'high-dependence fragments' that are 'best inherited together'. The low-LD areas between them are Recombination Hotspots—the 'low-dependence boundaries' where 'recombination is most effective'. Together, (c) ELLG Mechanism: A schematic of the Evolving Locus Linkage Graph (ELLG), which models the linkage between all loci. The ELLG uses fitness feedback to strengthen connections between co-adapted genes, guiding operators to preserve Haplotype Blocks and recombine at Recombination Hotspots, thus translating the genome's structure into an actionable optimization strategy.

haplotype blocks, are modeled by the ELLG as strongly connected subgraphs. These represent coadapted sets of alleles that should be preserved. Conversely, regions of low LD between these blocks are identified as recombination hotspots. The ELLG treats these as ideal boundaries for crossover. At each generation, the ELLG updates this graph representation based on fitness feedback from the evolving population, continuously refining its map of the problem's genetic linkage structure.

The primary advantage of the ELLG is that it makes the abstract concept of linkage structure explicit and interpretable. By steering operators to preserve the integrity of haplotype blocks and recombine at recombination hotspots, the ELLG reduces the disruption of beneficial allele combinations and improves sampling efficiency.

The main contributions of this paper are as follows:

- (1) **Theory:** We are the first to formalize the GA building block notion via the ELLG, turning an abstract idea into an explicit, operable mechanism for identifying and preserving useful gene segments.
- (2) **Method:** ELLG is a dynamic, learnable structure that uses fitness feedback to infer inter-locus dependencies and convert operators from uniform randomness to data-driven, structure-aware placement.
- (3) **Application:** ELLG is lightweight and general—integrable as a plug-and-play module into standard GA backbones without altering their core pipeline.
- (4) **Experiments:** On classic optimization benchmarks and NAS tasks, ELLG consistently yields higher final solution quality than numerous state-of-the-art baselines.

2 THEORETICAL FOUNDATION AND DESIGN PRINCIPLES

2.1 THE LIMITATION OF TRADITIONAL GENETIC ALGORITHMS

The effectiveness of a Genetic Algorithm (GA) hinges on balancing exploration and exploitation, with the latter driven by the propagation of co-adapted gene combinations (building blocks). Traditional operators are information-blind: crossover and mutation sites are chosen uniformly; for a

genome of length L, this yields the distribution in Eq. 1.

$$\Pr(\text{cut at } k) = \frac{1}{L-1}.\tag{1}$$

Uniform placement cannot discern whether an edit preserves or destroys a high-fitness block, causing frequent schema breakage, slower convergence, and higher search variance. An advanced GA should therefore perceive, quantify, and exploit the solution's intrinsic linkage structure.

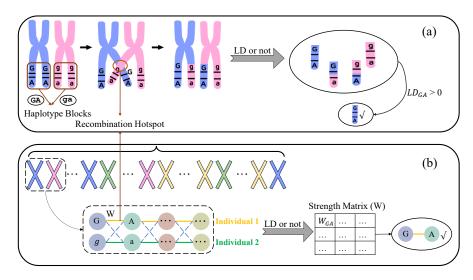


Figure 2: Conceptual link between the biological principle of LD and the proposed computational framework. (a) In population genetics, LD analysis identifies co-adapted gene combinations (Haplotype Blocks, e.g., GA) that are preserved by selection. A high LD value ($LD_{GA}>0$) serves as a statistical signal for a protected 'building block'. (b) The ELLG operationalizes this principle. It learns a Strength Matrix (W) where a high edge weight (W_{GA}) acts as a direct computational proxy for a high LD value. This allows the algorithm to dynamically discover and preserve valuable building blocks during its search.

2.2 LD AND BUILDING BLOCKS

The core of evolution is the formation of co-adapted gene complexes, where a set of genes working in synergy produces a fitness advantage far exceeding the sum of their individual effects (Dobzhansky, 1982). In the computational domain, these complexes are abstracted as the Building Block.

Modern genomics reveals that genetic inheritance follows specific linkage patterns, with LD as the core phenomenon that provides a quantitative language to describe and identify these building blocks (Pritchard & Przeworski, 2001; Slatkin, 2008). LD refers to the non-random association of alleles at different loci.

The quantification of LD begins with a statistical baseline, Linkage Equilibrium (LE), which describes the ideal state of complete random association (Chakraborty & Muhlenbein, 1997). The degree of LD is then measured by its deviation from this baseline. The central metric is the coefficient D, which computes the difference between the observed haplotype frequency and the expected frequency under random association, as shown in Eq. 2:

$$D = p_{11} - p_{A_1} p_{B_1} (2)$$

A non-zero D value from Eq. 2 indicates a non-random association, signifying the presence of a building block (Stumpf & Goldstein, 2003). To standardize the comparison of linkage strength, population genetics further employs the metric D', which normalizes the D value. An absolute value of |D'| = 1 signifies the strongest possible linkage, as defined in Eq. 3:

$$D' = \frac{D}{D_{\text{max}}} \tag{3}$$

Large-scale genomic studies, such as the HapMap project (Consortium, 2003; 2005), have confirmed that this linkage phenomenon results in a "block-hotspot" genomic architecture. Regions of high LD ($|D'| \rightarrow 1$) form stable Haplotype Blocks (Wall & Pritchard, 2003) that tend to be inherited as cohesive units, whereas regions of low LD ($|D'| \rightarrow 0$) correspond to Recombination Hotspots (Phillips et al., 2003). This provides a clear evolutionary principle: preserve structures in high-linkage regions and increase exploration in low-linkage regions.

The core idea of LD is illustrated in Fig. 2(a). When the deviation value $LD_{GA} > 0$, it provides a powerful signal that the GA combination is a building block that has been validated and preserved by natural selection.

3 THE PROPOSED ELLG

3.1 CORE IDEA

To translate the biological principles in Sec. 2, we introduce the *Evolving Locus Linkage Graph* (ELLG), a learnable, plug-and-play graph that functionally mirrors a chromosome (Fig. 2b). An individual is represented as a path through ordered loci; learnable edge weights W encode interlocus linkage and are updated from per-generation fitness. By learning and updating W, ELLG actively discovers and preserves co-adapted building blocks in the search space. This fitness-driven linkage map adapts over generations, converging to a task-specific structure.

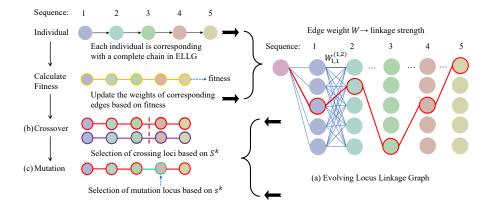


Figure 3: Overview of the ELLG framework. (a) The ELLG computational graph encodes interlocus linkage as edge weights, with each individual represented as a path. (b, c) Crossover and mutation loci are sampled based on the ELLG-guided recombination propensity score, which is derived from Eq. 4. Subsequently, the edge weights of paths traversed by offspring are reinforced or penalized according to fitness feedback, enabling task-specific adaptation.

The complete workflow of the ELLG is detailed in Fig. 3, showing the mapping from individuals to paths, the fitness-based weight updates, and how the learned weights ultimately guide the genetic operators.

3.2 LINKAGE-GUIDED GENETIC OPERATORS

The learned linkage map (W) is used to implement the "block-preservation, hotspot-recombination" strategy. This requires a recombination propensity score s, that is inversely proportional to linkage strength.

LD theory reveals that linkage strength, as measured by |D'| in Eq. 3, is negatively correlated with recombination propensity. When linkage is strongest $(|D'| \to 1)$, recombination should be suppressed; when linkage is weakest $(|D'| \to 0$, i.e., LE), recombination propensity is highest.

In the ELLG framework, the learned weight $W^{(k)}$ is the computational proxy for linkage strength. Therefore, a function s(W) is needed to model this inverse relationship. The most classic and

robust functional form for such an inverse relationship in mathematical modeling is y=1/(C+x). To ensure that the propensity score reaches a natural, normalized maximum of 1 when there is no linkage evidence $(W^{(k)}=0)$, the constant C is set to 1. To add flexibility, a sensitivity parameter α is introduced to modulate the influence of the weight. This yields the equation:

$$s^{(k)} = \frac{1}{1 + \alpha W^{(k)}} \tag{4}$$

Eq. 4 maps a high linkage weight $W^{(k)}$ (representing a building block) to a low score $s^{(k)}$, leading to its preservation. Conversely, a low weight $W^{(k)}$ (recombination hotspot) yields a high score, becoming a preferred target for genetic operations. The probability of applying an operator at locus k is then calculated based on the score from Eq. 4:

$$P_{\rm op}(k) = \frac{Q^{(k)}}{\sum_{m} Q^{(m)}}, \quad Q^{(k)} = \begin{cases} S^{(k)} = s_{\rm parent \, A}^{(k)} + s_{\rm parent \, B}^{(k)}, & \text{if op = crossover} \\ s^{(k)}, & \text{if op = mutation} \end{cases}$$
(5)

According to Eq. 5, $P_{\rm op}(k)$ denotes the probability of applying a genetic operator at locus k, and $Q^{(k)}$ is the locus-specific score used for probability assignment. For crossover, $Q^{(k)}$ reflects the aggregated contribution of both parents, as shown in Fig. 3(b). For mutation, $Q^{(k)}$ represents the individual propensity score of a single locus, as seen in Fig. 3(c). The normalization ensures that the operator probabilities form a valid distribution.

3.3 LINKAGE LEARNING: THE ELLG WEIGHT UPDATE MECHANISM

Let G denote an individual of length L (a path over loci $1{\rightarrow}L$). For each adjacent locus pair (k,k+1) with $k\in\{1,\ldots,L-1\}$, ELLG keeps a nonnegative edge weight $W_t^{(k)}$ representing task-specific linkage at generation t. With fitness f(G) and a per-generation baseline \bar{f}_t (mean or median used only for learning), define the selection signal $\Delta=f(G)-\bar{f}_t$. The learning process is adaptive and occurs concurrently with the evolutionary search. Specifically, for any edge k present in an evaluated individual, the weight is updated as:

$$W_{t+1}^{(k)} = \max \left\{ W_t^{(k)} \pm \frac{|\Delta|}{|\Delta| + \rho} W_t^{(k)}, 0 \right\}, \tag{6}$$

where $\rho > 0$ is a smoothing constant and $\lambda \geq 0$ is a reinforcement threshold.

This can be read directly as a single multiplicative expand/shrink step:

$$\begin{cases} \text{use "+" if } \Delta \geq \lambda : & W_{t+1}^{(k)} = (1+\phi) \, W_t^{(k)} \in \left[\, W_t^{(k)}, \, 2 W_t^{(k)} \, \right), \\ \text{use "-" if } \Delta < \lambda : & W_{t+1}^{(k)} = (1-\phi) \, W_t^{(k)} \in \left[0, \, W_t^{(k)} \, \right], \end{cases} \qquad \phi = \frac{|\Delta|}{|\Delta| + \rho} \in [0,1).$$

Thus the single-step multiplicative factor always lies in (0,2), keeping $W^{(k)} \geq 0$ and preventing numerical overshoot. Edges on higher-fitness paths are reinforced and on lower-fitness paths weakened. Together with Eq. 4 and Eq. 5, larger $W^{(k)}$ gives a lower recombination propensity (smaller operator probability at k), while smaller $W^{(k)}$ does the opposite—matching the LD view that strongly linked segments are kept intact and weak boundaries are cut more often.

3.4 SUMMARY

ELLG addresses the operational blindness of traditional GAs. It replaces the static, uniform probability model of operator selection (Eq. 1) with a dynamic, adaptive model guided by learned linkage strength. The probability of applying a genetic operator is no longer uniform but is instead determined by the evolving structure of building blocks, as captured by the ELLG:

$$Pr(\text{operator at } k)_{\text{ELLG}} \propto s^{(k)} \tag{7}$$

This shift from random to structure-aware search (Eq. 7) is ELLG's core advantage.

3.5 PSEUDOCODE

270

271 272

273

274

275

276

280

281

282

283

284 285 286

287

288 289

290 291 292

293

295

296

297

298

299

300

301 302

303 304

305 306

307

308

309

310 311

312

313

314 315 316

317

318

319 320

321

322

323

Algorithm 1 The ELLG Update Cycle within One Generation of a GA

- **Require:** Population P_t , ELLG Weights W_t .
- 1: # 1. Guide genetic operators to create offspring
 - 2: Compute operator probabilities P_{op} from W_t and individuals in P_t . **Dusing Eqs. 4 & 5 Dusing Eqs. 4 S**
- 3: $P_{\text{offspring}} \leftarrow \text{Create offspring by applying crossover and mutation guided by } P_{\text{op}}.$
 - 4: # 2. Evaluate offspring and update ELLG weights
- 278 5: Evaluate fitness f(G) for all $G \in P_{\text{offspring}}$. 279
 - 6: Compute selection signals Δ for each individual based on fitness.
 - 7: $W_{t+1} \leftarrow \text{Update all weights in } W_t \text{ based on the signals } \Delta$.

⊳ Using Eq. 6

- 8: # 3. Form the next generation
- 9: $P_{t+1} \leftarrow \text{SURVIVORSELECTION}(P_t, P_{\text{offspring}})$.
- 10: **return** P_{t+1}, W_{t+1}

The full pseudocode and implementation details are provided in the Supplementary (Sec.A.1, Algorithm 2).

EXPERIMENTS

To comprehensively validate the proposed ELLG, we conduct a two-part experimental evaluation. The first part assesses the core mechanism's performance and robustness on foundational multiobjective optimization benchmarks, aiming to establish its efficacy as a general-purpose optimization method. The second part demonstrates its applicability to a high-dimensional combinatorial optimization problem at the forefront of Automated Machine Learning (AutoML)—Neural Architecture Search (NAS). This evaluation path, from foundational optimization theory to a key challenge in AutoML, is designed to comprehensively characterize the performance envelope and potential of ELLG as a novel search methodology. We refer readers to the Supplementary Material for (i) an LD heatmap linking block-boundary structure to the learned ELLG map (Sec. A.2) and (ii) additional Machine Learning applications with state-of-the-art comparisons (Sec. A.6).

VERIFICATION ON MULTI-OBJECTIVE OPTIMIZATION BENCHMARKS

4.1.1 BENCHMARK SUITES

We evaluate ELLG on the canonical DTLZ and ZDT suites, which offer analytical Pareto fronts and diverse geometries (linear, concave, discontinuous, multimodal). Their separation of "position" and "distance" variables makes them a clean testbed for our location-aware crossover/mutation principle—preserving strong-dependence segments while recombining at weak-dependence boundaries.

4.1.2 EXPERIMENTAL PROTOCOL

To ensure fair comparability across all algorithms, we adopt a unified experimental protocol, summarized in Sec.A.1.1Table 4.

4.1.3 BASELINES

The baseline algorithms span three representative families of multi-objective evolutionary algorithms (MOEAs):

NSGA family. This group is founded on Pareto-based non-dominated sorting, including NSGA-II (Deb et al., 2002), as well as reference-vector-driven variants such as ANSGA-III (Cheng et al., 2019), RVEA (Xue et al., 2022a), and RSEA (He et al., 2017), together with other extensions like RPDNSGA-II (Elarbi et al., 2017), GNSGA-II (Molina et al., 2009), and RNSGA-II (Said et al., 2010).

PSO family. This class, represented by MOPSO (Coello & Lechuga, 2002) and NMPSO (Lin et al., 2016), is based on swarm intelligence rather than genetic recombination, steering a population toward the Pareto front via personal and global exemplars stored in archives.

Other MOEAs. These approaches adopt diverse selection mechanisms. They include indicator-based algorithms such as IBEA (Li et al., 2021b) and PeEA (Li et al., 2021a), which use quality metrics (e.g., hypervolume) or user-defined preferences, as well as PESA-II (Neshat et al., 2024) and EMOEA (Deb et al., 2003), which rely on grid partitioning or ε -dominance to promote diversity in the objective space.

Across these diverse paradigms, the comparative results allow us to assess whether ELLG's location-aware principle demonstrates competitiveness beyond the GA family alone.

4.1.4 ELLG IMPLEMENTATION WITHIN NSGA-II

ELLG is integrated into NSGA-II as a plug-in: environmental selection (fast non-dominated sorting and crowding distance) remains unchanged, while crossover/mutation sites are guided toward weak-dependence loci and strong fragments are preserved. After evaluating offspring, ELLG updates its linkage weights from fitness feedback. See Supplementary Sec. A.4, Algorithm 3.

4.1.5 EVALUATION METRIC

We adopt the Inverted Generational Distance (IGD) (Coello et al., 2007) as the primary performance measure, computed as $\mathrm{IGD}(\mathcal{P},\mathcal{P}^\star) = \frac{1}{|\mathcal{P}^\star|} \sum_{y \in \mathcal{P}^\star} \min_{x \in \mathcal{P}} \|x-y\|_2$, where the metric calculates the average Euclidean distance from each reference point in a true Pareto front set (\mathcal{P}^\star) to its nearest solution in the obtained set (\mathcal{P}) . A smaller IGD value indicates a better overall approximation of the true front, reflecting superior convergence and diversity.

Table 1: IGD results (mean of 30 runs, lower is better) on DTLZ and ZDT benchmarks.

Function	ELLG	ANSGAIII	NSGAII	IBEA	MOPSO	NMPSO	PESAII
DTLZ1 / ZDT1		2.248e-03 / 2.183e-03					
DTLZ2 / ZDT2	1.979e-03 / 1.900e-03	4.242e-03 / 2.132e-03	5.225e-03 / 2.444e-03	1.001e-02 / 5.288e-03	4.157e-03 / 4.128e-03	5.452e-03 / 1.867e-02	4.490e-03 / 4.885e-03
DTLZ3 / ZDT3	2.644e-03 / 2.468e-03	5.907e-03 / 2.591e-03	5.221e-03 / 2.753e-03	3.424e-01 / 1.891e-02	4.409e-03 / 5.547e-03	5.675e-03 / 1.015e-01	4.842e-03 / 6.271e-03
DTLZ4 / ZDT4	2.122e-03 / 2.877e-03	7.804e-02 / 3.114e-03	5.375e-03 / 2.355e-03	1.065e-02 / 4.720e-03	4.117e-02 / 3.942e-03	4.238e-02 / 3.022e-02	4.546e-03 / 4.529e-03
DTLZ5 / ZDT6	1.985e-03 / 1.501e-03	4.260e-03 / 2.023e-03	5.293e-03 / 2.039e-03	1.020e-02 / 2.480e-03	4.217e-03 / 3.613e-03	5.331e-03 / 2.317e-03	4.602e-03 / 4.017e-03
DTLZ6/—	1.975e-03 / —	4.481e-03 / —	5.564e-03 / —	1.507e-02 / —	4.431e-03 / —	5.723e-03 / —	5.023e-03 / —
DTLZ7 / —	3.378e-03 / —	4.691e-03 / —	5.437e-03 / —	6.051e-03 / —	5.220e-03 / —	3.598e-03 / —	6.014e-03 / —
AVG	2.172e-03 / 2.137e-03	1.484e-02 / 2.409e-03	4.919e-03 / 2.400e-03	5.923e-02 / 6.726e-03	9.334e-03 / 4.281e-03	9.906e-03 / 3.701e-02	4.518e-03 / 4.845e-03
ELLG better	_	7/5	7/4	7/5	7/5	7/5	7/5
ELLG worse	_	0/0	0 / 1	0/0	0/0	0/0	0/0

Function	PeEA	RPDNSGAII	RSEA	RVEA	Gnsgaii	Emoea	Rnsgaii
DTLZ1 / ZDT1	1.151e-03 / 3.004e-03	1.275e-03 / 4.389e-03	1.333e-03 / 3.109e-03			2.363e-02 / 2.686e-02	
DTLZ2 / ZDT2	2.391e-03 / 2.275e-03	2.733e-03 / 3.591e-03	2.266e-03 / 2.239e-03	3.923e-03 / 3.380e-03	2.099e-01 / 2.319e-01	5.056e-02 / 2.884e-02	3.346e-01 / 2.667e-01
DTLZ3 / ZDT3	2.561e-03 / 1.080e-02	2.855e-03 / 4.048e-03	2.255e-03 / 5.217e-03	3.771e-02 / 8.511e-03	2.098e-01 / 2.181e-01	5.152e-02 / 6.535e-02	2.582e-03 / 3.829e-01
DTLZ4 / ZDT4	2.378e-03 / 3.801e-03	2.810e-03 / 3.935e-02	2.284e-03 / 3.286e-03	3.630e-03 / 6.507e-03	2.101e-01 / 1.997e-01	5.170e-02 / 2.702e-02	2.862e-01 / 2.692e-01
DTLZ5 / ZDT6	2.416e-03 / 2.124e-03	2.721e-03 / 1.511e-02	2.264e-03 / 1.957e-03	3.694e-03 / 2.770e-03	2.099e-01 / 1.573e-01	4.963e-02 / 2.808e-02	3.399e-01 / 2.145e-01
DTLZ6/—	2.354e-03 / —	1.359e-02 / —	2.262e-03 / —	2.217e-03 / —	2.105e-01 / —	4.957e-02 / —	1.959e-01 / —
DTLZ7 / —	3.953e-03 / —	4.796e-03 / —	2.887e-03 / —	5.643e-03 / —	2.323e-01 / —	5.347e-02 / —	2.713e-01 / —
AVG	2.458e-03 / 4.401e-03	4.397e-03 / 1.330e-02	2.221e-03 / 3.162e-03	9.952e-03 / 4.745e-03	1.834e-01 / 2.013e-01	4.715e-02 / 3.523e-02	2.045e-01 / 2.748e-01
ELLG better	6/5	7/5	5/5	7/5	7/5	7/5	6/5
ELLG worse	1/0	0/0	2/0	0/0	0/0	0/0	1/0

4.1.6 RESULTS AND ANALYSIS

Experiment Results. Table 1 summarizes the mean IGD values (30 independent runs) of ELLG and 13 competing algorithms on the DTLZ and ZDT benchmark suites.

Result Analysis. Across both benchmark suites, ELLG demonstrates consistently strong performance, achieving a compelling balance between convergence and diversity.

On the DTLZ suite, ELLG achieves the best IGD values on five of the seven problems (DTLZ1, 2, 4, 5, 6) and remains highly competitive on the others, with an overall average IGD of **2.172e-03**, the lowest among all 14 algorithms and a **55.8%** improvement over NSGA-II.

On the ZDT suite, ELLG secures the best IGD scores on four of the five problems (ZDT1, 2, 3, 6). ELLG achieves the best overall average IGD of **2.137e-03**. These results demonstrate that ELLG consistently surpasses most competitors across both benchmark families.

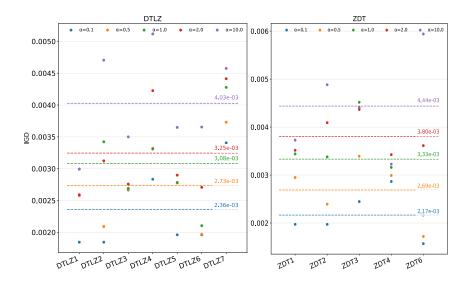


Figure 4: Ablation study on the sensitivity parameter α . Scatter plots show IGD values under different α values, while dashed lines denote the mean IGD for each setting. Results indicate a consistent trend: as α increases from 0.1 to 10, IGD performance becomes worse.

Significance Analysis. We assess statistical significance using two-sided paired t-tests on log-transformed IGD values across 12 benchmarks; ELLG is significantly better than every baseline at the 5% level (p < 0.05). See Supplementary Sec. A.5 (Table 5), for full methodology and results.

Ablation Experiments. According to Eq. 4, the sensitivity parameter α modulates how strongly the linkage weight $W^{(k)}$ suppresses the score $s^{(k)}$. Empirically, we observe a clear monotonic trend: as α increases from 0.1 to 10, IGD performance gradually deteriorates. The mechanism is immediate from Eq. 4: because $\partial s^{(k)}/\partial \alpha = -W^{(k)}/(1+\alpha W^{(k)})^2 < 0$, increasing α compresses $s^{(k)}$ more severely at loci with large linkage weights (i.e., building blocks). If operator application uses a normalized allocation $P_k \propto s^{(k)}$, probability mass shifts toward only a few weakly linked loci as α grows, reducing the entropy H(P) of the operator distribution and effectively freezing most strongly linked segments. This over-preservation diminishes recombination span and exploration and increases the risk of premature convergence; consequently, as α increases from 0.1 to 10, IGD worsens because diversity is undermined and the search becomes increasingly constrained (see Fig. 4).

4.2 APPLICATIONS TO NEURAL ARCHITECTURE SEARCH (NAS)

NAS is selected as a critical testbed because its search space is characterized by strong co-adaptive dependencies between its components, providing a suitable environment to evaluate the ELLG's ability to learn linkage. Whether in hyperparameter search (e.g., specific combinations of optimizers and learning rates) or network topology search (e.g., specific sequences of convolution and pooling layers), successful architectures rely on the synergistic interplay of their components. The 'blind' operators of a traditional GA frequently disrupt these hard-won, effective combinations. The core goal of this section is therefore to verify whether the ELLG, by explicitly learning and preserving these intrinsic linkage structures, can discover superior neural network architectures more efficiently and stably than a baseline random-locus GA.

Search Spaces and Datasets. Hyperparameter search (Blender-10). We follow the setting in (Shi et al., 2022): inputs are resized to 416×416 , a pre-trained Darknet-53 (Redmon & Farhadi, 2018) backbone is frozen, and the GA searches only the fully-connected head. The encoding covers five categories: number of hidden layers, neurons per layer, activation, learning rate, and optimizer. **Topology search (MNIST).** Following Genetic CNN (Xie & Yuille, 2017), each CNN is a DAG encoded as a binary string.

Table 2: Blender-10 Hyperparameter NAS: per-generation best validation accuracy (mean \pm band; band is the half-width of the min-max range across five runs).

	Generation									
	1	3	7	9	10	12	15			
ELLG GA				0.955±0.013 0.940±0.010						

Experimental Protocols and Settings. To foreground search behavior rather than large-scale training, we adopt modest population sizes, generations, and training budgets. In both tasks, the baseline GA places crossover/mutation sites uniformly at random, whereas ELLG learns linkage-guided placement from fitness each generation. Concretely, *Blender-10* uses a population of 10 for 15 generations with roulette-wheel parent selection, two-point crossover, and single-point mutation (rate 0.05); each candidate trains for 7 epochs with validation accuracy as fitness, and the best architectures are subsequently evaluated on the test set. For *MNIST*, the population is 20 for 10 generations; each candidate trains for 10 epochs, using validation accuracy on a held-out split as fitness, and final metrics are reported on the test set.

Experiment Results. Across both tasks, ELLG's linkage-guided placement yields earlier gains and lower variability than the random-locus GA. On *Blender-10* (Table 2), ELLG maintains a higher best-validation trajectory, reaches the 0.95 level earlier (generation 9 vs. 10), attains 0.965 around generation 10 (vs. 0.950), and stabilizes at 0.965 by generation 15 (vs. 0.958). On *MNIST* topology NAS (Table 3), consistent with prior observations (Xie & Yuille, 2017), the baseline GA improves with generations but exhibits high variance, whereas ELLG achieves slightly higher mean best validation/test accuracy (97.55%/97.64% vs. 97.45%/97.62%), finds the best-validation solution earlier (median generation 3 vs. 4), and shows substantially lower variability (validation std. 0.21 vs. 0.57; test std. 0.31 vs. 0.67). These results support the claim that linkage-guided operators preserve useful structures and concentrate exploration at weak boundaries.

Table 3: Results of network topology search on MNIST (3 runs). ELLG achieves slightly higher validation accuracy, earlier best validation, and lower variance.

Method	Mean Best Val. (%)	Test@Best Val. (%)	Mean Best Test (%)	Gen. of Best (Median)	Std (Val.)	Std (Test)
Baseline (GA)	97.45	97.22	97.62	4	0.57	0.67
ELLG (Ours)	97.55	97.61	97.64	3	0.21	0.31

Discussion. Across both NAS tasks, the core advantage of the ELLG is clearly demonstrated. It does not alter the fundamental genetic operators, but rather transforms how they are applied. The task-specific linkage map, learned by the ELLG from fitness, shifts operator placement from 'uniform random' to 'strategic guidance'. The empirical data reveals three key benefits from this shift: (i) earlier performance gains, (ii) significantly reduced run-to-run volatility, and (iii) a competitive or superior final solution under the same budget. We attribute these advantages directly to the ELLG's success in overcoming the operational blindness of traditional GAs.

5 CONCLUSIONS

This paper tackles the "operator blindness" of traditional Genetic Algorithms—where uniformly placed crossover and mutation routinely disrupt well-adapted gene combinations—by introducing the ELLG. Learned online from per-generation fitness feedback, ELLG learns and maintains inter-locus linkage weights and uses them to drive site placement: strongly linked segments are preserved as units, while recombination is directed to weak boundaries. On multi-objective optimization benchmarks and neural architecture search, ELLG replaces uniform randomness with linkage-guided operators and delivers consistent gains in convergence speed, final solution quality, and run-to-run stability over a broad set of state-of-the-art baselines.

REFERENCES

- Mohammed Ghaith Altarabichi, Sławomir Nowaczyk, Sepideh Pashami, and Peyman Sheikholharam Mashhadi. Fast genetic algorithm for feature selection a qualitative approximation approach. *Expert Systems with Applications*, 211:118528, 2023. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2022.118528. URL https://www.sciencedirect.com/science/article/pii/S0957417422016049.
- James Edward Baker. Adaptive selection methods for genetic algorithms. In *Proceedings of the first international conference on genetic algorithms and their applications*, pp. 101–106. Psychology Press, 2014.
- Uday Kumar Chakraborty and Heinz Muhlenbein. Linkage equilibrium and genetic algorithms. In *Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC'97)*, pp. 25–29. IEEE, 1997.
- Qian Cheng, Bo Du, Liangpei Zhang, and Rong Liu. Ansga-iii: A multiobjective endmember extraction algorithm for hyperspectral images. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 12(2):700–721, 2019.
- CA Coello Coello and Maximino Salazar Lechuga. Mopso: A proposal for multiple objective particle swarm optimization. In *Proceedings of the 2002 Congress on Evolutionary Computation*. *CEC'02 (Cat. No. 02TH8600)*, volume 2, pp. 1051–1056. IEEE, 2002.
- Carlos A Coello Coello, Gary B Lamont, and David A Van Veldhuizen. *Evolutionary algorithms for solving multi-objective problems*. Springer, 2007.
- The International HapMap Consortium. The international hapmap project. *Nature*, 426(6968):789–796, 2003.
- The International HapMap Consortium. A haplotype map of the human genome. *Nature*, 437(7063): 1299–1320, 2005.
- David W Corne, Nick R Jerram, Joshua D Knowles, and Martin J Oates. Pesa-ii: Region-based selection in evolutionary multiobjective optimization. In *Proceedings of the 3rd annual conference on genetic and evolutionary computation*, pp. 283–290, 2001.
- Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiobjective genetic algorithm: Nsga-ii. *IEEE transactions on evolutionary computation*, 6(2): 182–197, 2002.
- Kalyanmoy Deb, Manikanth Mohan, and Shikhar Mishra. Towards a quick computation of well-spread pareto-optimal solutions. In *International Conference on Evolutionary Multi-Criterion Optimization*, pp. 222–236. Springer, 2003.
- Theodosius Dobzhansky. *Genetics and the origin of species*. Number 11. Columbia university press, 1982.
- Maha Elarbi, Slim Bechikh, Abhishek Gupta, Lamjed Ben Said, and Yew-Soon Ong. A new decomposition-based nsga-ii for many-objective optimization. *IEEE transactions on systems, man, and cybernetics: systems,* 48(7):1191–1210, 2017.
- David E Golberg. Genetic algorithms in search, optimization, and machine learning. *Addion wesley*, 1989(102):36, 1989.
 - David E Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes used in genetic algorithms. In *Foundations of genetic algorithms*, volume 1, pp. 69–93. Elsevier, 1991.
- Zahid Halim, Muhammad Nadeem Yousaf, Muhammad Waqas, Muhammad Sulaiman, Ghulam Abbas, Masroor Hussain, Iftekhar Ahmad, and Muhammad Hanif. An effective genetic algorithm-based feature selection method for intrusion detection systems. *Computers & Security*, 110: 102448, 2021.

543

544

546 547

548

549

550

551

552

553 554

555

556

558

559

560

561 562

563

564

565 566

567

568

569

570

571

572

573 574

575

576

577

578

579 580

581

582

583

584

585 586

587

588

589

591

592

593

540 Cheng He, Ye Tian, Yaochu Jin, Xingyi Zhang, and Linqiang Pan. A radial space division based evolutionary algorithm for many-objective optimization. Applied Soft Computing, 61:603–621, 542 2017.

- Huiru Li, Fengzhi He, and Xinhua Yan. Ibea-svm: An indicator-based evolutionary algorithm based on pre-selection with classification guided by svm. Applied Mathematics-A Journal of Chinese Universities, 34(1):1–26, 2019. doi: 10.1007/s11766-019-3542-y.
- Li Li, Gary G Yen, Avimanyu Sahoo, Liang Chang, and Tianlong Gu. On the estimation of pareto front and dimensional similarity in many-objective evolutionary algorithm. *Information Sciences*, 563:375–400, 2021a.
- Wenhua Li, Tao Zhang, Rui Wang, and Hisao Ishibuchi. Weighted indicator-based evolutionary algorithm for multimodal multiobjective optimization. IEEE Transactions on Evolutionary Computation, 25(6):1064-1078, 2021b.
- Qiuzhen Lin, Songbai Liu, Qingling Zhu, Chaoyu Tang, Ruizhen Song, Jianyong Chen, Carlos A Coello Coello, Ka-Chun Wong, and Jun Zhang. Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems. IEEE Transactions on Evolutionary Computation, 22(1):32-46, 2016.
- Shyam Marjit, Trinav Bhattacharyya, Bitanu Chatterjee, and Ram Sarkar. Simulated annealing aided genetic algorithm for gene selection from microarray data. Computers in Biology and Medicine, 158:106854, 2023.
- Mohammad Mojrian and Seyed Abolghasem Mirroshandel. A novel extractive multi-document text summarization system using quantum-inspired genetic algorithm: Mtsqiga. Expert systems with applications, 171:114555, 2021.
- Julián Molina, Luis V Santana, Alfredo G Hernández-Díaz, Carlos A Coello Coello, and Rafael Caballero. g-dominance: Reference point based dominance for multiobjective metaheuristics. European Journal of Operational Research, 197(2):685–692, 2009.
- Mehdi Neshat, Nataliia Y Sergiienko, Meysam Majidi Nezhad, Leandro SP da Silva, Erfan Amini, Reza Marsooli, Davide Astiaso Garcia, and Seyedali Mirjalili. Enhancing the performance of hybrid wave-wind energy systems through a fast and adaptive chaotic multi-objective swarm optimisation method. Applied Energy, 362:122955, 2024.
- Andrew Ni and Lee Spector. Effective adaptive mutation rates for program synthesis. In *Proceedings* of the Genetic and Evolutionary Computation Conference, pp. 952–960, 2024.
- Duy Hung Phan and Jun Suzuki. R2-ibea: R2 indicator based evolutionary algorithm for multiobjective optimization. In 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1836–1845. IEEE, June 2013. doi: 10.1109/CEC.2013.6557767.
- MS Phillips, R Lawrence, R Sachidanandam, AP Morris, DJ Balding, MA Donaldson, JF Studebaker, WM Ankener, SV Alfisi, F-S Kuo, et al. Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. *nature genetics*, 33(3):382–387, 2003.
- Jonathan K Pritchard and Molly Przeworski. Linkage disequilibrium in humans: models and data. *The American Journal of Human Genetics*, 69(1):1–14, 2001.
- Yan Qiao, NaiQi Wu, YunFang He, ZhiWu Li, and Tao Chen. Adaptive genetic algorithm for two-stage hybrid flow-shop scheduling with sequence-independent setup time and no-interruption requirement. Expert Systems with Applications, 208:118068, 2022.
- Nikita Radeev. Transparent dimension reduction by feature construction with genetic algorithm. Authorea Preprints, 2023.
- Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018.

594 595 596 597	Lamjed Ben Said, Slim Bechikh, and Khaled Ghédira. The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making. <i>IEEE transactions on Evolutionary Computation</i> , 14(5):801–818, 2010.
598 599 600 601 602	Zhaoning Shi, Yong Zhai, Youtong Zhang, and Hongqian Wei. Snal: sensitive non-associative learning network configuration for the automatic driving strategy. <i>Scientific Reports</i> , 12(1): 20045, 2022. doi: 10.1038/s41598-022-24674-9. URL https://doi.org/10.1038/s41598-022-24674-9.
603 604 605	Montgomery Slatkin. Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. <i>Nature Reviews Genetics</i> , 9(6):477–485, 2008.
606 607 608	James Edward Smith and Terence C Fogarty. Operator and parameter adaptation in genetic algorithms. <i>Soft computing</i> , 1(2):81–87, 1997.
609 610 611	Mandavilli Srinivas and Lalit M Patnaik. Adaptive probabilities of crossover and mutation in genetic algorithms. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 24(4):656–667, 2002.
612 613 614	Michael PH Stumpf and David B Goldstein. Demography, recombination hotspot intensity, and the block structure of linkage disequilibrium. <i>Current Biology</i> , 13(1):1–8, 2003.
615 616 617	Jeffrey D Wall and Jonathan K Pritchard. Assessing the performance of the haplotype block model of linkage disequilibrium. <i>The American Journal of Human Genetics</i> , 73(3):502–515, 2003.
618 619 620 621	Kaipu Wang, Xinyu Li, Liang Gao, Peigen Li, and Surendra M Gupta. A genetic simulated annealing algorithm for parallel partial disassembly line balancing problem. <i>Applied Soft Computing</i> , 107: 107404, 2021.
622 623 624	Lingxi Xie and Alan Yuille. Genetic cnn. In <i>Proceedings of the IEEE international conference on computer vision</i> , pp. 1379–1388, 2017.
625 626 627 628	Yifan Xie, Shengxiang Yang, Dong Wang, Jun Qiao, and Baohua Yin. Dynamic transfer reference point-oriented MOEA/D involving local objective-space knowledge. <i>IEEE Transactions on Evolutionary Computation</i> , 26(3):542–554, 2022. doi: 10.1109/TEVC.2021.3099495.
629 630 631 632	Fei Xue, Qiuru Hai, Yuelu Gong, Siqing You, Yang Cao, and Hengliang Tang. Rvea-based multi-objective workflow scheduling in cloud environments. <i>International Journal of Bio-Inspired Computation</i> , 20(1):49–57, 2022a.
633 634 635 636	Yu Xue, Xu Cai, and Ferrante Neri. A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification. <i>Applied Soft Computing</i> , 127:109420, 2022b.
637 638	Liwei Yang, Ping Li, Tao Wang, Jinchao Miao, Jiya Tian, Chuangye Chen, Jie Tan, and Zijian Wang. Multi-area collision-free path planning and efficient task scheduling optimization for autonomous

A APPENDIX & SUPPLEMENTARY MATERIALS

agricultural robots. Scientific Reports, 14(1):18347, 2024.

A.1 PSEUDOCODE

Algorithm 2 details the workflow for integrating the ELLG. The three core phases of this process are a direct computational implementation of the biological principles discussed in Section 2.

```
648
          Algorithm 2 ELLG Framework
649
          Require: Population size N, genome length L, termination conditions
650
          Require: Host GA primitives: PARENTSELECTION, CROSSOVEROP, MUTATIONOP, SUR-
651
                VIVORSELECTION
652
          Ensure: Final population P
653
            1: P \leftarrow \text{InitializePopulation}(N)
            2: Initialize ELLG Weights: For all edges (i, j) at all loci k, set W^{(i,j)(k,k+1)} = 1.
654
655
               while not TERMINATED do
656
            4:
                    P_{\text{offspring}} \leftarrow \emptyset
            5:
                    while |P_{\text{offspring}}| < N do
657
                         (p_A, p_B) \leftarrow \text{PARENTSELECTION}(P)
            6:
658
                        Compute S^{(k)} = s_{\text{parent A}}^{(k)} + s_{\text{parent B}}^{(k)} for all k \in [1, L-1].
            7:
                                                                                                                  ▶ Using Eq. 4
659
660
                         Sample crossover point k^* \sim P_{op}(k) with Q^{(k)} = S^{(k)}.
            8:
                                                                                                                  ▷ Using Eq. 5
661
            9:
                         (c_A, c_B) \leftarrow \mathsf{CROSSOVEROP}(p_A, p_B, k^*)
662
          10:
                         for each child c \in \{c_A, c_B\} do
                             Compute s^{(k)} for all k \in [1, L] using Eq. 4.
663
          11:
                             Sample mutation point k'^* \sim P_{\text{op}}(k') with Q^{(k')} = s^{(k')}.
664
          12:
                                                                                                                  ▶ Using Eq. 5
                             c \leftarrow \text{MutationOp}(c, k'^{\star})
665
          13:
666
          14:
                             P_{\text{offspring}} \leftarrow P_{\text{offspring}} \cup \{c\}
                         end for
          15:
667
                    end while
          16:
668
                    EVALUATEFITNESS(P_{\text{offspring}})
          17:
669
                    \bar{f} \leftarrow \text{mean fitness of } P_{\text{offspring}}
          18:
670
          19:
                    for each individual G \in P_{\text{offspring}} do
671
          20:
                         \Delta \leftarrow f(G) - \bar{f}

    ▷ Selection pressure

672
          21:
                         for each adjacent gene pair (g_k, g_{k+1}) in G do
673
                             Update W^{(g_k,g_{k+1})(k,k+1)} using Eq. 6.
          22:
674
                        end for
          23:
675
          24:
                    end for
676
          25:
                    P \leftarrow \text{SURVIVORSELECTION}(P, P_{\text{offspring}}, N)
677
          26: end while
678
          27: return P
```

The process consists of three main phases: (1) **Offspring Generation** (lines 5-16) executes the "block-preservation" strategy by using the learned linkage map to guide operator placement, replacing random selection with an informed choice. (2) **Fitness Evaluation** (lines 17-18) provides the performance signal for selection. (3) **Linkage Learning** (lines 19-25) simulates natural selection by updating the ELLG's weights based on fitness feedback, reinforcing paths associated with high-performing individuals. This loop of guided variation followed by linkage learning enables the ELLG to continuously refine its understanding of the problem's building block structure, leading to a more efficient search.

A.1.1 EXPERIMENTAL PROTOCOL

679 680 681

682

683

684

685

686

687

688 689 690

691

692

693 694

696 697

699 700 To ensure fair comparability across all algorithms, we adopt a unified experimental protocol, summarized in Table 4.

Table 4: Experimental protocol and parameter settings for benchmark evaluation.

General Protocol	Population size $N=200$; max evaluations 10000; independent runs $R=30$						
Problem Setup	Decision variables $D=2$; objectives $M=2$						
Variation Operators	SBX crossover: $p_c = 0.9, \eta_c = 20$; polynomial mutation: $p_m = 1/D, \eta_m = 20$						
ELLG Parameters	$\rho = 0.1 \times \bar{f}_t$ (Eq. 6); $\alpha = 0.1$ (Eq. 4)						

Objective and Rationale. We use the Shubert (3 dimensions) function from CEC2013 to validate, in a controlled setting, whether the "keep strong segments, recombine at weak boundaries" mechanism learned by ELLG is consistent with LD patterns(Fig. 1).

The expression for Shubert is given by:

$$F(x) = -\prod_{i=1}^{D} \sum_{j=1}^{5} j \cos[(j+1)x_i + j]$$
 (8)

Experimental Setup. The search domain is $[-10, 10]^3$. Each dimension is uniformly discretized into 60 bins; an allele $j \in \{0, \dots, 59\}$ encodes the j-th bin. When mapping a discrete index back to a continuous value for reporting or visualization, we use the left boundary of the bin,

$$x(j) = -10 + \frac{10 - (-10)}{60} j,$$

e.g., j=7 and j=9 correspond to x=-23/3 and x=-7, respectively. Population size is 200, mutation rate 0.05, evolution for 30 generations, repeated for 100 Monte Carlo trials. All other GA hyperparameters are identical to ELLG. The Shubert function is given in Eq. (8). Fig. 6 reports the across-trial evolution of mean best fitness and mean population fitness, and Fig. 5 shows the final-generation ELLG weight heatmap used in our analysis.

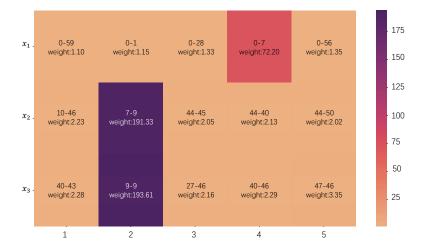


Figure 5: TOP5 weighted heatmap. Each row represents a dimension of the solution space. In the figure, the colors indicate the top five genetic loci with the highest weights in each dimension. The depth of color reflects the magnitude of the weight value, where a darker color signifies a larger weight value.

Relation to LD morphology. Standard LD heatmaps from HapMap (see Fig. 1(b)) exhibit a characteristic block—hotspot structure: high-LD haplotype blocks (dense, high-intensity cells) separated by low-LD boundaries (lighter diagonal bands). In our analysis, the ELLG weight heatmap (Fig. 5) shows an analogous morphology at the level of the optimization task: dark (high-weight) areas indicate strongly coupled segments that are preferentially preserved, while light (low-weight) areas mark boundaries where recombination is favored. Unlike HapMap, where LD is computed from population genotypes, the pattern in Fig. 5 is learned online from per-generation fitness feedback and therefore reflects task-specific linkage relevant to operator placement.

Results and Interpretation. In Fig. 5, the last-generation weight map concentrates on the discrete indices $(x_1, x_2, x_3) = (7, 9, 9)$. Mapping indices to the continuous domain by uniformly partitioning [-10, 10] into 60 bins gives

$$(x_1, x_2, x_3) = (-23/3, -7, -7),$$

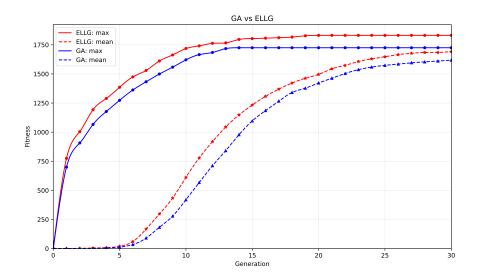


Figure 6: The evolution of maximum and average fitness of ELLG and original GA over 100 experiments with evolving generations.

which coincides with the known global maximizer of the Shubert function. High-weight cells thus correspond to building blocks that the algorithm learns to keep intact, while low-weight cells mark preferred cut sites for crossover/mutation. Figure 6 further shows that, across 100 trials, ELLG improves both the mean best fitness and the mean population fitness earlier than the random-locus GA, indicating that structure-aware placement accelerates progress without sacrificing stability.

Summary. On this controlled benchmark, ELLG recovers a task-specific linkage map whose block-boundary morphology mirrors LD: strong segments emerge as high-weight blocks and are preserved; recombination is steered toward weak boundaries. This learned map pinpoints the global optimum's coordinate pattern and, in aggregate, yields faster and steadier improvement than uniform operator placement. These observations provide compact, LD-consistent evidence that the proposed operator policy is both interpretable (via the weight heatmap) and effective (via the population curves).

A.3 MULTI-OBJECTIVE VISUALIZATION RESULTS.

Figures 7 and 8 compare the approximated Pareto fronts on DTLZ1 and DTLZ2. Compared to NSGA-II, ELLG produces fronts that lie closer to the true Pareto manifolds, with more complete coverage and a more uniform spread of solutions. This is consistent with ELLG's linkage-guided policy: it preserves strongly linked segments and directs recombination to weak boundaries, improving both proximity and distribution of the final set.

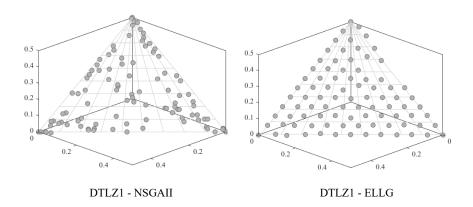


Figure 7: DTLZ1: non-dominated solutions in objective space. Points approximate the true linear Pareto front; ELLG produces a set that is closer to the ideal plane and more uniformly distributed than NSGA-II.

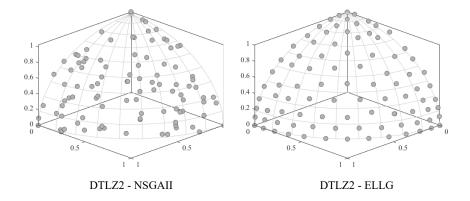


Figure 8: DTLZ2: non-dominated solutions in objective space. Points approximate the true linear Pareto front; ELLG produces a set that is closer to the ideal plane and more uniformly distributed than NSGA-II.

A.4 ELLG WITHIN NSGA-II.

864

865 866 867

```
Algorithm 3 NSGA-II with optional ELLG guidance (ELLG additions in blue)
```

```
868
          Require: population size N, termination criterion
           1: P \leftarrow \text{InitializePopulation}(N); Evaluate(P)
870
           2: Initialize linkage weights W(1:L-1) \leftarrow 1
871
           3: while not TERMINATED do
872
                   M \leftarrow \text{BinaryTournamentSelection}(P)
           4:
873
           5:
                   Q \leftarrow \emptyset
874
                   while |Q| < N do
           6:
875
                        (p_1, p_2) \leftarrow \text{PICKPARENTS}(M)
           7:
876
           8:
                        if use ELLG then
877
                            k^{\star} \leftarrow \text{ELLG\_SampleCrossoverPoint}(W)
           9:
878
          10:
                            (c_1, c_2) \leftarrow \mathsf{CROSSOVER}(p_1, p_2, k^*)
879
          11:
                        else
880
          12:
                            (c_1, c_2) \leftarrow \mathsf{CROSSOVER}(p_1, p_2)
          13:
                        end if
          14:
                       for each child c do
882
                            if use ELLG then
          15:
883
                                u^{\star} \leftarrow \text{ELLG\_SAMPLEMUTATIONSITE}(W)
          16:
884
          17:
                                c \leftarrow \text{MUTATION}(c, u^*)
885
                            else
          18:
886
                                c \leftarrow \text{MUTATION}(c)
          19:
887
          20:
                            end if
          21:
                            Q \leftarrow Q \cup \{c\}
889
          22:
                        end for
890
          23:
                   end while
891
          24:
                   EVALUATE(Q)
          25:
892
                   if use ELLG then
                        ELLG_{-}UPDATEWEIGHTS(W, Q)
893
          26:
          27:
894
                   R \leftarrow P \cup Q; (F_1, F_2, \ldots) \leftarrow \text{FASTNONDOMINATEDSORT}(R)
          28:
895
                   P \leftarrow \text{EnvironmentalSelection}((F_1, F_2, \ldots), N)
          30: end while
897
          31: return P
```

899 900 901

902

903

904

905

906

907

908

909

910

911

912

913

914 915

916

917

Explanation of Algorithm 3. The pseudocode presents NSGA-II augmented with the ELLG as a light-weight, plug-in guidance layer. The baseline loop (initialization, binary tournament selection, variation, evaluation, and environmental selection via fast non-dominated sorting with crowding distance) remains unchanged. ELLG intervenes at three points: (i) it maintains per-locus linkage weights W(1:L-1); (ii) it samples crossover and mutation locations from probability distributions derived from W; and (iii) it updates W from per-generation fitness feedback. The operators themselves (SBX, polynomial mutation) and the NSGA-II selection semantics are not altered; ELLG only determines where to place them along the genome.

- (1) Site scoring and sampling. ELLG converts linkage weights W(k) into recombination scores using the monotone inverse defined in Eq. 4. For crossover, scores from both parents are aggregated as $S(k) = s_A(k) + s_B(k)$, then normalized into a probability distribution $P_{cross}(k)$ from which the cut index k^* is sampled. For mutation, the single-parent scores $\{s(k)\}$ are normalized into $P_{\text{mut}}(k)$ and used to draw the mutation site u^* . Thus, loci with stronger linkage (large W(k), small s(k)) are less likely to be selected, while weakly linked loci are more likely.
- (2) Fitness-driven linkage update. After evaluating offspring, the selection pressure $\Delta = f(G)$ f is computed, and the edge weights are updated according to Eq. 6. Positive Δ reinforces the traversed edges, while negative Δ penalizes them. This process reshapes the linkage map generation by generation.

Pseudocode highlights. Algorithm 3 follows the standard NSGA-II pipeline but introduces three additional hooks: ELLG_SampleCrossoverPoint, ELLG_SampleMutationSite, and ELLG_UpdateWeights. Their mathematical definitions are given in Eqs. 4–6, these hooks convert site placement from uniform randomness into a learned, per-locus policy: high-weight edges (strong blocks) are preserved, while low-weight edges (weak boundaries) become preferred recombination sites. Per-generation updates ensure that this policy adapts dynamically to the problem at hand.

A.5 SIGNIFICANCE ANALYSIS

Table 5: t-test: ELLG vs. each algorithm over benchmarks.

There exists a section and exi									
Algorithm	t-stat.	p-value	Sig.	Algorithm	t-stat.	p-value	Sig.		
ELLG	_	_	_	ANSGAIII	-2.228	4.77e-02	Yes		
NSGAII	-3.467	5.26e-03	Yes	IBEA	-4.203	1.48e-03	Yes		
MOPSO	-3.876	2.58e-03	Yes	NMPSO	-4.523	8.68e-04	Yes		
PESAII	-12.267	9.28e-08	Yes	PeEA	-3.591	4.24e-03	Yes		
RPDNSGAII	-2.993	1.22e-02	Yes	RSEA	-2.625	2.36e-02	Yes		
RVEA	-3.765	3.13e-03	Yes	Gnsgaii	-10.865	3.21e-07	Yes		
Emoea	-32.671	2.63e-12	Yes	Rnsgaii	-7.353	1.44e-05	Yes		

To validate the robustness of our findings, we performed two-sided paired t-tests based on the results of 30 independent runs with different random seeds for each algorithm on each benchmark. For every baseline algorithm j, we tested the null hypothesis H_0 : there is no difference in performance between ELLG and j, against the alternative H_1 : there is a difference. The paired t-statistics and two-sided p-values are reported in Table 5, together with significance markers at the 5% level.

Across all 12 baselines, the differences are statistically significant at the 5% level (p < 0.05), confirming that the observed performance advantages of ELLG are consistent and unlikely to result from random variation.

A.6 APPLICATION EVALUATION

This section reports three application studies where the proposed graph—guided recombination is integrated into existing GA frameworks. We retain the authors' original names for the host algorithms used in prior work (e.g., CHCqx, MTSQIGA, GDR).

A.6.1 PARAMETERIZATION

Unless stated otherwise, the following settings are used across applications. In Eqs. 6, the smoothing parameter is set to $\rho=0.1\,\bar{f}_t$ (where \bar{f}_t is the per–generation mean fitness). In Eq. 4, we set $\alpha=0.1$. For Eqs. 4 and 6, when k=0 the update magnitude is multiplied by 0.5. The evolutionary run terminates when the best fitness remains unchanged for 10 consecutive generations.

A.6.2 FEATURE SELECTION

Setup. We consider the fast genetic feature selector CHCqx of Altarabichi et al. Altarabichi et al. (2023). To assess whether graph—guided recombination improves efficiency and selection quality, we compare the original CHCqx with our ELLG under the same datasets, encodings, and evaluation protocol.

Results. As summarized in Table 6, integrating ELLG into CHCqx cuts the mean wall-clock time from $39.92 \, \text{s}$ to $27.07 \, \text{s}$ (a 32.19% reduction over 10 runs), while maintaining—slightly improving—selection quality (mean accuracy $94.917\% \rightarrow 94.930\%$). This indicates that the efficiency gains do not come at the cost of solution quality.

Table 6: Feature selection over 10 runs: Runtime (lower is better) and Accuracy (higher is better).

	Runtime (seconds)										
	1	2	3	4	5	6	7	8	9	10	Mean
CHCqx	45.13	39.78	34.19	30.08	30.99	28.11	32.36	69.98	43.25	45.36	39.92
Our	23.12	32.35	37.28	29.59	16.68	28.74	31.13	16.49	27.50	27.80	27.07
					Accura	cy (%)					
	1	2	3	4	5	6	7	8	9	10	Mean
CHCqx	94.93	94.81	94.93	94.90	94.94	94.94	94.94	94.94	94.90	94.94	94.917
Our	94.92	94.89	94.94	94.95	94.95	94.92	94.92	94.93	94.94	94.94	94.930

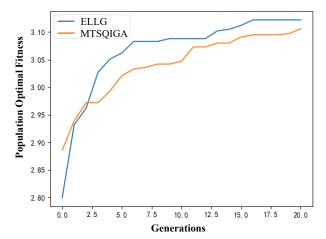


Figure 9: DUC 2005 (d438g): mean accuracy vs. generations (10 outputs). We compare the first 21 generations (the shortest run to termination across methods).

A.6.3 TEXT SUMMARIZATION

Setup. We adopt the quantum–heuristic GA MTSQIGA of Mojrian et al. Mojrian & Mirroshandel (2021) on DUC 2005 and DUC 2007. Our ELLG augments the original with graph–guided site placement while preserving the quantum encoding, operators, and evaluation metrics (ROUGE-1/2/SU4).

Table 7: Runtime (seconds) on DUC 2005/2007 (three runs; lower is better).

Dataset	Method	Run 1	Run 2	Run 3	Mean
DUC2005	MTSQIGA	278.75	283.96	282.61	281.77
DUC2005	Our	277.98	283.40	281.91	281.09
DUC2007	MTSQIGA	123.48	116.83	126.22	122.18
DUC2007	Our	110.14	124.25	123.18	119.19

Results. Across both corpora, the ELLG extension leaves wall-clock time essentially unchanged (Table 7) while delivering consistent ROUGE gains—especially in F-score and precision—at comparable recall (Table 8). On DUC 2005 (topic d438g), the generation—accuracy trace (Fig. 9) further shows earlier improvements within the first 21 generations, indicating that linkage-guided site placement accelerates useful progress without incurring runtime overhead.

A.6.4 DIMENSIONALITY REDUCTION

Setup. We consider the GA for transparent dimensionality reduction (GDR) of Radeev et al. Radeev (2023) and evaluate our ELLG on a collection of public datasets using the same downstream classifier and metrics (Post-hoc F1/Precision/Recall).

Table 8: ROUGE scores on DUC 2005 and DUC 2007 (higher is better).

1039 1040 1041

1043 1044

1049 1050 1051

1052

1053

1054 1055 1056

1057

1062

1063 1064 1067

1068

1069 1070 1071

1074 1075

1077 1078 1079

DUC 2005 MTSQIGA Our R-1 R-2 SU4 R-1 R-2 SU4 Average F-Score 0.354247 0.081120 0.137460 0.359500 0.081011 0.141524 0.355823 0.139995 Average Recall 0.349966 0.080165 0.136083 0.080181 0.0821080.363382 0.081873 0.143110 Average Precision 0.358736 0.138891 **DUC 2007** MTSQIGA Our SU4 R-1 SU4 R-1 R-2 R-2 Average F-Score 0.447365 0.120771 0.182513 0.453382 0.124821 0.186348 Average Recall 0.445665 0.120547 0.182943 0.453013 0.124667 0.187199 0.125036 Average Precision 0.449274 0.121048 0.182166 0.453983 0.185616

Table 9: Dimensionality reduction: post-hoc classification metrics (average of 5 runs).

Dataset	GDR PostF1	GDR PostPrec	GDR PostRecall	Our PostF1	Our PostPrec	Our PostRecall
bank_marketing	0.427	0.465	0.438	0.437	0.468	0.460
blood_trans	0.374	0.524	0.297	0.439	0.544	0.394
Breast cancer	0.897	0.906	0.888	0.951	0.923	0.980
Credit g	0.795	0.719	0.893	0.775	0.721	0.843
bioresponse	0.352	0.638	0.374	0.741	0.745	0.737
ionosphere	0.896	0.891	0.902	0.870	0.907	0.837
sonar	0.734	0.728	0.744	0.775	0.718	0.844
christine	0.610	0.609	0.619	0.637	0.644	0.630
hyperplane	0.643	0.673	0.616	0.660	0.614	0.719
madelon	0.640	0.635	0.646	0.665	0.652	0.679

Table 9 reports the average over 5 Monte Carlo runs. ELLG improves F1/Precision/Recall on the majority of datasets, with large margins on bioresponse.

A.6.5SUMMARY

Across three distinct tasks (feature selection, text summarization, and dimensionality reduction), incorporating graph-guided site placement (ELLG variants) yields (i) lower runtime or neutral overhead relative to the respective baselines, and (ii) equal or improved solution quality.

A.7 CONCLUSIONS

ELLG replaces uniform, position-agnostic variation with a linkage-guided policy that is learned from per-generation fitness and applied at the locus level. By strengthening edges traversed by above-baseline individuals and weakening those used by underperformers, ELLG rapidly shapes a task-specific linkage map that preserves robust segments and targets weak boundaries for recombination. Across feature selection, text summarization, and dimensionality reduction, plugging ELLG into existing GAs yields consistent gains in runtime and/or final quality under identical settings, demonstrating that linkage-aware site placement—not new operators or heavy machinery—is the driver of the observed improvements.