
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LINKAGE-GUIDED GENETIC VARIATION: OVERCOM-
ING OPERATOR BLINDNESS IN GENETIC ALGORITHMS

Anonymous authors
Paper under double-blind review

ABSTRACT

The core bottleneck of Genetic Algorithms is operator blindness: crossover and
mutation locations are chosen at random, routinely breaking valuable building
blocks. We introduce the Evolving Locus Linkage Graph (ELLG), which embeds
the linkage principle (keep strong segments intact, recombine at weak boundaries)
into operator design. At each generation, ELLG updates per-locus linkage weights
from observed fitness, producing a task-specific linkage map that tells the algo-
rithm which segments to keep intact and where to cut; as generations proceed,
these protected regions and preferred cut sites become increasingly well-defined.
A simple monotone transformation converts the learned weights into placement
probabilities for crossover and mutation, replacing uniform randomness with tar-
geted, structure-aware operator placement. We integrate ELLG as a plug-in to a
standard GA without changing the problem encoding or operator semantics. We
benchmark ELLG against a large pool of state-of-the-art evolutionary methods
across two domains: classical multi-objective optimization suites and Neural Ar-
chitecture Search, ELLG achieves higher final solution quality in experiments.

1 INTRODUCTION

Classical genetic algorithms (GAs) (Golberg, 1989) typically apply crossover and mutation at ran-
domly chosen loci. Although simple, such location-agnostic variation may disrupt cooperative gene
fragments and slow convergence, especially in high-dimensional or rugged search spaces. Many
subsequent variants have sought to adjust the intensity and direction of search, for example, by an-
nealing mutation rates (Smith & Fogarty, 1997; Wang et al., 2021; Marjit et al., 2023; Ni & Spector,
2024), biasing selection pressure (Baker, 2014; Halim et al., 2021; Yang et al., 2024), or reshaping
the search with reference vectors (Srinivas & Patnaik, 2002; Xue et al., 2022b; Qiao et al., 2022; Xue
et al., 2022a), decomposition (Goldberg & Deb, 1991; Xie et al., 2022), indicators (Phan & Suzuki,
2013; Li et al., 2019), and grid-based strategies (Corne et al., 2001) — yet they seldom articulate
a testable and updatable principle for answering the fundamental questions of where recombination
should occur and which regions should be preserved. In contrast, population genetics points to a
block–boundary structure: loci that frequently co-occur within a block are best inherited together,
whereas recombination is most effective at boundaries where dependence is weak. Building on
this insight, a learnable location rule is formulated that makes crossover and mutation dependence-
aware, preserves high-dependence fragments, and places recombination at low-dependence bound-
aries, while retaining the standard selection–crossover–mutation backbone.

This biological principle is formalized through the concept of Linkage Disequilibrium (LD), which
measures the non-random association of alleles across loci. As empirically demonstrated in Fig. 1,
this non-randomness creates a distinct structure: regions of high LD manifest as the tightly-coupled
Haplotype Blocks, while regions of low LD correspond to the Recombination Hotspots that form
boundaries between them. This observed architecture provides a direct guideline for evolution-
ary search: preserve the high-dependence blocks and preferentially place crossover at the low-
dependence boundaries.

To operationalize this principle, we introduce the Evolving Locus Linkage Graph (ELLG), a learn-
able structure designed to make genetic operators aware of inter-locus dependencies. As illustrated
in Figure 1(c), the ELLG translates linkage disequilibrium (LD) patterns from the population into
a dynamic graph that guides crossover and mutation. As shown, regions of high LD, which define

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Building Block

Linkage Disequilibrium

High

Low

Single Nucleotide Polymorphism(a) HapMap(b) ELLG Sketch Map(c)

ELLG

Figure 1: From Functional Networks to the ’Block-Boundary’ Architecture of the Genome. (a)
SNP Network (Consortium, 2003): A network of interacting SNPs where colored clusters repre-
sent functional gene groups that form the basis of Haplotype Blocks. (b) presents empirical data
from the HapMap project (Consortium, 2005), visualizing the population-level consequence across
three human populations. High-LD (red) regions form triangular Haplotype Blocks—these are the
’high-dependence fragments’ that are ’best inherited together’. The low-LD areas between them are
Recombination Hotspots—the ’low-dependence boundaries’ where ’recombination is most effec-
tive’. Together, (c) ELLG Mechanism: A schematic of the Evolving Locus Linkage Graph (ELLG),
which models the linkage between all loci. The ELLG uses fitness feedback to strengthen connec-
tions between co-adapted genes, guiding operators to preserve Haplotype Blocks and recombine
at Recombination Hotspots, thus translating the genome’s structure into an actionable optimization
strategy.

haplotype blocks, are modeled by the ELLG as strongly connected subgraphs. These represent co-
adapted sets of alleles that should be preserved. Conversely, regions of low LD between these blocks
are identified as recombination hotspots. The ELLG treats these as ideal boundaries for crossover.
At each generation, the ELLG updates this graph representation based on fitness feedback from the
evolving population, continuously refining its map of the problem’s genetic linkage structure.

The primary advantage of the ELLG is that it makes the abstract concept of linkage structure explicit
and interpretable. By steering operators to preserve the integrity of haplotype blocks and recombine
at recombination hotspots, the ELLG reduces the disruption of beneficial allele combinations and
improves sampling efficiency.

The main contributions of this paper are as follows:

(1) Theory: We are the first to formalize the GA building block notion via the ELLG, turning
an abstract idea into an explicit, operable mechanism for identifying and preserving useful
gene segments.

(2) Method: ELLG is a dynamic, learnable structure that uses fitness feedback to infer
inter-locus dependencies and convert operators from uniform randomness to data-driven,
structure-aware placement.

(3) Application: ELLG is lightweight and general—integrable as a plug-and-play module into
standard GA backbones without altering their core pipeline.

(4) Experiments: On classic optimization benchmarks and NAS tasks, ELLG consistently
yields higher final solution quality than numerous state-of-the-art baselines.

2 THEORETICAL FOUNDATION AND DESIGN PRINCIPLES

2.1 THE LIMITATION OF TRADITIONAL GENETIC ALGORITHMS

The effectiveness of a Genetic Algorithm (GA) hinges on balancing exploration and exploitation,
with the latter driven by the propagation of co-adapted gene combinations (building blocks). Tra-
ditional operators are information-blind: crossover and mutation sites are chosen uniformly; for a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

genome of length L, this yields the distribution in Eq. 1.

Pr(cut at k) =
1

L− 1
. (1)

Uniform placement cannot discern whether an edit preserves or destroys a high-fitness block, caus-
ing frequent schema breakage, slower convergence, and higher search variance. An advanced GA
should therefore perceive, quantify, and exploit the solution’s intrinsic linkage structure.

Haplotype Blocks

gaGA

Recombination Hotspot

LD or not

√

𝐿𝐷𝐺𝐴 > 0

… … … …

Individual 1

Individual 2

G

𝑔

A

a

…
…

…
…

(a)

W
Strength Matrix (W)

𝑊𝐺𝐴 … …

… … …

… … …

LD or not
G A √

(b)

Figure 2: Conceptual link between the biological principle of LD and the proposed computational
framework. (a) In population genetics, LD analysis identifies co-adapted gene combinations (Hap-
lotype Blocks, e.g., GA) that are preserved by selection. A high LD value (LDGA > 0) serves as
a statistical signal for a protected ’building block’. (b) The ELLG operationalizes this principle.
It learns a Strength Matrix (W) where a high edge weight (WGA) acts as a direct computational
proxy for a high LD value. This allows the algorithm to dynamically discover and preserve valuable
building blocks during its search.

2.2 LD AND BUILDING BLOCKS

The core of evolution is the formation of co-adapted gene complexes, where a set of genes working in
synergy produces a fitness advantage far exceeding the sum of their individual effects (Dobzhansky,
1982). In the computational domain, these complexes are abstracted as the Building Block.

Modern genomics reveals that genetic inheritance follows specific linkage patterns, with LD as the
core phenomenon that provides a quantitative language to describe and identify these building blocks
(Pritchard & Przeworski, 2001; Slatkin, 2008). LD refers to the non-random association of alleles
at different loci.

The quantification of LD begins with a statistical baseline, Linkage Equilibrium (LE), which de-
scribes the ideal state of complete random association (Chakraborty & Muhlenbein, 1997). The
degree of LD is then measured by its deviation from this baseline. The central metric is the coeffi-
cient D, which computes the difference between the observed haplotype frequency and the expected
frequency under random association, as shown in Eq. 2:

D = p11 − pA1pB1 (2)

A non-zero D value from Eq. 2 indicates a non-random association, signifying the presence of a
building block (Stumpf & Goldstein, 2003). To standardize the comparison of linkage strength,
population genetics further employs the metric D′, which normalizes the D value. An absolute
value of |D′| = 1 signifies the strongest possible linkage, as defined in Eq. 3:

D′ =
D

Dmax
(3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Large-scale genomic studies, such as the HapMap project (Consortium, 2003; 2005), have confirmed
that this linkage phenomenon results in a ”block-hotspot” genomic architecture. Regions of high LD
(|D′| → 1) form stable Haplotype Blocks (Wall & Pritchard, 2003) that tend to be inherited as cohe-
sive units, whereas regions of low LD (|D′| → 0) correspond to Recombination Hotspots (Phillips
et al., 2003). This provides a clear evolutionary principle: preserve structures in high-linkage regions
and increase exploration in low-linkage regions.

The core idea of LD is illustrated in Fig. 2(a). When the deviation value LDGA > 0, it provides a
powerful signal that the GA combination is a building block that has been validated and preserved
by natural selection.

3 THE PROPOSED ELLG

3.1 CORE IDEA

To translate the biological principles in Sec. 2, we introduce the Evolving Locus Linkage Graph
(ELLG), a learnable, plug-and-play graph that functionally mirrors a chromosome (Fig. 2b). An
individual is represented as a path through ordered loci; learnable edge weights W encode inter-
locus linkage and are updated from per-generation fitness. By learning and updating W , ELLG
actively discovers and preserves co-adapted building blocks in the search space. This fitness-driven
linkage map adapts over generations, converging to a task-specific structure.

Sequence:

Individual

1 2

Each individual is corresponding

with a complete chain in ELLG

3 4 5

Calculate

Fitness
fitness

Update the weights of corresponding

edges based on fitness

Crossover

Mutation

Selection of crossing loci based on 𝑆𝑘

Selection of mutation locus based on 𝑠𝑘

… … …

Sequence: 1 2

𝑊1,1
(1,2)

3 4 5

(a) Evolving Locus Linkage Graph

(b)

(c)

Edge weight 𝑊→ linkage strength

Figure 3: Overview of the ELLG framework. (a) The ELLG computational graph encodes inter-
locus linkage as edge weights, with each individual represented as a path. (b, c) Crossover and
mutation loci are sampled based on the ELLG-guided recombination propensity score, which is
derived from Eq. 4. Subsequently, the edge weights of paths traversed by offspring are reinforced or
penalized according to fitness feedback, enabling task-specific adaptation.

The complete workflow of the ELLG is detailed in Fig. 3, showing the mapping from individuals
to paths, the fitness-based weight updates, and how the learned weights ultimately guide the genetic
operators.

3.2 LINKAGE-GUIDED GENETIC OPERATORS

The learned linkage map (W) is used to implement the ”block-preservation, hotspot-recombination”
strategy. This requires a recombination propensity score s, that is inversely proportional to linkage
strength.

LD theory reveals that linkage strength, as measured by |D′| in Eq. 3, is negatively correlated with
recombination propensity. When linkage is strongest (|D′| → 1), recombination should be sup-
pressed; when linkage is weakest (|D′| → 0, i.e., LE), recombination propensity is highest.

In the ELLG framework, the learned weight W (k) is the computational proxy for linkage strength.
Therefore, a function s(W) is needed to model this inverse relationship. The most classic and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

robust functional form for such an inverse relationship in mathematical modeling is y = 1/(C +x).
To ensure that the propensity score reaches a natural, normalized maximum of 1 when there is no
linkage evidence (W (k) = 0), the constant C is set to 1. To add flexibility, a sensitivity parameter α
is introduced to modulate the influence of the weight. This yields the equation:

s(k) =
1

1 + αW (k)
(4)

Eq. 4 maps a high linkage weight W (k) (representing a building block) to a low score s(k), leading
to its preservation. Conversely, a low weight W (k) (recombination hotspot) yields a high score,
becoming a preferred target for genetic operations. The probability of applying an operator at locus
k is then calculated based on the score from Eq. 4:

Pop(k) =
Q(k)∑
m Q(m)

, Q(k) =

{
S(k) = s

(k)
parent A + s

(k)
parent B, if op = crossover

s(k), if op = mutation
(5)

According to Eq. 5, Pop(k) denotes the probability of applying a genetic operator at locus k, and
Q(k) is the locus-specific score used for probability assignment. For crossover, Q(k) reflects the
aggregated contribution of both parents, as shown in Fig. 3(b). For mutation, Q(k) represents the
individual propensity score of a single locus, as seen in Fig. 3(c). The normalization ensures that the
operator probabilities form a valid distribution.

3.3 LINKAGE LEARNING: THE ELLG WEIGHT UPDATE MECHANISM

Let G denote an individual of length L (a path over loci 1→L). For each adjacent locus pair (k, k+1)

with k ∈ {1, . . . , L−1}, ELLG keeps a nonnegative edge weight W (k)
t representing task-specific

linkage at generation t. With fitness f(G) and a per-generation baseline f̄t (mean or median used
only for learning), define the selection signal ∆ = f(G) − f̄t. The learning process is adaptive
and occurs concurrently with the evolutionary search. Specifically, for any edge k present in an
evaluated individual, the weight is updated as:

W
(k)
t+1 = max

{
W

(k)
t ± |∆|

|∆|+ ρ
W

(k)
t , 0

}
, (6)

where ρ > 0 is a smoothing constant and λ ≥ 0 is a reinforcement threshold.

This can be read directly as a single multiplicative expand/shrink step:

use “+” if ∆ ≥ λ : W
(k)
t+1 = (1 + ϕ)W

(k)
t ∈

[
W

(k)
t , 2W

(k)
t

)
,

use “−” if ∆ < λ : W
(k)
t+1 = (1− ϕ)W

(k)
t ∈

(
0, W

(k)
t

]
,

ϕ =
|∆|
|∆|+ ρ

∈ [0, 1).

Thus the single-step multiplicative factor always lies in (0, 2), keeping W (k) ≥ 0 and prevent-
ing numerical overshoot. Edges on higher-fitness paths are reinforced and on lower-fitness paths
weakened. Together with Eq. 4 and Eq. 5, larger W (k) gives a lower recombination propensity
(smaller operator probability at k), while smaller W (k) does the opposite—matching the LD view
that strongly linked segments are kept intact and weak boundaries are cut more often.

3.4 SUMMARY

ELLG addresses the operational blindness of traditional GAs. It replaces the static, uniform proba-
bility model of operator selection (Eq. 1) with a dynamic, adaptive model guided by learned linkage
strength. The probability of applying a genetic operator is no longer uniform but is instead deter-
mined by the evolving structure of building blocks, as captured by the ELLG:

Pr(operator at k)ELLG ∝ s(k) (7)

This shift from random to structure-aware search (Eq. 7) is ELLG’s core advantage.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.5 PSEUDOCODE

Algorithm 1 The ELLG Update Cycle within One Generation of a GA
Require: Population Pt, ELLG Weights Wt.

1: # 1. Guide genetic operators to create offspring
2: Compute operator probabilities Pop from Wt and individuals in Pt. ▷ Using Eqs. 4 & 5
3: Poffspring ← Create offspring by applying crossover and mutation guided by Pop.
4: # 2. Evaluate offspring and update ELLG weights
5: Evaluate fitness f(G) for all G ∈ Poffspring.
6: Compute selection signals ∆ for each individual based on fitness.
7: Wt+1 ← Update all weights in Wt based on the signals ∆. ▷ Using Eq. 6
8: # 3. Form the next generation
9: Pt+1 ← SURVIVORSELECTION(Pt, Poffspring).

10: return Pt+1,Wt+1

The full pseudocode and implementation details are provided in the Supplementary (Sec.A.1, Algo-
rithm 2).

4 EXPERIMENTS

To comprehensively validate the proposed ELLG, we conduct a two-part experimental evaluation.
The first part assesses the core mechanism’s performance and robustness on foundational multi-
objective optimization benchmarks, aiming to establish its efficacy as a general-purpose optimiza-
tion method. The second part demonstrates its applicability to a high-dimensional combinatorial op-
timization problem at the forefront of Automated Machine Learning (AutoML)—Neural Architec-
ture Search (NAS). This evaluation path, from foundational optimization theory to a key challenge
in AutoML, is designed to comprehensively characterize the performance envelope and potential of
ELLG as a novel search methodology. We refer readers to the Supplementary Material for (i) an LD
heatmap linking block–boundary structure to the learned ELLG map (Sec. A.2) and (ii) additional
Machine Learning applications with state-of-the-art comparisons (Sec. A.6).

4.1 VERIFICATION ON MULTI-OBJECTIVE OPTIMIZATION BENCHMARKS

4.1.1 BENCHMARK SUITES

We evaluate ELLG on the canonical DTLZ and ZDT suites, which offer analytical Pareto fronts and
diverse geometries (linear, concave, discontinuous, multimodal). Their separation of “position” and
“distance” variables makes them a clean testbed for our location-aware crossover/mutation princi-
ple—preserving strong-dependence segments while recombining at weak-dependence boundaries.

4.1.2 EXPERIMENTAL PROTOCOL

To ensure fair comparability across all algorithms, we adopt a unified experimental protocol, sum-
marized in Sec.A.1.1Table 4.

4.1.3 BASELINES

The baseline algorithms span three representative families of multi-objective evolutionary algo-
rithms (MOEAs):

NSGA family. This group is founded on Pareto-based non-dominated sorting, including NSGA-
II (Deb et al., 2002), as well as reference-vector-driven variants such as ANSGA-III (Cheng et al.,
2019), RVEA (Xue et al., 2022a), and RSEA (He et al., 2017), together with other extensions like
RPDNSGA-II (Elarbi et al., 2017), GNSGA-II (Molina et al., 2009), and RNSGA-II (Said et al.,
2010).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

PSO family. This class, represented by MOPSO (Coello & Lechuga, 2002) and NMPSO (Lin
et al., 2016), is based on swarm intelligence rather than genetic recombination, steering a population
toward the Pareto front via personal and global exemplars stored in archives.

Other MOEAs. These approaches adopt diverse selection mechanisms. They include indicator-
based algorithms such as IBEA (Li et al., 2021b) and PeEA (Li et al., 2021a), which use quality
metrics (e.g., hypervolume) or user-defined preferences, as well as PESA-II (Neshat et al., 2024)
and EMOEA (Deb et al., 2003), which rely on grid partitioning or ε-dominance to promote diversity
in the objective space.

Across these diverse paradigms, the comparative results allow us to assess whether ELLG’s location-
aware principle demonstrates competitiveness beyond the GA family alone.

4.1.4 ELLG IMPLEMENTATION WITHIN NSGA-II

ELLG is integrated into NSGA-II as a plug-in: environmental selection (fast non-dominated sorting
and crowding distance) remains unchanged, while crossover/mutation sites are guided toward weak-
dependence loci and strong fragments are preserved. After evaluating offspring, ELLG updates its
linkage weights from fitness feedback. See Supplementary Sec. A.4, Algorithm 3.

4.1.5 EVALUATION METRIC

We adopt the Inverted Generational Distance (IGD) (Coello et al., 2007) as the primary performance
measure, computed as IGD(P,P⋆) = 1

|P⋆|
∑

y∈P⋆ minx∈P ∥x − y∥2, where the metric calculates
the average Euclidean distance from each reference point in a true Pareto front set (P⋆) to its nearest
solution in the obtained set (P). A smaller IGD value indicates a better overall approximation of the
true front, reflecting superior convergence and diversity.

Table 1: IGD results (mean of 30 runs, lower is better) on DTLZ and ZDT benchmarks.
Function ELLG ANSGAIII NSGAII IBEA MOPSO NMPSO PESAII

DTLZ1 / ZDT1 1.122e-03 / 1.939e-03 2.248e-03 / 2.183e-03 2.317e-03 / 2.411e-03 2.018e-02 / 2.237e-03 1.734e-03 / 4.174e-03 1.190e-03 / 3.228e-02 2.109e-03 / 4.522e-03
DTLZ2 / ZDT2 1.979e-03 / 1.900e-03 4.242e-03 / 2.132e-03 5.225e-03 / 2.444e-03 1.001e-02 / 5.288e-03 4.157e-03 / 4.128e-03 5.452e-03 / 1.867e-02 4.490e-03 / 4.885e-03
DTLZ3 / ZDT3 2.644e-03 / 2.468e-03 5.907e-03 / 2.591e-03 5.221e-03 / 2.753e-03 3.424e-01 / 1.891e-02 4.409e-03 / 5.547e-03 5.675e-03 / 1.015e-01 4.842e-03 / 6.271e-03
DTLZ4 / ZDT4 2.122e-03 / 2.877e-03 7.804e-02 / 3.114e-03 5.375e-03 / 2.355e-03 1.065e-02 / 4.720e-03 4.117e-02 / 3.942e-03 4.238e-02 / 3.022e-02 4.546e-03 / 4.529e-03
DTLZ5 / ZDT6 1.985e-03 / 1.501e-03 4.260e-03 / 2.023e-03 5.293e-03 / 2.039e-03 1.020e-02 / 2.480e-03 4.217e-03 / 3.613e-03 5.331e-03 / 2.317e-03 4.602e-03 / 4.017e-03

DTLZ6 / — 1.975e-03 / — 4.481e-03 / — 5.564e-03 / — 1.507e-02 / — 4.431e-03 / — 5.723e-03 / — 5.023e-03 / —
DTLZ7 / — 3.378e-03 / — 4.691e-03 / — 5.437e-03 / — 6.051e-03 / — 5.220e-03 / — 3.598e-03 / — 6.014e-03 / —

AVG 2.172e-03 / 2.137e-03 1.484e-02 / 2.409e-03 4.919e-03 / 2.400e-03 5.923e-02 / 6.726e-03 9.334e-03 / 4.281e-03 9.906e-03 / 3.701e-02 4.518e-03 / 4.845e-03
ELLG better — 7 / 5 7 / 4 7 / 5 7 / 5 7 / 5 7 / 5
ELLG worse — 0 / 0 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0

Function PeEA RPDNSGAII RSEA RVEA Gnsgaii Emoea Rnsgaii
DTLZ1 / ZDT1 1.151e-03 / 3.004e-03 1.275e-03 / 4.389e-03 1.333e-03 / 3.109e-03 1.284e-02 / 2.554e-03 1.159e-03 / 1.995e-01 2.363e-02 / 2.686e-02 1.152e-03 / 2.405e-01
DTLZ2 / ZDT2 2.391e-03 / 2.275e-03 2.733e-03 / 3.591e-03 2.266e-03 / 2.239e-03 3.923e-03 / 3.380e-03 2.099e-01 / 2.319e-01 5.056e-02 / 2.884e-02 3.346e-01 / 2.667e-01
DTLZ3 / ZDT3 2.561e-03 / 1.080e-02 2.855e-03 / 4.048e-03 2.255e-03 / 5.217e-03 3.771e-02 / 8.511e-03 2.098e-01 / 2.181e-01 5.152e-02 / 6.535e-02 2.582e-03 / 3.829e-01
DTLZ4 / ZDT4 2.378e-03 / 3.801e-03 2.810e-03 / 3.935e-02 2.284e-03 / 3.286e-03 3.630e-03 / 6.507e-03 2.101e-01 / 1.997e-01 5.170e-02 / 2.702e-02 2.862e-01 / 2.692e-01
DTLZ5 / ZDT6 2.416e-03 / 2.124e-03 2.721e-03 / 1.511e-02 2.264e-03 / 1.957e-03 3.694e-03 / 2.770e-03 2.099e-01 / 1.573e-01 4.963e-02 / 2.808e-02 3.399e-01 / 2.145e-01

DTLZ6 / — 2.354e-03 / — 1.359e-02 / — 2.262e-03 / — 2.217e-03 / — 2.105e-01 / — 4.957e-02 / — 1.959e-01 / —
DTLZ7 / — 3.953e-03 / — 4.796e-03 / — 2.887e-03 / — 5.643e-03 / — 2.323e-01 / — 5.347e-02 / — 2.713e-01 / —

AVG 2.458e-03 / 4.401e-03 4.397e-03 / 1.330e-02 2.221e-03 / 3.162e-03 9.952e-03 / 4.745e-03 1.834e-01 / 2.013e-01 4.715e-02 / 3.523e-02 2.045e-01 / 2.748e-01
ELLG better 6 / 5 7 / 5 5 / 5 7 / 5 7 / 5 7 / 5 6 / 5
ELLG worse 1 / 0 0 / 0 2 / 0 0 / 0 0 / 0 0 / 0 1 / 0

4.1.6 RESULTS AND ANALYSIS

Experiment Results. Table 1 summarizes the mean IGD values (30 independent runs) of ELLG
and 13 competing algorithms on the DTLZ and ZDT benchmark suites.

Result Analysis. Across both benchmark suites, ELLG demonstrates consistently strong perfor-
mance, achieving a compelling balance between convergence and diversity.

On the DTLZ suite, ELLG achieves the best IGD values on five of the seven problems (DTLZ1, 2,
4, 5, 6) and remains highly competitive on the others, with an overall average IGD of 2.172e-03, the
lowest among all 14 algorithms and a 55.8% improvement over NSGA-II.

On the ZDT suite, ELLG secures the best IGD scores on four of the five problems (ZDT1, 2, 3, 6).
ELLG achieves the best overall average IGD of 2.137e-03. These results demonstrate that ELLG
consistently surpasses most competitors across both benchmark families.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Ablation study on the sensitivity parameter α. Scatter plots show IGD values under
different α values, while dashed lines denote the mean IGD for each setting. Results indicate a
consistent trend: as α increases from 0.1 to 10, IGD performance becomes worse.

Significance Analysis. We assess statistical significance using two-sided paired t-tests on log-
transformed IGD values across 12 benchmarks; ELLG is significantly better than every baseline at
the 5% level (p < 0.05). See Supplementary Sec. A.5 (Table 5), for full methodology and results.

Ablation Experiments. According to Eq. 4, the sensitivity parameter α modulates how strongly
the linkage weight W (k) suppresses the score s(k). Empirically, we observe a clear monotonic
trend: as α increases from 0.1 to 10, IGD performance gradually deteriorates. The mechanism is
immediate from Eq. 4: because ∂s(k)/∂α = −W (k)/(1 + αW (k))2 < 0, increasing α compresses
s(k) more severely at loci with large linkage weights (i.e., building blocks). If operator application
uses a normalized allocation Pk ∝ s(k), probability mass shifts toward only a few weakly linked
loci as α grows, reducing the entropy H(P) of the operator distribution and effectively freezing
most strongly linked segments. This over-preservation diminishes recombination span and explo-
ration and increases the risk of premature convergence; consequently, as α increases from 0.1 to 10,
IGD worsens because diversity is undermined and the search becomes increasingly constrained (see
Fig. 4).

4.2 APPLICATIONS TO NEURAL ARCHITECTURE SEARCH (NAS)

NAS is selected as a critical testbed because its search space is characterized by strong co-adaptive
dependencies between its components, providing a suitable environment to evaluate the ELLG’s
ability to learn linkage. Whether in hyperparameter search (e.g., specific combinations of optimizers
and learning rates) or network topology search (e.g., specific sequences of convolution and pooling
layers), successful architectures rely on the synergistic interplay of their components. The ’blind’
operators of a traditional GA frequently disrupt these hard-won, effective combinations. The core
goal of this section is therefore to verify whether the ELLG, by explicitly learning and preserving
these intrinsic linkage structures, can discover superior neural network architectures more efficiently
and stably than a baseline random-locus GA.

Search Spaces and Datasets. Hyperparameter search (Blender-10). We follow the setting
in (Shi et al., 2022): inputs are resized to 416×416, a pre-trained Darknet-53 (Redmon & Farhadi,
2018) backbone is frozen, and the GA searches only the fully-connected head. The encoding covers
five categories: number of hidden layers, neurons per layer, activation, learning rate, and optimizer.
Topology search (MNIST). Following Genetic CNN (Xie & Yuille, 2017), each CNN is a DAG
encoded as a binary string.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Blender-10 Hyperparameter NAS: per-generation best validation accuracy (mean ± band;
band is the half-width of the min–max range across five runs).

Generation

1 3 7 9 10 12 15

ELLG 0.930±0.008 0.935±0.008 0.945±0.015 0.955±0.013 0.965±0.010 0.960±0.005 0.965±0.005
GA 0.885±0.020 0.905±0.010 0.930±0.013 0.940±0.010 0.950±0.010 0.955±0.008 0.958±0.006

Experimental Protocols and Settings. To foreground search behavior rather than large-scale
training, we adopt modest population sizes, generations, and training budgets. In both tasks, the
baseline GA places crossover/mutation sites uniformly at random, whereas ELLG learns linkage-
guided placement from fitness each generation. Concretely, Blender-10 uses a population of 10
for 15 generations with roulette-wheel parent selection, two-point crossover, and single-point mu-
tation (rate 0.05); each candidate trains for 7 epochs with validation accuracy as fitness, and the
best architectures are subsequently evaluated on the test set. For MNIST, the population is 20 for
10 generations; each candidate trains for 10 epochs, using validation accuracy on a held-out split as
fitness, and final metrics are reported on the test set.

Experiment Results. Across both tasks, ELLG’s linkage-guided placement yields earlier gains
and lower variability than the random-locus GA. On Blender-10 (Table 2), ELLG maintains a higher
best-validation trajectory, reaches the 0.95 level earlier (generation 9 vs. 10), attains 0.965 around
generation 10 (vs. 0.950), and stabilizes at 0.965 by generation 15 (vs. 0.958). On MNIST topology
NAS (Table 3), consistent with prior observations (Xie & Yuille, 2017), the baseline GA improves
with generations but exhibits high variance, whereas ELLG achieves slightly higher mean best vali-
dation/test accuracy (97.55%/97.64% vs. 97.45%/97.62%), finds the best-validation solution earlier
(median generation 3 vs. 4), and shows substantially lower variability (validation std. 0.21 vs. 0.57;
test std. 0.31 vs. 0.67). These results support the claim that linkage-guided operators preserve useful
structures and concentrate exploration at weak boundaries.

Table 3: Results of network topology search on MNIST (3 runs). ELLG achieves slightly higher
validation accuracy, earlier best validation, and lower variance.

Method
Mean Best
Val. (%)

Test@Best
Val. (%)

Mean Best
Test (%)

Gen. of Best
(Median)

Std
(Val.)

Std
(Test)

Baseline (GA) 97.45 97.22 97.62 4 0.57 0.67
ELLG (Ours) 97.55 97.61 97.64 3 0.21 0.31

Discussion. Across both NAS tasks, the core advantage of the ELLG is clearly demonstrated. It
does not alter the fundamental genetic operators, but rather transforms how they are applied. The
task-specific linkage map, learned by the ELLG from fitness, shifts operator placement from ’uni-
form random’ to ’strategic guidance’. The empirical data reveals three key benefits from this shift:
(i) earlier performance gains, (ii) significantly reduced run-to-run volatility, and (iii) a competitive or
superior final solution under the same budget. We attribute these advantages directly to the ELLG’s
success in overcoming the operational blindness of traditional GAs.

5 CONCLUSIONS

This paper tackles the “operator blindness” of traditional Genetic Algorithms—where uniformly
placed crossover and mutation routinely disrupt well-adapted gene combinations—by introduc-
ing the ELLG. Learned online from per-generation fitness feedback, ELLG learns and maintains
inter-locus linkage weights and uses them to drive site placement: strongly linked segments are
preserved as units, while recombination is directed to weak boundaries. On multi-objective op-
timization benchmarks and neural architecture search, ELLG replaces uniform randomness with
linkage-guided operators and delivers consistent gains in convergence speed, final solution quality,
and run-to-run stability over a broad set of state-of-the-art baselines.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Mohammed Ghaith Altarabichi, Sławomir Nowaczyk, Sepideh Pashami, and Peyman Sheikhol-
haram Mashhadi. Fast genetic algorithm for feature selection — a qualitative approxima-
tion approach. Expert Systems with Applications, 211:118528, 2023. ISSN 0957-4174. doi:
https://doi.org/10.1016/j.eswa.2022.118528. URL https://www.sciencedirect.com/
science/article/pii/S0957417422016049.

James Edward Baker. Adaptive selection methods for genetic algorithms. In Proceedings of the first
international conference on genetic algorithms and their applications, pp. 101–106. Psychology
Press, 2014.

Uday Kumar Chakraborty and Heinz Muhlenbein. Linkage equilibrium and genetic algorithms. In
Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC’97),
pp. 25–29. IEEE, 1997.

Qian Cheng, Bo Du, Liangpei Zhang, and Rong Liu. Ansga-iii: A multiobjective endmember
extraction algorithm for hyperspectral images. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 12(2):700–721, 2019.

CA Coello Coello and Maximino Salazar Lechuga. Mopso: A proposal for multiple objective
particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation.
CEC’02 (Cat. No. 02TH8600), volume 2, pp. 1051–1056. IEEE, 2002.

Carlos A Coello Coello, Gary B Lamont, and David A Van Veldhuizen. Evolutionary algorithms
for solving multi-objective problems. Springer, 2007.

The International HapMap Consortium. The international hapmap project. Nature, 426(6968):789–
796, 2003.

The International HapMap Consortium. A haplotype map of the human genome. Nature, 437(7063):
1299–1320, 2005.

David W Corne, Nick R Jerram, Joshua D Knowles, and Martin J Oates. Pesa-ii: Region-based se-
lection in evolutionary multiobjective optimization. In Proceedings of the 3rd annual conference
on genetic and evolutionary computation, pp. 283–290, 2001.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):
182–197, 2002.

Kalyanmoy Deb, Manikanth Mohan, and Shikhar Mishra. Towards a quick computation of well-
spread pareto-optimal solutions. In International Conference on Evolutionary Multi-Criterion
Optimization, pp. 222–236. Springer, 2003.

Theodosius Dobzhansky. Genetics and the origin of species. Number 11. Columbia university press,
1982.

Maha Elarbi, Slim Bechikh, Abhishek Gupta, Lamjed Ben Said, and Yew-Soon Ong. A new
decomposition-based nsga-ii for many-objective optimization. IEEE transactions on systems,
man, and cybernetics: systems, 48(7):1191–1210, 2017.

David E Golberg. Genetic algorithms in search, optimization, and machine learning. Addion wesley,
1989(102):36, 1989.

David E Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes used in genetic
algorithms. In Foundations of genetic algorithms, volume 1, pp. 69–93. Elsevier, 1991.

Zahid Halim, Muhammad Nadeem Yousaf, Muhammad Waqas, Muhammad Sulaiman, Ghulam Ab-
bas, Masroor Hussain, Iftekhar Ahmad, and Muhammad Hanif. An effective genetic algorithm-
based feature selection method for intrusion detection systems. Computers & Security, 110:
102448, 2021.

10

https://www.sciencedirect.com/science/article/pii/S0957417422016049
https://www.sciencedirect.com/science/article/pii/S0957417422016049

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Cheng He, Ye Tian, Yaochu Jin, Xingyi Zhang, and Linqiang Pan. A radial space division based
evolutionary algorithm for many-objective optimization. Applied Soft Computing, 61:603–621,
2017.

Huiru Li, Fengzhi He, and Xinhua Yan. Ibea-svm: An indicator-based evolutionary algorithm based
on pre-selection with classification guided by svm. Applied Mathematics–A Journal of Chinese
Universities, 34(1):1–26, 2019. doi: 10.1007/s11766-019-3542-y.

Li Li, Gary G Yen, Avimanyu Sahoo, Liang Chang, and Tianlong Gu. On the estimation of pareto
front and dimensional similarity in many-objective evolutionary algorithm. Information Sciences,
563:375–400, 2021a.

Wenhua Li, Tao Zhang, Rui Wang, and Hisao Ishibuchi. Weighted indicator-based evolutionary
algorithm for multimodal multiobjective optimization. IEEE Transactions on Evolutionary Com-
putation, 25(6):1064–1078, 2021b.

Qiuzhen Lin, Songbai Liu, Qingling Zhu, Chaoyu Tang, Ruizhen Song, Jianyong Chen, Carlos
A Coello Coello, Ka-Chun Wong, and Jun Zhang. Particle swarm optimization with a balanceable
fitness estimation for many-objective optimization problems. IEEE Transactions on Evolutionary
Computation, 22(1):32–46, 2016.

Shyam Marjit, Trinav Bhattacharyya, Bitanu Chatterjee, and Ram Sarkar. Simulated annealing aided
genetic algorithm for gene selection from microarray data. Computers in Biology and Medicine,
158:106854, 2023.

Mohammad Mojrian and Seyed Abolghasem Mirroshandel. A novel extractive multi-document text
summarization system using quantum-inspired genetic algorithm: Mtsqiga. Expert systems with
applications, 171:114555, 2021.

Julián Molina, Luis V Santana, Alfredo G Hernández-Dı́az, Carlos A Coello Coello, and Rafael
Caballero. g-dominance: Reference point based dominance for multiobjective metaheuristics.
European Journal of Operational Research, 197(2):685–692, 2009.

Mehdi Neshat, Nataliia Y Sergiienko, Meysam Majidi Nezhad, Leandro SP da Silva, Erfan Amini,
Reza Marsooli, Davide Astiaso Garcia, and Seyedali Mirjalili. Enhancing the performance of
hybrid wave-wind energy systems through a fast and adaptive chaotic multi-objective swarm op-
timisation method. Applied Energy, 362:122955, 2024.

Andrew Ni and Lee Spector. Effective adaptive mutation rates for program synthesis. In Proceedings
of the Genetic and Evolutionary Computation Conference, pp. 952–960, 2024.

Duy Hung Phan and Jun Suzuki. R2-ibea: R2 indicator based evolutionary algorithm for multiobjec-
tive optimization. In 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1836–1845.
IEEE, June 2013. doi: 10.1109/CEC.2013.6557767.

MS Phillips, R Lawrence, R Sachidanandam, AP Morris, DJ Balding, MA Donaldson, JF Stude-
baker, WM Ankener, SV Alfisi, F-S Kuo, et al. Chromosome-wide distribution of haplotype
blocks and the role of recombination hot spots. nature genetics, 33(3):382–387, 2003.

Jonathan K Pritchard and Molly Przeworski. Linkage disequilibrium in humans: models and data.
The American Journal of Human Genetics, 69(1):1–14, 2001.

Yan Qiao, NaiQi Wu, YunFang He, ZhiWu Li, and Tao Chen. Adaptive genetic algorithm for
two-stage hybrid flow-shop scheduling with sequence-independent setup time and no-interruption
requirement. Expert Systems with Applications, 208:118068, 2022.

Nikita Radeev. Transparent dimension reduction by feature construction with genetic algorithm.
Authorea Preprints, 2023.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lamjed Ben Said, Slim Bechikh, and Khaled Ghédira. The r-dominance: a new dominance relation
for interactive evolutionary multicriteria decision making. IEEE transactions on Evolutionary
Computation, 14(5):801–818, 2010.

Zhaoning Shi, Yong Zhai, Youtong Zhang, and Hongqian Wei. Snal: sensitive non-associative
learning network configuration for the automatic driving strategy. Scientific Reports, 12(1):
20045, 2022. doi: 10.1038/s41598-022-24674-9. URL https://doi.org/10.1038/
s41598-022-24674-9.

Montgomery Slatkin. Linkage disequilibrium—understanding the evolutionary past and mapping
the medical future. Nature Reviews Genetics, 9(6):477–485, 2008.

James Edward Smith and Terence C Fogarty. Operator and parameter adaptation in genetic algo-
rithms. Soft computing, 1(2):81–87, 1997.

Mandavilli Srinivas and Lalit M Patnaik. Adaptive probabilities of crossover and mutation in genetic
algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 24(4):656–667, 2002.

Michael PH Stumpf and David B Goldstein. Demography, recombination hotspot intensity, and the
block structure of linkage disequilibrium. Current Biology, 13(1):1–8, 2003.

Jeffrey D Wall and Jonathan K Pritchard. Assessing the performance of the haplotype block model
of linkage disequilibrium. The American Journal of Human Genetics, 73(3):502–515, 2003.

Kaipu Wang, Xinyu Li, Liang Gao, Peigen Li, and Surendra M Gupta. A genetic simulated annealing
algorithm for parallel partial disassembly line balancing problem. Applied Soft Computing, 107:
107404, 2021.

Lingxi Xie and Alan Yuille. Genetic cnn. In Proceedings of the IEEE international conference on
computer vision, pp. 1379–1388, 2017.

Yifan Xie, Shengxiang Yang, Dong Wang, Jun Qiao, and Baohua Yin. Dynamic transfer refer-
ence point-oriented MOEA/D involving local objective-space knowledge. IEEE Transactions on
Evolutionary Computation, 26(3):542–554, 2022. doi: 10.1109/TEVC.2021.3099495.

Fei Xue, Qiuru Hai, Yuelu Gong, Siqing You, Yang Cao, and Hengliang Tang. Rvea-based multi-
objective workflow scheduling in cloud environments. International Journal of Bio-Inspired Com-
putation, 20(1):49–57, 2022a.

Yu Xue, Xu Cai, and Ferrante Neri. A multi-objective evolutionary algorithm with interval based
initialization and self-adaptive crossover operator for large-scale feature selection in classification.
Applied Soft Computing, 127:109420, 2022b.

Liwei Yang, Ping Li, Tao Wang, Jinchao Miao, Jiya Tian, Chuangye Chen, Jie Tan, and Zijian Wang.
Multi-area collision-free path planning and efficient task scheduling optimization for autonomous
agricultural robots. Scientific Reports, 14(1):18347, 2024.

A APPENDIX & SUPPLEMENTARY MATERIALS

A.1 PSEUDOCODE

Algorithm 2 details the workflow for integrating the ELLG. The three core phases of this process
are a direct computational implementation of the biological principles discussed in Section 2.

12

https://doi.org/10.1038/s41598-022-24674-9
https://doi.org/10.1038/s41598-022-24674-9

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 2 ELLG Framework
Require: Population size N , genome length L, termination conditions
Require: Host GA primitives: PARENTSELECTION, CROSSOVEROP, MUTATIONOP, SUR-

VIVORSELECTION
Ensure: Final population P

1: P ← INITIALIZEPOPULATION(N)
2: Initialize ELLG Weights: For all edges (i, j) at all loci k, set W (i,j)(k,k+1) = 1.
3: while not TERMINATED do
4: Poffspring ← ∅
5: while |Poffspring| < N do
6: (pA, pB)← PARENTSELECTION(P)

7: Compute S(k) = s
(k)
parent A + s

(k)
parent B for all k ∈ [1, L− 1]. ▷ Using Eq. 4

8: Sample crossover point k⋆ ∼ Pop(k) with Q(k) = S(k). ▷ Using Eq. 5
9: (cA, cB)← CROSSOVEROP(pA, pB , k

⋆)
10: for each child c ∈ {cA, cB} do
11: Compute s(k) for all k ∈ [1, L] using Eq. 4.
12: Sample mutation point k′⋆ ∼ Pop(k

′) with Q(k′) = s(k
′). ▷ Using Eq. 5

13: c← MUTATIONOP(c, k′⋆)
14: Poffspring ← Poffspring ∪ {c}
15: end for
16: end while
17: EVALUATEFITNESS(Poffspring)
18: f̄ ← mean fitness of Poffspring
19: for each individual G ∈ Poffspring do
20: ∆← f(G)− f̄ ▷ Selection pressure
21: for each adjacent gene pair (gk, gk+1) in G do
22: Update W (gk,gk+1)(k,k+1) using Eq. 6.
23: end for
24: end for
25: P ← SURVIVORSELECTION(P, Poffspring, N)
26: end while
27: return P

The process consists of three main phases: (1) Offspring Generation (lines 5-16) executes the
”block-preservation” strategy by using the learned linkage map to guide operator placement, re-
placing random selection with an informed choice. (2) Fitness Evaluation (lines 17-18) provides
the performance signal for selection. (3) Linkage Learning (lines 19-25) simulates natural selec-
tion by updating the ELLG’s weights based on fitness feedback, reinforcing paths associated with
high-performing individuals. This loop of guided variation followed by linkage learning enables the
ELLG to continuously refine its understanding of the problem’s building block structure, leading to
a more efficient search.

A.1.1 EXPERIMENTAL PROTOCOL

To ensure fair comparability across all algorithms, we adopt a unified experimental protocol, sum-
marized in Table 4.

Table 4: Experimental protocol and parameter settings for benchmark evaluation.
General Protocol Population size N = 200; max evaluations 10000; independent runs

R = 30

Problem Setup Decision variables D = 2; objectives M = 2

Variation Operators SBX crossover: pc = 0.9, ηc = 20; polynomial mutation: pm =
1/D, ηm = 20

ELLG Parameters ρ = 0.1× f̄t (Eq. 6); α = 0.1 (Eq. 4)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 VERIFICATION ON SINGLE-OBJECTIVE OPTIMIZATION BENCHMARK

Objective and Rationale. We use the Shubert (3 dimensions) function from CEC2013 to vali-
date, in a controlled setting, whether the “keep strong segments, recombine at weak boundaries”
mechanism learned by ELLG is consistent with LD patterns(Fig. 1).

The expression for Shubert is given by:

F (x) = −
D∏
i=1

5∑
j=1

j cos[(j + 1)xi + j] (8)

Experimental Setup. The search domain is [−10, 10]3. Each dimension is uniformly discretized
into 60 bins; an allele j ∈ {0, . . . , 59} encodes the j-th bin. When mapping a discrete index back to
a continuous value for reporting or visualization, we use the left boundary of the bin,

x(j) = −10 +
10− (−10)

60
j,

e.g., j=7 and j=9 correspond to x = −23/3 and x = −7, respectively. Population size is 200,
mutation rate 0.05, evolution for 30 generations, repeated for 100 Monte Carlo trials. All other GA
hyperparameters are identical to ELLG. The Shubert function is given in Eq. (8). Fig. 6 reports
the across-trial evolution of mean best fitness and mean population fitness, and Fig. 5 shows the
final-generation ELLG weight heatmap used in our analysis.

0-59
weight:1.10

0-1
weight:1.15

0-28
weight:1.33

0-7
weight:72.20

0-56
weight:1.35

10-46
weight:2.23

7-9
weight:191.33

44-45
weight:2.05

44-40
weight:2.13

44-50
weight:2.02

40-43
weight:2.28

9-9
weight:193.61

27-46
weight:2.16

40-46
weight:2.29

47-46
weight:3.35

𝑥1

175

150

125

100

75

50

25

1 2 3 4 5

𝑥2

𝑥3

Figure 5: TOP5 weighted heatmap. Each row represents a dimension of the solution space. In the
figure, the colors indicate the top five genetic loci with the highest weights in each dimension. The
depth of color reflects the magnitude of the weight value, where a darker color signifies a larger
weight value.

Relation to LD morphology. Standard LD heatmaps from HapMap (see Fig. 1(b)) exhibit a char-
acteristic block–hotspot structure: high-LD haplotype blocks (dense, high-intensity cells) separated
by low-LD boundaries (lighter diagonal bands). In our analysis, the ELLG weight heatmap (Fig. 5)
shows an analogous morphology at the level of the optimization task: dark (high-weight) areas in-
dicate strongly coupled segments that are preferentially preserved, while light (low-weight) areas
mark boundaries where recombination is favored. Unlike HapMap, where LD is computed from
population genotypes, the pattern in Fig. 5 is learned online from per-generation fitness feedback
and therefore reflects task-specific linkage relevant to operator placement.

Results and Interpretation. In Fig. 5, the last-generation weight map concentrates on the discrete
indices (x1, x2, x3) = (7, 9, 9). Mapping indices to the continuous domain by uniformly partition-
ing [−10, 10] into 60 bins gives

(x1, x2, x3) =
(
−23/3, −7, −7

)
,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 6: The evolution of maximum and average fitness of ELLG and original GA over 100 exper-
iments with evolving generations.

which coincides with the known global maximizer of the Shubert function. High-weight cells thus
correspond to building blocks that the algorithm learns to keep intact, while low-weight cells mark
preferred cut sites for crossover/mutation. Figure 6 further shows that, across 100 trials, ELLG
improves both the mean best fitness and the mean population fitness earlier than the random-locus
GA, indicating that structure-aware placement accelerates progress without sacrificing stability.

Summary. On this controlled benchmark, ELLG recovers a task-specific linkage map whose
block–boundary morphology mirrors LD: strong segments emerge as high-weight blocks and are
preserved; recombination is steered toward weak boundaries. This learned map pinpoints the global
optimum’s coordinate pattern and, in aggregate, yields faster and steadier improvement than uni-
form operator placement. These observations provide compact, LD-consistent evidence that the
proposed operator policy is both interpretable (via the weight heatmap) and effective (via the popu-
lation curves).

A.3 MULTI-OBJECTIVE VISUALIZATION RESULTS.

Figures 7 and 8 compare the approximated Pareto fronts on DTLZ1 and DTLZ2. Compared to
NSGA-II, ELLG produces fronts that lie closer to the true Pareto manifolds, with more complete
coverage and a more uniform spread of solutions. This is consistent with ELLG’s linkage-guided
policy: it preserves strongly linked segments and directs recombination to weak boundaries, im-
proving both proximity and distribution of the final set.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

DTLZ1 - NSGAII DTLZ1 - ELLG

Figure 7: DTLZ1: non-dominated solutions in objective space. Points approximate the true linear
Pareto front; ELLG produces a set that is closer to the ideal plane and more uniformly distributed
than NSGA-II.

DTLZ2 - NSGAII DTLZ2 - ELLG

Figure 8: DTLZ2: non-dominated solutions in objective space. Points approximate the true linear
Pareto front; ELLG produces a set that is closer to the ideal plane and more uniformly distributed
than NSGA-II.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.4 ELLG WITHIN NSGA-II.

Algorithm 3 NSGA-II with optional ELLG guidance (ELLG additions in blue)
Require: population size N , termination criterion

1: P ← INITIALIZEPOPULATION(N); EVALUATE(P)
2: Initialize linkage weights W (1:L−1)← 1
3: while not TERMINATED do
4: M ← BINARYTOURNAMENTSELECTION(P)
5: Q← ∅
6: while |Q| < N do
7: (p1, p2)← PICKPARENTS(M)
8: if use ELLG then
9: k⋆ ← ELLG SAMPLECROSSOVERPOINT(W)

10: (c1, c2)← CROSSOVER(p1, p2, k
⋆)

11: else
12: (c1, c2)← CROSSOVER(p1, p2)
13: end if
14: for each child c do
15: if use ELLG then
16: u⋆ ← ELLG SAMPLEMUTATIONSITE(W)
17: c← MUTATION(c, u⋆)
18: else
19: c← MUTATION(c)
20: end if
21: Q← Q ∪ {c}
22: end for
23: end while
24: EVALUATE(Q)
25: if use ELLG then
26: ELLG UPDATEWEIGHTS(W,Q)
27: end if
28: R← P ∪Q; (F1, F2, . . .)← FASTNONDOMINATEDSORT(R)
29: P ← ENVIRONMENTALSELECTION((F1, F2, . . .), N)
30: end while
31: return P

Explanation of Algorithm 3. The pseudocode presents NSGA-II augmented with the ELLG as a
light-weight, plug-in guidance layer. The baseline loop (initialization, binary tournament selection,
variation, evaluation, and environmental selection via fast non-dominated sorting with crowding
distance) remains unchanged. ELLG intervenes at three points: (i) it maintains per-locus linkage
weights W (1:L−1); (ii) it samples crossover and mutation locations from probability distributions
derived from W ; and (iii) it updates W from per-generation fitness feedback. The operators them-
selves (SBX, polynomial mutation) and the NSGA-II selection semantics are not altered; ELLG
only determines where to place them along the genome.

(1) Site scoring and sampling. ELLG converts linkage weights W (k) into recombination scores
using the monotone inverse defined in Eq. 4. For crossover, scores from both parents are aggregated
as S(k) = sA(k) + sB(k), then normalized into a probability distribution Pcross(k) from which the
cut index k⋆ is sampled. For mutation, the single-parent scores {s(k)} are normalized into Pmut(k)
and used to draw the mutation site u⋆. Thus, loci with stronger linkage (large W (k), small s(k)) are
less likely to be selected, while weakly linked loci are more likely.

(2) Fitness-driven linkage update. After evaluating offspring, the selection pressure ∆ = f(G)−
f̄ is computed, and the edge weights are updated according to Eq. 6. Positive ∆ reinforces the
traversed edges, while negative ∆ penalizes them. This process reshapes the linkage map generation
by generation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Pseudocode highlights. Algorithm 3 follows the standard NSGA-II pipeline but introduces
three additional hooks: ELLG SampleCrossoverPoint, ELLG SampleMutationSite,
and ELLG UpdateWeights. Their mathematical definitions are given in Eqs. 4–6, these hooks
convert site placement from uniform randomness into a learned, per-locus policy: high-weight edges
(strong blocks) are preserved, while low-weight edges (weak boundaries) become preferred recom-
bination sites. Per-generation updates ensure that this policy adapts dynamically to the problem at
hand.

A.5 SIGNIFICANCE ANALYSIS

Table 5: t-test: ELLG vs. each algorithm over benchmarks.
Algorithm t-stat. p-value Sig. Algorithm t-stat. p-value Sig.
ELLG — — — ANSGAIII -2.228 4.77e-02 Yes
NSGAII -3.467 5.26e-03 Yes IBEA -4.203 1.48e-03 Yes
MOPSO -3.876 2.58e-03 Yes NMPSO -4.523 8.68e-04 Yes
PESAII -12.267 9.28e-08 Yes PeEA -3.591 4.24e-03 Yes
RPDNSGAII -2.993 1.22e-02 Yes RSEA -2.625 2.36e-02 Yes
RVEA -3.765 3.13e-03 Yes Gnsgaii -10.865 3.21e-07 Yes
Emoea -32.671 2.63e-12 Yes Rnsgaii -7.353 1.44e-05 Yes

To validate the robustness of our findings, we performed two-sided paired t-tests based on the results
of 30 independent runs with different random seeds for each algorithm on each benchmark. For
every baseline algorithm j, we tested the null hypothesis H0: there is no difference in performance
between ELLG and j, against the alternative H1: there is a difference. The paired t-statistics and
two-sided p-values are reported in Table 5, together with significance markers at the 5% level.

Across all 12 baselines, the differences are statistically significant at the 5% level (p < 0.05),
confirming that the observed performance advantages of ELLG are consistent and unlikely to result
from random variation.

A.6 APPLICATION EVALUATION

This section reports three application studies where the proposed graph–guided recombination is in-
tegrated into existing GA frameworks. We retain the authors’ original names for the host algorithms
used in prior work (e.g., CHCqx, MTSQIGA, GDR).

A.6.1 PARAMETERIZATION

Unless stated otherwise, the following settings are used across applications. In Eqs. 6, the smoothing
parameter is set to ρ = 0.1 f̄t (where f̄t is the per–generation mean fitness). In Eq. 4, we set α = 0.1.
For Eqs. 4 and 6, when k = 0 the update magnitude is multiplied by 0.5. The evolutionary run
terminates when the best fitness remains unchanged for 10 consecutive generations.

A.6.2 FEATURE SELECTION

Setup. We consider the fast genetic feature selector CHCqx of Altarabichi et al. Altarabichi et al.
(2023). To assess whether graph–guided recombination improves efficiency and selection quality,
we compare the original CHCqx with our ELLG under the same datasets, encodings, and evaluation
protocol.

Results. As summarized in Table 6, integrating ELLG into CHCqx cuts the mean wall-clock time
from 39.92 s to 27.07 s (a 32.19% reduction over 10 runs), while maintaining—slightly improv-
ing—selection quality (mean accuracy 94.917% → 94.930%). This indicates that the efficiency
gains do not come at the cost of solution quality.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Feature selection over 10 runs: Runtime (lower is better) and Accuracy (higher is better).
Runtime (seconds)

1 2 3 4 5 6 7 8 9 10 Mean
CHCqx 45.13 39.78 34.19 30.08 30.99 28.11 32.36 69.98 43.25 45.36 39.92
Our 23.12 32.35 37.28 29.59 16.68 28.74 31.13 16.49 27.50 27.80 27.07

Accuracy (%)
1 2 3 4 5 6 7 8 9 10 Mean

CHCqx 94.93 94.81 94.93 94.90 94.94 94.94 94.94 94.94 94.90 94.94 94.917
Our 94.92 94.89 94.94 94.95 94.95 94.92 94.92 94.93 94.94 94.94 94.930

Generations

P
o
p

u
la

ti
o
n

 O
p

ti
m

a
l

F
it

n
es

s

ELLG
MTSQIGA

Figure 9: DUC 2005 (d438g): mean accuracy vs. generations (10 outputs). We compare the first 21
generations (the shortest run to termination across methods).

A.6.3 TEXT SUMMARIZATION

Setup. We adopt the quantum–heuristic GA MTSQIGA of Mojrian et al. Mojrian & Mirroshandel
(2021) on DUC 2005 and DUC 2007. Our ELLG augments the original with graph–guided site
placement while preserving the quantum encoding, operators, and evaluation metrics (ROUGE-
1/2/SU4).

Table 7: Runtime (seconds) on DUC 2005/2007 (three runs; lower is better).
Dataset Method Run 1 Run 2 Run 3 Mean
DUC2005 MTSQIGA 278.75 283.96 282.61 281.77
DUC2005 Our 277.98 283.40 281.91 281.09
DUC2007 MTSQIGA 123.48 116.83 126.22 122.18
DUC2007 Our 110.14 124.25 123.18 119.19

Results. Across both corpora, the ELLG extension leaves wall-clock time essentially unchanged
(Table 7) while delivering consistent ROUGE gains—especially in F-score and precision—at com-
parable recall (Table 8). On DUC 2005 (topic d438g), the generation–accuracy trace (Fig. 9) further
shows earlier improvements within the first 21 generations, indicating that linkage-guided site place-
ment accelerates useful progress without incurring runtime overhead.

A.6.4 DIMENSIONALITY REDUCTION

Setup. We consider the GA for transparent dimensionality reduction (GDR) of Radeev
et al. Radeev (2023) and evaluate our ELLG on a collection of public datasets using the same down-
stream classifier and metrics (Post-hoc F1/Precision/Recall).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 8: ROUGE scores on DUC 2005 and DUC 2007 (higher is better).
DUC 2005

MTSQIGA Our
R-1 R-2 SU4 R-1 R-2 SU4

Average F-Score 0.354247 0.081120 0.137460 0.359500 0.081011 0.141524
Average Recall 0.349966 0.080165 0.136083 0.355823 0.080181 0.139995
Average Precision 0.358736 0.082108 0.138891 0.363382 0.081873 0.143110

DUC 2007
MTSQIGA Our

R-1 R-2 SU4 R-1 R-2 SU4
Average F-Score 0.447365 0.120771 0.182513 0.453382 0.124821 0.186348
Average Recall 0.445665 0.120547 0.182943 0.453013 0.124667 0.187199
Average Precision 0.449274 0.121048 0.182166 0.453983 0.125036 0.185616

Table 9: Dimensionality reduction: post-hoc classification metrics (average of 5 runs).
Dataset GDR PostF1 GDR PostPrec GDR PostRecall Our PostF1 Our PostPrec Our PostRecall

bank marketing 0.427 0.465 0.438 0.437 0.468 0.460
blood trans 0.374 0.524 0.297 0.439 0.544 0.394
Breast cancer 0.897 0.906 0.888 0.951 0.923 0.980
Credit g 0.795 0.719 0.893 0.775 0.721 0.843
bioresponse 0.352 0.638 0.374 0.741 0.745 0.737
ionosphere 0.896 0.891 0.902 0.870 0.907 0.837
sonar 0.734 0.728 0.744 0.775 0.718 0.844
christine 0.610 0.609 0.619 0.637 0.644 0.630
hyperplane 0.643 0.673 0.616 0.660 0.614 0.719
madelon 0.640 0.635 0.646 0.665 0.652 0.679

Results. Table 9 reports the average over 5 Monte Carlo runs. ELLG improves F1/Precision/Recall
on the majority of datasets, with large margins on bioresponse.

A.6.5 SUMMARY

Across three distinct tasks (feature selection, text summarization, and dimensionality reduction), in-
corporating graph–guided site placement (ELLG variants) yields (i) lower runtime or neutral over-
head relative to the respective baselines, and (ii) equal or improved solution quality.

A.7 CONCLUSIONS

ELLG replaces uniform, position-agnostic variation with a linkage-guided policy that is learned
from per-generation fitness and applied at the locus level. By strengthening edges traversed by
above-baseline individuals and weakening those used by underperformers, ELLG rapidly shapes a
task-specific linkage map that preserves robust segments and targets weak boundaries for recombi-
nation. Across feature selection, text summarization, and dimensionality reduction, plugging ELLG
into existing GAs yields consistent gains in runtime and/or final quality under identical settings,
demonstrating that linkage-aware site placement—not new operators or heavy machinery—is the
driver of the observed improvements.

20

	Introduction
	Theoretical Foundation and Design Principles
	The Limitation of Traditional Genetic Algorithms
	LD and Building Blocks

	The Proposed ELLG
	Core Idea
	Linkage-Guided Genetic Operators
	Linkage Learning: The ELLG Weight Update Mechanism
	Summary
	Pseudocode

	Experiments
	Verification on Multi-Objective Optimization Benchmarks
	Benchmark Suites
	Experimental Protocol
	Baselines
	ELLG Implementation within NSGA-II
	Evaluation Metric
	Results and Analysis

	Applications to Neural Architecture Search (NAS)

	Conclusions
	Appendix & Supplementary Materials
	Pseudocode
	Experimental Protocol

	Verification on Single-Objective Optimization Benchmark
	Multi-objective visualization results.
	ELLG within NSGA-II.
	Significance Analysis
	Application Evaluation
	Parameterization
	Feature Selection
	Text Summarization
	Dimensionality Reduction
	Summary

	Conclusions

