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ABSTRACT

The softmax activation function plays a crucial role in the success of large lan-
guage models (LLMs), particularly in the self-attention mechanism of the widely
adopted Transformer architecture. However, the underlying learning dynamics
that contribute to the effectiveness of softmax remain largely unexplored. As a
step towards better understanding, this paper provides a theoretical study of the
optimization and generalization properties of two-layer softmax neural networks,
providing theoretical insights into their superior performance as other activation
functions, such as ReLU and exponential. Leveraging the Neural Tangent Kernel
(NTK) framework, our analysis reveals that the normalization effect of the soft-
max function leads to a good perturbation property of the induced NTK matrix,
resulting in a good convex region of the loss landscape. Consequently, softmax
neural networks can learn the target function in the over-parametrization regime.
To demonstrate the broad applicability of our theoretical findings, we apply them
to the task of learning score estimation functions in diffusion models, a promising
approach for generative modeling. Our analysis shows that gradient-based algo-
rithms can learn the score function with a provable accuracy. Our work provides
a deeper understanding of the effectiveness of softmax neural networks and their
potential in various domains, paving the way for further advancements in natural
language processing and beyond.

1 INTRODUCTION

Large Language Models (LLMs) like GPT4 (Achiam et al., 2023) from OpenAI and Claude 3 (An-
thropic, 2024) from Anthropic have widely and profoundly changed the world. Some researchers
believe they split human history into two parts: the Pre-LLM Era and the LLM Era. The LLMs have
been widely used in human activities, such as education (Kasneci et al., 2023), law (Sun, 2023),
finance (Li et al., 2023c), bio-informatics (Thirunavukarasu et al., 2023), coding (Hou et al., 2024),
and even top AI conference reviews such as ICML, ICLR, NeurIPS, and AISTATS (Liang et al.,
2024a). To make LLMs successful, one of the cores of LLMs is the Transformer model archi-
tecture (Vaswani et al., 2017), which has many advantages, including faster-parallelized inference
rather than sequential inference like RNN (Hochreiter & Schmidhuber, 1997); being easy to scale
up the model capacity to support the scaling laws in neural language models (Kaplan et al., 2020),
i.e. since the input and output dimension of each Transformer blocks is the same, we can stack an
arbitrary number of layers as we want. The kernel design of the Transformer block is self-attention
layers, where each block has many attention heads and each head has its three important private
parameter matrices for key, query, and value operation. Many papers believe that the self-attention
operation is the critical reason for emergent ability (Wei et al., 2022), including in-context learn-
ing (Olsson et al., 2022; Reddy, 2024) and compositional ability to solve complex task (Dziri et al.,
2024; Lu et al., 2024). The Transformer is so successful and has been widely certified that this
architecture can be adopted in many other modalities such as tabular data, image/video generation,
e.g., the video diffusion model SORA (OpenAI, 2024) using Transformer (Peebles & Xie, 2023) as
its backbone.

When we delve into the self-attention mechanism, we find the softmax function plays a crucial
role (Vaswani et al., 2017). It enables the model to focus on the most related information among

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparing hidden neuron number m in two-layer neural networks and training steps T̂
are required under different activation functions to guarantee that, for any ϵ > 0, with probability at
least 0.99, the training loss is smaller or equal to ϵ. Here, n is the number of training samples, and
λ is the smallest eigenvalue for the matrix of the neural tangent kernel, where n > 1 and λ < 1. We
can see that the two-layer NN with softmax activation function requires almost the same number of
neurons and training steps to converge as that with ReLU or exponential activation functions. More
details: Theorem 3.6 in (Munteanu et al., 2022) for ReLU; Theorem 1.1 in (Gao et al., 2023a) for
exp; Corollary 4.3 in our paper for softmax.

ReLU ((Munteanu et al., 2022)) exp ((Gao et al., 2023a)) Softmax (ours)
m Ω(λ−2n2 log(n)) Ω(λ−2n2+o(1) log2(n)) Ω(λ−2n2+o(1) log2(n))

T̂ Ω(λ−2n2 log(n/ϵ)) Ω(λ−2n2+o(1) log(n/ϵ)) Ω(λ−2n2+o(1) log(n/ϵ))

input sequences by giving higher attention scores to the positions that are more relevant for the
current position’s representation and to capture dependencies between positions. (Cordonnier et al.,
2020) find that softmax attention is more expressive and performs better than any convolutional
layer. (Deng et al., 2023c) exhibits softmax attention outperforms linear attention in most scenarios.
Although the softmax function code has been executed every second on thousands of servers, there
is a limited understanding of the following question:

(∗) What is the learning mechanism that makes softmax so powerful?

To demystify the black box, in this paper, we analyze the Gradient Descent (GD) training dynamics
for two-layer Neural Networks (NN) with softmax activation function for multi-dimensional regres-
sion, i.e., F (W,x, a) ∈ Rd and ∀ℓ ∈ {1, . . . , d},

F (W,x, a)ℓ := m⟨aℓ, exp(W⊤x)⟩ · ⟨exp(W⊤x),1m⟩−1,

where m is number of hidden neurons, exp(·) is element-wise exponential function, aℓ,W are the
first and second layer weights respectively and x is the input data. Note that, the self-attention
could be written as F (WKX,WQX,WV X) ∈ Rd×n′

, where WK ,WQ,WV ∈ Rd×d denotes
key, query, and value matrix and X ∈ Rd×n′

is a sequence of n′ tokens. Thus, studying the two-
layer softmax network is the prerequisite to understanding self-attention. See more discussion in
Section H.

There is a rich line of work studying two-layer NN learning trajectory under ReLU activation func-
tion ((Li & Liang, 2018; Du et al., 2019b; Allen-Zhu et al., 2019b; Arora et al., 2019a; Song &
Yang, 2019; Mei et al., 2019; Song et al., 2021c; Brand et al., 2021; Munteanu et al., 2022; Chizat
& Bach, 2020; Zhou et al., 2021; Lyu et al., 2021; Cao et al., 2022) and many more) or exponential
activation function from the latest work (Gao et al., 2023a). As far as we know, our work is the first
to theoretically study the optimization and generalization of the two-layer softmax network and it is
a first step on understanding the power of softmax.

One popular analysis method for studying over-parameterized NN is Neural Tangent Kernel
(NTK) (Jacot et al., 2018), where overparameterized networks are approximately linear models
around their initialization, so the network training is almost convex.

To answer our (∗) question above, we adopt the powerful NTK analysis paradigm in this work.
Our analysis shows that, because of the normalization effect of the denominator, the Neural Tangent
Kernel induced by the softmax has a good perturbation property (Lemma 5.1), which means the loss
landscape of the softmax version has a large convex region. Thus, the softmax NN requires almost
the same number of neurons and training steps to fit the data and converge as ReLU or exponential
NN, which is illustrated in Table 1 clearly (Theorem 4.2). To demonstrate the broad applicability of
our theoretical findings, we apply our analysis in a practical case study to show the generalization
ability of softmax NN, where the task is learning score estimation functions in diffusion models
with noisy labels, a promising approach for generative modeling, as we can smartly transfer it to
a multi-dimensional regression task (Theorem 6.6). Thus, we show that gradient-based algorithms
can learn the score function with a provable accuracy.

Our paper’s contributions are summarized as follows:
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• Softmax NTK: We build up the first NTK analysis framework for two-layer NN with
softmax activation function (Theorem 4.2). Furthermore, our multi-dimensional regression
setting is more general than previous work (Munteanu et al., 2022; Gao et al., 2023a) (ReLU
and exp) and can be degenerated to the linear regression setting.

• Diffusion Models Case Study: We apply our results in learning score estimation functions
in diffusion models with noisy labels to verify our analysis effectiveness (Theorem 6.6).

2 RELATED WORKS

2.1 NEURAL TANGENT KERNEL

Recently many studies show that the analysis of optimization and generalization for deep learn-
ing should be interwoven together. One line of work uses the first-order Tyler expansion to study
sufficiently over-parameterized neural networks around its initialization like NTK, e.g. (Matthews
et al., 2018; Zou et al., 2018; Jacot et al., 2018; Li & Liang, 2018; Allen-Zhu et al., 2019c; Zou &
Gu, 2019; Oymak & Soltanolkotabi, 2019; Lee et al., 2019; Novak et al., 2019; Yang, 2019; Song
& Yang, 2019; Du et al., 2019a; Allen-Zhu et al., 2019b; Chizat et al., 2019; Oymak et al., 2019;
Arora et al., 2019a; Cao & Gu, 2019; Ji & Telgarsky, 2019; Allen-Zhu et al., 2019a; Oymak &
Soltanolkotabi, 2020; Cao et al., 2020; Zou et al., 2020; Geiger et al., 2020; Brand et al., 2021;
Montanari & Zhong, 2022; Munteanu et al., 2022; Gao et al., 2023a; Qin et al., 2023b;a;c; Song &
Ye, 2023; Gao et al., 2024; Song et al., 2024b) and more. Thus, the neural network optimization
can be a convex problem. The NTK method has been widely used in different scenarios, such as
preprocessing analysis (Song et al., 2021c; Hu et al., 2022; Alman et al., 2023; Shi et al., 2023a;
Sun et al., 2023; 2024; Gao et al., 2024), federated learning (Li et al., 2023b), LoRA adaptation (Hu
et al., 2021; Xu et al., 2024b; Shi et al., 2023b) of LLMs (Malladi et al., 2023), and learning score
estimation functions in diffusion models (Han et al., 2024b).

2.2 SOFTMAX AND ATTENTION IN LLMS

Recently, significant advances have been achieved in language modeling, particularly with the intro-
duction of Transformer architectures and attention mechanisms (Vaswani et al., 2017). Self-attention
to capture long-range dependencies in text, revolutionizing the field of NLP, e.g., BERT (Devlin
et al., 2019), PaLM (Chowdhery et al., 2022), LLaMA (Touvron et al., 2023a), LLaMA 2 (Touvron
et al., 2023b), ChatGPT (OpenAI, 2022), GPT4 (Achiam et al., 2023), Claude 3 (Anthropic, 2024)
and so on. Many works demonstrate the softmax is beyond other activation functions such as ReLU
attention or linear attention in different aspects, e.g, approximation power (Deng et al., 2023c; San-
ford et al., 2024; Noci et al., 2024; Li et al., 2024), prompt tuning (Oymak et al., 2023), in-context
learning ability (Gao et al., 2023c; Shi et al., 2023c; Collins et al., 2024; Chen et al., 2024c), com-
positional ability(Xu et al., 2024a). Many works study to generalize the softmax into high order
attention (Alman & Song, 2024b) or to accelerate softmax computation (Wang et al., 2020; Choro-
manski et al., 2020; Shen et al., 2021; Qin et al., 2021; Alman & Song, 2023; Brand et al., 2024;
Alman & Song, 2024a; Han et al., 2024a; Hu et al., 2024; Deng et al., 2024; Song et al., 2024a;
Gao et al., 2023d;e; Kacham et al., 2023; Liang et al., 2024b). Another line of work analyzes a one-
layer softmax network trained on the linear regression task (Li et al., 2023a; Deng et al., 2023a;b;
Chu et al., 2024; Gao et al., 2023b; Sheen et al., 2024), while our work studies a two-layer softmax
setting.

2.3 DIFFUSION MODEL

Score-based generative diffusion models can generate high-quality image samples comparable to
GANs which requires adversarial optimization (Ho et al., 2020; Song et al., 2021b; Kim et al.,
2024). Based on the U-Net (Ronneberger et al., 2015), stable diffusion can successfully generate
business-used images. Based on the softmax-based self-attention (Peebles & Xie, 2023), OpenAI
released a video diffusion model, SORA (OpenAI, 2024), with a surprising performance. Another
line of work study training diffusion models with a better theoretical guarantee (Song & Ermon,
2019; 2020; Song & Kingma, 2021; Song et al., 2020; 2021a; Lee et al., 2022; Kwon et al., 2022;
Song et al., 2023; Lim et al., 2023; Chen et al., 2023a;d;b; Shah et al., 2023; Yang et al., 2023;

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Benton et al., 2023; Gatmiry et al., 2024; Chen et al., 2024a; Guo et al., 2024; Wu et al., 2024; Chen
et al., 2024b). In this work, we adapt our analysis in diffusion models.

Roadmap. We organize our paper as follows: In Section 3, we introduce the notation system and
problem setup. In Section 4, we present our main result, proving that a Softmax neural network
with poly(nd) neurons can fit any training dataset consisting of n d-dimensional samples for d-
dimensional regression tasks. In Section 5, we outline the key techniques used to establish our main
result. In Section 6, we extend our findings to Diffusion Models, demonstrating that Softmax neural
networks can accurately learn score estimation even with noisy labels. Finally, in Section 7, we
conclude the paper.

3 PRELIMINARY

We first introduce some notations. Then, we will introduce our problem setup.

Notations. We use N (µ,Σ) to denote the Gaussian distribution with µ and covariance Σ. For any
positive integer n, we use [n] to denote set {1, 2, · · · , n}.

Let a vector z ∈ Rn. We denote the ℓ2 norm as ∥z∥2 := (
∑n

i=1 z
2
i )

1/2, the ℓ1 norm as ∥z∥1 :=∑n
i=1 |zi|, ∥z∥0 as the number of non-zero entries in z, ∥z∥∞ as maxi∈[n] |zi|. We use z⊤ to denote

the transpose of a z. We use ⟨·, ·⟩ to denote the inner product. Let A ∈ Rn×d, we use vec(A) to
denote a length nd vector. We denote the Frobenius norm as ∥A∥F := (

∑
i∈[n],j∈[d] A

2
i,j)

1/2. For a
function f(x), f is L-Lipschitz if ∥f(x)− f(y)∥2 ≤ L · ∥x− y∥2. Let D denote a distribution. We
use x ∼ D to denote that we sample a random variable x from distribution D. We use E[] to denote
expectation and Pr[] to denote probability. We use p.s.d. to denote the positive-semidefinite matrix.

As we have multiple indexes, to avoid confusion, we usually use i, j ∈ [n] to index the training data,
ℓ ∈ [d] to index the output dimension, r ∈ [m] to index neuron number.

3.1 MODEL, DATA, AND ALGORITHM

Models. We consider a two-layer softmax neural network. The hidden layer has m neurons, and we
use the softmax function as the activation function, F (W, ·, a) : Rd1 → Rd2 and ∀ℓ ∈ [d2]

F (W,x, a)ℓ := m⟨aℓ, exp(W⊤x)⟩ · ⟨exp(W⊤x),1m⟩−1, (1)

where exp(·) is element-wise exponential function. We use m as a normalization factor. Note that
we can reduce the d2 to 1 for the linear regression setting. To simplify the proof, we let d1 = d2.
Note that our proof can generalize to different d1, d2 easily.

We only optimizing W and not both W and a simultaneously as many previous works to sim-
plify optimization, e.g., (Du et al., 2019b; Song & Yang, 2019; Munteanu et al., 2022), where
x ∈ Rd represents the input, w1, · · · , wm ∈ Rd are weight vectors in the first layer, i.e.,
W = [w1, · · · , wm] ∈ Rd×m, and a1, · · · , ad ∈ Rm are weights in the second layer. We can
simplify the notation as F (W,x) when the context is clear.

Data. We have n training data points Dn = {(xi, yi)}ni=1, where x ∈ Rd and y ∈ Rd.1 We
denote X = [x1, . . . , xn] ∈ Rd×n and Y = [y1, . . . , yn] ∈ Rd×n. We assume that ∥xi∥2 ≤ 1 and
∥yi∥2 ≤ 1, ∀i ∈ [n].

Gradient Descent. We use er to denote a vector where the r-th coordinate is 1 and everywhere else
is 0. ∀r ∈ [m],∀ℓ ∈ [d], we have ∂F (W,x,a)ℓ

∂wr
∈ Rd can be written as

∂F (W,x, a)ℓ
∂wr

= +m⟨aℓ ◦ er, exp(W⊤x)⟩ · ⟨exp(W⊤x),1m⟩−1x

−m⟨aℓ, exp(W⊤x)⟩ · ⟨exp(W⊤x),1m⟩−2 · ⟨exp(W⊤x), er ◦ 1m⟩x
= +m⟨aℓ ◦ er,S⟩ · x −m⟨aℓ,S⟩ · ⟨S, er ◦ 1m⟩x. (2)

1Our analysis can extend to xi ∈ Rd1 and yi ∈ Rd2 easily.
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We have the softmax function S ∈ Rm×n, where Si ∈ Rm denotes ⟨exp(W⊤xi),1m⟩−1 ·
exp(W⊤xi) and Si,r ∈ R denotes ⟨exp(W⊤xi),1m⟩−1 · exp(w⊤

r xi), ∀r ∈ [m],∀i ∈ [n]. For
simplicity, we denote αi as ⟨1m, exp(W⊤xi)⟩, expi as exp(W⊤xi) and expi,r as exp(w⊤

r xi),
∀r ∈ [m],∀i ∈ [n], when the context is clear.

We use W (τ) to denote the weights of the first layer on the timestamp τ and similar for S(τ) and
F (τ) when the context is clear. Now, we introduce some necessary definitions used.

We first introduce the function over the whole training dynamic.
Definition 3.1 (F (τ), dynamic prediction). We define Fi(τ) ∈ Rd, for any timestamp τ , as

Fℓ,i(τ) := m⟨aℓ, exp(W (τ)⊤xi)⟩ · ⟨exp(W (τ)⊤xi),1m⟩−1.

Here xi ∈ Rd. It can be rewritten as Fℓ,i(τ) = m⟨aℓ,Si(τ)⟩.

We consider d-dimensional MSE loss.
Definition 3.2 (Loss function over time). We define the objective function L as below:

L(W (τ)) :=
1

2

∑
i∈[n]

∑
ℓ∈[d]

(Fℓ,i(τ)− yℓ,i)
2.

Thus, we define the gradient of w.
Definition 3.3 (∆wr(τ)). For any r ∈ [m], we define ∆wr(τ) ∈ Rd as below:

∆wr(τ) :=
dL(W (τ)

dwr(τ)

= m

n∑
i=1

d∑
ℓ=1

(Fℓ,i(τ)− yℓ,i) ·
(
⟨aℓ ◦ er,Si(τ)⟩ − ⟨aℓ,Si(τ)⟩ · ⟨Si(τ), er ◦ 1m⟩

)
· xi

where Si(τ) = ⟨exp(W (τ)⊤xi),1m⟩−1 · exp(W (τ)⊤xi).

We can simplify the gradient calculation by the fact 1 = ⟨1m,Si(τ)⟩. Thus, we have the following
claim.

Claim 3.4. ∆wr(τ) := m
∑n

i=1

∑d
ℓ=1(Fℓ,i(τ)− yℓ,i) ·

(
(⟨aℓ,r · 1m − aℓ,Si(τ)⟩) · Si,r(τ)

)
· xi.

We use the gradient descent (GD) algorithm with the learning rate η to train the network. As we
only train the hidden layer W and fix a, we have the following gradient update rule.
Definition 3.5 (Gradient descent). The gradient descent algorithm for optimizing the weight matrix
W is defined as:

W (τ + 1) = W (τ)− η∆W (τ),

where ∆W (τ) ∈ Rd×m and ∆wr(τ) ∈ Rd is the r-th column of ∆W (τ) defined in Definition 3.3.

3.2 NEURAL TANGENT KERNEL

Now, we are ready to introduce our key tools, Neural Tangent Kernel induced by the softmax. We
define the kernel with respect to timestamp τ .
Definition 3.6 (Kernel function). For simplicity, we denote S(W⊤xi) as Si ∈ Rm

≥0 and vℓ,r =

aℓ,r · 1m − aℓ ∈ Rm. We define the function (Gram matrix) H : Rd×m → Rnd×nd as following

H(W ) :=


H1,1 H1,2 · · · H1,d

H2,1 H2,2 · · · H2,d

...
...

. . .
...

Hd,1 Hd,2 · · · Hd,d

 ,

and for each ℓ1, ℓ2 ∈ [d], we have Hℓ1,ℓ2 ∈ Rn×n is defined as

[Hℓ1,ℓ2 ]i,j(W ) :=
1

m
x⊤
i xj

m∑
r=1

⟨vℓ1,r,Si⟩ ·mSi,r · ⟨vℓ2,r,Sj⟩ ·mSj,r.

For any timestamp τ , for simplicity, we denote H(τ) := H(W (τ)) and denote H(0) as H∗.

5
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Note that H∗ is a positive semi-definite matrix, and we denote its minimum eigenvalue as λ :=
λmin(H

∗) and we assume λ > 0 as previous works (Du et al., 2019b; Allen-Zhu et al., 2019b;c).

Initialization. We use symmetric initialization, which is widely used in previous works (Daniely &
Malach, 2020; Damian et al., 2022; Munteanu et al., 2022; Shi et al., 2022; 2024).

Definition 3.7 (Symmetric initialization). For each r ∈ [m/2], we initialize weights as below

• We draw w2r−1 from N (0, σ2Id) and uniformly draw a2r−1 from {−1,+1}d.

• We assign a2r = −a2r−1 and w2r−1 = w2r.

Due to symmetric initialization, we can easily see that F (W (0), x) = 0,∀x ∈ Rd.

4 MAIN RESULTS

We first define a constant we used.

Definition 4.1. Let C > 10 denote a sufficiently large constant. We define parameter B as follows
B := max{Cσ

√
log(nd/δ), 1}.

Now, we are ready to present our main result, whose complete proof is in Appendix C.1.

Theorem 4.2 (Main result). Let λ = λmin(H
∗) > 0, m = Ω(λ−2n2d2 exp(18B) log2(nd/δ)), η =

0.1λ/(mn2d2 exp(16B)), and T̂ = Ω((mηλ)−1 log(nd/ϵ)) = Ω(λ−2n2d2 exp(16B) · log(nd/ϵ)).
For any ϵ, δ ∈ (0, 0.1), after T̂ iterations, with probability at least 1−δ, we have ∥F (T̂ )−Y ∥2F ≤ ϵ.

If we fix δ and σ in B defined in the Definition 4.1, since exp(Θ(B)) = (nd)o(1), we can simplify
the m = Ω(λ−2(nd)2+o(1)) and T̂ = Ω(λ−2(nd)2+o(1)).

The Theorem 4.2 means that as we have poly(nd) number of neurons and training steps, the softmax
NN can fit any training datasets with n number of d-dim training samples on d-dim regression task.

Corollary 4.3. Consider the 1-dimension linear regression setting, i.e., d1 = d and d2 = 1. Let
λ = λmin(H

∗) > 0, m = Ω(λ−2n2 exp(18B) log2(n/δ)), η = 0.1λ/(mn2 exp(16B)), and
T̂ = Ω((mηλ)−1 log(n/ϵ)) = Ω(λ−2n2 exp(16B) · log(n/ϵ)). For any ϵ, δ ∈ (0, 0.1), after T̂

iterations, with probability at least 1− δ, we have ∥F (T̂ )− Y ∥22 ≤ ϵ.

Proof. Directly follow Theorem 4.2.

As shown in Table 1, our two-layer softmax network needs the same number of training steps T̂ and
number of neurons m as two-layer ReLU networks or two-layer exponential networks.

5 TECHNICAL OVERVIEW

We first show a key Lemma below, showing that the weight w perturbation will not change the
Neural Tangent Kernel too much.

Lemma 5.1 (Weight value perturbation ⇒ kernel value perturbation). Let R ∈ (0, 0.01). If the
following conditions hold

• Let W̃ = [w̃1, · · · , w̃m] ∈ Rd×m, where w̃1, · · · , w̃m are i.i.d. draw from N (0, σ2Id).

• Let W = [w1, · · · , wm] ∈ Rd×m and satisfy ∥w̃r − wr∥2 ≤ R for any r ∈ [m].

Then, with probability at least 1− δ, we have ∥H(W )−H(W̃ )∥F ≤ Rnd exp(10B).

Please see Appendix B.2 for the proof of Lemma 5.1. We can see that the kernel matrix has a small
perturbation when the weights w perturb. Note that in Lemma 4.2 of (Munteanu et al., 2022), they
have ∥H(W )−H(W̃ )∥F ≤ 2Rn for the ReLU activation function and in Lemma 6.7 of (Gao et al.,
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2023a), they have ∥H(W ) − H(W̃ )∥F ≤ 3Rn1+o(1) for the exp activation function. When we
consider the 1-dimension linear regression task, we have ∥H(W ) −H(W̃ )∥F ≤ Rn1+o(1), which
is almost the same as the other two cases.
Remark 5.2. In the proof of Lemma B.2, we do not use concentration bound as previous work (Song
& Yang, 2019; Munteanu et al., 2022; Gao et al., 2023a). The reason is that we consider the worst
case. In general, E[H(W )−H(W̃ )] ̸= 0nd×nd. Thus, using the concentration bound may not gain
any benefits.

Based on Lemma 5.1, we can use math induction to finish the proof of our main Theorem. We show
the induction statement below.
Lemma 5.3 (Induction). Let τ be a fixed integer. Assume the same condition as Theorem 4.2. Let
D be defined as Definition A.2 and D < R. If the following conditions hold

• Weights Property. ∥wr(i)− wr(0)∥2 ≤ R, ∀i ∈ [τ ]

• Loss Property. ∥F (i)− Y ∥2F ≤ ∥F (0)− Y ∥2F · (1−mηλ/2)i, ∀i ∈ [τ ]

• Gradient Property. η∥∆wr(i)∥2 ≤ 0.01 for all r ∈ [m], ∀i ∈ [τ ]

Then, for τ + 1 and ∀r ∈ [m], we have

• Weights Induction. ∥wr(τ + 1)− wr(0)∥2 ≤ D.

• Loss Induction. ∥F (τ + 1)− Y ∥2F ≤ (1−mηλ/4)τ+1 · ∥F (0)− Y ∥2F .

• Gradient Induction. η∥∆wr(τ + 1)∥2 ≤ 0.01,∀r ∈ [m].

Please refer to Appendix C.2, Appendix C.3 and Appendix C.4 for the proof of weights, loss, gradi-
ent induction in Lemma 5.3 respectively.

Lemma 5.3 means that, at a fixed timestamp τ , if the weights w(τ) is close to its initialization,
the loss is decreasing, and the gradient is also small, then we can conclude at timestamp τ + 1,
these conditions still hold as local convexity proved by Lemma 5.1. Thus, after checking the initial
condition, we can conclude Theorem 4.2.

5.1 TECHNICAL NOVELTY AND COMPARISON TO THE EXISTING LITERATURE

In this work, as we consider the softmax activation function, the denominator term will also con-
tribute to gradient calculation. Handling the denominator poses many technical challenges, where
these challenges are unique to our setting and not presented in previous settings as ReLU (Song
& Yang, 2019), or exp (Gao et al., 2023a) activation function. In detail, in the gradient calcu-
lation, we need new loss decomposition Lemma E.1 to split the loss into ∥F (τ + 1) − Y ∥2F =
∥F (t)−Y ∥2F +C0+C1+C2+C3. Then, we need to bound these new terms in Lemma E.3 for C0,
Lemma E.4 and Claim E.5 for C1, Claim E.6 for C2 and Claim E.7 for C3, where all these Lemmas
are novel and non-trivial. We refer readers to Appendix C.3 for more details.

6 EXTENSION ON DIFFUSION

Now, we apply our results in learning score estimation functions in diffusion models with noisy
labels. We introduce problem setup in Section 6.1 and show our results in Section 6.2.

6.1 PRELIMINARY OF DIFFUSION

In this section, we briefly introduce the diffusion model proposed in (Song et al., 2021b).

Forward Process. During the forward process, we progressively inject the noise into the origi-
nal data distribution, which can be characterized by the following Stochastic Differential Equation
(SDE) (Song & Ermon, 2020; Ho et al., 2020):

dx(t) = −1

2
g(t)x(t) dt+

√
g(t)dBt, x(0) ∼ p0, (3)

7
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where x(t) is the data at the diffusion process time t, g(t) > 0 is a deterministic weighting func-
tion; and (Bt)t≥0 is a standard d-dimensional Brownian motion/noise. The p0 represents the orig-
inal/target data distribution that we learn, and we only have few number of accesses to it, i.e., n
times. We denote pt as the distribution of x(t) at diffusion process time t. Then, we can write the
explicit solution to Eq. (3) as

x(t) = e−
∫ t
0

1
2 g(s)dsx(0) + e−

∫ t
0

1
2 g(s)ds

∫ t

0

e
∫ s
0

1
2 g(u)du

√
g(s)dBs.

Backward Process. We denote y(t) = x(T − t) to reverse the forward process in time (Haussmann
& Pardoux, 1986; Föllmer, 2005; Cattiaux et al., 2021) that transforms noise into samples from the
target distribution. We have a backward process associated to Eq. (3) as:

dy(t) = (
1

2
g(T − t)y(t) + g(T − t)∇ log pT−t(y(t)))d +

√
g(T − t)dB̄t, y(0) ∼ q0. (4)

where (B̄t)t≥0 is another d-dim Brownian motion/noise. Following the literature, we call ∇ log pt(·)
as “score function” (Song et al., 2021b). We have q0 as the initial distribution of the backward
process and the score function ∇ log pt(·) as the gradient of log density of x(t).

However, In practice, Eq.(4) cannot be directly used as both the score function and the distribution
pT are unknown. To solve the problem, we (1) randomly select a noise distribution as the initial
distribution of the backward process pT ; (2) replace the ground-truth score function ∇ log pt(x(t))
by an estimator sθ(x(t), t). The parameterized estimator sθ is learned by a neural network such as
U-Net (Ho et al., 2020; Rombach et al., 2022) and Transformer (Peebles & Xie, 2023). Thus, we
obtain a practically implementable approximation of the backward SDE:

dy(t) = (
1

2
g(T − t)y(t) + g(T − t)sθ(y(t), t))dt+

√
g(T − t)dB̄t, y(0) ∼ N (0, Id),

which can be used for sampling/data generation (Song & Ermon, 2020; Chen et al., 2023b;c)

Score Matching. When estimating the score function, we usually use L2 loss between the estimated
and actual score:

min
θ

1

T

∫ T

0

λ(t)E[∥sθ(x(t), t)−∇ log pt(x(t))∥22]dt, (5)

where λ(t) is the weighting function that captures time inhomogeneity. As the hardness of estimate
∇ log pt term in Eq. (5), equivalently, we minimize the following denoising score matching (Vincent,
2011):

min
θ

1

T − T0
·
∫ T

T0

λ(t)E[∥sθ(x(t), t)−∇ log pt|0(x(t) | x(0))∥22]dt. (6)

In practice, the estimator of the score function is parameterized by a neural network, and we have
the following sampling procedure for any i ∈ [n],

x(0)i ∼ p0, ti ∼ Unif(0, T ), x(ti)i ∼ pti|0(·|x(0)i),
and we get the training dataset {x(0)i, (ti, x(ti)i)}ni=1, where x(0)i ∈ Rd and (ti, x(ti)i) ∈ Rd+1.
We denote x(0) as the noisy label and E[x(0)|x(t)] as the true label. For simplicity, we denote x(0)i
as yi ∈ Rd and (ti, x(ti)i) as xi ∈ Rd+1 and the training dataset as Dn = {(xi, yi)}ni=1. Here, y
denotes the image from a dataset, and x denotes the noised image with its diffusion process time t.

Neural Network Parameterization. Recall that we consider a two-layer network with soft-
max activation function as the diffusion model in Eq. (1), satisfying ∀ℓ ∈ [d], F (W,x, a)ℓ =
m⟨aℓ, exp(W⊤x)⟩ · ⟨exp(W⊤x),1m⟩−1. Note that we do not train the top-layer weights a, so
we can denote it as Fnn(W,x).

Then, similar as (Ho et al., 2020; Han et al., 2024b), our loss function Eq. (6) can be rewrite as

min
W

L(W ) :=
1

2

N∑
j=1

∥Fnn(W,xj)− yj∥22.

We denote the target function as F∗(t, x(t)) := E[y | (t, x(t))]. Let H be the reproducing Hilbert
space (RKHS) induced by the NTK (Carmeli et al., 2010; Jacot et al., 2018) and let FH in the RKHS
H such that ∥FH∥2H ≤ RH.
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6.2 MAIN RESULT OF DIFFUSION

We first introduce some natural assumptions we used.
Assumption 6.1. Based on normalization, we assume ∥yi∥2 ≤ 1, ∥xi∥2 ≤ 1,∀i ∈ [n].

Assumption 6.2. Assume λ = λmin(H
∗) > 0.

Assumption 6.3. The function g is almost everywhere continuous and bounded on [0,∞).

Assumption 6.4. For all (t, x(t)) ∈ (0,∞)×Rd, the function F∗(t, x(t)) is βx-Lipschitz in x, i.e.,
∥F∗(t, x(t))− F∗(t, x

′(t))∥2 ≤ βx∥x(t)− x′(t)∥2.

We denote A(RH) := c1Λ(
√
RH
Λ )−

2
d log(

√
RH
Λ ) and Λ = O(

√
d) and

Γδ :=

(
2d2A(RH)

λ
log3/2(

e(dn)3/2A(RH)

λ
) +

1√
n

)2

+
d2A2(RH)

λ2
(log(1/δ) + log(log n)).

Assumption 6.5 (Assumption 3.11 in (Han et al., 2024b)). Fix any FH ∈ H with ∥FH∥2H ≤ RH

and assume labels are generated as ỹj = FH(xj) + ϵj . Suppose F̃ntk(γ(T̂ ), ·) is obtained by
GD-trained kernel regression with the number of iterations T̂ . We assume there exists ϵ such that

1

T

∫ T

0

E[F̃ntk(γ(T̂ ), (t, x(t)))− FH(t, x(t))∥22]dt ≤ ϵ(n, T̂ ),

and ϵ(n, T̂ ) → 0 as n → ∞.

Now, we are ready to present our main Theorem for diffusion.
Theorem 6.6 (Main results of score estimation and generalization). Suppose Assump-
tions 6.1, 6.2, 6.3, 6.4 hold and we set m = Ω(λ−2n3d3 exp(18B) log2(nd/δ)) and η =

0.1λ/(mn2d2 exp(16B)). Moreover, suppose early stopping T̂ satisfies Assumption 6.5 with corre-
sponding ϵ(n, T̂ ). Then for large enough RH, with probability at least 1− δ, it holds that

1

T

∫ T

0

λ(t)E[∥sW (T̂ )(t, x(t))−∇ log pt(Xt)∥22]dt

≤ O(
1

λ
√
n
+ ϵ(n, T̂ ) + dA2(RH) + dA(RH) +

√
dA(RH)Γδ + Γδ).

Please refer to Appendix G.1 for the complete proof. Here, we provide a proof sketch.

Proof sketch of Theorem 6.6. In Theorem F.2, we show the “equivalence” between softmax NN
learning and corresponding neural tangent kernel regression, i.e., the gap between them is always
small. Then, we can borrow the generalization ability of kernel regression to the generalization abil-
ity of two-layer softmax NN. On the other hand, by Claim G.1, we can decompose the loss into a
coupling gap, a label mismatch gap, an early stopping gap, and an approximation gap. By using our
Theorem 4.2, Theorem F.2 with some tools from (Han et al., 2024b), we finish the proof.

From Theorem 6.6, we know that, under some natural assumptions, the GD algorithm trained two-
layer softmax NN can learn a provable accuracy on the score estimation functions in the diffusion
model with noisy labels. We use this practical case study to demonstrate the broad applicability of
our theoretical findings.

7 CONCLUSION

This paper provides a theoretical analysis of the optimization and generalization properties of two-
layer neural networks with the softmax activation function. We apply our results in learning score
estimation functions in diffusion models with noisy labels to verify our analysis effectiveness. Our
findings contribute to a deeper understanding of the power of softmax neural networks and their
potential for self-attention, advanced LLMs, and generative modeling.

9
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Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
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Appendix
Roadmap. In Section A, we introduce some definitions that will be used in the proof. In Section B,
we provide the basic concentration. In Section C, we provide the proof of our inductions. In Sec-
tion D, we establish a bound for the weight of induction Part 1. In Section E, we establish a bound
for the loss of induction Part 2. In Section F, we introduce the NTK regression. In Section G, we
introduce the diffusion. In Section H, we discuss the potential implications of our results for pop-
ular frameworks such as attention mechanisms and feature learning. In Section ??, we provide the
potential limitations of this work. In Section ??, we discuss the societal impacts of our work.

A DEFINITION

Claim A.1 (Restatement of Claim 3.4). We have

∆wr(τ) := m

n∑
i=1

d∑
ℓ=1

(Fℓ,i(τ)− yℓ,i) ·
(
(⟨aℓ,r · 1m − aℓ,Si(τ)⟩) · Si,r(τ)

)
· xi

Proof of Claim 3.4. We can show that

∆wr(τ)/m =

n∑
i=1

d∑
ℓ=1

(Fℓ,i(τ)− yℓ,i) · (⟨aℓ ◦ er − aℓ · Si,r(τ),Si(τ)⟩)xi

=

n∑
i=1

d∑
ℓ=1

(Fℓ,i(τ)− yℓ,i) ·
(
(aℓ,r − ⟨aℓ,Si(τ)⟩) · Si,r(τ)

)
· xi

=

n∑
i=1

d∑
ℓ=1

(Fℓ,i(τ)− yℓ,i) ·
(
⟨aℓ,r · 1m − aℓ︸ ︷︷ ︸

m×1

,Si(τ)︸ ︷︷ ︸
m×1

⟩ · Si,r(τ)
)
· xi,

where the first step follows from the definition of ∆wr(τ), the second step follows from ⟨aℓ ◦
er, x⟩ = aℓ,rxr, and the last step is due to the Fact A.4.

We present the following definition to simplify the notation.
Definition A.2. We define D

D := 4m−1λ−1 exp(3B)
√
nd · ∥F (0)− Y ∥F

Fact A.3. For any vectors u, v ∈ Rn, the squared Euclidean distance between u and v can be
expressed as:

∥u− v∥22 = ∥u∥22 − 2u⊤v + ∥v∥22.

Fact A.4. Let 1m be a vector of dimension m consisting of all ones, and Si(τ) ∈ Rm
≥0 be the

indicator of some function τ at position i. We have:

1 = ⟨1m,Si(τ)⟩

Fact A.5. For any real number |x| ≤ 0.1, the following inequality holds:

(1− x)1/2 ≤ 1− 0.5x

Fact A.6. For any real number |x| ≤ 0.1, we have

| exp(x)− 1| ≤ 2|x|

Fact A.7. For any x ∈ (0, 0.1), we have
∞∑
i=0

xi ≤ 1

1− x
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Fact A.8. For any |x| ≤ 0.01, we have

exp(x) = 1 + x+Θ(1)x2

We state the standard Hoeffding inequality,
Lemma A.9 (Hoeffding inequality (Hoeffding, 1963)). If the below conditions are true

• Let x1, · · · , xn denote n independent variables

• xi ∈ [αi, βi], for all i ∈ [n]

• Let x =
∑n

i=1 xi.

Then we have

Pr[|x− E[x]| ≥ t] ≤ 2 exp

(
− 2t2∑

i∈[n](βi − αi)2

)
.

Lemma A.10 (Hanson-Wright inequality (Hanson & Wright, 1971; Rudelson & Vershynin, 2013)).
Let x ∈ Rn denote a random vector with independent entries xi with E[xi] = 0 and |xi| ≤ K. Let
A be an n× n matrix. Then, for every t ≥ 0,

Pr[|x⊤Ax− E[x⊤Ax]| > t] ≤ 2 · exp(−cmin{t2/(K4∥A∥2F ), t/(K2∥A∥)}).

B BASIC CONCENTRATION

In Section B.1, we introduce some concentration basic tools. In Section B.2, given w perturbation
within a small ball, we bound the changes of H .

B.1 SOME CONCENTRATION BASIC TOOLS

The goal of this section is to prove Lemma B.1.
Lemma B.1. If the following conditions hold

• Let B > 1 denote a parameter be defined as Definition 4.1.

• Let W = [w1, · · · , wm] and wr be random Gaussian vectors from N (0, σ2Id).

• Let V = [v1, · · · , vm] and vr denote the vector where ∥vr − wr∥2 ≤ R, ∀r ∈ [m].

• Let xi ∈ Rd and ∥xi∥2 ≤ 1, ∀i ∈ [n].

• Let R ∈ (0, 0.01).

• Let Si and S̃i be the softmax function corresponding to W and V respectively.

• Let αi = ⟨1m, exp(W⊤xi)⟩ and α̃i = ⟨1m, exp(V ⊤xi)⟩, ∀i ∈ [n].

Then, with probability at least 1− δ/poly(nd), we have

• Standard inner product

– Part 1. |⟨wr, xi⟩| ≤ B, ∀i ∈ [n], ∀r ∈ [m]

– Part 2. |⟨vr, xi⟩| ≤ B +R, ∀i ∈ [n], ∀r ∈ [m]

– Part 3. |⟨wr − vr, xi + xj⟩| ≤ 2R, ∀i, j ∈ [n], ∀r ∈ [m]

• exp function

– Part 4. exp(−B) ≤ exp(⟨wr, xi⟩) ≤ exp(B), ∀i ∈ [n], ∀r ∈ [m]

– Part 5. exp(−B −R) ≤ exp(⟨vr, xi⟩) ≤ exp(B +R), ∀i ∈ [n], ∀r ∈ [m]

– Part 6. | exp(⟨wr − vr, xi + xj⟩)− 1| ≤ 4R, ∀i, j ∈ [n], ∀r ∈ [m]
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– Part 7. | exp(⟨wr, xi⟩)− exp(⟨vr, xi⟩)| ≤ R exp(B +R), ∀i ∈ [n], ∀r ∈ [m]

• softmax S function

– Part 8. |αi − α̃i| ≤ mR exp(B +R),∀i ∈ [n]

– Part 9. |α−1
i − α̃−1

i | ≤ R
m exp(3B + 2R),∀i ∈ [n]

– Part 10. |Si,r| ≤ exp(2B)/m,∀i ∈ [n],∀r ∈ [m]

– Part 11. |S̃i,r| ≤ exp(2B + 2R)/m,∀i ∈ [n],∀r ∈ [m]

– Part 12. |Si,r − S̃i,r| ≤ R
m exp(4B + 3R),∀i ∈ [n],∀r ∈ [m]

– Part 13. for any z ∈ Rm and ∥z∥∞ ≤ 1, we have |⟨z,Si⟩ − ⟨z, S̃i⟩| ≤ R exp(4B +
3R),∀i ∈ [n]

Proof. As eventually we choose m = poly(nd), we use B > 0 defined in Definition 4.1.

Proof of Part 1, 2, 4 and 5.

We can get the proof by Gaussian tail bound.

Proof of Part 3 and 6.

Due to ∥xi∥2 ≤ 1 and ∥xj∥2 ≤ 1 and ∥∆wr∥2 ≤ R, we can have

|⟨∆wr, (xi + xj)⟩| ≤ 2R ≤ 0.1. (7)

Then, we have

| exp(⟨∆wr, (xi + xj)⟩)− 1| ≤ 2|⟨∆wr, (xi + xj)⟩|
≤ 4R

where the first step follows from the Fact A.6, and the last step follows from Eq. (7).

Proof of Part 7. Because ∥xi∥2 ≤ 1 and ∥∆wr∥2 ≤ R, we can have

|⟨∆wr, xi⟩| ≤ R ≤ 0.1. (8)

By convex increasing property of exp function, we have

| exp(⟨wr, xi⟩)− exp(⟨vr, xi⟩)| ≤max{exp′(⟨wr, xi⟩), exp′(⟨vr, xi⟩} · |⟨∆wr, xi⟩|
≤ exp(B +R) · |⟨∆wr, xi⟩|
≤ exp(B +R)R.

where the first step follows from Taylor expansion and exp′ denote the derivative of exp, the second
step follows from Part 4 and Part 5 and the last step follows from Eq. (8).

Proof of Part 8.

|αi − α̃i| = |
∑
r∈[m]

expi,r −
∑̃

r∈[m]
expi,r|

≤
∑
r∈[m]

|expi,r − ẽxpi,r|

≤mR exp(B +R),

where the third step is due to Part 7.

Proof of Part 9.

Similarly, we have

|α−1
i − α̃−1

i | = | α̃i − αi

αiα̃i
|
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≤ mR exp(B +R)

|αiα̃i|

≤ mR exp(B +R)

|m exp(−B)m exp(−B −R)|

=
R

m
exp(3B + 2R).

where the first step is due to simple algebra, the second step is from Part 8, the third step follows
Part 4, 5, and the last step is because of simple algebra.

Proof of Part 10 and 11.

Trivially follows Part 4 and Part 5.

Proof of Part 12.

|Si,r − S̃i,r| = |α−1
i expi,r −α̃−1

i ẽxpi,r|
≤ |α−1

i expi,r −α−1
i ẽxpi,r|+ |α−1

i ẽxpi,r − α̃−1
i ẽxpi,r|

For the first part, we have

|α−1
i expi,r −α−1

i ẽxpi,r| = α−1
i | expi,r −ẽxpi,r|

≤ α−1
i exp(B +R)R

≤ exp(B +R)R

m exp(−B)

=
R

m
exp(2B +R),

where the second step follows Part 7 and the third step follows Part 4.

For the second part, we have

|α−1
i ẽxpi,r − α̃−1

i ẽxpi,r| = ẽxpi,r|α−1
i − α̃−1

i |

≤ ẽxpi,r
R

m
exp(3B + 2R)

≤ exp(B +R)
R

m
exp(3B + 2R)

=
R

m
exp(4B + 3R),

where the second step follows Part 9, and the third step follows Part 5.

Thus, we have

|Si,r − S̃i,r| ≤
R

m
exp(4B + 3R).

Proof of Part 13.

Note that ∥z∥∞ ≤ 1. We have

|⟨z,Si⟩ − ⟨z, S̃i⟩| = |⟨z,Si − S̃i⟩|
≤m∥Si − S̃i∥∞
≤R exp(4B + 3R)

where the first step follows from simple algebra, the second step follows from |⟨a, b⟩| ≤ m ·
maxi∈[m] |aibi|, and the last step is due to Part 12.

B.2 KERNEL PERTURBATION

The purpose of this section is to prove Lemma B.2. In the proof, we do not use concentration
inequality. Please see Remark 5.2 for more details.
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Lemma B.2 (Restatement of Lemma 5.1). If the following conditions hold

• Let B ≥ 1 denote a parameter be defined as Definition 4.1.

• Let R ∈ (0, 0.01).

• Let xi ∈ Rd and ∥xi∥2 ≤ 1 for all i ∈ [n].

• Let W̃ = [w̃1, · · · , w̃m] ∈ Rd×m, where w̃1, · · · , w̃m are are i.i.d. draw from N (0, σ2Id).

• Let W = [w1, · · · , wm] ∈ Rd×m and satisfy ∥w̃r − wr∥2 ≤ R for any r ∈ [m].

• Let vℓ,r = aℓ,r · 1m − aℓ ∈ Rm, for any ℓ ∈ [d] and for any r ∈ [m]. Note that aℓ,r is the
r-th in aℓ.

• Let αi = ⟨1m, exp(W⊤xi)⟩ and α̃i = ⟨1m, exp(V ⊤xi)⟩, ∀i ∈ [n].

• Let H be defined as Definition 3.6.

Then, we have

• Part 1. Then with probability at least 1− δ/poly(nd),

|[Hℓ1,ℓ2 ]i,j(W )− [Hℓ1,ℓ2 ]i,j(W̃ )| ≤ R · exp(10B).

• Part 2. Then with probability at least 1− δ, we have

∥H(W )−H(W̃ )∥F ≤ Rnd · exp(10B).

Proof of Lemma 5.1. We define five real numbers B1, B2, B3, B4, B5 ∈ R as follows,

B1 := α−1
i α−1

j

1

m

m∑
r=1

⟨vℓ1,r,Si⟩⟨vℓ2,r,Sj⟩ expi,r expj,r −α−1
i α−1

j

1

m

m∑
r=1

⟨vℓ1,r,Si⟩⟨vℓ2,r,Sj⟩ẽxpi,r ẽxpj,r

B2 := α−1
i α−1

j

1

m

m∑
r=1

⟨vℓ1,r,Si⟩⟨vℓ2,r,Sj⟩ẽxpi,r ẽxpj,r − α−1
i α−1

j

1

m

m∑
r=1

⟨vℓ1,r,Si⟩⟨vℓ2,r, S̃j⟩ẽxpi,r ẽxpj,r

B3 := α−1
i α−1

j

1

m

m∑
r=1

⟨vℓ1,r,Si⟩⟨vℓ2,r, S̃j⟩ẽxpi,r ẽxpj,r − α−1
i α−1

j

1

m

m∑
r=1

⟨vℓ1,r, S̃i⟩⟨vℓ2,r, S̃j⟩ẽxpi,r ẽxpj,r

B4 := α−1
i α−1

j

1

m

m∑
r=1

⟨vℓ1,r, S̃i⟩⟨vℓ2,r, S̃j⟩ẽxpi,r ẽxpj,r − α−1
i α̃−1

j

1

m

m∑
r=1

⟨vℓ1,r, S̃i⟩⟨vℓ2,r, S̃j⟩ẽxpi,r ẽxpj,r

B5 := α−1
i α̃−1

j

1

m

m∑
r=1

⟨vℓ1,r, S̃i⟩⟨vℓ2,r, S̃j⟩ẽxpi,r ẽxpj,r − α̃−1
i α̃−1

j

1

m

m∑
r=1

⟨vℓ1,r, S̃i⟩⟨vℓ2,r, S̃j⟩ẽxpi,r ẽxpj,r

Thus, we have

|[Hℓ1,ℓ2 ]i,j(W )− [Hℓ1,ℓ2 ]i,j(W̃ )|/m2 ≤ |B1|+ |B2|+ |B3|+ |B4|+ |B5|.

To bound B1

We rewrite B1 as

B1 = α−1
i α−1

j

1

m

m∑
r=1

⟨vℓ1,r,Si⟩⟨vℓ2,r,Sj⟩(exp(w⊤
r (xi + xj))− exp(w̃⊤

r (xi + xj))).

Recall that ∥vℓ1,r∥∞ ≤ 2 and ∥Si∥1 ≤ 1. Thus, |⟨vℓ1,r,Si⟩| ≤ 2.

By Fact A.4, we know that |⟨vℓ1,r,Si⟩⟨vℓ2,r,Sj⟩| ≤ 2 · 2 = 4. By Part 4 of Lemma B.1, with
probability 1− δ/poly(nd), we know that |α−1

i | ≤ 1
m exp(B).
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We will condition on the above event is holding in the rest of the proof.

By Part 7 of Lemma B.1,

| exp(w̃⊤
r (xi + xj))− exp(w⊤

r (xi + xj))| ≤ 2R exp(2B + 2R).

Finally, we know that

|B1| ≤
8R

m2
exp(5B).

To bound B2 and B3

We can rewrite B2 as follows

|B2| = |α−1
i α−1

j

1

m

m∑
r=1

⟨vℓ1,r,Si⟩ẽxpi,r ẽxpj,r(⟨vℓ2,r,Sj⟩ − ⟨vℓ2,r, S̃j⟩)|

≤ α−1
i α−1

j

1

m

m∑
r=1

|⟨vℓ1,r,Si⟩|ẽxpi,r ẽxpj,r|(⟨vℓ2,r,Sj⟩ − ⟨vℓ2,r, S̃j⟩)|.

Following the similar strategy as B1, by Part 13 of Lemma B.1, we know that

|B2| ≤
1

m
exp(B) · 1

m
exp(B) · 2 · exp(B +R) · exp(B +R) · 4R exp(4B + 3R)

≤8R

m2
exp(9B).

Similarly, we have

|B3| ≤
8R

m2
exp(9B).

To bound B4 and B5

For the term B4, we can rewrite

|B4| = |(α−1
j − α̃−1

j ) · α−1
i

1

m

m∑
r=1

⟨vℓ1,r, S̃i⟩⟨vℓ2,r, S̃j⟩ẽxpi,r ẽxpj,r|

≤ |α−1
j − α̃−1

j | · α−1
i

1

m

m∑
r=1

|⟨vℓ1,r, S̃i⟩⟨vℓ2,r, S̃j⟩|ẽxpi,r ẽxpj,r.

Thus, by Part 9 of Lemma B.1, using similar proof strategy as B1 as know

|B4| ≤
R

m
exp(3B + 2R) · 1

m
exp(B) · 2 · 2 · exp(B +R) · exp(B +R)

≤4R

m2
exp(7B).

Similarly, we have

|B5| ≤
4R

m2
exp(7B).

C INDUCTION

In Section C.1, we provide the proof of our main result. In Section C.2, we provide an induction
lemma for weights part. In Section C.3, we provide an induction lemma for loss part. In Section C.4,
we provide an induction lemma for gradient part.
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C.1 MAIN RESULT

Our main result is presented as follows.

Theorem C.1 (Main result. Restatement of Theorem 4.2). For any ϵ, δ ∈ (0, 0.1), if the following
conditions hold

• Let λ = λmin(H
∗) > 0

• Let m = Ω(λ−2n2d2 exp(18B) log2(nd/δ))

• Let η = 0.1λ/(mn2d2 exp(16B))

• Let T̂ = Ω((mηλ)−1 log(nd/ϵ)) = Ω(λ−2n2d2 exp(16B) · log(nd/ϵ))

Then, after T̂ iterations, with probability at least 1− δ, we have

∥F (T̂ )− Y ∥2F ≤ ϵ.

Proof of Theorem 4.2. Let σ = 1. We have ∥F (0)− Y ∥2F ≤ nd by Lemma D.3.

Using the choice of T̂ , it follows directly from the alternative application of Lemma C.3 and
Lemma C.2.

Since exp(Θ(B)) = (nd)o(1), we can simplify the nd exp(Θ(B)) = (nd)1+o(1).

C.2 INDUCTION PART 1. FOR WEIGHTS

We provide an induction lemma for weights part.

Lemma C.2 (Induction Part 1. For Weights). Let τ be a fixed integer.

If the below conditions are true

• General Property 1. Let λ = λmin(H
∗) > 0

• General Property 2. η = 0.1λ/(mn2d2 exp(16B))

• General Property 3. Let D be defined as Definition A.2

• General Property 4. D < R = λ/(2nd exp(10B))

• General Property 5. m = Ω(λ−2n2d2 exp(18B) log2(nd/δ))

• Weights Property. ∥wr(i)− wr(0)∥2 ≤ R for all i ∈ [τ ]

• Loss Property. ∥F (i)− Y ∥2F ≤ ∥F (0)− Y ∥2F · (1−mηλ/2)i, ∀i ∈ [τ ]

• Gradient Property. η∥∆wr(i)∥2 ≤ 0.01, ∀r ∈ [m], ∀i ∈ [τ ]

Then, for τ + 1 and ∀r ∈ [m], we have

∥wr(τ + 1)− wr(0)∥2 ≤ D.

Proof. We have

η

∞∑
i=0

(1−mηλ/2)i/2

≤ η

∞∑
i=0

(1−mηλ/4)i

≤ η
1

mηλ/4

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

≤ 4

mλ
(9)

where the first step is due to the Fact A.5, the second stepis due to the Fact A.7, the last step is
because of simple algebra.

We use the gradient’s norm to measure the weights difference:

∥wr(0)− wr(τ + 1)∥2

≤ η

τ∑
i=0

∥∆wr(i)∥2

≤ η

τ∑
i=0

exp(3B)
√
nd · ∥F (i)− Y ∥F

≤ η exp(3B)
√
nd

τ∑
i=0

(1−mηλ/2)i/2 · ∥F (0)− Y ∥F

≤ 4m−1λ−1 exp(3B)
√
nd · ∥F (0)− Y ∥F

= D

where the first step follows from wr(i + 1) − wr(i) = η · ∆wr(i), the second step follows from
Lemma D.1 for τ times, the third step follows from Loss Property in Lemma statement, the fourth
step follows from Eq. (9), the last step is from General Property 3 in Lemma statement.

C.3 INDUCTION PART 2. FOR LOSS

We provide an induction lemma for loss part.

Lemma C.3 (Induction Part 2. For Loss). Let τ be a fixed integer.

If the following conditions hold

• General Property 1. Let λ = λmin(H
∗) > 0

• General Property 2. η = 0.1λ/(mn2d2 exp(16B))

• General Property 3. Let D be defined as Definition A.2

• General Property 4. D < R = λ/(2nd exp(10B))

• General Property 5. m = Ω(λ−2n2d2 exp(18B) log2(nd/δ))

• Weights Property. ∥wr(τ)− wr(0)∥2 ≤ D < R, ∀r ∈ [m]

• Loss Property. ∥F (i)− Y ∥2F ≤ ∥F (0)− Y ∥2F · (1−mηλ/2)i, ∀i ∈ [τ ]

• Gradient Property. η∥∆wr(i)∥2 ≤ 0.01 ∀r ∈ [m], ∀i ∈ [τ ]

Then we have

∥F (τ + 1)− Y ∥2F ≤ (1−mηλ/4)τ+1 · ∥F (0)− Y ∥2F .

Proof. We have

∥F (τ)− Y ∥2F ≤ ∥F (τ − 1)− Y ∥2F · (1−mηλ/2)

which follows Lemma E.2.

Thus, we complete the proof by induction.
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C.4 INDUCTION PART 3. FOR GRADIENT

We provide an induction lemma for gradient part.
Lemma C.4 (Induction Part 3. For Gradient). Let τ be a fixed integer.

If the following conditions hold

• General Property 1. Let λ = λmin(H
∗) > 0

• General Property 2. η = 0.1λ/(mn2d2 exp(16B))

• General Property 3. Let D be defined as Definition A.2

• General Property 4. D < R = λ/(2nd exp(10B))

• General Property 5. m = Ω(λ−2n2d2 exp(18B) log2(nd/δ))

• Weights Property. ∥wr(τ)− wr(0)∥2 ≤ D < R, ∀r ∈ [m]

• Loss Property. ∥F (i)− Y ∥2F ≤ ∥F (0)− Y ∥2F · (1−mηλ/2)i, ∀i ∈ [τ ]

• Gradient Property. η∥∆wr(i)∥2 ≤ 0.01 ∀r ∈ [m], ∀i ∈ [τ ]

Then we have

η∥∆wr(τ + 1)∥2 ≤ 0.01,∀r ∈ [m]

Proof. This is trivially follows from Lemma D.1 and Lemma D.2.

D INDUCTION PART 1: FOR WEIGHTS

In Section D.1, we propose the lemma for bounding gradient and its corresponding proof. In Sec-
tion D.2, we propose the bounding initialization loss and its corresponding proof.

D.1 BOUNDING THE GRADIENT AT ANY TIME

In this section, we bound the gradient.
Lemma D.1. If the following condition hold,

• Let B > 1 denote a parameter be defined as Definition 4.1

• Let R ∈ (0, 0.01)

• ∥wr(τ)− wr(0)∥2 ≤ R

• Let vℓ,r = aℓ,r · 1m − aℓ ∈ Rm, for any ℓ ∈ [d] and for any r ∈ [m]

For any timestamp τ , we have

∥∆wr(τ)∥2 ≤ exp(3B)
√
nd · ∥F (τ)− Y ∥F .

Proof. We have

∥∆wr(τ)∥2 =

∥∥∥∥∥m
n∑

i=1

d∑
ℓ=1

(yℓ,i − Fℓ,i) · xi · ⟨vℓ,r,Si(τ)⟩ · Si,r(τ)

∥∥∥∥∥
2

≤ exp(3B)

n∑
i=1

d∑
ℓ=1

|yℓ,i − Fℓ,i(τ)|

≤ exp(3B)
√
nd · ∥F (τ)− Y ∥F
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where the first step follows from Claim 3.4 and Definition 3.3, the second step follows from
|⟨vℓ,r,Si⟩| ≤ 2 and |Si,r| ≤ exp(2B + 2R)/m by Part 11 of Lemma B.1, the last step follows
from Cauchy-Schwartz inequality.

Lemma D.2. If the following conditions hold,

• η = 0.1λ/(mn2d2 exp(16B))

• ∥wr(τ)− wr(0)∥2 ≤ R

Then, for any timestamp τ , we have

η∥∆wr(τ)∥2 ≤ 0.01

Proof. This trivially follows from Lemma D.1 and choice of η.

D.2 BOUNDING THE INITIALIZATION LOSS

In this section, we bound the initialization loss.
Lemma D.3. We have

∥F (0)− Y ∥F ≤ O(
√
nd).

Proof. This trivially follows from ∥yi∥ ≤ 1,∀i ∈ [n] and symmetric initialization from Defini-
tion 3.7.

E INDUCTION PART 2: FOR LOSS

In Section E.1, we decompose the loss ∥F (k + 1) − Y ∥2F into four parts, namely C0, C1, C2, and
C3. In Section E.2, we show our choices of m and η. In Section E.3, we establish bounds for C0. In
Section E.4, we establish bounds for C1. In Section E.5, we establish bounds for C2. In Section E.6,
we establish bounds for C3.

E.1 DECOMPOSITION FOR ∥ vec(F (τ + 1)− Y )∥22

Here, we decompose the loss ∥ vec(F (τ + 1)− Y )∥22 into four parts C0, C1, C2 and C3.
Lemma E.1. Assuming the following condition is met:

• Let λ = λmin(H
∗)

• Let αi(τ) := ⟨exp(W (τ)⊤xi),1m⟩.

• Let scalar v0,ℓ,i ∈ R be defined as follows

v0,ℓ,i :=m
∑
r∈[m]

aℓ,r(αi(τ + 1)−1 − αi(τ)
−1) · (exp(⟨wr(τ + 1), xi⟩))

• Let scalar v1,ℓ,i ∈ R be defined as follows

v1,ℓ,i :=m

m∑
r=1

aℓ,r · αi(τ)
−1 exp((⟨wr(τ), xi⟩) · (−η⟨∆wr(τ), xi⟩)

• Let scalar v2,ℓ,i ∈ R be defined as follows

v2,ℓ,i :=m

m∑
r=1

aℓ,r · αi(τ)
−1 exp((⟨wr(τ), xi⟩) · η2 ·Θ(1) · ⟨∆wr(τ), xi⟩2
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• Gradient Property. η∥∆wr(i)∥2 ≤ 0.01, ∀r ∈ [m], ∀i ∈ [τ ]

• C0 = 2⟨vec(F (τ)− Y ), vec(v0)⟩

• C1 = 2⟨vec(F (τ)− Y ), vec(v1)⟩

• C2 = 2⟨vec(F (τ)− Y ), vec(v2)⟩

• C3 = ∥F (τ + 1)− F (τ)∥2F

then

∥F (τ + 1)− Y ∥2F = ∥F (t)− Y ∥2F + C0 + C1 + C2 + C3.

Proof. The expression ∥Y −F (τ+1)∥2F = ∥ vec(Y −F (τ+1))∥22 can be rewritten in the following:

∥ vec(Y − F (τ + 1))∥22
= ∥ vec(Y − F (τ)− (F (τ + 1)− F (τ)))∥22
= ∥ vec(Y − F (τ))∥22 − 2 vec(Y − F (τ))⊤ vec(F (τ + 1)− F (τ)) + ∥ vec(F (τ + 1)− F (τ))∥22.

(10)

where the first step follows from simple algebra, the last step follows from Fact A.3.

Recall the update rule (Definition 3.5),

wr(τ + 1) = wr(τ)− η ·∆wr(τ)

In the following manner, ∀ℓ ∈ [d], we can express Fℓ(τ + 1)− Fℓ(τ) ∈ Rn:

Fℓ,i(τ + 1)− Fℓ,i(τ)

=m
∑
r∈[m]

aℓ,r · (αi(τ + 1)−1 exp(⟨wr(τ + 1), xi⟩)− αi(τ)
−1 exp(⟨wr(τ), xi⟩))

= +m
∑
r∈[m]

aℓ,r(αi(τ + 1)−1 − αi(τ)
−1) · (exp(⟨wr(τ + 1), xi⟩))

+m
∑
r∈[m]

aℓ,rαi(τ)
−1 · (exp(⟨wr(τ + 1), xi⟩)− exp(⟨wr(τ), xi⟩))

= +m
∑
r∈[m]

aℓ,r(αi(τ + 1)−1 − αi(τ)
−1) · (exp(⟨wr(τ + 1), xi⟩))

+m
∑
r∈[m]

aℓ,r · αi(τ)
−1 exp((⟨wr(τ), xi⟩) · (exp(−η⟨∆wr(τ), xi⟩)− 1)

= +m
∑
r∈[m]

aℓ,r(αi(τ + 1)−1 − αi(τ)
−1) · (exp(⟨wr(τ + 1), xi⟩))

+m
∑
r∈[m]

aℓ,r · αi(τ)
−1 exp((wr(τ)

⊤xi) · (−η⟨∆wr(τ), xi⟩+Θ(1)η2⟨∆wr(τ), xi⟩2)

= v0,ℓ,i + v1,ℓ,i + v2,ℓ,i

where the first step is due to the definition of Fℓ,i(τ), the second step is from the simple algebra, the
third step is due to |η∆wr(τ)

⊤xi| ≤ 0.01 (due to Gradient Property and ∥xi∥2 ≤ 1), the fourth
step follows from the Fact A.8, the last step follows from

v0,ℓ,i :=m
∑
r∈[m]

aℓ,r(αi(τ + 1)−1 − αi(τ)
−1) · (exp(⟨wr(τ + 1), xi⟩))

v1,ℓ,i :=m

m∑
r=1

aℓ,r · αi(τ)
−1 exp((⟨wr(τ), xi⟩) · (−η⟨∆wr(τ), xi⟩)
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v2,ℓ,i :=m

m∑
r=1

aℓ,r · αi(τ)
−1 exp((⟨wr(τ), xi⟩) · η2 ·Θ(1) · ⟨∆wr(τ), xi⟩2

Here v0,ℓ,i and v1,ℓ,i are linear in η and v2,ℓ,i is quadratic in η. Thus, v0,ℓ,i and v1,ℓ,i are the first
order term, and v2,ℓ,i is the second order term.

We can rewrite the second term in the Eq. (10) above as below:

⟨vec(Y − F (τ)), vec(F (τ + 1)− F (τ))⟩
= ⟨vec(Y − F (τ)), vec(v0 + v1 + v2)⟩
= ⟨vec(Y − F (τ)), vec(v0)⟩+ ⟨vec(Y − F (τ)), vec(v1)⟩+ ⟨vec(Y − F (τ)), vec(v2)⟩

Therefore, we can conclude that

∥F (τ + 1)− Y ∥2F = ∥F (τ)− Y ∥2F + C0 + C1 + C2 + C3.

E.2 CHOICE OF PARAMETERS

Here, we show our choice of parameters m, η,R,B.

Lemma E.2. If the below conditions are true

• Condition 1. Let λ = λmin(H
∗) > 0

• Condition 2. m = Ω(λ−2n2d2 exp(18B) log2(nd/δ))

• Condition 3. η = 0.1λ/(mn2d2 exp(16B))

• Condition 4. R = λ/(2nd exp(10B))

– Required by Claim E.5

• Condition 5. B = max{Cσ
√

log(nd/δ), 1}

• Condition 6. D = 4m−1λ−1 exp(3B)
√
nd · ∥F (0)− Y ∥F

• Condition 7. D < R

• Condition 8. η∥∆wr(τ)∥2 ≤ 0.01, ∀r ∈ [m]

– Required by Lemma E.1, Claim E.3 and Claim E.7

Then it holds that

∥F (τ + 1)− Y ∥2F ≤ ∥F (τ)− Y ∥2F · (1−mηλ/2)

holds with probability at least 1− δ.

Proof. We can show

∥F (τ + 1)− Y ∥2F
= ∥F (τ)− Y ∥2F + C0 + C1 + C2 + C3

≤ (1− 0.8mηλ+ 0.1mηλ+ 2mη2n2d2 exp(9B) + η2m2 · n2d2 · exp(16B)) · ∥F (τ)− Y ∥2F
≤ (1− 0.7mηλ+ 2η2m2 · n2d2 · exp(16B)) · ∥F (τ)− Y ∥2F .

where the first step follows from Lemma E.1, the second step follows from Lemma E.3 for C0,
Lemma E.4, Claim E.5 for C1, Claim E.6 for C2 and Claim E.7 for C3, the last step follows from
the simple algebra.
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Choice of η. Next, we want to choose η such that

(1− 0.7mηλ+ 2η2m2 · n2d2 · exp(16B)) ≤ (1−mηλ/2). (11)

Using the choice of η in Condition 3

2η2m2 · n2d2 · exp(16B) ≤ 0.2mηλ

This indicates:

∥F (τ + 1)− Y ∥2F ≤ (1−mηλ/2) · ∥F (τ)− Y ∥2F . (12)

Lower bound for m, over-parametrization size. We require the following conditions

• m ≥ Ω(λ−2n2d exp(18B) log2(nd/δ)) (required by Lemma E.3)

• m ≥ Ω(λ−2n2d exp(12B) log2(nd/δ)) (required by Lemma E.4)

• D = 4m−1λ−1 exp(3B)
√
nd · ∥F (0) − Y ∥F < R = λ/(2nd exp(10B))} (required by

Condition 7.)

Therefore, by ∥Y − F (0)∥F = O(
√
nd) from Lemma D.3, it suffices to choose:

m = Ω(λ−2n2d2 exp(18B) log2(nd/δ)).

E.3 BOUNDING C0

Here, we explain about how to bound C0.
Lemma E.3. If the following conditions hold

• Let scalar v0,ℓ,i ∈ R be defined as follows

v0,ℓ,i :=m
∑
r∈[m]

aℓ,r(αi(τ + 1)−1 − αi(τ)
−1) · (exp(⟨wr(τ + 1), xi⟩))

• Let αi(τ) := ⟨exp(W (τ)⊤xi),1m⟩.

• Let m ≥ Ω(λ−2n2d exp(18B) log2(nd/δ))

• Gradient Property. η∥∆wr(i)∥2 ≤ 0.01, ∀r ∈ [m], ∀i ∈ [τ ]

• We define C0 as follows

C0 = 2⟨vec(F (τ)− Y ), vec(v0)⟩

Here vec(v0) ∈ Rnd is the vectorization of v0 ∈ Rn×d and vec(F (τ) − Y ) ∈ Rnd is the
vectorization of F (τ)− Y ∈ Rn×d.

Then we have

|C0| ≤ 0.1mηλ · ∥F (τ)− Y ∥2F

Proof. We can rewrite v0,ℓ,i as follows:

v0,ℓ,i = m

m∑
r=1

aℓ,r((αi(τ + 1))−1 − αi(τ)
−1) exp(⟨wr(τ + 1), xi⟩)

= m

m∑
r=1

aℓ,rαi(τ + 1)−1αi(τ)
−1 · (⟨1m, exp(W (τ + 1)xi)− exp(W (τ)xi)⟩) exp(⟨wr(τ + 1), xi⟩)
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=m

m∑
r=1

aℓ,rαi(τ + 1)−1αi(τ)
−1(

m∑
r2=1

exp(wr2(τ + 1)xi)− exp(wr2(τ)xi)) exp(⟨wr(τ + 1), xi⟩)

= m(

m∑
r=1

aℓ,rαi(τ + 1)−1αi(τ)
−1

m∑
r2=1

−η⟨∆wr2(τ), xi⟩ exp(wr2(τ)xi) exp(⟨wr(τ + 1), xi⟩) + η2∆2)

= m(

m∑
r=1

aℓ,r

m∑
r2=1

−η⟨∆wr2(τ), xi⟩Si,r2(τ) · Si,r(τ + 1)︸ ︷︷ ︸
first order term

+ η2∆2︸ ︷︷ ︸
second order term

) (13)

where the first step follows from lemma statement, the second step follows from a−1 − b−1 = b−a
ab ,

the third step follows from simple algebra, the fourth step follows from simple algebra, and the last
step follows from |η∆wr(τ)

⊤xi| ≤ 0.01 (due to Gradient Property and ∥xi∥2 ≤ 1).

The second order term η2∆2 in Eq. (13) can be bounded in a similar way as the proof of Claim E.6.

Further, we can rewrite the first-order term in Eq. (13)

m

m∑
r=1

aℓ,r

m∑
r2=1

−η⟨∆wr2(τ), xi⟩Si,r2(τ) · Si,r(τ + 1) = m2(Q1,i,ℓ +Q2,i,ℓ) (14)

where

Q1,i,ℓ :=
1

m

m∑
r=1

aℓ,r(−η⟨∆wr(τ), xi⟩)Si,r(τ) · Si,r(τ + 1)

Q2,i,ℓ :=
1

m

m∑
r=1

aℓ,r
∑
r2 ̸=r

(−η⟨∆wr2(τ), xi⟩)Si,r2(τ) · Si,r(τ + 1)

Let us consider how to handle the first term in Eq. (13),

Q1,i,ℓ =
1

m

m∑
r=1

aℓ,r(−η⟨∆wr(τ), xi⟩)Si,r(τ) · Si,r(τ + 1)

=

m∑
r=1

aℓ,rSi,r · Si,r(τ + 1)(−η

n∑
j=1

d∑
ℓ2=1

(Fℓ2,j(τ)− yℓ2,j) ·
(
(⟨aℓ2,r · 1m − aℓ2 ,Sj⟩) · Sj,r

)
· x⊤

j )xi

where the second step follows from computing ∆wr(τ) explicitly (see Claim 3.4).

Similarly as proof of Lemma E.4, we can use concentration to bound

n∑
i=1

d∑
ℓ=1

Q1,i,ℓ(Fℓ,i − yℓ,i)

Note that 0 < Sj,r < exp(3B)
m by Part 11 of Lemma B.1. The above small term is equivalent to

−η
exp(9B)

m3
·

n∑
i=1

n∑
j=1

m∑
r=1

d∑
ℓ=1

d∑
ℓ2=1

(Fℓ2,j(τ)− yℓ2,j) · σi,j,r,ℓ,ℓ2 · Ci,j,r,ℓ,ℓ2 · (Fℓ,i(τ)− yℓ,i),

where σi,ℓ,ℓ2,j,r ∼ [−1,+1] and |Ci,ℓ,ℓ2,j,r| ≤ 10. We define

P1,r,ℓ,ℓ2 := (Fℓ2,j − yℓ2,j)σi,j,r,ℓ,ℓ2Ci,j,r,ℓ,ℓ2(Fℓ,i − yℓ,i)

Similarly as Lemma E.4, for each fixed i, j ∈ [n], using Hanson-Wright inequality (Lemma A.10),
we can show

Pr[|
m∑
r=1

d∑
ℓ=1

d∑
ℓ2=1

P1,r,ℓ,ℓ2 | ≤ 100∥Fj − yj∥2∥Fi − yi∥2 ·
√
md log(nd/δ)]
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≥ 1− δ/poly(nd).

By mean inequality, we have
n∑

i=1

n∑
j=1

∥Fj − yj∥2 · ∥Fi − yi∥2 ≤ n∥F − y∥2F .

Thus, we have the first term with probability at least 1− poly(nd), such that

|
n∑

i=1

d∑
ℓ=1

Q1,i,ℓ(Fℓ,i − yℓ,i)| ≤ η
n exp(9B)

m3
∥F − y∥2F

√
md log(nd/δ)

Similarly, we can compute

n∑
i=1

d∑
ℓ=1

Q2,i,ℓ(Fℓ,i − yℓ,i)

Using Hanson-Wright inequality (Lemma A.10), we have the second term with probability at least
1− poly(nd), such that

|
n∑

i=1

d∑
ℓ=1

Q2,i,ℓ(Fℓ,i − yℓ,i)| ≤ η
n exp(9B)

m2
∥F − y∥2F

√
md log(nd/δ)

Thus, we can complete the proof by the Lemma statement m ≥ Ω(λ−2n2d exp(18B) log2(nd/δ)).

E.4 BOUNDING C1

Here, we give the bound of the first order term C1. Note that this term is making progress.
Lemma E.4. Assuming the following condition is met:

• Let λ = λmin(H
∗)

• Let αi(τ) := ⟨exp(W (τ)⊤xi),1m⟩

• Let m ≥ Ω(λ−2n2d exp(12B) log2(nd/δ))

• Let scalar v1,ℓ,i ∈ R be defined as follows

v1,ℓ,i :=m

m∑
r=1

aℓ,r · αi(τ)
−1 exp((⟨wr(τ), xi⟩) · (−η⟨∆wr(τ), xi⟩)

• C1 = 2⟨vec(F (τ)− Y ), vec(v1)⟩

then

C1 ≤ −1.6mη vec(F (τ)− Y )⊤H(τ) vec(F (τ)− Y ).

Proof. To simplify the notation, we omit writing (τ) in Si,r(τ). Then, we can express v1,ℓ,i ∈ R as
follows:

v1,ℓ,i = m
∑
r∈[m]

aℓ,r · Si,r · (−η⟨xi,∆wr(τ)⟩)

= m2
∑
r∈[m]

aℓ,r · Si,r · (−η

n∑
j=1

d∑
ℓ2=1

(Fℓ2,j(τ)− yℓ2,j) ·
(
(⟨aℓ2,r · 1m − aℓ2 ,Sj⟩) · Sj,r

)
· x⊤

j )xi

= m2(Q1,ℓ,i +Q2,ℓ,i) (15)
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where the second step using equation for ∆wr(τ) (see Claim 3.4).

Note that ⟨aℓ,r · 1m, Si⟩ = aℓ,r, so in the above equation,

Q1,ℓ,i :=
∑
r∈[m]

⟨aℓ,r · 1m − aℓ, Si⟩ · Si,r · (−η

n∑
j=1

d∑
ℓ2=1

(Fℓ2,j(τ)− yℓ2,j) ·
(
(⟨aℓ2,r · 1m − aℓ2 ,Sj⟩) · Sj,r

)
· x⊤

j )xi

Q2,ℓ,i :=
∑
r∈[m]

⟨aℓ, Si⟩ · Si,r · (−η

n∑
j=1

d∑
ℓ2=1

(Fℓ2,j(τ)− yℓ2,j) ·
(
(⟨aℓ2,r · 1m − aℓ2 ,Sj⟩) · Sj,r

)
· x⊤

j )xi

The quantity
∑

i∈[n]

∑
ℓ∈[d] Q1,ℓ,i(Fℓ,i − Yℓ,i) is corresponding to first term (Q1,ℓ,i) in Eq. (15). It

is ∑
i∈[n]

∑
ℓ∈[d]

Q1,ℓ,i(Fℓ,i − Yℓ,i) = − 1

m
η vec(F (τ)− Y )⊤H(τ)⊤ vec(F (τ)− Y ) (16)

The quantity
∑

i∈[n]

∑
ℓ∈[d] Q2,ℓ,i(Fℓ,i − Yℓ,i) is corresponding to second term (Q2,ℓ,i) in Eq. (15).

Note that 0 < Sj,r < exp(3B)
m by Part 11 of Lemma B.1. The quantity,∑

i∈[n]

∑
ℓ∈[d]

Q2,ℓ,i(Fℓ,i − Yℓ,i) (17)

is equivalent to

−η
exp(6B)

m2
·

n∑
i=1

n∑
j=1

m∑
r=1

d∑
ℓ=1

d∑
ℓ2=1

(Fℓ2,j(τ)− yℓ2,j) · σi,j,r,ℓ,ℓ2 · Ci,j,r,ℓ,ℓ2 · (Fℓ,i(τ)− yℓ,i),

where σi,j,r,ℓ,ℓ2 ∈ {−1,+1} and |Ci,j,r,ℓ,ℓ2 | ≤ 10.

Note that there are four cases

• i = j, ℓ = ℓ2, this is a p.s.d. case that always makes progress, thus we can drop it.

• i ̸= j, ℓ = ℓ2 we will use random variable P1 to handle

• i = j, ℓ ̸= ℓ2 we will use random variable P2 to handle

• i ̸= j, ℓ ̸= ℓ2 we will use random variable P2 to handle

For each fixed i, j ∈ [n]. We define

P1,r,ℓ := (Fℓ,j − yℓ,j)σi,j,r,ℓCi,j,r,ℓ(Fℓ,i − yℓ,i)

P2,r,ℓ,ℓ2 := (Fℓ2,j − yℓ2,j)σi,j,r,ℓ,ℓ2Ci,j,r,ℓ,ℓ2(Fℓ,i − yℓ,i)

The random variables related to P1,r,ℓ are the following

m∑
r=1

d∑
ℓ=1

P1,r,ℓ

The random variables related to P2,r,ℓ,ℓ2 are the following

m∑
r=1

d∑
ℓ=1

d∑
ℓ2=1

P2,r,ℓ,ℓ2

For each i ̸= j ∈ [n] and ℓ = ℓ2, using Hoeffding inequality (see Lemma A.9), we can show

Pr[|
m∑
r=1

d∑
ℓ=1

P1,r,ℓ| ≤ 100∥Fj − yj∥2∥Fi − yi∥2 ·
√

md log(nd/δ)]
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≥ 1− δ/poly(nd).

Similarly, we consider i = j and ℓ ̸= ℓ2 by Hanson-Wright inequality (Lemma A.10), we have

Pr[|
m∑
r=1

d∑
ℓ=1

d∑
ℓ2=1

P2,r,ℓ,ℓ2 | ≤ 100∥Fj − yj∥2∥Fi − yi∥2 ·
√
md log(nd/δ)]

≥ 1− δ/poly(nd).

By mean inequality, we have
n∑

i=1

n∑
j=1

∥Fj − yj∥2 · ∥Fi − yi∥2 ≤ n∥F − y∥2F .

Note that by Lemma condition, we have

1

m
λ ≳

n exp(6B)

m2
·
√
md log(nd/δ) ⇐⇒ m ≳ λ−2,

the equation (Eq. (16) and the bound for Eq. (17)) above indicates that ⟨vec(Y − F (τ)), vec(v1)⟩
can be expressed as

vec(v1)
⊤ vec(Y − F (τ)) ≥ 0.8mη · vec(F (τ)− Y )⊤︸ ︷︷ ︸

1×nd

H(τ)⊤︸ ︷︷ ︸
nd×nd

vec(F (τ)− Y ). (18)

We finish the proof.

Claim E.5. If the below conditions are true

• Let B ≥ 1 be defined as Definition 4.1

• Let λ = λmin(H
∗) > 0

• C1 = −mη vec(F (τ)− Y )⊤H(τ) vec(F (τ)− Y ).

• R = λ/(2nd exp(10B))

Then, we have

C1 ≤ −1

2
mηλ · ∥F (τ)− Y ∥2F

and

λmin(H(τ)) ≥ λ/2.

holds with probability at least 1− δ.

Proof. By Lemma 5.1, with probability at least 1− δ, we have

∥H∗ −H(τ)∥F
≤ Rnd · exp(10B)

≤ λ/2 (19)

where the first step follows from the definition of H(τ), the last step comes from choice of λ (see
Claim Statement).

Given that λ = λmin(H
∗), by eigenvalue perturbation theory

λmin(H(τ))

≥ λmin(H
∗)− ∥H∗ −H(τ)∥

≥ λmin(H
∗)− ∥H∗ −H(τ)∥F

≥ λmin(H
∗)− λ/2
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≥ λ/2.

where the first step comes from triangle inequality, the second step is due to Frobenius norm, the
third step is due to Eq.(19), the last step follows from λmin(H

∗) = λ.

Finally, we have

vec(F (τ)− Y )⊤H(τ) vec(F (τ)− Y ) ≥ λ/2 · ∥F (τ)− Y ∥2F .

Thus, we complete the proof.

E.5 BOUNDING C2

Here, we give the bound of the second order term C2.
Claim E.6. If the below conditions are true

• Let λ = λmin(H
∗)

• Let αi(τ) := ⟨exp(W (τ)⊤xi),1m⟩

• Let scalar v2,ℓ,i ∈ R be defined as follows

v2,ℓ,i :=m

m∑
r=1

aℓ,r · αi(τ)
−1 exp((⟨wr(τ), xi⟩) · η2 ·Θ(1) · ⟨∆wr(τ), xi⟩2

• C2 = 2⟨vec(F (τ)− Y ), vec(v2)⟩

Then we can conclude that

C2 ≤ 2mη2n2d2 exp(9B)∥F (τ)− Y ∥2F .

with probability at least 1− n · exp(−mR).

Proof. Let pi,r ∈ [−1, 1]. We have

|v2,ℓ,i| =m
∑
r∈[m]

aℓ,r · Si,r · (η2pi,r⟨xi,∆wr(τ)⟩2)

≤mη2nd exp(9B)∥F (τ)− Y ∥2F ,

where the last step follows Lemma D.1 and Part 11 of Lemma B.1.

Thus,

C2 = 2⟨vec(F (τ)− Y ), vec(v2)⟩
≤ 2∥F (τ)− Y ∥F ∥v2∥F
≤ 2mη2n2d2 exp(9B)∥F (τ)− Y ∥2F ,

where the first step follows Cauchy-Schwartz inequality, and the second step follows ∥F (τ) −
Y ∥F ≤ O(

√
nd) by induction statement (See Lemma C.3).

E.6 BOUNDING ∥F (τ + 1)− F (τ)∥2F

Here, we give the bound of the third order term C3.
Claim E.7. If the below conditions are true

• Let B ≥ 1 be defined as Definition 4.1

• C3 = ∥F (τ + 1)− F (τ)∥2F .

• R ∈ (0, 0.01)
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• Gradient Property. η∥∆wr(i)∥2 ≤ 0.01, ∀r ∈ [m], ∀i ∈ [τ ]

Then with probability at least 1− δ, we have

C3 ≤ η2m2 · n2d2 · exp(16B) · ∥F (τ)− Y ∥2F .

Proof. Note that we denote αi as ⟨1m, exp(W⊤xi)⟩. According to definition of Fℓ,i(τ), we have

Fℓ,i(τ + 1)− Fℓ,i(τ)

= ma⊤ℓ (

+ αi(τ + 1)−1 exp((W (τ + 1)⊤xi)− αi(τ)
−1 exp((W (τ + 1)⊤xi)

+ αi(τ)
−1 exp((W (τ + 1)⊤xi)− αi(τ)

−1 exp((W (τ)⊤xi)

)

Then we have

|Fℓ,i(τ + 1)− Fℓ,i(τ)| (20)

≤ m

m∑
r=1

|αi(τ + 1)−1 − αi(τ)
−1| exp(wr(τ + 1)⊤xi)

+m

m∑
r=1

αi(τ)
−1 exp(wr(τ)

⊤xi) · | exp(−η∆wr(τ)
⊤xi)− 1|

where it follows from triangle inequality.

For the second term in Eq. (20), we have

m

m∑
r=1

αi(τ)
−1 exp(wr(τ)

⊤xi) · | exp(−η∆wr(τ)
⊤xi)− 1|

≤ exp(B +R) exp(B +R)

m∑
r=1

| exp(−η∆wr(τ)
⊤xi)− 1|

≤ exp(2B + 2R)

m∑
r=1

2η∥∆wr(τ)∥2

= 2η exp(2B + 2R)

m∑
r=1

∥∆wr(τ)∥2

≤ 2η exp(2B + 2R) ·m · exp(3B)
√
nd∥F (τ)− Y ∥F

≤ ηm exp(6B)
√
nd∥F (τ)− Y ∥F

where the first step comes from Lemma B.1, the second step is due to η∥∆wr(τ)∥2 ≤ 0.01 (this is
stated in Claim assumption) and Fact A.8, the third step is from simple algebra, the fourth step is
due to Lemma D.1, the last step follows from simple algebra.

Similarly, for the first term in Eq. (20) we have

m

m∑
r=1

|αi(τ + 1)−1 − αi(τ)
−1| exp(wr(τ + 1)⊤xi)

≤m2 exp(B +R)|αi(τ + 1)−1 − αi(τ)
−1|

≤m exp(B +R)|η∆wr(τ)
⊤xi| exp(3B + 2R)

≤ ηm exp(4B + 3R)∥∆wr(τ)∥2
≤ ηm exp(7B + 3R)

√
nd∥F (τ)− Y ∥F

where the first step follows from Part 5 of Lemma B.1, the second step follows from Part 9 of
Lemma B.1 where R = |η∆wr(τ)

⊤xi|, the third step follows from simple algebra, and the last step
follows from Lemma D.1.
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Thus we have

|Fℓ,i(τ + 1)− Fℓ,i(τ)| ≤ ηm exp(8B)
√
nd∥F (τ)− Y ∥F . (21)

Finally, we get

∥F (τ + 1)− F (τ)∥2F ≤ nd · (ηm exp(8B)
√
nd∥F (τ)− Y ∥F )2

≤ η2m2 · n2d2 · exp(16B) · ∥F (τ)− Y ∥2F
where the first step is because of Eq. (21), the last step comes from simple algebra.

F NTK REGRESSION

In this section, we introduce the NTK regression, as we will show that the neural network is “equiv-
alent” to this regression so that we can give a final guarantee on the test data. To clarify the function,
we use Fnn to denote F as a neural network function. We use xte ∈ Rd to denote the test data.
We would like to control the error between the neural network Fnn and the function Fntk. For
convenience, we call this error “coupling error”, which is the difference between the trained neural
network and its corresponding NTK regression.

Recall that, by Definition 3.6, we have the H∗ = H(W (0)). Recall [H∗]i,j ∈ Rd×d is the kernel
between xi and xj . Similarly, ∀ℓ1, ℓ2 ∈ [d], for test data, we can define the NTK induced feature
map as

[K∗
ℓ1,ℓ2 ]te,j :=

1

m
x⊤
texj

m∑
r=1

⟨vℓ1,r,Ste(0)⟩ ·mSte,r(0) · ⟨vℓ2,r,Sj(0)⟩ ·mSj,r(0)

[K(τ)ℓ1,ℓ2 ]te,j :=
1

m
x⊤
texj

m∑
r=1

⟨vℓ1,r,Ste(τ)⟩ ·mSte,r(τ) · ⟨vℓ2,r,Sj(τ)⟩ ·mSj,r(τ),

where K∗
te,Kte(τ) ∈ Rd×nd. Similarly, we have K∗

i = [H∗]i ∈ Rd×nd,Ki(τ) = [H(τ)]i ∈
Rd×nd for training data xi. Then, we define the kernel regression predictor.

Definition F.1 (NTK regression predictor). We define NTK regression predictor as

Fntk(γ(τ), xte) :=mK∗
teγ(τ), (22)

where γ(τ) ∈ Rnd is the parameter at timestamp τ .

Recall that we have a training dataset Dn = {(xi, yi)}ni=1. Then, we denote the corresponding
objective function for Fntk as

Lntk(γ(τ)) =
1

2

n∑
i=1

∥Fntk(γ(τ), xi)− yi∥22. (23)

Thus, based on Eq. (23), the gradient desent (GD) updating rule of γ(τ) is given by

γ(τ + 1)︸ ︷︷ ︸
nd×1

= γ(τ)︸︷︷︸
nd×1

−η · (m H∗︸︷︷︸
nd×nd

γ(τ)︸︷︷︸
nd×1

− vec(Y )︸ ︷︷ ︸
nd×1

), γ(0) = 0nd, (24)

where the Eq. (24) is according to γ(τ + 1) = γ(τ)− η∇γLntk(γ(τ)).

F.1 EQUIVALENCE BETWEEN TRAINED NET AND KERNEL REGRESSION

We provide a stronger bound between Fntk and Fnn result compared to Lemma F.1 in (Arora et al.,
2019b). Our following statement is stronger in the two following senses: their result only holds
when t → ∞, and our result holds for all t ∈ [0,∞); also their result only works for 1 dimension
output space, our result holds arbitrary d dimensional output space.
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Theorem F.2 (Kernel value perturbation ⇒ prediction perturbation). Fix ϵH ≤ 1
2λ. If for all τ ≥ 0,

∥K∗
ℓ,te−Kℓ,te(τ)∥F ≤ ϵℓ,test and ∥H∗−H(τ)∥F ≤ ϵH , then for any xte ∈ Rd, ℓ ∈ [d] and τ ≥ 0,

we have

|Fntk(γ(τ), xte)ℓ − Fnn(W (τ), xte)ℓ| ≤ O

(√
nd

λ
ϵℓ,test +

√
nd

λ2
log2

(
nd

ϵHmλ

)
ϵH

)
.

Proof of Theorem F.2. Our proof relies on a careful analysis of the trajectories induced by gradient
flow for optimizing the neural network predictor Fnn and the NTK predictor Fntk. Then, we can
have a similar argument to gradient descent at any timestamp τ .

Recall that for any xte, xi ∈ Rd, we have K∗
te,K

∗
i ∈ Rd×nd be the feature map induced by NTK.

For any x ∈ Rd, we define ϕ(x) ∈ Rd×d as following, for any ℓ ∈ [d],

ϕ(x)ℓ =
1√
m
x

m∑
r=1

⟨vℓ,r,S(0)⟩ ·mSr(0).

We denote ϕ(X) ∈ Rd×nd as the stack of feature map of X ∈ Rd×n.

Note the optimal solution in Eq. (22) can be rewritten as

min
γ

∥γ∥2 such that mK∗
i γ = yi for i = 1, . . . , n.

We have the optimal solution for kernel regression is γ∗ := m−1(H∗)−1 vec(Y ) and its correspond-
ing prediction for xte will be Fntk(γ(τ), xte) = K∗

te(H
∗)−1 vec(Y ). The solution to this program

can be rewritten as applying gradient flow on the

min
β

n∑
i=1

∥
√
mϕ(xi)

⊤β − yi∥22

with initialization β(0) = 0d. We use β(τ) to denote this parameter at timestamp τ trained by
gradient flow. We denote

Fntk2(β(τ), xte) :=
√
mϕ(xte)

⊤β(τ)

where Fntk2(β(τ), xte) be the predictor for xte at time τ . Then we have

Fntk2(β(τ), xte) =
√
mϕ(xte)

⊤︸ ︷︷ ︸
Rd×d

β(τ)︸︷︷︸
Rd

=
√
mϕ(xte)

⊤︸ ︷︷ ︸
Rd×d

(
√
mϕ(X)︸ ︷︷ ︸

Rd×nd

) γ(τ)︸︷︷︸
Rnd

= m K∗
te︸︷︷︸

Rd×nd

γ(τ)

= Fntk(γ(τ), xte)

where the second step follows β(τ) =
√
mϕ(X)γ(τ) the third step follows K∗

te = ϕ(xte)
⊤ϕ(X).

With these notations, as τ goes to infinity, we denote, for any ℓ ∈ [d],

Fntk2(xte)ℓ =

∫ ∞

τ=0

dFntk2(β(τ), xte)ℓ
dτ

dτ

where we have used the fact that the initial prediction is 0 as β(0) = 0d. Similarly for Fnn(xte)ℓ.
Let Fntk2,i(τ) = Fntk2(β(τ), xi) and Fntk2(τ) ∈ Rd×n. Similarly, for the NN predictor Fnn. Now
we take a closer look at the time derivative:

dFntk2(β(τ), xte)ℓ
dτ

=

〈
∂Fntk2(β(τ), xte)ℓ

∂β(τ)
,
dβ(τ)

dτ

〉
=

〈
∂Fntk2(β(τ), xte)ℓ

∂β(τ)
,−∂L(β(τ), {xi}ni=1)

∂β(τ)

〉
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= −

〈
∂Fntk2(β(τ), xte)ℓ

∂β(τ)
,

n∑
i=1

d∑
ℓ2=1

(Fntk2,i,ℓ2(τ)− yi,ℓ2)
∂Fntk2(β(τ), xi)ℓ2

∂β(τ)

〉

= −m

〈
ϕ(xte)ℓ,

n∑
i=1

d∑
ℓ2=1

(Fntk2,i,ℓ2(τ)− yi,ℓ2)ϕ(xi)ℓ2

〉
= −m vec(K∗

ℓ,te)
⊤ vec(Fntk2(τ)− Y ) (25)

where the first step follows from simple algebra, the second step follows from ODE formulation
(we remark that this is a very standard step in all the NTK literature), the third step follows from
Eq. (23), the fourth step follows from the definition of ϕ(xte)ℓ, the last step follows from simple
algebra.

We can obtain a time derivative of the same form for Fnn.

dFnn(W (τ), xte)ℓ
dτ

=

〈
∂Fnn(W (τ), xte)ℓ

∂W (τ)
,
dW (τ)

dτ

〉
=

〈
∂Fnn(W (τ), xte)ℓ

∂W (τ)
,−∂L(W (τ), {xi}ni=1)

∂W (τ)

〉
= −

〈
∂Fnn(W (τ), xte)ℓ

∂W (τ)
,

n∑
i=1

d∑
ℓ2=1

(Fnn,i,ℓ2(τ)− yi,ℓ2)
∂Fnn(W (τ), xi)ℓ2

∂W (τ)

〉
= −m vec(Kℓ,te(τ))

⊤ vec(Fnn(τ)− Y ) (26)
where the first step follows from simple algebra, the second step is standard in NTK literature, the
third step follows from Eq. (23), the last step follows from simple algebra.

Thus we analyze the difference between the NN predictor and NTK predictor via this integral form
|Fnn(xte)ℓ − Fntk2(xte)ℓ|

=

∣∣∣∣Fnn(W (0), xte)ℓ +

∫ ∞

τ=0

(
dFnn(W (τ), xte)ℓ

dτ
− dFntk2(β(τ), xte)ℓ

dτ

)
dτ

∣∣∣∣
= |Fnn(W (0), xte)ℓ|+

∣∣∣∣−m

∫ ∞

τ=0

(
vec(Kℓ,te(τ))

⊤ vec(Fnn(τ)− Y )− vec(K∗
ℓ,te)

⊤ vec(Fntk2(τ)− Y )
)
dτ

∣∣∣∣
=

∣∣∣∣−m

∫ ∞

τ=0

(
vec(Kℓ,te(τ))

⊤ vec(Fnn(τ)− Y )− vec(K∗
ℓ,te)

⊤ vec(Fntk2(τ)− Y )
)
dτ

∣∣∣∣
≤ m

∣∣∣∣∫ ∞

τ=0

vec(Kℓ,te(τ)−K∗
ℓ,te)

⊤ vec(Fnn(τ)− Y )dτ

∣∣∣∣+m

∣∣∣∣∫ ∞

τ=0

vec(K∗
ℓ,te)

⊤ vec(Fnn(τ)− Fntk2(τ))dτ

∣∣∣∣
≤ m max

0≤t≤∞
∥Kℓ,te(τ)−K∗

ℓ,te∥F
∫ ∞

τ=0

∥Fnn(τ)− Y ∥Fdτ +m max
0≤t≤∞

∥K∗
ℓ,te∥F

∫ ∞

τ=0

∥Fnn(τ)− Fntk2(τ)∥Fdτ

≤ mϵℓ,test

∫ ∞

τ=0

∥Fnn(τ)− Y ∥Fdτ +m max
0≤t≤∞

∥K∗
ℓ,te∥F

∫ ∞

τ=0

∥Fnn(τ)− Fntk2(τ)∥Fdτ ,

where the first step follows from the difference between the NN predictor and NTK predictor, the
second step follows from Eq. (25) and Eq. (26), the third step follows |Fnn(W (0), xte)ℓ| = 0 by
symmetric initialization from Definition 3.7, the fourth step follows from simple algebra, the fifth
step follows from Frobenius norm, the last step follows from simple algebra.

For the first term, recall ∥H∗ −H(τ)∥F ≤ ϵH and, by Claim E.5, we have

λmin(H(τ)) ≥ 1

2
λ.

Using this fact we know ∥Fnn(τ)−Y ∥F ≤ exp(−m
2 λτ)∥Fnn(0)−Y ∥F (The reason to obtain this

is due to solve ODE).

Therefore, by Lemma D.3, we can bound∫ ∞

τ=0

∥Fnn(τ)− Y ∥Fdτ =

∫ ∞

τ=0

exp
(
−m

2
λτ
)
∥Fnn(0)− Y ∥Fdτ
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= O(

√
nd

mλ
).

To bound
∫∞
τ=0

∥Fnn(τ) − Fntk2(τ)∥Fdτ , we observe that Fnn(τ) → y and Fntk2(τ) → y with

linear convergence rate. Therefore, we can choose some τ0 = C
mλ log

(
nd

ϵH ·mλ

)
so that

∫ ∞

τ0

∥Fnn(τ)− Fntk2(τ)∥Fdτ ≤
∫ ∞

τ0

∥Fnn(τ)− Y ∥Fdτ +

∫ ∞

τ0

∥Fntk2(τ)− Y ∥Fdτ

≤ O

(
1

mλ
(∥Fnn(τ0)− Y ∥F + ∥Fntk2(τ0)− Y ∥F )

)
≤ O

(√
nd

mλ
exp (−mλτ0)

)
≤ O(ϵH).

where the first step follows from simple algebra, the second step follows from integral range is τ0,
the third step follows from Lemma D.3, the last step follows from choice of τ0.

Thus it suffices to bound
∫ τ0
τ=0

∥Fnn(τ)− Fntk2(τ)∥Fdτ ≤ τ0 max0≤t≤τ0 ∥Fnn(τ)− Fntk2(τ)∥F .

First observe that

∥Fnn(τ)− Fntk2(τ)∥F ≤ ∥Fnn(0)∥F +

∫ τ

s=0

∥∥∥∥d(Fnn(s)− Fntk2(s))

ds

∥∥∥∥
F

ds

=

∫ τ

s=0

∥∥∥∥d(Fnn(s)− Fntk2(s))

ds

∥∥∥∥
F

ds,

where the last step follows symmetric initialization from Definition 3.7.

Note
d(Fnn(τ)− Fntk2(τ))

dτ
= −mH(τ) vec(Fnn(τ)− Y ) +mH∗ vec(Fntk2(τ)− Y )

= −mH∗ vec(Fnn(τ)− Fntk2(τ)) +m(H∗ −H(τ)) vec(Fnn(τ)− Y )

where the first step follows from definition of Fnn and Fntk2.

Since H∗ is positive semidefinite, −H∗ vec(Fnn(τ) − Fntk2(τ)) term only makes ∥Fnn(τ) −
Fntk2(τ)∥F smaller. Therefore, we have

∥Fnn(τ)− Fntk2(τ)∥F ≤ m

∫ τ

s=0

∥Fnn(s)− Y ∥F ∥H(τ)−H∗∥Fds

≤ mτ∥Fnn(0)− Y ∥F ϵH

≤ O
(
mτ

√
ndϵH

)
,

where the last step is by Lemma D.3.

Therefore, we have∫ τ0

τ=0

∥Fnn(τ)− Fntk2(τ)∥Fdτ ≤ O
(
mτ20

√
ndϵH

)
= O

(√
nd

mλ2
log2

(
nd

ϵHmλ

)
ϵH

)
.

where the first step follows from integral range is τ0, the second step follows from the choice of τ0.

Lastly, as Fntk2(xte)ℓ = Fntk(xte)ℓ, we put things together and get

|Fntk(xte)ℓ − Fnn(xte)ℓ| ≤ O

(√
nd

λ
ϵℓ,test +

√
nd

λ2
log2

(
nd

ϵHmλ

)
ϵH

)
.
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From the above, after we change the integration from (0,∞) to (0, τ), the statement still holds.
Then, based on the gradient flow version, we can have a gradient descent version with a constant
error factor by replacing integral with geometric summarization (for example

∑∞
i=0 a

i < 2, when
a ∈ (0, 0.5) ).

G DIFFUSION

In Section G.1, we provide the proof of our main result of diffusion. In Section G.2, we provide
some tools from previous works.

We first define an auxiliary function F̃ntk of the same functional form as Fntk, but trained on a
pseudo dataset S̃ := {ỹi, xi}ni=1 with ỹi := FH(xi) + ϵi and ϵi := yi − F∗(xi). Then, we have the
following claim.
Claim G.1 (Loss decomposition). We can decompose our target function as the following

1

T

∫ T

0

E[∥Fnn(W (τ), (t, x(t)))− F∗(t, x(t))∥22]dt ≤ Z1 + Z2 + Z3 + Z4,

where

Z1 =
1

T

∫ T

0

E[∥Fnn(W (τ), (t, x(t)))− Fntk(γ(τ), (t, x(t)))∥22]dt (coupling)

Z2 =
1

T

∫ T

0

E[∥Fntk(γ(τ), (t, x(t)))− F̃ntk(γ(τ), (t, x(t)))∥22]dt (label mismatch)

Z3 =
1

T

∫ T

0

E[∥F̃ntk(γ(τ), (t, x(t)))− FH(t, x(t))∥22]dt (early stopping)

Z4 =
1

T

∫ T

0

E[∥FH(t, x(t))− F∗(t, x(t))∥22]dt. (approximation).

The coupling error term is the gap between neural networks Fnn and a kernel function Fntk. The
approximation error term is the gap between the target function F∗ and its corresponding RKHS
function FH . These two terms transfer the problem of neural networks training into the problem of
kernel regression.

G.1 MAIN RESULT OF DIFFUSION

In this section, we prove the main result of diffusion.
Theorem G.2 (Restatement of Theorem 6.6). Suppose Assumptions 6.1, 6.2, 6.3, 6.4 hold and we set
m = Ω(λ−2n3d3 exp(18B) log2(nd/δ)) and η = 0.1λ/(mn2d2 exp(16B)). Moreover, suppose
T̂ satisfies Assumption 6.5 with corresponding ϵ(n, T̂ ). Then for large enough RH, with probability
at least 1− δ, it holds that

1

T

∫ T

0

λ(t)E[∥sW (T̂ )(t, x(t))−∇ log pt(Xt)∥22]dt

≤ O

(
1

λ
√
n
+ ϵ(n, T̂ ) + dA2(RH) + dA(RH) +

√
dA(RH)Γδ + Γδ

)
.

Proof of Theorem 6.6. Note that the m and η satisfy the conditions in Theorem 4.2. The reason
about a different m is that we choose a different R and apply Lemma E.2 one more time. Recall the
ϵℓ,test and ϵH are defined in Theorem F.2.

Note that H∗ = H(0). By Lemma 5.1, Part 2, let R = λ/(2n2d2 exp(10B)), we have with
probability at least 1− δ such that

∥ H∗︸︷︷︸
nd×nd

− H(τ)︸ ︷︷ ︸
nd×nd

∥F ≤ ϵH =
λ

2nd
.
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Note that K∗
ℓ,te and Kℓ,te share the same weight perturbation as H∗ and H(τ). Thus, by using the

same proof as Lemma 5.1, Part 1, we have

∥K∗
ℓ,te︸ ︷︷ ︸

n×d

−Kℓ,te︸ ︷︷ ︸
n×d

∥F ≤ ϵℓ,test =
λ

2n1.5d1.5
.

We have

∥Fntk(γ(τ), xte)− Fnn(W (τ), xte)∥2
≤

√
dmax

ℓ∈d
|Fntk(γ(τ)ℓ, xte)− Fnn(W (τ), xte)ℓ|

≤ O

(√
nd

λ
max
ℓ∈[d]

ϵℓ,test +

√
nd

λ2
log2

(
nd

ϵHmλ

)
ϵH

)
≤ O

(√
nd

λ

λ

n1.5d1.5
+

√
nd

λ2
log2

(
nd

mλ

)
λ

nd

)
≤ O

(
1

λ
√
n
log2

(
nd

mλ

))
≤ O

(
1

λ
√
n

)
where the first step follows from simple algebra, the second step is by Theorem F.2.

Thus, we finish the proof by Claim G.1, where coupling is from above, label mismatch is from
Theorem G.4, early stopping is from Assumption 6.5 and approximation is from Theorem G.3.

G.2 TOOLS FROM PREVIOUS WORKS

We have the following statements from previous works (Han et al., 2024b).

Theorem G.3 (Theorem 3.6 in (Han et al., 2024b), universal approximation of score function).
Suppose Assumptions 6.1, 6.3 and 6.4 hold. Let RH be larger than a constant c1, i.e., C(d+1, 0) in
Proposition 6 of (Bach, 2017), which depends only on d. There exists a function FH ∈ H such that
∥FH∥2H ≤ dRH and

1

T

∫ T

0

E[∥FH(t, x(t))− F∗(t, x(t))∥22]dt ≤ dA2(RH).

Theorem G.4 (Theorem 3.10 in (Han et al., 2024b), label mismatch). Suppose Assumptions 6.1
and 6.2 hold. If we initialize both Fntk and F̃ntk properly, then with probability at least 1 − δ it
holds simultaneously for all τ that

1

T

∫ T

0

E[∥Fntk(γ(τ), (t, x(t)))− F̃ntk(γ(τ), (t, x(t)))∥22]dt

≤ dA(RH) + C0(
√

dA(RH)Γδ + Γδ)

where C0 is a constant defined in Theorem 1 of (Reeve & Kaban, 2020).

H DISCUSSION

In this section, we provide discussions about the potential extensions of our method on various
popular frameworks, such as attention mechanism (Section H.1) and feature learning (Section H.2).

H.1 SELF-ATTENTION LEARNING

The self-attention can be written as

F (WKX,WQX,WV X) ∈ Rd×n′
, (27)
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where WK ,WQ,WV ∈ Rd×d denotes key, query, and value matrix respectively and X ∈ Rd×n′
is

a sequence of n′ tokens. As our work is a first step to understanding softmax, it is natural to consider
how to extend our results to self-attention. It is well-known that using two reformulation tricks:
tensor-trick and SVM-trick (Gao et al., 2023b;c; Alman & Song, 2024a), any analysis for softmax
function can be naturally generalized to attention function F (WKX,WQX,WV X). Therefore,
we conjecture that we can borrow the idea from (Gao et al., 2023b;c; Alman & Song, 2024a) to
decouple Eq (27) into the value term and the softmax term. And, we can alternatively optimize the
weights for the softmax term (W k,WQ) and the value term (WV ). We leave this valuable direction
as a future work.

H.2 FEATURE LEARNING

Recently, there is a line of work showing that feature learning may be beyond NTK on sample
complexity or time complexity, e.g., (Allen-Zhu & Li, 2019; Wei et al., 2019; Hanin & Nica, 2019;
Allen-Zhu et al., 2019a; Daniely & Malach, 2020; Chen et al., 2020; Yang & Hu, 2020; Huang &
Yau, 2020; Li et al., 2020; Ghorbani et al., 2020; Refinetti et al., 2021; Malach et al., 2021; Luo et al.,
2021; Damian et al., 2022; Shi et al., 2022; 2024) and many more. It is worth studying the feature
learning ability of two-layer softmax NN to figure out what feature pattern the softmax prefers to
learn and how it happens. We leave this valuable direction as a future work.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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