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ABSTRACT

The softmax activation function plays a crucial role in the success of large lan-
guage models (LLMs), particularly in the self-attention mechanism of the widely
adopted Transformer architecture. However, the underlying learning dynamics
that contribute to the effectiveness of softmax remain largely unexplored. As a
step towards better understanding, this paper provides a theoretical study of the
optimization and generalization properties of two-layer softmax neural networks,
providing theoretical insights into their superior performance as other activation
functions, such as ReLU and exponential. Leveraging the Neural Tangent Kernel
(NTK) framework, our analysis reveals that the normalization effect of the soft-
max function leads to a good perturbation property of the induced NTK matrix,
resulting in a good convex region of the loss landscape. Consequently, softmax
neural networks can learn the target function in the over-parametrization regime.
To demonstrate the broad applicability of our theoretical findings, we apply them
to the task of learning score estimation functions in diffusion models, a promising
approach for generative modeling. Our analysis shows that gradient-based algo-
rithms can learn the score function with a provable accuracy. Our work provides
a deeper understanding of the effectiveness of softmax neural networks and their
potential in various domains, paving the way for further advancements in natural
language processing and beyond.

1 INTRODUCTION

Large Language Models (LLMs) like GPT4 (Achiam et al., [2023)) from OpenAlI and Claude 3 (An-
thropic, 2024) from Anthropic have widely and profoundly changed the world. Some researchers
believe they split human history into two parts: the Pre-LLM Era and the LLM Era. The LLMs have
been widely used in human activities, such as education (Kasneci et al., 2023), law (Sun, [2023)),
finance (Li et al.,[2023c)), bio-informatics (Thirunavukarasu et al., [2023)), coding (Hou et al., |2024),
and even top Al conference reviews such as ICML, ICLR, NeurIPS, and AISTATS (Liang et al.,
2024a). To make LLMs successful, one of the cores of LLMs is the Transformer model archi-
tecture (Vaswani et al.l [2017), which has many advantages, including faster-parallelized inference
rather than sequential inference like RNN (Hochreiter & Schmidhuber, [1997); being easy to scale
up the model capacity to support the scaling laws in neural language models (Kaplan et al.,|2020),
i.e. since the input and output dimension of each Transformer blocks is the same, we can stack an
arbitrary number of layers as we want. The kernel design of the Transformer block is self-attention
layers, where each block has many attention heads and each head has its three important private
parameter matrices for key, query, and value operation. Many papers believe that the self-attention
operation is the critical reason for emergent ability (Wei et al.l 2022)), including in-context learn-
ing (Olsson et al., [2022}; |Reddyl 2024) and compositional ability to solve complex task (Dzir1 et al.}
2024; Lu et al., 2024). The Transformer is so successful and has been widely certified that this
architecture can be adopted in many other modalities such as tabular data, image/video generation,
e.g., the video diffusion model SORA (OpenAl, 2024) using Transformer (Peebles & Xie, [2023)) as
its backbone.

When we delve into the self-attention mechanism, we find the softmax function plays a crucial
role (Vaswani et al.| [2017). It enables the model to focus on the most related information among
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Table 1: Comparing hidden neuron number m in two-layer neural networks and training steps T
are required under different activation functions to guarantee that, for any ¢ > 0, with probability at
least 0.99, the training loss is smaller or equal to €. Here, n is the number of training samples, and
A is the smallest eigenvalue for the matrix of the neural tangent kernel, where n > 1 and A < 1. We
can see that the two-layer NN with softmax activation function requires almost the same number of
neurons and training steps to converge as that with ReLLU or exponential activation functions. More
details: Theorem 3.6 in (Munteanu et al., [2022) for ReLU; Theorem 1.1 in (Gao et al., [2023a)) for
exp; Corollary in our paper for softmax.

ReLU ((Munteanu et al.; 2022)))  exp ((Gao et al.,|2023a))) Softmax (ours)
m Q(A"2n?log(n)) QA 2n2Wog?(n)) QA 2n2t°M1og?(n))
T QA "2n2%log(n/e)) QA 2n2t W log(n/e))  QA2n2T°W log(n/e))

input sequences by giving higher attention scores to the positions that are more relevant for the
current position’s representation and to capture dependencies between positions. (Cordonnier et al.}
2020) find that softmax attention is more expressive and performs better than any convolutional
layer. (Deng et al.| 2023c])) exhibits softmax attention outperforms linear attention in most scenarios.
Although the softmax function code has been executed every second on thousands of servers, there
is a limited understanding of the following question:

(%) What is the learning mechanism that makes softmax so powerful?

To demystify the black box, in this paper, we analyze the Gradient Descent (GD) training dynamics
for two-layer Neural Networks (NN) with softmax activation function for multi-dimensional regres-
sion, i.e., F(W,z,a) € R?and V¢ € {1,...,d},

F(W,z,a), := m{ag,exp(W ' z)) - (exp(W "), 1,,) %,

where m is number of hidden neurons, exp(-) is element-wise exponential function, a¢, W are the
first and second layer weights respectively and x is the input data. Note that, the self-attention

could be written as F(WXX, WOX, WV X) € R where WK, WQ WV e R4 denotes

key, query, and value matrix and X € R¥*7 is a sequence of n’ tokens. Thus, studying the two-
layer softmax network is the prerequisite to understanding self-attention. See more discussion in
Section[Hl

There is a rich line of work studying two-layer NN learning trajectory under ReLU activation func-
tion ((Li & Liang, 2018} [Du et al., [2019b; |Allen-Zhu et al., |2019b; Arora et al., 2019a; Song &
Yang, [2019; Mei et al., 2019; [Song et al., 2021c} Brand et al., 2021; Munteanu et al., 2022} |Chizat
& Bachl 2020} [Zhou et al., [2021; [Lyu et al., 2021} |Cao et al.,[2022) and many more) or exponential
activation function from the latest work (Gao et al., [2023a). As far as we know, our work is the first
to theoretically study the optimization and generalization of the two-layer softmax network and it is
a first step on understanding the power of softmax.

One popular analysis method for studying over-parameterized NN is Neural Tangent Kernel
(NTK) (Jacot et al., 2018), where overparameterized networks are approximately linear models
around their initialization, so the network training is almost convex.

To answer our (*) question above, we adopt the powerful NTK analysis paradigm in this work.
Our analysis shows that, because of the normalization effect of the denominator, the Neural Tangent
Kernel induced by the softmax has a good perturbation property (Lemmal3.1)), which means the loss
landscape of the softmax version has a large convex region. Thus, the softmax NN requires almost
the same number of neurons and training steps to fit the data and converge as ReLLU or exponential
NN, which is illustrated in Table|[I|clearly (Theorem#.2). To demonstrate the broad applicability of
our theoretical findings, we apply our analysis in a practical case study to show the generalization
ability of softmax NN, where the task is learning score estimation functions in diffusion models
with noisy labels, a promising approach for generative modeling, as we can smartly transfer it to
a multi-dimensional regression task (Theorem [6.6). Thus, we show that gradient-based algorithms
can learn the score function with a provable accuracy.

Our paper’s contributions are summarized as follows:
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* Softmax NTK: We build up the first NTK analysis framework for two-layer NN with
softmax activation function (Theorem . Furthermore, our multi-dimensional regression
setting is more general than previous work (Munteanu et al.} 2022} [Gao et al}[2023a) (ReLU
and exp) and can be degenerated to the linear regression setting.

« Diffusion Models Case Study: We apply our results in learning score estimation functions
in diffusion models with noisy labels to verify our analysis effectiveness (Theorem [6.6).

2 RELATED WORKS

2.1 NEURAL TANGENT KERNEL

Recently many studies show that the analysis of optimization and generalization for deep learn-
ing should be interwoven together. One line of work uses the first-order Tyler expansion to study
sufficiently over-parameterized neural networks around its initialization like NTK, e.g. (Matthews

et al.l 2018} [Zou et al.| 2018} Jacot et al., 2018} [Li & Liang} 2018} [Allen-Zhu et al., 2019¢; Zou &
Gu, 2019; |[Oymak & Soltanolkotabi, 2019; [Lee et al.| ovak et al.| [2019; [Yang] 2019; [Song
& Yang, 2019; Du et al., 2019a; |Allen-Zhu et al., 2019b; Chizat et al., 2019; |Oymak et al.| 2019;
Arora et al., [2019a; |Cao & Gu, 2019; Ji & Telgarsky, \Allen-Zhu et al., 2019a; Oymak &
Soltanolkotabi, [2020; (Cao et al., 2020} [Zou et al.l 2020; Geiger et al., 2020; Brand et al.|

Montanari & Zhong, : Munteanu et al.| 2022} |Gao et al, 20234} [Qin et al., 2023bfalc; [Song &
Ye| 2023} |Gao et al., [2024; [Song et al., 2024b) and more. Thus, the neural network optimization

can be a convex problem. The NTK method has been widely used in different scenarios, such as
preprocessing analysis (Song et al., [2021c; [Hu et al., 2022} [Alman et al., 2023} [2023a;
Sun et al,[2023; 2024} |Gao et al., [2024), federated learning (L1 et al., 2023b), LoRA adaptation

et al.; 2021} Xu et al., [2024b} |Shi et al., [2023b) of LLMs (Malladi et al., 2023)), and learning score
estimation functions in diffusion models (Han et al.| 2024b).

2.2 SOFTMAX AND ATTENTION IN LLMS

Recently, significant advances have been achieved in language modeling, particularly with the intro-
duction of Transformer architectures and attention mechanisms (Vaswani et al.,[2017). Self-attention
to capture long-range dependencies in text, revolutionizing the field of NLP, e.g., BERT (Devlin

et al. :2019), PalLM (Chowdhery et al.| 2022), LLaMA (Touvron et al.} [2023a), LLaMA 2 (Touvron
et al., |2023b), ChatGPT (OpenAl, [2022), GPT4 (Achiam et al., 2023), Claude 3 (Anthropic, [2024)

and so on. Many works demonstrate the softmax is beyond other activation functions such as ReLU
attention or linear attention in different aspects, e.g, approximation power (Deng et al.} 2023}, [San-

ford et al.| 2024} [Noci et al., 2024} 2024)), prompt tuning (Oymak et al., 2023), in-context

learning ability (Gao et al., 2023c; [Shi et al., 2023c} [Collins et al., [2024; Chen et al., 2024c), com-
positional ability(Xu et al., [2024a). Many works study to generalize the softmax into high order

attention (Alman & Song}, 2024b)) or to accelerate softmax computation (Wang et al., 2020} [Choro-|
manski et al., [2020; [Shen et al., 2021} |Qin et al 2021}; [Alman & Song| 2023} Brand et al., 2024;
Alman & Song| 20244} [Han et al., Hu et al., [2024; Deng et al. 2024} [Song et al., [2024a;
Gao et al.,[2023d}e} [Kacham et al., 2023; [Liang et al.,2024b). Another line of work analyzes a one-
layer softmax network trained on the linear regression task (Li et al [20234; [Deng et al., [2023aljb}
Chu et al} 2024} [Gao et al.}, 2023b} [Sheen et al.} [2024), while our work studies a two-layer softmax

setting.

2.3 DIFFUSION MODEL

Score-based generative diffusion models can generate high-quality image samples comparable to
GANs which requires adversarial optimization (Ho et al/, 2020} [Song et all, [2021b; [Kim et al.
[2024). Based on the U-Net (Ronneberger et al., [2015), stable diffusion can successfully generate
business-used images. Based on the softmax-based self-attention (Peebles & Xie, [2023), OpenAl
released a video diffusion model, SORA 2024), with a surprising performance. Another

line of work study training diffusion models with a better theoretical guarantee (Song & Ermon

2019} 2020; [Song & Kingmal 2021} [Song et al, 2020; [2021a} [Lee et al.l 2022} Kwon et al., {2022}
Song et al 2023 [Lim et al., 2023; [Chen et all [2023aid:b; [Shah et al.|, 2023; |Yang et al., 2023}
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Benton et al., 2023} |Gatmiry et al., 2024} |Chen et al.l|2024a;|Guo et al., 2024} Wu et al.| 2024} (Chen
et al.,[2024b). In this work, we adapt our analysis in diffusion models.

Roadmap. We organize our paper as follows: In Section 3] we introduce the notation system and
problem setup. In Section 4} we present our main result, proving that a Softmax neural network
with poly(nd) neurons can fit any training dataset consisting of n d-dimensional samples for d-
dimensional regression tasks. In Section[5] we outline the key techniques used to establish our main
result. In Section[6} we extend our findings to Diffusion Models, demonstrating that Softmax neural
networks can accurately learn score estimation even with noisy labels. Finally, in Section [/, we
conclude the paper.

3 PRELIMINARY

We first introduce some notations. Then, we will introduce our problem setup.

Notations. We use A (1, 3) to denote the Gaussian distribution with x4 and covariance . For any
positive integer n, we use [n] to denote set {1,2,--- ,n}.

Let a vector z € R". We denote the 5 norm as ||z||2 := (327, 22)'/2, the ¢; norm as ||z||; =
> 1 |zl Izl as the number of non-zero entries in 2, ||z[| o as max;e(,) |2:]. Weuse 2 to denote
the transpose of a z. We use (-, -) to denote the inner product. Let A € R"*%, we use vec(A) to
denote a length nd vector. We denote the Frobenius norm as || Al|p := (3 ¢ seja) A?,j)1/2~ For a
function f(z), f is L-Lipschitz if || f(z) — f(y)|l2 < L - ||x — y||2- Let D denote a distribution. We
use & ~ D to denote that we sample a random variable x from distribution D. We use E[] to denote
expectation and Pr[] to denote probability. We use p.s.d. to denote the positive-semidefinite matrix.

As we have multiple indexes, to avoid confusion, we usually use ¢, j € [n] to index the training data,
¢ € [d] to index the output dimension, r € [m] to index neuron number.

3.1 MODEL, DATA, AND ALGORITHM

Models. We consider a two-layer softmax neural network. The hidden layer has m neurons, and we
use the softmax function as the activation function, F(W, -, a) : R — R% and V/ € [dy]

F(W,z,a) := m(ag,exp(WTx» . (exp(WT:c), 1m)_1, (D

where exp(-) is element-wise exponential function. We use m as a normalization factor. Note that
we can reduce the ds to 1 for the linear regression setting. To simplify the proof, we let d; = ds.
Note that our proof can generalize to different d;, ds easily.

We only optimizing W and not both W and a simultaneously as many previous works to sim-
plify optimization, e.g., (Du et all |2019b; Song & Yang| 2019; Munteanu et al., 2022), where
x € R? represents the input, wy,--- ,w,, € R? are weight vectors in the first layer, i.e.,
W = [wy, - ,wy,] € R>™ and ay,--- ,aq € R™ are weights in the second layer. We can
simplify the notation as F'(W, ) when the context is clear.

Data. We have n training data points D,, = {(z;,v;)}",, where + € R? and y € Rdﬂ We
denote X = [z1,...,2,] € R and Y = [y1,...,y,] € R¥™. We assume that ||z;|l» < 1 and
lyill2 < 1, Vi € [n].

Gradient Descent. We use e, to denote a vector where the r-th coordinate is 1 and everywhere else

is 0. Vr € [m], V¢ € [d], we have W € R? can be written as

ORUV20)0 _ 4 mfag o e, exp(W 7)) - (exp(W ), 1)
— mlar, xp(W T 2)) - exp(WT2), 1) 2 - exp(W T2, ey 0 L)

= +mlaroe,S)-x —mlag,S) - (S,e, 0 1y)x. 2

'Our analysis can extend to z; € R% and y; € R easily.
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We have the softmax function S € R™*", where S; € R™ denotes (exp(W z;),1,,)7! -
exp(W ;) and S;, € R denotes (exp(W "x;),1,,)" 1 - exp(w, x;), Vr € [m],Vi € [n]. For
simplicity, we denote a; as (L, exp(W ' x;)), exp; as exp(W ;) and exp, . as exp(w, z;),
Vr € [m], Vi € [n], when the context is clear.
We use W (7) to denote the weights of the first layer on the timestamp 7 and similar for S(7) and
F(7) when the context is clear. Now, we introduce some necessary definitions used.
We first introduce the function over the whole training dynamic.
Definition 3.1 (F(7), dynamic prediction). We define F;(7) € R? for any timestamp T, as

Fyi(1) := m{ag,exp(W (1) T2:)) - (exp(W (1) T2;), 1) L.
Here x; € R%. It can be rewritten as Fy ;(1) = m({ag, Si(7)).

We consider d-dimensional MSE loss.
Definition 3.2 (Loss function over time). We define the objective function L as below:

1
LW(r)) = SN (Fealr) = yea)*.
i€[n] L€[d]
Thus, we define the gradient of w.

Definition 3.3 (Aw,(7)). Forany r € [m], we define Aw, () € R? as below:

Aw, (1) := Cm

n d
=3 S (Fealr) = ye) - (e 0 er, i) = (00, Si(r)) - (Si(r) e 0 1)) 2

i=1 (=1
where S;(1) = (exp(W (1) T2;), 1) "L - exp(W (1) T2;).

We can simplify the gradient calculation by the fact 1 = (1,,,,S;(7)). Thus, we have the following
claim.

Claim 3.4. Aw,(7) = m " S0 (Fa(r) — yes) - ((<ah Ay — ag, Si(7))) - sm(T)) ;.

We use the gradient descent (GD) algorithm with the learning rate n to train the network. As we
only train the hidden layer I and fix a, we have the following gradient update rule.

Definition 3.5 (Gradient descent). The gradient descent algorithm for optimizing the weight matrix
W is defined as:

W(r+1)=W(r)—nAW (1),
where AW (1) € R™™ and Aw, (1) € R? is the r-th column of AW (1) defined in Definition

3.2 NEURAL TANGENT KERNEL

Now, we are ready to introduce our key tools, Neural Tangent Kernel induced by the softmax. We
define the kernel with respect to timestamp 7.

Definition 3.6 (Kernel function). For simplicity, we denote S(W Tz;) as S; € RZ, and vp, =
ag,r - 1y, — ap € R™. We define the function (Gram matrix) H : RIxm _ Rrdxnd 46 following

Hyy Hip -+ Hig
Hyy Hyy -+ Hyy
H(W) := . . . . )
Hiy Hga -+ Hgg
and for each {1, {5 € [d], we have Hy, 4, € R™*™ is defined as
1 m
[He, 0,)i(W) = EfciTl‘j z_:l<%,ra3i> Sy (Veyr, Sj) - MS;

For any timestamp T, for simplicity, we denote H(7) := H(W (7)) and denote H(0) as H*.
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Note that H* is a positive semi-definite matrix, and we denote its minimum eigenvalue as A :=
Amin (H*) and we assume A > 0 as previous works (Du et al., 2019b; |Allen-Zhu et al., |2019bic).

Initialization. We use symmetric initialization, which is widely used in previous works (Daniely &
Malach, 2020; Damian et al.l [2022; Munteanu et al.l [2022; [Shi et al.| [2022;2024).

Definition 3.7 (Symmetric initialization). For each r € [m/2], we initialize weights as below
o We draw wo,_1 from N'(0,021,) and uniformly draw as,_1 from {—1,+1}<.
o We assign as, = —ag,_1 and war_1 = Way-.

Due to symmetric initialization, we can easily see that F(W (0),z) = 0,Vz € R%.

4 MAIN RESULTS

We first define a constant we used.

Definition 4.1. Let C' > 10 denote a sufficiently large constant. We define parameter B as follows
B := max{Co+/log(nd/d), 1}.

Now, we are ready to present our main result, whose complete proof is in Appendix

Theorem 4.2 (Main result). Let A = Ayin (H*) > 0, m = Q(A~?n*d” exp(18B) log?(nd/d)), n =
0.1\/(mn2d? exp(16B)), andT' = Q((mnX)~Llog(nd/e)) = QA2n2d? exp(16B)-log(nd/e)).
Forany€,8 € (0,0.1), after T iterations, with probability at least 1 — 6, we have | F(T) Y ||% < e.

If we fix § and o in B defined in the Definition 4.1} since exp(©(B)) = (nd)°?), we can simplify
the m = Q(A2(nd)?>*°M) and T = QA2 (nd)>toM).

The Theoremmeans that as we have poly(nd) number of neurons and training steps, the softmax
NN can fit any training datasets with n number of d-dim training samples on d-dim regression task.

Corollary 4.3. Consider the I-dimension linear regression setting, i.e., di = d and do = 1. Let
A= Amin(H*) > 0, m = QA 2n2exp(18B)log®(n/d)), n = 0.1\/(mn? exp(16B)), and
T = Q((mnX\)~tlog(n/e)) = QA 2n%exp(16B) -log(n/e)). For any €,6 € (0,0.1), after T
iterations, with probability at least 1 — 6, we have |[F(T) — Y||2 < e.

Proof. Directly follow Theorem O

As shown in Table our two-layer softmax network needs the same number of training steps T and
number of neurons m as two-layer ReLU networks or two-layer exponential networks.

5 TECHNICAL OVERVIEW

We first show a key Lemma below, showing that the weight w perturbation will not change the
Neural Tangent Kernel too much.

Lemma 5.1 (Weight value perturbation = kernel value perturbation). Let R € (0,0.01). If the
following conditions hold

« Let W = [Wy, -, W] € RIX™ where wy,- - - , Wy, are i.i.d. draw from N'(0,0%1,).
o Let W = [wy, -+ ,wy) € R™ and satisfy ||w, — w,||2 < R forany r € [m).
Then, with probability at least 1 — 8, we have ||[H(W) — H(W)||r < Rnd exp(10B).

Please see Appendix [B.2]for the proof of Lemma[5.1] We can see that the kernel matrix has a small
perturbation when the weights w perturb. Note that in Lemma 4.2 of (Munteanu et al., 2022), they

have | H(W)— H(W)||r < 2Rn for the ReLU activation function and in Lemma 6.7 of (Gao et al.,
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2023al), they have ||H(W) — H(W)HF < 3Rn'*+°M) for the exp activation function. When we

consider the 1-dimension linear regression task, we have | H(W) — H (W)H r < Rn'to() which
is almost the same as the other two cases.

Remark 5.2. In the proof of Lemma|B.2| we do not use concentration bound as previous work (Song
& Yang, 2019; IMunteanu et al.} 2022} \Gao et al.| 2023a). The reason is that we consider the worst

case. In general, E[H(W) — H (W)] # Opdxnd. Thus, using the concentration bound may not gain
any benefits.

Based on Lemmal[5.1} we can use math induction to finish the proof of our main Theorem. We show
the induction statement below.

Lemma 5.3 (Induction). Let T be a fixed integer. Assume the same condition as Theorem Let
D be defined as Definition|A.2]and D < R. If the following conditions hold

* Weights Property. ||w, (i) — w,(0)||2 < R, Vi € [7]
* Loss Property. |F(i) — Y||%2 < |[F(0) — Y|[|% - (1 — mn\/2)%, Vi € [7]
* Gradient Property. n||Aw,(i)||2 < 0.01 for all r € [m], Vi € [7]

Then, for T + 1 and V'r € [m), we have
» Weights Induction. ||w, (7 + 1) — w,.(0)||2 < D.
¢ Loss Induction. |F(7 +1) = Y% < (1 —mnA/4)™ T - ||[F(0) — Y||%.
* Gradient Induction. n||Aw, (7 + 1)||2 < 0.01,Vr € [m].

Please refer to Appendix[C.2} Appendix [C.3|and Appendix [C.4]for the proof of weights, loss, gradi-
ent induction in Lemma [5.3|respectively.

Lemma means that, at a fixed timestamp 7, if the weights w(7) is close to its initialization,
the loss is decreasing, and the gradient is also small, then we can conclude at timestamp 7 + 1,
these conditions still hold as local convexity proved by Lemma 5.1} Thus, after checking the initial
condition, we can conclude Theorem [4.2]

5.1 TECHNICAL NOVELTY AND COMPARISON TO THE EXISTING LITERATURE

In this work, as we consider the softmax activation function, the denominator term will also con-
tribute to gradient calculation. Handling the denominator poses many technical challenges, where
these challenges are unique to our setting and not presented in previous settings as ReLU (Song
& Yang, 2019), or exp (Gao et al., 2023a) activation function. In detail, in the gradient calcu-
lation, we need new loss decomposition Lemma to split the loss into |[F(1 + 1) — Y||%2 =
|F(t) =Y ||%+Co+C1+ Cs+ Cs. Then, we need to bound these new terms in Lemmafor Co,
LemmalE.4]and Claim[E.3]for Cy, Claim[E.6]for C5 and Claim [E.7]for C3, where all these Lemmas
are novel and non-trivial. We refer readers to Appendix [C.3]|for more details.

6 EXTENSION ON DIFFUSION

Now, we apply our results in learning score estimation functions in diffusion models with noisy
labels. We introduce problem setup in Section[6.1]and show our results in Section[6.2]

6.1 PRELIMINARY OF DIFFUSION

In this section, we briefly introduce the diffusion model proposed in (Song et al., [2021b).

Forward Process. During the forward process, we progressively inject the noise into the origi-
nal data distribution, which can be characterized by the following Stochastic Differential Equation
(SDE) (Song & Ermon, [2020; [Ho et al., [2020):

(1) = —5g()a(t) dt + /g, 2(0) ~ . @



Under review as a conference paper at ICLR 2026

where z(t) is the data at the diffusion process time ¢, g(t) > 0 is a deterministic weighting func-
tion; and (B;);>o is a standard d-dimensional Brownian motion/noise. The p represents the orig-
inal/target data distribution that we learn, and we only have few number of accesses to it, i.e., n
times. We denote p, as the distribution of x(t) at diffusion process time ¢. Then, we can write the
explicit solution to Eq. (B)) as

t
() = e~ Ji B9s50) 4 o i %9<S>ds/ elo 2900du /o (5)dB,.

0

Backward Process. We denote y(t) = x(T —t) to reverse the forward process in time (Haussmann
& Pardoux| 1986} [Follmer, 2005} |Cattiaux et al., 2021)) that transforms noise into samples from the
target distribution. We have a backward process associated to Eq. (3)) as:

dy(t) = (%Q(T —t)y(t) + g(T — t)Vlogpr—i(y(t)))d + /g(T — t)dB;, y(0) ~ qo. (4)

where (B;)¢>0 is another d-dim Brownian motion/noise. Following the literature, we call V log p; (+)
as “score function” (Song et al., 2021b). We have ¢ as the initial distribution of the backward
process and the score function V log p;(-) as the gradient of log density of x(t).

However, In practice, Eq.(@) cannot be directly used as both the score function and the distribution
pr are unknown. To solve the problem, we (1) randomly select a noise distribution as the initial
distribution of the backward process pr; (2) replace the ground-truth score function V log p; (x (%))
by an estimator sg(x(t),t). The parameterized estimator sy is learned by a neural network such as
U-Net (Ho et al.l 2020; Rombach et al.| [2022) and Transformer (Peebles & Xiel 2023). Thus, we
obtain a practically implementable approximation of the backward SDE:

1 _
dy(t) = (G9(T = )y(t) + g(T = )se(y (1), £))dt + Vg(T = 1)dBy. y(0) ~ N (0, L),
which can be used for sampling/data generation (Song & Ermonl 2020; (Chen et al., 2023bjc)

Score Matching. When estimating the score function, we usually use Lo loss between the estimated
and actual score:

min . [ MOElsoa(t).1) = Vlogpa(e) 1 )

where A(t) is the weighting function that captures time inhomogeneity. As the hardness of estimate
V log p; term in Eq. (3)), equivalently, we minimize the following denoising score matching (Vincent,
2011):
T
min

6 T—Tp Jg

ABE[||so(z(t),t) — Vlog pyo((t) | z(0))[3)d. (6)

In practice, the estimator of the score function is parameterized by a neural network, and we have
the following sampling procedure for any i € [n],

x(0); ~ po, t; ~Unif(0,T), x(t;); ~ pe,jo(-|2(0)s),

and we get the training dataset {x(0);, (t;, z(¢;);)}?, where £(0); € R? and (t;, z(t;);) € R4*+L.
We denote 2(0) as the noisy label and E[x(0)|z(t)] as the true label. For simplicity, we denote z(0);
as y; € R? and (t;,x(t;);) as #; € R4 and the training dataset as D,, = {(x;,;)}?",. Here, y
denotes the image from a dataset, and x denotes the noised image with its diffusion process time ¢.

Neural Network Parameterization. Recall that we consider a two-layer network with soft-
max activation function as the diffusion model in Eq. (1), satistying V¢ € [d], F(W,z,a), =
m{ay,exp(W ")) - (exp(W x),1,,)" 1. Note that we do not train the top-layer weights a, so
we can denote it as F),,, (W, x).

Then, similar as (Ho et al., 2020; [Han et al. [2024b), our loss function Eq. (6)) can be rewrite as
N
. 1
mml/nﬁ(W) = 5 Z; ”an(VVv xj) - y]”g
j=
We denote the target function as F(t,z(t)) := Ely | (¢,2(t))]. Let H be the reproducing Hilbert

space (RKHS) induced by the NTK (Carmeli et al.,|2010; Jacot et al., 2018)) and let £ in the RKHS
H such that || Fy |3, < Ry.
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6.2 MAIN RESULT OF DIFFUSION

We first introduce some natural assumptions we used.

Assumption 6.1. Based on normalization, we assume ||y;||2 < 1,||z;]|2 < 1,Vi € [n].
Assumption 6.2. Assume A\ = Apin(H*) > 0.

Assumption 6.3. The function g is almost everywhere continuous and bounded on [0, c0).
Assumption 6.4. Forall (t,x(t)) € (0,00) x R?, the function F,(t, z(t)) is B,-Lipschitz in x, i.e.,
[E(t, 2(t)) — Fu(t, 2 (t))[|2 < Ballz(t) — 2’ (2)]2

We denote A(Ry) := clA(@)_% 1og(—vf’*) and A = O(v/d) and

242 A dn)3/2A 1
A X NG
Assumption 6.5 (Assumption 3.11 in (Han et al., [2024b)). Fix any Fy, € H with | Full3, < Ry
and assume labels are generated as J; = Fy(x;) + €;. Suppose Fpui(v(T), ") is obtained by

2
d?A?%(R
_l’_ #

I's .= 2

(log(1/6) + log(logn)).

GD-trained kernel regression with the number of iterations T. We assume there exists € such that

f/ B (1T, (£, 2(1))) — Pt 2(8))]12)dt < e(n, ),

and e(n, T) = 0 .asn — oo.

Now, we are ready to present our main Theorem for diffusion.

Theorem 6.6 (Main results of score estimation and generahzatlon) Suppose Assump-

tions E . . . hold and we set m = Q(A"2n3d?exp(18B)log? (nd/%and n =

0.1\/(mn2d? exp(16B)). Moreover, suppose early stopping T satisfies Assumption m with corre-
sponding €(n,T). Then for large enough Ry, with probability at least 1 — ¢, it holds that

f/ E sy 7 (£ 2(8)) — ¥ log pu(X0) Z]dt

(V +€(n,T) + dA*(Ry) + dA(Ry) + /dA(Ry)Ts + T's).

Please refer to Appendix [G.|for the complete proof. Here, we provide a proof sketch.

Proof sketch of Theorem[6.6] In Theorem [F2] we show the “equivalence” between softmax NN
learning and corresponding neural tangent kernel regression, i.e., the gap between them is always
small. Then, we can borrow the generalization ability of kernel regression to the generalization abil-
ity of two-layer softmax NN. On the other hand, by Claim [G.I] we can decompose the loss into a
coupling gap, a label mismatch gap, an early stopping gap, and an approximation gap. By using our
Theorem@ Theorem@]with some tools from (Han et al.| 2024b), we finish the proof. O

From Theorem@ we know that, under some natural assumptions, the GD algorithm trained two-
layer softmax NN can learn a provable accuracy on the score estimation functions in the diffusion
model with noisy labels. We use this practical case study to demonstrate the broad applicability of
our theoretical findings.

7 CONCLUSION

This paper provides a theoretical analysis of the optimization and generalization properties of two-
layer neural networks with the softmax activation function. We apply our results in learning score
estimation functions in diffusion models with noisy labels to verify our analysis effectiveness. Our
findings contribute to a deeper understanding of the power of softmax neural networks and their
potential for self-attention, advanced LLMs, and generative modeling.
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Appendix

Roadmap. In Section[A] we introduce some definitions that will be used in the proof. In Section|B]
we provide the basic concentration. In Section [C] we provide the proof of our inductions. In Sec-
tion[D] we establish a bound for the weight of induction Part 1. In Section [E] we establish a bound
for the loss of induction Part 2. In Section [F} we introduce the NTK regression. In Section [G} we
introduce the diffusion. In Section [H] we discuss the potential implications of our results for pop-
ular frameworks such as attention mechanisms and feature learning. In Section ??, we provide the
potential limitations of this work. In Section ??, we discuss the societal impacts of our work.

A DEFINITION

Claim A.1 (Restatement of Claim[3.4). We have

n

d
Aw(r) =m0 S (Fei(r) = ) - (g Ln = a6, Si(7)) - Si(7)) - 2
i=1 (=1
Proof of Claim We can show that
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where the first step follows from the definition of Aw,(7), the second step follows from (a, o

er, ) = ag, T, and the last step is due to the Fact|A 4 ]

We present the following definition to simplify the notation.
Definition A.2. We define D

D :=4m A\l exp(3B)Vnd - |[F(0) = Y||p

Fact A.3. For any vectors u,v € R", the squared Euclidean distance between u and v can be
expressed as:

lu =3 = [lull3 - 2u"v + [Joll3.

Fact Ad4. Let 1,, be a vector of dimension m consisting of all ones, and S;(T7) € R, be the
indicator of some function T at position i. We have: B

1= (1, Si(7))
Fact A.5. For any real number |x| < 0.1, the following inequality holds:
(1—2)2<1-05z
Fact A.6. For any real number |z| < 0.1, we have
[exp(z) — 1] < 2|
Fact A.7. Forany x € (0,0.1), we have

Ssg
i=0 -t
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Fact A.8. For any |z| < 0.01, we have
exp(z) = 14z + O(1)2?

We state the standard Hoeffding inequality,
Lemma A.9 (Hoeffding inequality (Hoeffding}, [1963)). If the below conditions are true

e Letxy,--- ,xy, denote n independent variables
* x; € [ay, Bi), forall i € [n]
o Letz =" | @

Then we have

Prilz — E[z]| > ¢] < 2exp (‘2:[](221_%)2> :

Lemma A.10 (Hanson-Wright inequality (Hanson & Wright, 1971; Rudelson & Vershynin, 2013)).
Let x € R™ denote a random vector with independent entries x; with E[x;] = 0 and |z;| < K. Let
A be an n x n matrix. Then, for every t > 0,

Prllz " Az — Elz " Ax]| > 8] < 2 exp(—cmin{t*/(K*| A||F), ¢/ (K[| AID}).

B BASIC CONCENTRATION

In Section we introduce some concentration basic tools. In Section given w perturbation
within a small ball, we bound the changes of H.

B.1 SoOME CONCENTRATION BAsic TOOLS

The goal of this section is to prove Lemma|B.1
Lemma B.1. If the following conditions hold

* Let B > 1 denote a parameter be defined as Definitiond.1]
e Let W = [wy, -+ ,wy,] and w, be random Gaussian vectors from N'(0,021,).
o LetV = [v1,- -+ ,vp] and v, denote the vector where ||v, — w.||2 < R, ¥r € [m)].
o Letz; € R and ||z;||2 < 1, Vi € [n].
* Let R € (0,0.01).
e Let S; and g‘z be the softmax function corresponding to W and V' respectively.
o Let oy = (1, exp(W ;)Y and &@; = (1,,,,exp(V T x;)), Vi € [n].
Then, with probability at least 1 — 6/ poly(nd), we have

e Standard inner product

— Part 1. [{wy,z;)| < B, Vi € [n], Vr € [m)]
- Part2. |(vy,z;)| < B+ R, Vi € [n], Vr € [m]
- Part 3. [(w, — vy, x; +2;)| < 2R, Vi,j € [n], Vr € [m]

* exp function

— Part 4. exp(—B) < exp({w,, z;)) < exp(B), Vi € [n], Vr € [m]
— Part 5. exp(—B — R) < exp({vy, z;)) < exp(B + R), Vi € [n], Vr € [m)]
- Part6. |exp((w, — v, x; + ;) — 1| < 4R, Vi, j € [n], Vr € [m]
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— Part 7. |exp({wy, z;)) — exp({v,, 2;))| < Rexp(B + R), Vi € [n], Vr € [m]
* softmax S function
— Part 8. |a; — a;] < mRexp(B + R),Vi € [n]
Part 9. |a; ' —a; | < Eexp(3B + 2R),Vi € [n]
Part 10. |S; ;| < exp(2B)/m,Vi € [n],¥r € [m]
Part 11. |S; .| < exp(2B + 2R)/m, Vi € [n],Vr € [m]
Part 12. |S; . — Sip| < & exp(4B + 3R),Vi € [n],Vr € [m]

Part 13. for any z € R™ and ||z||so < 1, we have |(z,8;) — (2, 8;)| < Rexp(4B +
3R),Vi € [n]

Proof. As eventually we choose m = poly(nd), we use B > 0 defined in Deﬁnition
Proof of Part 1, 2, 4 and 5.

We can get the proof by Gaussian tail bound.

Proof of Part 3 and 6.

Due to ||z;]|2 < 1 and ||z;]|2 < 1 and ||Aw,|2 < R, we can have

[(Aw,, (z; + x;))] < 2R < 0.1. (7)

Then, we have
|exp((Awy, (zi + x5))) — 1] < 2[(Awr, (z; + x;))|
<4R
where the first step follows from the Fact[A.6] and the last step follows from Eq. (7).

Proof of Part 7. Because ||z;||2 < 1 and ||Aw,||2 < R, we can have

(Aw,,z;)| < R <0.1. (8)

By convex increasing property of exp function, we have
|exp((wy, zi)) — exp((vy, 2;))| < max{exp’((wr, zi)), exp’((vy, :) } - [(Awy, ;)|
< exp(B + R) - [{Aw,, x;)|
<exp(B+ R)R.

where the first step follows from Taylor expansion and exp’ denote the derivative of exp, the second
step follows from Part 4 and Part 5 and the last step follows from Eq. (8).

Proof of Part 8.

Qg — al| = | Z €XP;p — Zre[m]expi,r|

re[m]

< Z |eXpi,7' - é?{f)i,r|
re[m]

< mRexp(B+ R),
where the third step is due to Part 7.
Proof of Part 9.

Similarly, we have

T

Q; —
;0
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< mRexp(B + R)
|ovivi
mRexp(B + R)
~ |mexp(—B)mexp(—B — R)|

_R exp(3B + 2R).
m

where the first step is due to simple algebra, the second step is from Part 8, the third step follows
Part 4, 5, and the last step is because of simple algebra.

Proof of Part 10 and 11.
Trivially follows Part 4 and Part 5.
Proof of Part 12.

|Sir — §ZT| = |O‘i_1 C€XDP; —&i_lé}f)LA
<oyt exp;, —a; ' exXp; | + |oj TexD;, — & eXDy,,|
For the first part, we have
;! exp; _04;1&51'7r| =a;"| exp; , —exp; |
<a;'exp(B+ R)R
exp(B+ R)R

<
mexp(—B)

R
= —exp(2B + R),
m
where the second step follows Part 7 and the third step follows Part 4.

For the second part, we have
o XDy, — 67 XD, | = exDy o — a; |
__ R
< exp; ,— exp(3B + 2R)
m
R
< exp(B + R)— exp(3B + 2R)
m

R
= —exp(4B + 3R),
m
where the second step follows Part 9, and the third step follows Part 5.

Thus, we have

~ R
|Sir — Sir] < —exp(4B + 3R).
m

Proof of Part 13.
Note that ||z]|co < 1. We have
(2, 8i) — (2, Si)| = {2, Si — Si)|
<m|S; = Silloo

<Rexp(4B + 3R)
where the first step follows from simple algebra, the second step follows from |{a,b)| < m -
Max; ey, |a;b;|, and the last step is due to Part 12. O

B.2 KERNEL PERTURBATION

The purpose of this section is to prove Lemma [B.2] In the proof, we do not use concentration
inequality. Please see Remark [5.2]for more details.
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Lemma B.2 (Restatement of Lemma[5.1). If the following conditions hold
* Let B > 1 denote a parameter be defined as Definition #.1|
* Let R € (0,0.01).
o Letz; € R and ||z;||2 < 1foralli € [n].
o Let W = [y, W] € RIX™, where Wy, - - , Wy, are are i.i.d. draw from N'(0, 0% 1y).
o Let W = [wy, -+ ,wp] € R*™ and satisfy |0, — w,||2 < R foranyr € [m).

* Letvg, = app - 1y —ag € R™, for any ¢ € [d] and for any r € [m]. Note that ay,, is the
r-th in ay.

o Let a; = (1,,,exp(W ;) and &; = (1,,,exp(V T z;)), Vi € [n].
* Let H be defined as Definition 3.6}
Then, we have
* Part 1. Then with probability at least 1 — &/ poly(nd),
[[He, )i, (W) = [He, 1)1, (W)] < R exp(10B).
* Part 2. Then with probability at least 1 — 0, we have

|H(W) — H(W)||p < Rnd - exp(10B).

Proof of Lemma[5.1] We define five real numbers By, Bs, B3, Ba, Bs € R as follows,

m m

4 11 1 11 R
Bri= a7 a7 L3ty 81) (0t 65 D 0505~ 07 S 1 61) (0 1 650D, 65
r=1 r=1
1 m m -
Bs = afl%_lg > (v, 0, 8i) (V0 1, S;)EXD; ,6XD; . — 04{104}15 > (v s Si) (Ve 1, S;)ERD; ,0XD;
r=1 r=1
1 & ~ 1 & ~ ~
Bj := O‘i_laj_la Z@el,m&)@b,m Sj)exp; ,exp; . — %_1%_15 Z@el,r, Si){(ve, r, Sj)exp; ,.eXD; .
r=1 r=1
1 & ~ ~ 1 & ~ ~
By = O‘i_laj_la > (v, ., 8i) 0, 1, S;)EXD, 63D, — ai_laj_la > (e, ., 8i) (Ve 1, S;)EXD, 63D,
r=1 r=1
1 & ~ ~ 1 & ~ ~
Bs = a; ‘a; o > vy, 8i) (V0 1, S;)ERD, ,6XD;, — & O o > (v, s 8i) (V0 1, S;)ERD; €%,
r=1 r=1

Thus, we have

[Hey 25)i.5(W) = [He, 0,)i,5(W)|/m® < |Biy| + |Ba| + | Bs| + | Ba| + | Bs|.

To bound B,
We rewrite B as
1l _
By =a; 'a; 1% D 0 ) e s Si) (exp(w,) (i + ) — exp(i,] (; + )))-
r=1

Recall that ||vg, r|leo < 2 and ||S;||1 < 1. Thus, [{ve, ., Si)| < 2.

By Fact [A.4] we know that |(vg, r,S;) (v, r, S;)| < 22 = 4. By Part 4 of Lemma [B.1] with
probability 1 — &/ poly(nd), we know that |o; '| < L exp(B).
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We will condition on the above event is holding in the rest of the proof.

By Part 7 of Lemma [B.T}
|exp(w, (z; + x;)) — exp(w, (z; + x;))| < 2Rexp(2B + 2R).

Finally, we know that
S8R
|B1] < e exp(5B).

To bound B; and B3

We can rewrite By as follows

m

1 11 S =
|Bs| = |a; " a; 1% > (e, s Si)exD; XD, (Ve 1 S5) — (Ve S5))

r=1
1 5
<a;tog ' — > |{ver Si)[eXDi, XDy, | (Ve Sj) = (Ve S)))]-
r=1
Following the similar strategy as B, by Part 13 of Lemma[B.1] we know that
1 1
| Ba| gg exp(B) - p- exp(B)-2-exp(B+ R)-exp(B+ R)-4Rexp(4B + 3R)
S8R
SW exp(9B).
Similarly, we have
S8R

To bound B, and Bs

For the term B,, we can rewrite

m

_ — 41 ~ S
Bal = 107 = @51 07 3 (o Si) 00, 5)67D,, 650,
r=1
P BERS 3 3\ e%. 5%
—|aj Q; |-y mZKWw‘» i) (Vea,rs J>|expi,rexpj,r'
r=1

Thus, by Part 9 of LemmaB-1] using similar proof strategy as B; as know
R 1
|By| <—exp(3B+2R) - —exp(B)-2-2-exp(B+ R)-exp(B+ R)
m m
4R
Similarly, we have

4R
| Bs| Sﬁ exp(7B).

C INDUCTION

In Section [C.I] we provide the proof of our main result. In Section [C.2] we provide an induction
lemma for weights part. In Section[C.3] we provide an induction lemma for loss part. In Section[C.4]
we provide an induction lemma for gradient part.

25



Under review as a conference paper at ICLR 2026

C.1 MAIN RESULT

Our main result is presented as follows.

Theorem C.1 (Main result. Restatement of Theorem[4.2). For any €,6 € (0,0.1), if the following
conditions hold

o Let A\ = Apin(H*) > 0

« Letm = Q(A~2n2d? exp(18B) log?(nd/J))

Let = 0.1)\/(mn%d? exp(16B))
o Let T = Q((mnA)~tlog(nd/e)) = QA2n2d2 exp(16B) - log(nd/e))

Then, after T iterations, with probability at least 1 — 6, we have

IF(T) =Y <e.

Proof of Theorem[.2] Let o = 1. We have ||F'(0) — Y||3. < nd by Lemma[D.3|

Using the choice of T, it follows directly from the alternative application of Lemma and
LemmalC2

Since exp(O(B)) = (nd)°™"), we can simplify the nd exp(©(B)) = (nd) oM. O

C.2 INDUCTION PART 1. FOR WEIGHTS

We provide an induction lemma for weights part.
Lemma C.2 (Induction Part 1. For Weights). Let T be a fixed integer.

If the below conditions are true

* General Property 1. Let A\ = Apin(H*) > 0

s General Property 2. 1= 0.1\/(mn?d? exp(16B))

* General Property 3. Let D be defined as Definition[A.2]

* General Property4. D < R = \/(2ndexp(10B))

* General Property 5. m = Q(A\"2n%d? exp(18B) log®(nd/s))

* Weights Property. ||w, (i) — w,(0)||2 < R foralli € [7]

e Loss Property. ||[F(i) — Y[|% < |F(0) = Y||% - (1 — mnA/2)%, Vi € [7]

* Gradient Property. n||Aw,(i)||2 < 0.01, Vr € [m], Vi € [7]
Then, for T + 1 and ¥ € [m], we have

[wr (7 + 1) = w,(0)][2 < D.

Proof. We have

nY (1 —mpr/2)"?

i=0

<y (1—mnA/4)’
=0

<p_—
- nmn)\/él
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4
S (€))

where the first step is due to the Fact [A.5] the second stepis due to the Fact[A7] the last step is
because of simple algebra.

We use the gradient’s norm to measure the weights difference:

[[wr(0) = wr (T + 1|2

<0y || Aw(i)l2
i=0

<nY exp(3B)Vnd - ||F(i) = Y||r

=0

< nexp(3B)Vnd Y (1 —myA/2)> - | F(0) - Y5
=0

<4dm~ A texp(3B)Vnd - |F(0) — Y|

=D

where the first step follows from w, (i + 1) — w.,.(i) = 1 - Aw,(7), the second step follows from
Lemma@] for 7 times, the third step follows from Loss Property in Lemma statement, the fourth
step follows from Eq. (9)), the last step is from General Property 3 in Lemma statement. O

C.3 INDUCTION PART 2. FOR LOSS

We provide an induction lemma for loss part.
Lemma C.3 (Induction Part 2. For Loss). Let T be a fixed integer.
If the following conditions hold

* General Property 1. Let A = A\pin(H*) > 0
e General Property 2. n = 0.1\/(mn?d? exp(16B))
* General Property 3. Let D be defined as Definition
* General Property4. D < R = \/(2ndexp(10B))
* General Property 5. m = Q(A\~2n2d? exp(18 B) log*(nd/4))
» Weights Property. ||w,(7) — w,(0)||2 < D < R, Vr € [m)]
e Loss Property. |F(i) — Y||%Z < |F(0) = Y[|% - (1 — mn\/2)%, Vi € [7]
* Gradient Property. n||Aw,(i)|2 < 0.01 Vr € [m], Vi € [7]
Then we have

IF(r+1) = Y[F < (1= mnA/4)7 - [ F(0) = Y.

Proof. We have
IF(r) = Y& < |F(r = 1) = Y% - (1 —mnA/2)
which follows Lemmal[E.2]

Thus, we complete the proof by induction.
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C.4 INDUCTION PART 3. FOR GRADIENT

We provide an induction lemma for gradient part.
Lemma C.4 (Induction Part 3. For Gradient). Let T be a fixed integer.

If the following conditions hold
* General Property 1. Let A\ = Ayin(H*) > 0
s General Property 2. 1= 0.1\/(mn?d? exp(16B))
* General Property 3. Let D be defined as Definition
* General Property 4. D < R = \/(2nd exp(10B))

* General Property 5. m = Q(A\~2n2d? exp(18B) log*(nd/4))

Weights Property. ||w,(7) — w,(0)||2 < D < R, Vr € [m]
e Loss Property. |F(i) — Y||%2 < |[F(0) = Y||% - (1 — mn\/2)%, Vi € [7]
 Gradient Property. n||Aw,.(i)||2 < 0.01Vr € [m], Vi € [7]

Then we have

n||Aw, (7 + 1)|]2 < 0.01,¥r € [m)]

Proof. This is trivially follows from Lemma[D.T|and Lemma[D.2]

D INDUCTION PART 1: FOR WEIGHTS

In Section [D.T] we propose the lemma for bounding gradient and its corresponding proof. In Sec-
tion[D.2] we propose the bounding initialization loss and its corresponding proof.

D.1 BOUNDING THE GRADIENT AT ANY TIME

In this section, we bound the gradient.
Lemma D.1. Ifthe following condition hold,

* Let B > 1 denote a parameter be defined as Definition 4.1

Let R € (0,0.01)
[wr (1) = wr(0)]l2 < R

* Letvg, = agy - 1, —ag € R™, forany £ € [d] and for any r € [m]
For any timestamp T, we have

1Aw, (7|2 < exp(3B)Vad - | F(r) = Y| p.

Proof. We have

n d
[Aw,(7)]l2 = Hm Y (Wi = Fra) - wi (0o, Sil7)) - Sie(7)
i=1 ¢=1 2
n d
< exp(35) Y0 D lyei = Fra(r)|
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where the first step follows from Claim [3.4] and Definition [3.3] the second step follows from
[(ve,r, Si)| < 2 and |S; ;| < exp(2B + 2R)/m by Part 11 of Lemma[B.1} the last step follows
from Cauchy-Schwartz inequality.

O
Lemma D.2. If the following conditions hold,
e = 0.1\/(mn?d? exp(16B))
* Jwe(7) —wr(0)]]2 < R
Then, for any timestamp T, we have
n||Aw,(7)||2 < 0.01
Proof. This trivially follows from Lemma[D.T]and choice of 7.
O

D.2 BOUNDING THE INITIALIZATION LOSS

In this section, we bound the initialization loss.
Lemma D.3. We have

IF(0) = Y|l < O(Vnd).

Proof. This trivially follows from ||y;|| < 1,Vi € [n] and symmetric initialization from Defini-

tion[3.71
O

E INDUCTION PART 2: FOR LOSS

In Section we decompose the loss ||F(k + 1) — Y||% into four parts, namely Cp, Cy, Cs, and
Cs.In Section@ we show our choices of m and 7. In Section@ we establish bounds for Cy. In
Section[E4] we establish bounds for C;. In Section[E-3] we establish bounds for Cs. In Section[E-6]
we establish bounds for Cs.

E.l DECOMPOSITION FOR || vec(F(7 + 1) — Y)||3

Here, we decompose the loss || vec(F (7 + 1) — Y')||2 into four parts Cy, Cy, Co and Cs.
Lemma E.1. Assuming the following condition is met:

o Let A\ = Apin(H™)
o Let (1) := (exp(W(7) Tz;), 1)
* Let scalar vg o,; € R be defined as follows

V0,0 =M Z arr(ai(T+1)7 = a; (1)) - (exp((wy (7 + 1), 2:)))
re[m]

* Let scalar v1 ¢; € R be defined as follows
vieii=my ag,y - ai(r) " exp(((we (1), 22) - (—n{Aw,(7), ;)
r=1
* Let scalar v ¢ ; € R be defined as follows

o= m Y ag, - ai(r) T exp(((we(r), 2:)) -0 - O(1) - (Aw, (7)), ;)
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* Gradient Property. n||Aw,(i)|2 < 0.01, Vr € [m], Vi € [7]
Co = 2(vec(F(r) — Y), vec(vo))

(

(

C1 = 2(vec(F(1) = Y), vec(vy))
Co = 2(vec(F(1) = Y), vec(va))
Cs = |F(r+1) - F(7)I%

then
IF(r+1) =Y|% = [F(t) = Y%+ Co + C1 + Ca + Cs.

Proof. The expression ||Y —F(7+1)||% = || vec(Y — F(7+1))]|3 can be rewritten in the following:
[vec(Y — F(r+1))I3

= [ vec(Y — F(7) — (F(T +1) — F()))Il3

= || vec(Y — F(1))||3 — 2vec(Y — F(7)) " vec(F(1 + 1) — F(7)) + || vec(F(T 4+ 1) — F(7))||3.

(10)
where the first step follows from simple algebra, the last step follows from Fact[A.3]
Recall the update rule (Definition [3.5)),
wr(T4+ 1) = w.(7) — n - Aw,(1)
In the following manner, V¢ € [d], we can express Fy(T + 1) — Fy(1) € R™
Fyi(r+1) = Fyi(7)
=m Y ar, - (ei(m+ 1) exp((w,(r + 1),2:)) — ai(7) " exp((wy(7), 7))
re[m]
= +m Y are(oa(r+ 1) = aa(r) 7Y - (expl((wn (7 + 1), 2:)))
re[m]
+m Y aprai(r) T (exp((wn (T + 1), 25)) — exp((w,(7), ;)
re[m]
= +m Y an(ailr+ D)7 = (™)) (exp((wn (7 + 1), 22)))
re[m]
+m Y agy - ai(m) " exp(((wp (), i) - (exp(—n{Aw, (1), ;) — 1)
re[m]
= +m Y ar(ailr+ D)7 = (M) (exp((wn (7 + 1), 22)))
re[m]
+m Y agy - ai(T) " exp((we(r) ") - (=n(Aw, (1), 2:) + O(1) (Aw, (1), 2:)?)
re[m]

= V0,0, + V1,65 + V2,0,

where the first step is due to the definition of F ;(7), the second step is from the simple algebra, the
third step is due to [pAw,(7) "z;| < 0.01 (due to Gradient Property and ||z;||2 < 1), the fourth
step follows from the Fact[A.8] the last step follows from

voi i =m Y age(ai(r+1) 70 —ai(r) ) - (exp((wy (T + 1), 24)))

re [m]

V14,3 = mzaé r (T exp((( (T)’$l>) ) (_77<Awr(7—)7xi>)
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vg,eq = m Y age - ai(m) " exp(((wi(r),3)) -0 - O(1) - (Aw, (1), 2:)?

Here vo ¢, and vy ¢; are linear in 9 and v ¢ ; is quadratic in 1. Thus, vg ¢ ; and vy ¢ ; are the first
order term, and v9 ¢ ; is the second order term.

We can rewrite the second term in the Eq. (T0) above as below:
(vec(Y — F(7)),vec(F (Tt + 1) = F(1)))
= (vec(Y — F(1)),vec(vg + v1 + v2))
= (vec(Y — F(1)),vec(vg)) + (vec(Y — F(7)), vec(v1)) + (vec(Y — F(1)), vec(vs))
Therefore, we can conclude that

IF(r+1) = Y% = [IF(r) = Y% + Co + C1 + C2 + Cs.

E.2 CHOICE OF PARAMETERS

Here, we show our choice of parameters m,n, R, B.

Lemma E.2. If the below conditions are true
» Condition 1. Let A\ = Ayin (H*) > 0
« Condition 2. m = Q(A\~2n2d? exp(18B) log?(nd/J))
e Condition 3. 1= 0.1\/(mn?d? exp(16B))
* Condition4. R = \/(2ndexp(10B))
— Required by Claim[E.3|
* Condition 5. B = max{Co/log(nd/s), 1}
* Condition 6. D = 4m~"X\"Lexp(3B)vnd - |F(0) = Y|
* Condition7. D < R
* Condition 8. n||Aw,(7)[|2 < 0.01, Vr € [m]
— Required by LemmalE71| Claim[E-3|and Claim[E7]]
Then it holds that
IF(r+1) = Y& < |IF(r) = YlF - (1 - mn)/2)

holds with probability at least 1 — 0.

Proof. We can show
IF(r+1) = Y|
=|F(r) = Y|%+Co+C1+Co+Cy
< (1 — 0.8mnA + 0.1mnA + 2mn*n?d? exp(9B) + n*m? - n?d? - exp(16B)) - |F (1) = Y||%
< (1= 0.7mn\ + 2n°m? - n?d?® - exp(16B)) - |F (1) — Y%

where the first step follows from Lemma [EZI] the second step follows from Lemma [E.3] for Cy,
Lemma [E.4] Claim for C, Claim [E.6| for C5 and Claim for C3, the last step follows from
the simple algebra.
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Choice of . Next, we want to choose 7 such that
(1 —0.7mnX + 2n*m? - n?d? - exp(16B)) < (1 — mn)/2). an
Using the choice of 7 in Condition 3
2n°m? - n?d* - exp(16B) < 0.2mnA
This indicates:
IF(r+1) = Y57 < (1= mnA/2) - | F(7) = V][5 (12)

Lower bound for m, over-parametrization size. We require the following conditions

e m > Q(A"2n2d exp(18B) log?(nd/é)) (required by LemmaE.3)
e m > QA "2n2d exp(12B) log? (nd/)) (required by LemmalE.4)

e D =4m N\ lexp(3B)Vnd - |F(0) = Y|r < R = \/(2ndexp(10B))} (required by
Condition 7.)

Therefore, by ||Y — F(0)||r = O(v/nd) from Lemma it suffices to choose:
m = QA "2n%d? exp(18B) log?(nd/s)).

E.3 BOUNDING C)

Here, we explain about how to bound Cj.
Lemma E.3. [fthe following conditions hold

* Let scalar vg o,; € R be defined as follows

Vo0 =M Z arr(ai(T+1)7 = a; (1)) - (exp((wy (7 + 1), 2:)))
re[m]

o Let o;(1) := (exp(W(7) T23), 1)
e Let m > Q(A\2n2d exp(18B) log?(nd/s))
* Gradient Property. n||Aw,(i)|2 < 0.01, Vr € [m], Vi € [7]
* We define Cy as follows
Co = 2{vec(F (1) = Y),vec(vg))

Here vec(vg) € R™ is the vectorization of vy € R"*? and vec(F(1) —Y) € R" is the
vectorization of F(1) — Y € R™*4,

Then we have

|Col < 0.1mnA - ||F() = Y[

Proof. We can rewrite vg ¢ ; as follows:

V0,00 = mZaM((ai(T + 1) — (1) Y exp((w, (7 4 1), 4))

r=1

= mZag,Tai(T + 1)_1ozi(7')_1 (L, exp(W (T + 1)a;) — exp(W(T)x;))) exp({w, (T + 1), 2;))

r=1
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NE

= mZaMai(T + 1)_1ai(7—)_1(

r=1 To

= m(z agroi(T4+ 1) ray(r) 7!

exp(wr, (T + 1)a;) — exp(wr, (1)2;)) exp((wy (T + 1), z:))

Il
-

—1(Awy, (1), 23) exp(wr, (7)) exp((wy (7 + 1), ) + 1% Az)

i0s

2

Z g r Z Awm( )7 (Ei>Si,'r2 (T) : Si,r(T + 1) + 772A2 ) (13)

ro=1
2= second order term

first order term

where the first step follows from lemma statement, the second step follows from a = — b~! ;b",
the third step follows from 51mple algebra, the fourth step follows from simple algebra and the last
step follows from |nAw,. (1) T2;| < 0.01 (due to Gradient Property and ||z;|[> < 1).

The second order term %A in Eq. can be bounded in a similar way as the proof of Claim
Further, we can rewrite the first-order term in Eq. (I3))
mZae D A (), S0 (1) Sip + ) = Quia+ Bi) (1)
To2=— 1

where

Q1,50 = Z ay, r(=n(Aw,(7), z>)8i,r(7') 'Si,r(T +1)

Q2,0 = Za/ . Z (AW, (7), 2:))Si .y (T) - Sir (T 4+ 1)

r=1 roFET

Let us consider how to handle the first term in Eq. (13)),

Ql i = Z Gy, r A’U]r( ) l>)$i,7"(7—) ’ SLT(T + 1)

m

n d
- Zal 7‘81 r Sz r T + Z Z Fég,_] yég,j) : ((<a€2,r : ]-m - a€238j>) . Sj,r) . x?)xz

r=1
where the second step follows from computing Aw, (7) explicitly (see Claim 3.4).

Similarly as proof of Lemma|[E.4] we can use concentration to bound

n d
ZZleZ yéz)

i=1 (=1

Note that 0 < S;,» < w by Part 11 of Lemma The above small term is equivalent to

n n

B m d d
—ne}q;(iiz) : Z ZZ Z Z (Fopi(T) = ¥Ye2,5) - irirty - Cijiry - (Foi(T) = yei)s

i=1 j=1r=1 (=1 £,=1
where 0 .0, jr ~ [—1,+1] and |C; ¢ ¢, j.»| < 10. We define

Prees = (Fiaj = Y2,5)0i,5,r,0,65Ci 0,05 (Fei — Y,i)

Similarly as Lemma for each fixed 4, j € [n], using Hanson-Wright inequality (Lemma|A.10),
we can show

m d d
Pr(IY D" Pureel < 100[F; — ysllol|Fs = yill - Vimdlog(nd/6)]

r=1 (=1 lr=1
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>1— 4§/ poly(nd).

By mean inequality, we have

DD UF =yl 1F = yill2 < nllF =yl

i=1 j=1
Thus, we have the first term with probability at least 1 — poly(nd), such that

U nexp(9B)
1D Quie(Fri = yea)l < n——IF — y||7-v'mdlog(nd/5)
i=1 £=1

Similarly, we can compute

n d
ZZQ2M Foi—ye)

i=1 (=1

Using Hanson-Wright inequality (Lemma[A.T0), we have the second term with probability at least
1 — poly(nd), such that

n d
Y Qoo — ) < 0" 2B o2 imdiog(nd o)

i=14=1

Thus, we can complete the proof by the Lemma statement m > Q(A~2n2d exp(18B) log*(nd/?)).
O

E.4 BOUNDING C;

Here, we give the bound of the first order term C;. Note that this term is making progress.

Lemma E.4. Assuming the following condition is met:
o Let A = Apin (H™)
* Let ai(7) == (exp(W(7) @), 11n)
o Let m > Q(A2n?dexp(12B) log?(nd/5))

* Let scalar v1 ¢; € R be defined as follows

vuz-—mzaw ai (1)~ exp(((wr (1), :)) - (=n(Aw (1), z:))

. Cl = 2<V6C(F(T) - Y)vveC(Ul)>
then

Cy < —1.6mnvec(F(r) = Y) H()vec(F(r) = Y).

Proof. To simplify the notation, we omit writing (7) in S; (7). Then, we can express vy ¢; € R as
follows:

V1,6 =M Z Qg r - zr’ 77<I1'3Awr(7_)>)

re[m]
n d
= m2 Z Qg r* S; e —UZ Z (Fb,j(T) - yfg,j) : ((<a52,r 1y — a2278j>) : Sj,r) . x;r)xz
m] J=1L=1
=m (Qm,i + Q2,0,i) (15)
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where the second step using equation for Aw,.(7) (see Claim [3.4).

Note that (as,, - 1,,,.5;) = ag,r, so in the above equation,

d
Quei= Y {aer - Lm—ap,8) - Siv- (=0 Y (Frj(7) = Y j) - <(<C%,r 1 — ag,, S;)) -Sj,,») ) )i

re[m] j=14y=1
n d
Quii= D408 Sip - (1D 3 (Frai(7) = ) - (ks - Lo — a0, $5)) - S -2 )
re[m] j=142=1

The quantity Zie["] Zée[d] Q1,0i(Fy; — Yy,;) is corresponding to first term (Q1 ¢;) in Eq. (T3). It
is

SN Que(Fui — Yo) = ——yvee(F(r) = V) TH(D) vee(F(r) ~ Y)  (16)
i€[n] L€[d] m

The quantity Zie[n] Zee[d] Q2,0,i(Fy,; — Yq,;) is corresponding to second term (Q2,¢,;) in Eq. (T3).
Note that 0 < S;,» < xp(38) by Part 11 of Lemma The quantity,

SN Qaui(Fri — Yii) (17)

i€[n] L€[d]

is equivalent to

m d d
—nw : Z Z DD (Fuoi(7) = eag) - Gijirts - Cijirttn - (Fra(7) = ye),

where 0; jr o0, € {—1,+1}and |C; jr0.0,] < 10.

Note that there are four cases
* i = j, ¢ = {y, this is a p.s.d. case that always makes progress, thus we can drop it.
* i # j, € = {5 we will use random variable P; to handle
e i = j, £ # {5 we will use random variable P, to handle

e i # j, ¢ # {5 we will use random variable P to handle

For each fixed ¢, j € [n]. We define

Pryo= (Foj = Y0,5)005,r,0Ci jore(Foi — Ye,i)
Py ey = (Faj = Y2,5)0i,3,r,0,Ci 0,00 (Fi — Y,i)

The random variables related to P ,. ¢ are the following
m d
DD P
r=1 /=1

The random variables related to P ;. ¢ ¢, are the following

m d d
Z Z Z Psyo0,

r=1/¢=1 /(=1

For each i # j € [n] and £ = {5, using Hoeffding inequality (see Lemma[A.9), we can show

m d
Pr(| > > Progl <100 Fj = y;ll2]| Fs — ill2 - /mdlog(nd/5)]
r=14¢=1
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>1 -/ poly(nd).

Similarly, we consider i = j and £ # {5 by Hanson-Wright inequality (Lemma|A.10), we have

m d d
|ZZZ Py rt0,] < 100[Fj = yjll2l| Fi = will2 - Vimdlog(nd/6)]

By mean inequality, we have
n n
SN CIE = yilla - I1F: = will2 < nllF =yl 3
i=1 j=1

Note that by Lemma condition, we have

1 B
—A> ”QL(QG) Vmdlog(nd/§) < m > \"2,
m m

~

the equation (Eq. (T6) and the bound for Eq. (I7)) above indicates that (vec(Y — F(7)), vec(v1))
can be expressed as

vec(vy) " vec(Y — F(1)) > 0.8mn - vec(F(7) = Y) " H(7)" vec(F(1) = Y). (18)
~—_——— — —
1xnd ndxnd

We finish the proof. O

Claim E.5. [f the below conditions are true

* Let B > 1 be defined as Definition 4.1

o Let A\ = Apin(H*) >0

o Cy = —mnvec(F(t) = Y)TH(7)vec(F(1) = Y).

* R=)\/(2ndexp(10B))
Then, we have

Cy < —gmih- | F(r) - Y1}
and
Amin (H (7)) > /2.

holds with probability at least 1 — 0.

Proof. By Lemmal5.1] with probability at least 1 — &, we have

IH" — H(7)||r
< Rnd - exp(10B)
<A/2 (19)

where the first step follows from the definition of H (7), the last step comes from choice of X (see
Claim Statement).

Given that A = A\;, (H ™), by eigenvalue perturbation theory

Amin(H(T))
> Amin(H") — [[H* — H(7)||
> Amin(H") — [[H* — H(7)|
> Amin(H") — /2
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> A/2.

where the first step comes from triangle inequality, the second step is due to Frobenius norm, the
third step is due to Eq.(T9), the last step follows from Ayin (H*) = .

Finally, we have
vec(F(1) — Y)TH(T) vec(F(T) =Y) > \/2-|F(1) = Y|%.

Thus, we complete the proof. O

E.5 BOUNDING Cy

Here, we give the bound of the second order term Cs.
Claim E.6. If the below conditions are true

e Let A = Amin(H*)
o Let a;(7) := (exp(W (1) T2;), 1)

* Let scalar va o ; € R be defined as follows

m

o i=m Yy agy - ai(r) " exp(((we(7), i) -7 - O(1) - (Aw, (1), 7;)?
r=1

o Oy = 2(vec(F(1) — Y), vec(vz))
Then we can conclude that
Cy < 2mn*n2d* exp(9B)||F (1) — Y|%.
with probability at least 1 — n - exp(—mR).

Proof. Letp;, € [-1,1]. We have

[v2,0,6] =m Z agr - Sip - (772pi,r<xia Aw,(7))?)
re[m]

< mn’ndexp(9B)|| F(7) - Y[,
where the last step follows Lemma|[D.T|and Part 11 of Lemma[B.1]
Thus,

Cy =2(vec(F (1) = Y),vec(va))
<2F(r) =Y rlv2llr
< 2miPn?d? exp(9B)|[F(r) — Y |3,

where the first step follows Cauchy-Schwartz inequality, and the second step follows ||F'(7) —
Y||r < O(+/nd) by induction statement (See Lemma [C.3).

O

E.6 BOUNDING ||F (7 + 1) — F(7)||%

Here, we give the bound of the third order term C's.
Claim E.7. If the below conditions are true

* Let B > 1 be defined as Definition[d.1]
« 3= ||F(r+1) = F()|%
« Re(0,0.01)
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* Gradient Property. n||Aw,(i)||2 < 0.01, Vr € [m], Vi € [7]

Then with probability at least 1 — §, we have
Cs < n*m? -n2d* - exp(16B) - |F(7) — Y||%.

Proof. Note that we denote «; as (1., exp(W " x;)). According to definition of Fy ;(7), we have
Fyi(t+1) — Fpi(7)
= may (
+ai(t+ D) exp(W(T+1) ") — (1) Lexp(W(r +1) ")
+ i (7) Lexp(W (T 4+ 1) T2;) — ai(7) T exp((W (1) T 2)
)

Then we have

|Fei(T + 1) = Fra(7)]| (20)

< mz loui (T + 1)1 — (1) 7 exp(w, (7 + 1) T ;)

+m2al Lexp(w, (1) ;) - | exp(—nAw, (1) Tz;) — 1]

where it follows from triangle inequality.

For the second term in Eq. (20), we have

mz i (1) "L exp(w, (1) ") - |exp(—nAw, (1) Tx;) — 1]

m

exp(B + R)exp(B + R) Z |exp(—nAw, (1) ;) — 1]

r=1

IN

IA

exp(2B +2R) Y _ 2n|| Aw,(7)]|2

r=1
=2nexp(2B 4 2R) Z |Aw,(7)||2
r=1
<2nexp(2B +2R) -m - exp(3B)Vnd||F(r) = Y||r
< nmexp(6B)Vnd||[F(r) = Y||r

where the first step comes from Lemma |B.1} the second step is due to n||Aw,(7)[|2 < 0.01 (this is
stated in Claim assumption) and Fact|A.8| the third step is from simple algebra, the fourth step is
due to Lemma[D-T] the last step follows from simple algebra.

Similarly, for the first term in Eq. (20) we have
m > Joi(r + 1) = ai(7) 7 exp(wp (r + 1) Tay)

<m?exp(B + R)|oui(m 4+ 1)1 — ai(1) 7Y
<mexp(B + R)|[nAw,(t) " z;| exp(3B + 2R)
< nmexp(4B + 3R) | Aw,(7)||2

< nmexp(TB + 3R)Vnd||F (1) = Y ||

where the first step follows from Part 5 of Lemma [B.I] the second step follows from Part 9 of
Lemma where R = [nAw,(7) x|, the third step follows from simple algebra, and the last step
follows from Lemma[D.I]
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Thus we have

|Foi(m + 1) = Fpi(7)| < nmexp(8B)Vnd| F(r) = Y || @21

Finally, we get

IF(r+1) = F(7)||% < nd - (nmexp(8B)Vnd||F(7) = Y||r)?
< 772m2 -n2d? -exp(16B) - ||F (1) — Y||%

where the first step is because of Eq. (Z1), the last step comes from simple algebra. O

F NTK REGRESSION

In this section, we introduce the NTK regression, as we will show that the neural network is “equiv-
alent” to this regression so that we can give a final guarantee on the test data. To clarify the function,
we use F),,, to denote F' as a neural network function. We use 2. € R? to denote the test data.
We would like to control the error between the neural network F),,, and the function F);;. For
convenience, we call this error “coupling error”’, which is the difference between the trained neural
network and its corresponding NTK regression.

Recall that, by Definition we have the H* = H(W(0)). Recall [H*]; ; € R%*? is the kernel
between x; and x;. Similarly, V¢, fy € [d], for test data, we can define the NTK induced feature
map as

m

1

(K7, oo )te. izgﬂf;%‘ > (010, 81e(0)) - mSe 1 (0) - (ve, 1, S5(0)) - mS;(0)
r=1
K TN s s s s;
[ (T)ghfz]te»] '_Extex] Zl<vflﬂ"v te(T» -y te,r(T) ’ <’U(2,7~, ](T)> -m 177“(7')7

where K}, K;o(7) € R4, Similarly, we have K} = [H*], € R K;(r) = [H(T)]; €

R?*"d for training data ;. Then, we define the kernel regression predictor.

Definition F.1 (NTK regression predictor). We define NTK regression predictor as
Fntk (7(7)7 xt@) ::mKt*erY(T% (22)
where (1) € R™ is the parameter at timestamp T.

Recall that we have a training dataset D,, = {(x;,y;)}{~,. Then, we denote the corresponding
objective function for F),s1 as

1 n
Lok (V(7)) = B Z [ Fns (Y(7), 26) = ill3- (23)
=1

Thus, based on Eq. (23), the gradient desent (GD) updating rule of ~(7) is given by

Y(r+1) =7(r)—n-(m H* y(r)—vec(Y)), 7(0)= 0ya, 24)
—_— ~ —~  ——
ndx1 ndx1 ndxnd gy ndx1

where the Eq. is according to Y(7 + 1) = y(7) — NV Lok (y(7)).

F.1 EQUIVALENCE BETWEEN TRAINED NET AND KERNEL REGRESSION

We provide a stronger bound between F),;, and F),,, result compared to Lemma F.1 in (Arora et al.,
2019b). Our following statement is stronger in the two following senses: their result only holds
when ¢t — oo, and our result holds for all ¢ € [0, 00); also their result only works for 1 dimension
output space, our result holds arbitrary d dimensional output space.
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Theorem F.2 (Kernel value perturbation = prediction perturbation). Fix e < 1 sA Ifforall T >0,
167 e = Kete(T)|F < €ttest and [|H* — H(7)||p < ep, then for any i € RY, @ € [d]and T > 0,
we have

vnd \/nd1 9 nd
A A2 08 egmA o

|ka(’}’(7')> xte)[ - an(W(T)7 xte)f| S 0] <65,test +

Proof of Theorem[F2] Our proof relies on a careful analysis of the trajectories induced by gradient
flow for optimizing the neural network predictor F;,,, and the NTK predictor F,;x. Then, we can
have a similar argument to gradient descent at any timestamp 7.

Recall that for any z.,2; € R, we have K},, K} € R?*"? be the feature map induced by NTK.
For any = € R%, we define ¢(z) € R?¥*? as followmg, for any ¢ € [d],

—xz ve,r, S(0)) - mS,-(0).

We denote ¢(X) € R?*"4 a5 the stack of feature map of X € R¥*",
Note the optimal solution in Eq. (22)) can be rewritten as
min ||y||2 such that mK/y =y; fori =1,...,n
Y
We have the optimal solution for kernel regression is v* := m ™1 (H*)~! vec(Y’) and its correspond-
1

ing prediction for @t will be Fpu (7(7), 2te) = KL (H*) ™" vec(Y'). The solution to this program
can be rewritten as applying gradient flow on the

mﬁinz IvVme(z:) " B — yil|2
=1

with initialization 3(0) = 04. We use 5(7) to denote this parameter at timestamp 7 trained by
gradient flow. We denote

k2 (B(T), T4e) := vVmo(wee) ' B(7)

where Fy 12 (8(7), 2t ) be the predictor for x4 at time 7. Then we have

Fntk2(ﬁ(7-)v mte) =vm ¢(xte)T 5(7)
N—— N~
Rdxd Rd

—fqﬁ(xte) (\faﬁ( ) (7)
——

Rdxd Rdxnd Rnd
=m Ki, (1)
—~—
Rdxnd
= I'ntk ('7(7—)7 xte)
where the second step follows 3(7) = /m¢(X)y(7) the third step follows K, = ¢(x¢.) " ¢(X).
With these notations, as 7 goes to infinity, we denote, for any ¢ € [d],

Fntkz(xte)z — /OO anth(ﬁ(T),xte)e

d
7=0 dr !

where we have used the fact that the initial prediction is 0 as 5(0) = 04. Similarly for F,,, (x+)e.
Let Fruo,i(T) = Frue(B8(7), ;) and Fruo (1) € R¥*7_Similarly, for the NN predictor F},,,. Now
we take a closer look at the time derivative:

antk2(/8(7-)axte)Z _ <8Fntk2(ﬁ( ) mte)é dﬁ(7)>

dr B(T) Todr
_ <5Fntk2 B(r),we)e  OL(B(T), {wi}i,) >
B(r) 7 9B(7)
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n d
{5 - i)

n d
=-m <¢($te)€7 SN (Fakzien (7 yi,éz)¢<xi>€2>

i=1 ly=1

=—-m vec(KZte)T vee(Fpa (1) = Y) (25)
where the first step follows from simple algebra, the second step follows from ODE formulation
(we remark that this is a very standard step in all the NTK literature), the third step follows from

Eq. (23), the fourth step follows from the definition of ¢(z¢.)e, the last step follows from simple
algebra.

‘We can obtain a time derivative of the same form for F,,,,.

AdFpn(W(T), Tte)e _ <8an(W(T)7xt6)( dW(T)>

dr oW (1) Todr
_ <3an(W(T)vxte)z _0LW(r), {witis 1)>
oW () ’ oW (1)
S OFm (W (), 20 = & OF (W (7), )0,
- < 8W(7') ’iz:; ZQX:;(FHWJ,@ (T) - yi,fz) 8W(T) >
= —mvec(Ky (1)) vec(Fun(T) = Y) (26)

where the first step follows from simple algebra, the second step is standard in NTK literature, the
third step follows from Eq. (23), the last step follows from simple algebra.

Thus we analyze the difference between the NN predictor and NTK predictor via this integral form
|an(zte)£ - Fnth (xte)d

= an(W(O),l‘te)Z‘i‘/

7=0

° ann(W(T); xte)@ . antk:2 (6(7—); mte)l dr
dr dr

= |Fpn(W(0), zee)e| + ’—m/

=|-m . (VGC(KLM(T))T vec(Frn(t) —=Y) — vec(KZte)T vee(Fpuiz(1) = Y)) dr

. (VeC(Kgyte(T))T vec(Fon(T) = Y) — VeC(KZte)T vec(Foura(1) = Y)) dr

<m

/ vee(Kse(r) — K7 10) T vee(Fan(r) — Y)dr

=0

+m

/ vec(KZte)T vee(Fun (7) — Frka(7))dT

=0

o0 o0
<'m max IIKe,te(T)*KE‘teHF/ [EFn(7) = Y[|pdT +m max HKZ‘teIIF/ [En (7)) = Friz(7) || pdT
0<t<oo ' - 0<t<oo ' =0

<metsen [ Funlr) = Yedr +m max 1Kol [ [Funlr) = Fussa(r)edr,

T=0 Stseo T=0
where the first step follows from the difference between the NN predictor and NTK predictor, the
second step follows from Eq. (23) and Eq. (26), the third step follows |F,,,,(W(0), 2 )e| = 0 by
symmetric initialization from Definition [3.7} the fourth step follows from simple algebra, the fifth
step follows from Frobenius norm, the last step follows from simple algebra.

For the first term, recall | H* — H(7)| r < ey and, by Claim[E.5] we have
1
Amin(H(T)) > 5)\.

Using this fact we know || F,,,(7) = Y||p < exp(—5 A7) || Frn(0) — Y| (The reason to obtain this
is due to solve ODE).

Therefore, by Lemma[D.3] we can bound
o0 o0 m
| V() = Yiiedr = [ exp (<) [1Fun(0) Yoy
7=0 7=0

41



Under review as a conference paper at ICLR 2026

oY,

mA

To bound ff:o |1 Enn (7) — Frira(7)|| pd7, we observe that Fy,,, (1) — y and Fyu2(7) — y with
d ) so that

n
ey -m\

linear convergence rate. Therefore, we can choose some 75 = % log (

o0 o0

| Fon(7) — Y |l pdr + / | Fatka(7) — Y |l pdr

70

/TOO [ Fnn(T) = Fatke(7)||pdT < /

0 70

<0 (njA(nFm(m) = Ylr+ [ Fuina(mo) - YIIF>>

<0 <\7:Ln7j exp (—m)\To)>

where the first step follows from simple algebra, the second step follows from integral range is 7,
the third step follows from Lemma[D.3] the last step follows from choice of 7.

Thus it suffices to bound f:io | Frun(T) = Frtko(7) | AT < 7o maxo<i<r, [|Frun(T) — Fotk2 (7) || -

First observe that

[Enn(T) = Futko(T) |7 < [Fan(0)l 7 +/

s=0
-
/s:O

d(Frm(S) - Fntk2 (3))
where the last step follows symmetric initialization from Definition [3.7]

T

ds
F

ds

‘d(an(s) — Fira(s))

ds,
F

ds

Note

d(an (T) - Fnth(T))
dr

= —mH(7) vec(Fpn(T) = Y) + mH"* vec(Fripa(7) = Y)
= —mH" vec(Fpn(7) — Fpka (7)) + m(H* — H(7)) vec(Frn(7) = Y)
where the first step follows from definition of F},,, and F},+x2.

Since H* is positive semidefinite, —H™* vec(F,,(T) — Fhnira2(7)) term only makes || Fp,(7) —
Frtk2(7)|| 7 smaller. Therefore, we have

[ Frn(7) = Futkz(7)[|p < m/ [Fan(s) = YrlH(T) — H| pds
s=0
S T)”LTHan(O) - Y”FGH
<0 (mT ndeH) ,

where the last step is by Lemma[D.3]

Therefore, we have

To
/ | Epn (7) = Freka(7) || pdT < O (mT()QVndeH)
7=0

vnd . 4 nd
=0 <m)\2 log (EHm)\) € |-

where the first step follows from integral range is 7y, the second step follows from the choice of 7.

Lastly, as Frr2(2te)e = Fntr(2te)e, we put things together and get

\/;Td \/ﬁlogg( nd )EH>'

|Fntk(xte)1€ - an(xte)d <O < €0 test T 22 exrmA
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From the above, after we change the integration from (0, 00) to (0, 7), the statement still holds.
Then, based on the gradient flow version, we can have a gradient descent version with a constant
error factor by replacing integral with geometric summarization (for example Z;’io a' < 2, when
a € (0,0.5)). O

G DIFFUSION

In Section we provide the proof of our main result of diffusion. In Section we provide
some tools from previous works.

We first define an auxiliary function ﬁmk of the same functional form as F},;;, but trained on a
pseudo dataset S := {y;, z; }_, with §; := Fy(x;) + €; and €; := y; — Fi(x;). Then, we have the
following claim.

Claim G.1 (Loss decomposition). We can decompose our target function as the following

T
. / B[ Fun(W(7), (£,2())) — F.(t, 2(t) |21t < Zy + Zo + Zs + Za,
where

2= [ Bl (W (). (t2(0)) ~ Fan (7). (02(0) [l (coupling)
0

1 T
2o~ [ BlIF((0). (00() = Fun (7). (60D Bt (label mismarch)
Zs =% / E(|| Fuir (4(7), (8, 2())) = Pre(t 2 (0))|3]dt (early stopping)
0
1 (7 5 o
Zi =g | ElPu(t.o(0) - it ) ot (approximation).

The coupling error term is the gap between neural networks F,,,, and a kernel function F,,;;. The
approximation error term is the gap between the target function F, and its corresponding RKHS
function F'y. These two terms transfer the problem of neural networks training into the problem of
kernel regression.

G.1 MAIN RESULT OF DIFFUSION

In this section, we prove the main result of diffusion.

Theorem G.2 (Restatement of Theorem|[6.6). Suppose Assumptions[6.1}[6.2][6.3][6.4|hold and we set
m = QA 2n3d? exp(18B) log®(nd/d)) and 1 = 0.1\/(mn?d? exp(16B)). Moreover, suppose
T satisfies Assumption|6.5|with corresponding e(n,T). Then for large enough R4, with probability
at least 1 — 6, it holds that

= / AUEl|lsyy )t 2(t)) — Vlog pi (X))t
1

<0 (A\/ﬁ + e(n,T) + dA*(Ry) + dA(Ry) + /dA(Ry)Ts + Fé) :

Proof of Theorem[6.6] Note that the m and 7 satisfy the conditions in Theorem f.2] The reason
about a different m is that we choose a different R and apply Lemma[E.2) one more time. Recall the
€r,test and e are defined in Theorem [F2}

Note that H* = H(0). By Lemma Part 2, let R = )\/(2n%d?exp(10B)), we have with
probability at least 1 — § such that
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Note that K7, and Ky ;. share the same weight perturbation as ™ and H (7). Thus, by using the
same proof as Lemma[5.1] Part 1, we have

A

|| KZte - K@,te HF < €0 test = Inl5qls”

nxd nxd

We have
HFntk(’y(T)v xte) - an(W(T)a xte)”Q
< \/ar?ea‘;{ |Fntk:(’y<7-)€a xte) - an(W(T)? mte)é‘

<\//\ﬁd max €4 test + \/ﬁd 1Og2 < nd ) 6H)

L€[d) A2 egmA

<\/ﬁd A ﬁdlog2<nd) )\)

N nlsdis a2 ) nd

(s (20)
()

where the first step follows from simple algebra, the second step is by Theorem [F.2]

IN
Q

IN
Q

IN

IN

Thus, we finish the proof by Claim where coupling is from above, label mismatch is from
Theorem|[G.4] early stopping is from Assumption[6.5]and approximation is from Theorem|G.3] [

G.2 TooLs FROM PREVIOUS WORKS

We have the following statements from previous works (Han et al., 2024b)).

Theorem G.3 (Theorem 3.6 in (Han et al., 2024b)), universal approximation of score function).
Suppose Assumptions and hold. Let Ry be larger than a constant ¢y, i.e., C(d+1,0) in
Proposition 6 of (Bachl |2017), which depends only on d. There exists a function Fy € H such that
| Full3, < dRy and

1 T
T/o E[| P (t,2(t)) — Fu(t, () [3]dt < dA?(Ry).
Theorem G.4 (Theorem 3.10 in (Han et al) 2024b), label mismatch). Suppose Assumptions

and hold. If we initialize both Fyi, and Fyy properly, then with probability at least 1 — § it
holds simultaneously for all T that

I -
7 | IR (.20) = (7). (1 2(0)) e
< dA(Ry) + Co(/dA(Ry)Ts + )

where Cy is a constant defined in Theorem 1 of (Reeve & Kaban, |2020).

H DISCUSSION

In this section, we provide discussions about the potential extensions of our method on various
popular frameworks, such as attention mechanism (Section [H.I)) and feature learning (Section [H.2).

H.1 SELF-ATTENTION LEARNING

The self-attention can be written as

FWEX WeX WV X)eR>, 27)
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where W5, W, WV e R4*4 denotes key, query, and value matrix respectively and X € R4*™" ig
a sequence of n’ tokens. As our work is a first step to understanding softmax, it is natural to consider
how to extend our results to self-attention. It is well-known that using two reformulation tricks:
tensor-trick and SVM-trick (Gao et al., 2023bic; |/Alman & Song| [2024a), any analysis for softmax
function can be naturally generalized to attention function F(WX X WX, WV X). Therefore,
we conjecture that we can borrow the idea from (Gao et al.| 2023bjc; |Alman & Song, 2024a) to
decouple Eq into the value term and the softmax term. And, we can alternatively optimize the
weights for the softmax term (W*, W) and the value term (1W""). We leave this valuable direction
as a future work.

H.2 FEATURE LEARNING

Recently, there is a line of work showing that feature learning may be beyond NTK on sample
complexity or time complexity, e.g., (Allen-Zhu & Li, [2019; [Wei et al.l 2019; Hanin & Nical 2019;
Allen-Zhu et al., [2019a; |Daniely & Malach, [2020; |Chen et al., 2020; |Yang & Hul [2020; Huang &
Yau, 2020;|Li et al.| 20205 |Ghorbani et al., [2020; Refinetti et al., 2021;[Malach et al.,[2021; Luo et al.,
2021; [Damian et al., [2022; |Shi et al., 2022} 2024) and many more. It is worth studying the feature
learning ability of two-layer softmax NN to figure out what feature pattern the softmax prefers to
learn and how it happens. We leave this valuable direction as a future work.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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