
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXPLORING THE FRONTIERS OF SOFTMAX: PROV-
ABLE OPTIMIZATION, APPLICATIONS IN DIFFUSION
MODEL, AND BEYOND

Anonymous authors
Paper under double-blind review

ABSTRACT

The softmax activation function plays a crucial role in the success of large lan-
guage models (LLMs), particularly in the self-attention mechanism of the widely
adopted Transformer architecture. However, the underlying learning dynamics
that contribute to the effectiveness of softmax remain largely unexplored. As a
step towards better understanding, this paper provides a theoretical study of the
optimization and generalization properties of two-layer softmax neural networks,
providing theoretical insights into their superior performance as other activation
functions, such as ReLU and exponential. Leveraging the Neural Tangent Kernel
(NTK) framework, our analysis reveals that the normalization effect of the soft-
max function leads to a good perturbation property of the induced NTK matrix,
resulting in a good convex region of the loss landscape. Consequently, softmax
neural networks can learn the target function in the over-parametrization regime.
To demonstrate the broad applicability of our theoretical findings, we apply them
to the task of learning score estimation functions in diffusion models, a promising
approach for generative modeling. Our analysis shows that gradient-based algo-
rithms can learn the score function with a provable accuracy. Our work provides
a deeper understanding of the effectiveness of softmax neural networks and their
potential in various domains, paving the way for further advancements in natural
language processing and beyond.

1 INTRODUCTION

Large Language Models (LLMs) like GPT4 (Achiam et al., 2023) from OpenAI and Claude 3 (An-
thropic, 2024) from Anthropic have widely and profoundly changed the world. Some researchers
believe they split human history into two parts: the Pre-LLM Era and the LLM Era. The LLMs have
been widely used in human activities, such as education (Kasneci et al., 2023), law (Sun, 2023),
finance (Li et al., 2023c), bio-informatics (Thirunavukarasu et al., 2023), coding (Hou et al., 2024),
and even top AI conference reviews such as ICML, ICLR, NeurIPS, and AISTATS (Liang et al.,
2024a). To make LLMs successful, one of the cores of LLMs is the Transformer model archi-
tecture (Vaswani et al., 2017), which has many advantages, including faster-parallelized inference
rather than sequential inference like RNN (Hochreiter & Schmidhuber, 1997); being easy to scale
up the model capacity to support the scaling laws in neural language models (Kaplan et al., 2020),
i.e. since the input and output dimension of each Transformer blocks is the same, we can stack an
arbitrary number of layers as we want. The kernel design of the Transformer block is self-attention
layers, where each block has many attention heads and each head has its three important private
parameter matrices for key, query, and value operation. Many papers believe that the self-attention
operation is the critical reason for emergent ability (Wei et al., 2022), including in-context learn-
ing (Olsson et al., 2022; Reddy, 2024) and compositional ability to solve complex task (Dziri et al.,
2024; Lu et al., 2024). The Transformer is so successful and has been widely certified that this
architecture can be adopted in many other modalities such as tabular data, image/video generation,
e.g., the video diffusion model SORA (OpenAI, 2024) using Transformer (Peebles & Xie, 2023) as
its backbone.

When we delve into the self-attention mechanism, we find the softmax function plays a crucial
role (Vaswani et al., 2017). It enables the model to focus on the most related information among

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparing hidden neuron number m in two-layer neural networks and training steps T̂
are required under different activation functions to guarantee that, for any ϵ > 0, with probability at
least 0.99, the training loss is smaller or equal to ϵ. Here, n is the number of training samples, and
λ is the smallest eigenvalue for the matrix of the neural tangent kernel, where n > 1 and λ < 1. We
can see that the two-layer NN with softmax activation function requires almost the same number of
neurons and training steps to converge as that with ReLU or exponential activation functions. More
details: Theorem 3.6 in (Munteanu et al., 2022) for ReLU; Theorem 1.1 in (Gao et al., 2023a) for
exp; Corollary 4.3 in our paper for softmax.

ReLU ((Munteanu et al., 2022)) exp ((Gao et al., 2023a)) Softmax (ours)
m Ω(λ−2n2 log(n)) Ω(λ−2n2+o(1) log2(n)) Ω(λ−2n2+o(1) log2(n))

T̂ Ω(λ−2n2 log(n/ϵ)) Ω(λ−2n2+o(1) log(n/ϵ)) Ω(λ−2n2+o(1) log(n/ϵ))

input sequences by giving higher attention scores to the positions that are more relevant for the
current position’s representation and to capture dependencies between positions. (Cordonnier et al.,
2020) find that softmax attention is more expressive and performs better than any convolutional
layer. (Deng et al., 2023c) exhibits softmax attention outperforms linear attention in most scenarios.
Although the softmax function code has been executed every second on thousands of servers, there
is a limited understanding of the following question:

(∗) What is the learning mechanism that makes softmax so powerful?

To demystify the black box, in this paper, we analyze the Gradient Descent (GD) training dynamics
for two-layer Neural Networks (NN) with softmax activation function for multi-dimensional regres-
sion, i.e., F (W,x, a) ∈ Rd and ∀ℓ ∈ {1, . . . , d},

F (W,x, a)ℓ := m⟨aℓ, exp(W⊤x)⟩ · ⟨exp(W⊤x),1m⟩−1,

where m is number of hidden neurons, exp(·) is element-wise exponential function, aℓ,W are the
first and second layer weights respectively and x is the input data. Note that, the self-attention
could be written as F (WKX,WQX,WV X) ∈ Rd×n′

, where WK ,WQ,WV ∈ Rd×d denotes
key, query, and value matrix and X ∈ Rd×n′

is a sequence of n′ tokens. Thus, studying the two-
layer softmax network is the prerequisite to understanding self-attention. See more discussion in
Section H.

There is a rich line of work studying two-layer NN learning trajectory under ReLU activation func-
tion ((Li & Liang, 2018; Du et al., 2019b; Allen-Zhu et al., 2019b; Arora et al., 2019a; Song &
Yang, 2019; Mei et al., 2019; Song et al., 2021c; Brand et al., 2021; Munteanu et al., 2022; Chizat
& Bach, 2020; Zhou et al., 2021; Lyu et al., 2021; Cao et al., 2022) and many more) or exponential
activation function from the latest work (Gao et al., 2023a). As far as we know, our work is the first
to theoretically study the optimization and generalization of the two-layer softmax network and it is
a first step on understanding the power of softmax.

One popular analysis method for studying over-parameterized NN is Neural Tangent Kernel
(NTK) (Jacot et al., 2018), where overparameterized networks are approximately linear models
around their initialization, so the network training is almost convex.

To answer our (∗) question above, we adopt the powerful NTK analysis paradigm in this work.
Our analysis shows that, because of the normalization effect of the denominator, the Neural Tangent
Kernel induced by the softmax has a good perturbation property (Lemma 5.1), which means the loss
landscape of the softmax version has a large convex region. Thus, the softmax NN requires almost
the same number of neurons and training steps to fit the data and converge as ReLU or exponential
NN, which is illustrated in Table 1 clearly (Theorem 4.2). To demonstrate the broad applicability of
our theoretical findings, we apply our analysis in a practical case study to show the generalization
ability of softmax NN, where the task is learning score estimation functions in diffusion models
with noisy labels, a promising approach for generative modeling, as we can smartly transfer it to
a multi-dimensional regression task (Theorem 6.6). Thus, we show that gradient-based algorithms
can learn the score function with a provable accuracy.

Our paper’s contributions are summarized as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Softmax NTK: We build up the first NTK analysis framework for two-layer NN with
softmax activation function (Theorem 4.2). Furthermore, our multi-dimensional regression
setting is more general than previous work (Munteanu et al., 2022; Gao et al., 2023a) (ReLU
and exp) and can be degenerated to the linear regression setting.

• Diffusion Models Case Study: We apply our results in learning score estimation functions
in diffusion models with noisy labels to verify our analysis effectiveness (Theorem 6.6).

2 RELATED WORKS

2.1 NEURAL TANGENT KERNEL

Recently many studies show that the analysis of optimization and generalization for deep learn-
ing should be interwoven together. One line of work uses the first-order Tyler expansion to study
sufficiently over-parameterized neural networks around its initialization like NTK, e.g. (Matthews
et al., 2018; Zou et al., 2018; Jacot et al., 2018; Li & Liang, 2018; Allen-Zhu et al., 2019c; Zou &
Gu, 2019; Oymak & Soltanolkotabi, 2019; Lee et al., 2019; Novak et al., 2019; Yang, 2019; Song
& Yang, 2019; Du et al., 2019a; Allen-Zhu et al., 2019b; Chizat et al., 2019; Oymak et al., 2019;
Arora et al., 2019a; Cao & Gu, 2019; Ji & Telgarsky, 2019; Allen-Zhu et al., 2019a; Oymak &
Soltanolkotabi, 2020; Cao et al., 2020; Zou et al., 2020; Geiger et al., 2020; Brand et al., 2021;
Montanari & Zhong, 2022; Munteanu et al., 2022; Gao et al., 2023a; Qin et al., 2023b;a;c; Song &
Ye, 2023; Gao et al., 2024; Song et al., 2024b) and more. Thus, the neural network optimization
can be a convex problem. The NTK method has been widely used in different scenarios, such as
preprocessing analysis (Song et al., 2021c; Hu et al., 2022; Alman et al., 2023; Shi et al., 2023a;
Sun et al., 2023; 2024; Gao et al., 2024), federated learning (Li et al., 2023b), LoRA adaptation (Hu
et al., 2021; Xu et al., 2024b; Shi et al., 2023b) of LLMs (Malladi et al., 2023), and learning score
estimation functions in diffusion models (Han et al., 2024b).

2.2 SOFTMAX AND ATTENTION IN LLMS

Recently, significant advances have been achieved in language modeling, particularly with the intro-
duction of Transformer architectures and attention mechanisms (Vaswani et al., 2017). Self-attention
to capture long-range dependencies in text, revolutionizing the field of NLP, e.g., BERT (Devlin
et al., 2019), PaLM (Chowdhery et al., 2022), LLaMA (Touvron et al., 2023a), LLaMA 2 (Touvron
et al., 2023b), ChatGPT (OpenAI, 2022), GPT4 (Achiam et al., 2023), Claude 3 (Anthropic, 2024)
and so on. Many works demonstrate the softmax is beyond other activation functions such as ReLU
attention or linear attention in different aspects, e.g, approximation power (Deng et al., 2023c; San-
ford et al., 2024; Noci et al., 2024; Li et al., 2024), prompt tuning (Oymak et al., 2023), in-context
learning ability (Gao et al., 2023c; Shi et al., 2023c; Collins et al., 2024; Chen et al., 2024c), com-
positional ability(Xu et al., 2024a). Many works study to generalize the softmax into high order
attention (Alman & Song, 2024b) or to accelerate softmax computation (Wang et al., 2020; Choro-
manski et al., 2020; Shen et al., 2021; Qin et al., 2021; Alman & Song, 2023; Brand et al., 2024;
Alman & Song, 2024a; Han et al., 2024a; Hu et al., 2024; Deng et al., 2024; Song et al., 2024a;
Gao et al., 2023d;e; Kacham et al., 2023; Liang et al., 2024b). Another line of work analyzes a one-
layer softmax network trained on the linear regression task (Li et al., 2023a; Deng et al., 2023a;b;
Chu et al., 2024; Gao et al., 2023b; Sheen et al., 2024), while our work studies a two-layer softmax
setting.

2.3 DIFFUSION MODEL

Score-based generative diffusion models can generate high-quality image samples comparable to
GANs which requires adversarial optimization (Ho et al., 2020; Song et al., 2021b; Kim et al.,
2024). Based on the U-Net (Ronneberger et al., 2015), stable diffusion can successfully generate
business-used images. Based on the softmax-based self-attention (Peebles & Xie, 2023), OpenAI
released a video diffusion model, SORA (OpenAI, 2024), with a surprising performance. Another
line of work study training diffusion models with a better theoretical guarantee (Song & Ermon,
2019; 2020; Song & Kingma, 2021; Song et al., 2020; 2021a; Lee et al., 2022; Kwon et al., 2022;
Song et al., 2023; Lim et al., 2023; Chen et al., 2023a;d;b; Shah et al., 2023; Yang et al., 2023;

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Benton et al., 2023; Gatmiry et al., 2024; Chen et al., 2024a; Guo et al., 2024; Wu et al., 2024; Chen
et al., 2024b). In this work, we adapt our analysis in diffusion models.

Roadmap. We organize our paper as follows: In Section 3, we introduce the notation system and
problem setup. In Section 4, we present our main result, proving that a Softmax neural network
with poly(nd) neurons can fit any training dataset consisting of n d-dimensional samples for d-
dimensional regression tasks. In Section 5, we outline the key techniques used to establish our main
result. In Section 6, we extend our findings to Diffusion Models, demonstrating that Softmax neural
networks can accurately learn score estimation even with noisy labels. Finally, in Section 7, we
conclude the paper.

3 PRELIMINARY

We first introduce some notations. Then, we will introduce our problem setup.

Notations. We use N (µ,Σ) to denote the Gaussian distribution with µ and covariance Σ. For any
positive integer n, we use [n] to denote set {1, 2, · · · , n}.

Let a vector z ∈ Rn. We denote the ℓ2 norm as ∥z∥2 := (
∑n

i=1 z
2
i)

1/2, the ℓ1 norm as ∥z∥1 :=∑n
i=1 |zi|, ∥z∥0 as the number of non-zero entries in z, ∥z∥∞ as maxi∈[n] |zi|. We use z⊤ to denote

the transpose of a z. We use ⟨·, ·⟩ to denote the inner product. Let A ∈ Rn×d, we use vec(A) to
denote a length nd vector. We denote the Frobenius norm as ∥A∥F := (

∑
i∈[n],j∈[d] A

2
i,j)

1/2. For a
function f(x), f is L-Lipschitz if ∥f(x)− f(y)∥2 ≤ L · ∥x− y∥2. Let D denote a distribution. We
use x ∼ D to denote that we sample a random variable x from distribution D. We use E[] to denote
expectation and Pr[] to denote probability. We use p.s.d. to denote the positive-semidefinite matrix.

As we have multiple indexes, to avoid confusion, we usually use i, j ∈ [n] to index the training data,
ℓ ∈ [d] to index the output dimension, r ∈ [m] to index neuron number.

3.1 MODEL, DATA, AND ALGORITHM

Models. We consider a two-layer softmax neural network. The hidden layer has m neurons, and we
use the softmax function as the activation function, F (W, ·, a) : Rd1 → Rd2 and ∀ℓ ∈ [d2]

F (W,x, a)ℓ := m⟨aℓ, exp(W⊤x)⟩ · ⟨exp(W⊤x),1m⟩−1, (1)

where exp(·) is element-wise exponential function. We use m as a normalization factor. Note that
we can reduce the d2 to 1 for the linear regression setting. To simplify the proof, we let d1 = d2.
Note that our proof can generalize to different d1, d2 easily.

We only optimizing W and not both W and a simultaneously as many previous works to sim-
plify optimization, e.g., (Du et al., 2019b; Song & Yang, 2019; Munteanu et al., 2022), where
x ∈ Rd represents the input, w1, · · · , wm ∈ Rd are weight vectors in the first layer, i.e.,
W = [w1, · · · , wm] ∈ Rd×m, and a1, · · · , ad ∈ Rm are weights in the second layer. We can
simplify the notation as F (W,x) when the context is clear.

Data. We have n training data points Dn = {(xi, yi)}ni=1, where x ∈ Rd and y ∈ Rd.1 We
denote X = [x1, . . . , xn] ∈ Rd×n and Y = [y1, . . . , yn] ∈ Rd×n. We assume that ∥xi∥2 ≤ 1 and
∥yi∥2 ≤ 1, ∀i ∈ [n].

Gradient Descent. We use er to denote a vector where the r-th coordinate is 1 and everywhere else
is 0. ∀r ∈ [m],∀ℓ ∈ [d], we have ∂F (W,x,a)ℓ

∂wr
∈ Rd can be written as

∂F (W,x, a)ℓ
∂wr

= +m⟨aℓ ◦ er, exp(W⊤x)⟩ · ⟨exp(W⊤x),1m⟩−1x

−m⟨aℓ, exp(W⊤x)⟩ · ⟨exp(W⊤x),1m⟩−2 · ⟨exp(W⊤x), er ◦ 1m⟩x
= +m⟨aℓ ◦ er,S⟩ · x −m⟨aℓ,S⟩ · ⟨S, er ◦ 1m⟩x. (2)

1Our analysis can extend to xi ∈ Rd1 and yi ∈ Rd2 easily.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We have the softmax function S ∈ Rm×n, where Si ∈ Rm denotes ⟨exp(W⊤xi),1m⟩−1 ·
exp(W⊤xi) and Si,r ∈ R denotes ⟨exp(W⊤xi),1m⟩−1 · exp(w⊤

r xi), ∀r ∈ [m],∀i ∈ [n]. For
simplicity, we denote αi as ⟨1m, exp(W⊤xi)⟩, expi as exp(W⊤xi) and expi,r as exp(w⊤

r xi),
∀r ∈ [m],∀i ∈ [n], when the context is clear.

We use W (τ) to denote the weights of the first layer on the timestamp τ and similar for S(τ) and
F (τ) when the context is clear. Now, we introduce some necessary definitions used.

We first introduce the function over the whole training dynamic.
Definition 3.1 (F (τ), dynamic prediction). We define Fi(τ) ∈ Rd, for any timestamp τ , as

Fℓ,i(τ) := m⟨aℓ, exp(W (τ)⊤xi)⟩ · ⟨exp(W (τ)⊤xi),1m⟩−1.

Here xi ∈ Rd. It can be rewritten as Fℓ,i(τ) = m⟨aℓ,Si(τ)⟩.

We consider d-dimensional MSE loss.
Definition 3.2 (Loss function over time). We define the objective function L as below:

L(W (τ)) :=
1

2

∑
i∈[n]

∑
ℓ∈[d]

(Fℓ,i(τ)− yℓ,i)
2.

Thus, we define the gradient of w.
Definition 3.3 (∆wr(τ)). For any r ∈ [m], we define ∆wr(τ) ∈ Rd as below:

∆wr(τ) :=
dL(W (τ)

dwr(τ)

= m

n∑
i=1

d∑
ℓ=1

(Fℓ,i(τ)− yℓ,i) ·
(
⟨aℓ ◦ er,Si(τ)⟩ − ⟨aℓ,Si(τ)⟩ · ⟨Si(τ), er ◦ 1m⟩

)
· xi

where Si(τ) = ⟨exp(W (τ)⊤xi),1m⟩−1 · exp(W (τ)⊤xi).

We can simplify the gradient calculation by the fact 1 = ⟨1m,Si(τ)⟩. Thus, we have the following
claim.

Claim 3.4. ∆wr(τ) := m
∑n

i=1

∑d
ℓ=1(Fℓ,i(τ)− yℓ,i) ·

(
(⟨aℓ,r · 1m − aℓ,Si(τ)⟩) · Si,r(τ)

)
· xi.

We use the gradient descent (GD) algorithm with the learning rate η to train the network. As we
only train the hidden layer W and fix a, we have the following gradient update rule.
Definition 3.5 (Gradient descent). The gradient descent algorithm for optimizing the weight matrix
W is defined as:

W (τ + 1) = W (τ)− η∆W (τ),

where ∆W (τ) ∈ Rd×m and ∆wr(τ) ∈ Rd is the r-th column of ∆W (τ) defined in Definition 3.3.

3.2 NEURAL TANGENT KERNEL

Now, we are ready to introduce our key tools, Neural Tangent Kernel induced by the softmax. We
define the kernel with respect to timestamp τ .
Definition 3.6 (Kernel function). For simplicity, we denote S(W⊤xi) as Si ∈ Rm

≥0 and vℓ,r =

aℓ,r · 1m − aℓ ∈ Rm. We define the function (Gram matrix) H : Rd×m → Rnd×nd as following

H(W) :=


H1,1 H1,2 · · · H1,d

H2,1 H2,2 · · · H2,d

...
...

. . .
...

Hd,1 Hd,2 · · · Hd,d

 ,

and for each ℓ1, ℓ2 ∈ [d], we have Hℓ1,ℓ2 ∈ Rn×n is defined as

[Hℓ1,ℓ2]i,j(W) :=
1

m
x⊤
i xj

m∑
r=1

⟨vℓ1,r,Si⟩ ·mSi,r · ⟨vℓ2,r,Sj⟩ ·mSj,r.

For any timestamp τ , for simplicity, we denote H(τ) := H(W (τ)) and denote H(0) as H∗.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Note that H∗ is a positive semi-definite matrix, and we denote its minimum eigenvalue as λ :=
λmin(H

∗) and we assume λ > 0 as previous works (Du et al., 2019b; Allen-Zhu et al., 2019b;c).

Initialization. We use symmetric initialization, which is widely used in previous works (Daniely &
Malach, 2020; Damian et al., 2022; Munteanu et al., 2022; Shi et al., 2022; 2024).

Definition 3.7 (Symmetric initialization). For each r ∈ [m/2], we initialize weights as below

• We draw w2r−1 from N (0, σ2Id) and uniformly draw a2r−1 from {−1,+1}d.

• We assign a2r = −a2r−1 and w2r−1 = w2r.

Due to symmetric initialization, we can easily see that F (W (0), x) = 0,∀x ∈ Rd.

4 MAIN RESULTS

We first define a constant we used.

Definition 4.1. Let C > 10 denote a sufficiently large constant. We define parameter B as follows
B := max{Cσ

√
log(nd/δ), 1}.

Now, we are ready to present our main result, whose complete proof is in Appendix C.1.

Theorem 4.2 (Main result). Let λ = λmin(H
∗) > 0, m = Ω(λ−2n2d2 exp(18B) log2(nd/δ)), η =

0.1λ/(mn2d2 exp(16B)), and T̂ = Ω((mηλ)−1 log(nd/ϵ)) = Ω(λ−2n2d2 exp(16B) · log(nd/ϵ)).
For any ϵ, δ ∈ (0, 0.1), after T̂ iterations, with probability at least 1−δ, we have ∥F (T̂)−Y ∥2F ≤ ϵ.

If we fix δ and σ in B defined in the Definition 4.1, since exp(Θ(B)) = (nd)o(1), we can simplify
the m = Ω(λ−2(nd)2+o(1)) and T̂ = Ω(λ−2(nd)2+o(1)).

The Theorem 4.2 means that as we have poly(nd) number of neurons and training steps, the softmax
NN can fit any training datasets with n number of d-dim training samples on d-dim regression task.

Corollary 4.3. Consider the 1-dimension linear regression setting, i.e., d1 = d and d2 = 1. Let
λ = λmin(H

∗) > 0, m = Ω(λ−2n2 exp(18B) log2(n/δ)), η = 0.1λ/(mn2 exp(16B)), and
T̂ = Ω((mηλ)−1 log(n/ϵ)) = Ω(λ−2n2 exp(16B) · log(n/ϵ)). For any ϵ, δ ∈ (0, 0.1), after T̂

iterations, with probability at least 1− δ, we have ∥F (T̂)− Y ∥22 ≤ ϵ.

Proof. Directly follow Theorem 4.2.

As shown in Table 1, our two-layer softmax network needs the same number of training steps T̂ and
number of neurons m as two-layer ReLU networks or two-layer exponential networks.

5 TECHNICAL OVERVIEW

We first show a key Lemma below, showing that the weight w perturbation will not change the
Neural Tangent Kernel too much.

Lemma 5.1 (Weight value perturbation ⇒ kernel value perturbation). Let R ∈ (0, 0.01). If the
following conditions hold

• Let W̃ = [w̃1, · · · , w̃m] ∈ Rd×m, where w̃1, · · · , w̃m are i.i.d. draw from N (0, σ2Id).

• Let W = [w1, · · · , wm] ∈ Rd×m and satisfy ∥w̃r − wr∥2 ≤ R for any r ∈ [m].

Then, with probability at least 1− δ, we have ∥H(W)−H(W̃)∥F ≤ Rnd exp(10B).

Please see Appendix B.2 for the proof of Lemma 5.1. We can see that the kernel matrix has a small
perturbation when the weights w perturb. Note that in Lemma 4.2 of (Munteanu et al., 2022), they
have ∥H(W)−H(W̃)∥F ≤ 2Rn for the ReLU activation function and in Lemma 6.7 of (Gao et al.,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2023a), they have ∥H(W) − H(W̃)∥F ≤ 3Rn1+o(1) for the exp activation function. When we
consider the 1-dimension linear regression task, we have ∥H(W) −H(W̃)∥F ≤ Rn1+o(1), which
is almost the same as the other two cases.
Remark 5.2. In the proof of Lemma B.2, we do not use concentration bound as previous work (Song
& Yang, 2019; Munteanu et al., 2022; Gao et al., 2023a). The reason is that we consider the worst
case. In general, E[H(W)−H(W̃)] ̸= 0nd×nd. Thus, using the concentration bound may not gain
any benefits.

Based on Lemma 5.1, we can use math induction to finish the proof of our main Theorem. We show
the induction statement below.
Lemma 5.3 (Induction). Let τ be a fixed integer. Assume the same condition as Theorem 4.2. Let
D be defined as Definition A.2 and D < R. If the following conditions hold

• Weights Property. ∥wr(i)− wr(0)∥2 ≤ R, ∀i ∈ [τ]

• Loss Property. ∥F (i)− Y ∥2F ≤ ∥F (0)− Y ∥2F · (1−mηλ/2)i, ∀i ∈ [τ]

• Gradient Property. η∥∆wr(i)∥2 ≤ 0.01 for all r ∈ [m], ∀i ∈ [τ]

Then, for τ + 1 and ∀r ∈ [m], we have

• Weights Induction. ∥wr(τ + 1)− wr(0)∥2 ≤ D.

• Loss Induction. ∥F (τ + 1)− Y ∥2F ≤ (1−mηλ/4)τ+1 · ∥F (0)− Y ∥2F .

• Gradient Induction. η∥∆wr(τ + 1)∥2 ≤ 0.01,∀r ∈ [m].

Please refer to Appendix C.2, Appendix C.3 and Appendix C.4 for the proof of weights, loss, gradi-
ent induction in Lemma 5.3 respectively.

Lemma 5.3 means that, at a fixed timestamp τ , if the weights w(τ) is close to its initialization,
the loss is decreasing, and the gradient is also small, then we can conclude at timestamp τ + 1,
these conditions still hold as local convexity proved by Lemma 5.1. Thus, after checking the initial
condition, we can conclude Theorem 4.2.

5.1 TECHNICAL NOVELTY AND COMPARISON TO THE EXISTING LITERATURE

In this work, as we consider the softmax activation function, the denominator term will also con-
tribute to gradient calculation. Handling the denominator poses many technical challenges, where
these challenges are unique to our setting and not presented in previous settings as ReLU (Song
& Yang, 2019), or exp (Gao et al., 2023a) activation function. In detail, in the gradient calcu-
lation, we need new loss decomposition Lemma E.1 to split the loss into ∥F (τ + 1) − Y ∥2F =
∥F (t)−Y ∥2F +C0+C1+C2+C3. Then, we need to bound these new terms in Lemma E.3 for C0,
Lemma E.4 and Claim E.5 for C1, Claim E.6 for C2 and Claim E.7 for C3, where all these Lemmas
are novel and non-trivial. We refer readers to Appendix C.3 for more details.

6 EXTENSION ON DIFFUSION

Now, we apply our results in learning score estimation functions in diffusion models with noisy
labels. We introduce problem setup in Section 6.1 and show our results in Section 6.2.

6.1 PRELIMINARY OF DIFFUSION

In this section, we briefly introduce the diffusion model proposed in (Song et al., 2021b).

Forward Process. During the forward process, we progressively inject the noise into the origi-
nal data distribution, which can be characterized by the following Stochastic Differential Equation
(SDE) (Song & Ermon, 2020; Ho et al., 2020):

dx(t) = −1

2
g(t)x(t) dt+

√
g(t)dBt, x(0) ∼ p0, (3)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

where x(t) is the data at the diffusion process time t, g(t) > 0 is a deterministic weighting func-
tion; and (Bt)t≥0 is a standard d-dimensional Brownian motion/noise. The p0 represents the orig-
inal/target data distribution that we learn, and we only have few number of accesses to it, i.e., n
times. We denote pt as the distribution of x(t) at diffusion process time t. Then, we can write the
explicit solution to Eq. (3) as

x(t) = e−
∫ t
0

1
2 g(s)dsx(0) + e−

∫ t
0

1
2 g(s)ds

∫ t

0

e
∫ s
0

1
2 g(u)du

√
g(s)dBs.

Backward Process. We denote y(t) = x(T − t) to reverse the forward process in time (Haussmann
& Pardoux, 1986; Föllmer, 2005; Cattiaux et al., 2021) that transforms noise into samples from the
target distribution. We have a backward process associated to Eq. (3) as:

dy(t) = (
1

2
g(T − t)y(t) + g(T − t)∇ log pT−t(y(t)))d +

√
g(T − t)dB̄t, y(0) ∼ q0. (4)

where (B̄t)t≥0 is another d-dim Brownian motion/noise. Following the literature, we call ∇ log pt(·)
as “score function” (Song et al., 2021b). We have q0 as the initial distribution of the backward
process and the score function ∇ log pt(·) as the gradient of log density of x(t).

However, In practice, Eq.(4) cannot be directly used as both the score function and the distribution
pT are unknown. To solve the problem, we (1) randomly select a noise distribution as the initial
distribution of the backward process pT ; (2) replace the ground-truth score function ∇ log pt(x(t))
by an estimator sθ(x(t), t). The parameterized estimator sθ is learned by a neural network such as
U-Net (Ho et al., 2020; Rombach et al., 2022) and Transformer (Peebles & Xie, 2023). Thus, we
obtain a practically implementable approximation of the backward SDE:

dy(t) = (
1

2
g(T − t)y(t) + g(T − t)sθ(y(t), t))dt+

√
g(T − t)dB̄t, y(0) ∼ N (0, Id),

which can be used for sampling/data generation (Song & Ermon, 2020; Chen et al., 2023b;c)

Score Matching. When estimating the score function, we usually use L2 loss between the estimated
and actual score:

min
θ

1

T

∫ T

0

λ(t)E[∥sθ(x(t), t)−∇ log pt(x(t))∥22]dt, (5)

where λ(t) is the weighting function that captures time inhomogeneity. As the hardness of estimate
∇ log pt term in Eq. (5), equivalently, we minimize the following denoising score matching (Vincent,
2011):

min
θ

1

T − T0
·
∫ T

T0

λ(t)E[∥sθ(x(t), t)−∇ log pt|0(x(t) | x(0))∥22]dt. (6)

In practice, the estimator of the score function is parameterized by a neural network, and we have
the following sampling procedure for any i ∈ [n],

x(0)i ∼ p0, ti ∼ Unif(0, T), x(ti)i ∼ pti|0(·|x(0)i),
and we get the training dataset {x(0)i, (ti, x(ti)i)}ni=1, where x(0)i ∈ Rd and (ti, x(ti)i) ∈ Rd+1.
We denote x(0) as the noisy label and E[x(0)|x(t)] as the true label. For simplicity, we denote x(0)i
as yi ∈ Rd and (ti, x(ti)i) as xi ∈ Rd+1 and the training dataset as Dn = {(xi, yi)}ni=1. Here, y
denotes the image from a dataset, and x denotes the noised image with its diffusion process time t.

Neural Network Parameterization. Recall that we consider a two-layer network with soft-
max activation function as the diffusion model in Eq. (1), satisfying ∀ℓ ∈ [d], F (W,x, a)ℓ =
m⟨aℓ, exp(W⊤x)⟩ · ⟨exp(W⊤x),1m⟩−1. Note that we do not train the top-layer weights a, so
we can denote it as Fnn(W,x).

Then, similar as (Ho et al., 2020; Han et al., 2024b), our loss function Eq. (6) can be rewrite as

min
W

L(W) :=
1

2

N∑
j=1

∥Fnn(W,xj)− yj∥22.

We denote the target function as F∗(t, x(t)) := E[y | (t, x(t))]. Let H be the reproducing Hilbert
space (RKHS) induced by the NTK (Carmeli et al., 2010; Jacot et al., 2018) and let FH in the RKHS
H such that ∥FH∥2H ≤ RH.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6.2 MAIN RESULT OF DIFFUSION

We first introduce some natural assumptions we used.
Assumption 6.1. Based on normalization, we assume ∥yi∥2 ≤ 1, ∥xi∥2 ≤ 1,∀i ∈ [n].

Assumption 6.2. Assume λ = λmin(H
∗) > 0.

Assumption 6.3. The function g is almost everywhere continuous and bounded on [0,∞).

Assumption 6.4. For all (t, x(t)) ∈ (0,∞)×Rd, the function F∗(t, x(t)) is βx-Lipschitz in x, i.e.,
∥F∗(t, x(t))− F∗(t, x

′(t))∥2 ≤ βx∥x(t)− x′(t)∥2.

We denote A(RH) := c1Λ(
√
RH
Λ)−

2
d log(

√
RH
Λ) and Λ = O(

√
d) and

Γδ :=

(
2d2A(RH)

λ
log3/2(

e(dn)3/2A(RH)

λ
) +

1√
n

)2

+
d2A2(RH)

λ2
(log(1/δ) + log(log n)).

Assumption 6.5 (Assumption 3.11 in (Han et al., 2024b)). Fix any FH ∈ H with ∥FH∥2H ≤ RH

and assume labels are generated as ỹj = FH(xj) + ϵj . Suppose F̃ntk(γ(T̂), ·) is obtained by
GD-trained kernel regression with the number of iterations T̂ . We assume there exists ϵ such that

1

T

∫ T

0

E[F̃ntk(γ(T̂), (t, x(t)))− FH(t, x(t))∥22]dt ≤ ϵ(n, T̂),

and ϵ(n, T̂) → 0 as n → ∞.

Now, we are ready to present our main Theorem for diffusion.
Theorem 6.6 (Main results of score estimation and generalization). Suppose Assump-
tions 6.1, 6.2, 6.3, 6.4 hold and we set m = Ω(λ−2n3d3 exp(18B) log2(nd/δ)) and η =

0.1λ/(mn2d2 exp(16B)). Moreover, suppose early stopping T̂ satisfies Assumption 6.5 with corre-
sponding ϵ(n, T̂). Then for large enough RH, with probability at least 1− δ, it holds that

1

T

∫ T

0

λ(t)E[∥sW (T̂)(t, x(t))−∇ log pt(Xt)∥22]dt

≤ O(
1

λ
√
n
+ ϵ(n, T̂) + dA2(RH) + dA(RH) +

√
dA(RH)Γδ + Γδ).

Please refer to Appendix G.1 for the complete proof. Here, we provide a proof sketch.

Proof sketch of Theorem 6.6. In Theorem F.2, we show the “equivalence” between softmax NN
learning and corresponding neural tangent kernel regression, i.e., the gap between them is always
small. Then, we can borrow the generalization ability of kernel regression to the generalization abil-
ity of two-layer softmax NN. On the other hand, by Claim G.1, we can decompose the loss into a
coupling gap, a label mismatch gap, an early stopping gap, and an approximation gap. By using our
Theorem 4.2, Theorem F.2 with some tools from (Han et al., 2024b), we finish the proof.

From Theorem 6.6, we know that, under some natural assumptions, the GD algorithm trained two-
layer softmax NN can learn a provable accuracy on the score estimation functions in the diffusion
model with noisy labels. We use this practical case study to demonstrate the broad applicability of
our theoretical findings.

7 CONCLUSION

This paper provides a theoretical analysis of the optimization and generalization properties of two-
layer neural networks with the softmax activation function. We apply our results in learning score
estimation functions in diffusion models with noisy labels to verify our analysis effectiveness. Our
findings contribute to a deeper understanding of the power of softmax neural networks and their
potential for self-attention, advanced LLMs, and generative modeling.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Zeyuan Allen-Zhu and Yuanzhi Li. What can resnet learn efficiently, going beyond kernels? In
Advances in Neural Information Processing Systems, 2019.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, 2019b.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. In NeurIPS, 2019c.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36, 2023.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024a.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024b. URL https://openreview.net/forum?id=v0zNCwwkaV.

Josh Alman, Jiehao Liang, Zhao Song, Ruizhe Zhang, and Danyang Zhuo. Bypass exponential
time preprocessing: Fast neural network training via weight-data correlation preprocessing. In
NeurIPS, 2023.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR, 2019a.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in neural information processing
systems, 32, 2019b.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. Journal of Ma-
chine Learning Research, 18(19):1–53, 2017.

Joe Benton, George Deligiannidis, and Arnaud Doucet. Error bounds for flow matching methods.
arXiv preprint arXiv:2305.16860, 2023.

10

https://openreview.net/forum?id=v0zNCwwkaV
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (overparametrized)
neural networks in near-linear time. In ITCS, 2021.

Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithms and hardness for dynamic attention
maintenance in large language models. In ICML, 2024.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and
deep neural networks. Advances in neural information processing systems, 32, 2019.

Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards understanding the
spectral bias of deep learning, 2020.

Yuan Cao, Zixiang Chen, Misha Belkin, and Quanquan Gu. Benign overfitting in two-layer convo-
lutional neural networks. Advances in neural information processing systems, 35:25237–25250,
2022.

Claudio Carmeli, Ernesto De Vito, Alessandro Toigo, and Veronica Umanitá. Vector valued repro-
ducing kernel hilbert spaces and universality. Analysis and Applications, 8(01):19–61, 2010.

Patrick Cattiaux, Giovanni Conforti, Ivan Gentil, and Christian Léonard. Time reversal of diffusion
processes under a finite entropy condition. arXiv preprint arXiv:2104.07708, 2021.

Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative modeling:
User-friendly bounds under minimal smoothness assumptions. In International Conference on
Machine Learning, pp. 4735–4763. PMLR, 2023a.

Minshuo Chen, Yu Bai, Jason D Lee, Tuo Zhao, Huan Wang, Caiming Xiong, and Richard Socher.
Towards understanding hierarchical learning: Benefits of neural representations. arXiv preprint
arXiv:2006.13436, 2020.

Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation and
distribution recovery of diffusion models on low-dimensional data. In International Conference
on Machine Learning, pp. 4672–4712. PMLR, 2023b.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. In International
Conference on Learning Representations, 2023c.

Sitan Chen, Giannis Daras, and Alex Dimakis. Restoration-degradation beyond linear diffusions:
A non-asymptotic analysis for ddim-type samplers. In International Conference on Machine
Learning, pp. 4462–4484. PMLR, 2023d.

Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim. The probability
flow ode is provably fast. Advances in Neural Information Processing Systems, 36, 2024a.

Sitan Chen, Vasilis Kontonis, and Kulin Shah. Learning general gaussian mixtures with efficient
score matching. arXiv preprint arXiv:2404.18893, 2024b.

Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Training dynamics of multi-head
softmax attention for in-context learning: Emergence, convergence, and optimality. arXiv preprint
arXiv:2402.19442, 2024c.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Conference on learning theory, pp. 1305–1338. PMLR, 2020.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
In Advances in Neural Information Processing Systems, 2019.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al.
Rethinking attention with performers. In International Conference on Learning Representations,
2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Timothy Chu, Zhao Song, and Chiwun Yang. How to protect copyright data in optimization of
large language models? In Proceedings of the AAAI Conference on Artificial Intelligence, pp.
17871–17879, 2024.

Liam Collins, Advait Parulekar, Aryan Mokhtari, Sujay Sanghavi, and Sanjay Shakkottai. In-context
learning with transformers: Softmax attention adapts to function lipschitzness. arXiv preprint
arXiv:2402.11639, 2024.

Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship between self-
attention and convolutional layers. In International Conference on Learning Representations,
2020.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory. PMLR, 2022.

Amit Daniely and Eran Malach. Learning parities with neural networks. Advances in Neural Infor-
mation Processing Systems, 33, 2020.

Yichuan Deng, Zhihang Li, Sridhar Mahadevan, and Zhao Song. Zero-th order algorithm for soft-
max attention optimization. arXiv preprint arXiv:2307.08352, 2023a.

Yichuan Deng, Zhihang Li, and Zhao Song. Attention scheme inspired softmax regression. arXiv
preprint arXiv:2304.10411, 2023b.

Yichuan Deng, Zhao Song, and Tianyi Zhou. Superiority of softmax: Unveiling the performance
edge over linear attention. arXiv preprint arXiv:2310.11685, 2023c.

Yichuan Deng, Zhao Song, and Chiwun Yang. Attention is naturally sparse with gaussian distributed
input. arXiv preprint arXiv:2404.02690, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, 2019.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pp. 1675–
1685. PMLR, 2019a.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In ICLR. arXiv preprint arXiv:1810.02054, 2019b.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Hans Föllmer. An entropy approach to the time reversal of diffusion processes. In Stochastic
Differential Systems Filtering and Control: Proceedings of the IFIP-WG 7/1 Working Conference
Marseille-Luminy, France, March 12–17, 1984, pp. 156–163. Springer, 2005.

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression.
arXiv preprint arXiv:2303.16504, 2023a.

Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulating single
layer attention in llm based on tensor and svm trick, and solving it in matrix multiplication time.
arXiv preprint arXiv:2309.07418, 2023b.

Yeqi Gao, Zhao Song, and Shenghao Xie. In-context learning for attention scheme: from
single softmax regression to multiple softmax regression via a tensor trick. arXiv preprint
arXiv:2307.02419, 2023c.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yeqi Gao, Zhao Song, and Xin Yang. Differentially private attention computation. arXiv preprint
arXiv:2305.04701, 2023d.

Yeqi Gao, Zhao Song, Xin Yang, and Ruizhe Zhang. Fast quantum algorithm for attention compu-
tation. arXiv preprint arXiv:2307.08045, 2023e.

Yeqi Gao, Lianke Qin, Zhao Song, and Yitan Wang. A sublinear adversarial training algorithm. In
ICLR, 2024.

Khashayar Gatmiry, Jonathan Kelner, and Holden Lee. Learning mixtures of gaussians using diffu-
sion models. arXiv preprint arXiv:2404.18869, 2024.

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and lazy
training in deep neural networks. Journal of Statistical Mechanics: Theory and Experiment, pp.
113301, 2020.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When do neural
networks outperform kernel methods? In Advances in Neural Information Processing Systems,
2020.

Hanzhong Guo, Cheng Lu, Fan Bao, Tianyu Pang, Shuicheng Yan, Chao Du, and Chongxuan Li.
Gaussian mixture solvers for diffusion models. Advances in Neural Information Processing Sys-
tems, 36, 2024.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Confer-
ence on Learning Representations, 2024a.

Yinbin Han, Meisam Razaviyayn, and Renyuan Xu. Neural network-based score estimation in
diffusion models: Optimization and generalization. In The Twelfth International Conference on
Learning Representations, 2024b.

Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. In
International Conference on Learning Representations, 2019.

David Lee Hanson and Farroll Tim Wright. A bound on tail probabilities for quadratic forms in
independent random variables. The Annals of Mathematical Statistics, 42(3):1079–1083, 1971.

Ulrich G Haussmann and Etienne Pardoux. Time reversal of diffusions. The Annals of Probability,
pp. 1188–1205, 1986.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American statistical association, 58(301):13–30, 1963.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic litera-
ture review, 2024.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Hang Hu, Zhao Song, Omri Weinstein, and Danyang Zhuo. Training overparametrized neural net-
works in sublinear time. arXiv preprint arXiv:2208.04508, 2022.

Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational limits of modern
hopfield models: A fine-grained complexity analysis. In ICML, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent hier-
archy. In International conference on machine learning, pp. 4542–4551. PMLR, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve ar-
bitrarily small test error with shallow relu networks. In International Conference on Learning
Representations, 2019.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for
good? on opportunities and challenges of large language models for education. Learning and
individual differences, 103:102274, 2023.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning prob-
ability flow ODE trajectory of diffusion. In The Twelfth International Conference on Learning
Representations, 2024.

Dohyun Kwon, Ying Fan, and Kangwook Lee. Score-based generative modeling secretly minimizes
the wasserstein distance. Advances in Neural Information Processing Systems, 35:20205–20217,
2022.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling with
polynomial complexity. Advances in Neural Information Processing Systems, 35:22870–22882,
2022.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 2019.

Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier circuits in neural
networks and transformers: A case study of modular arithmetic with multiple inputs. arXiv
preprint arXiv:2402.09469, 2024.

Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi Zhou. The closeness of in-context learning and
weight shifting for softmax regression. arXiv preprint arXiv:2304.13276, 2023a.

Xiaoxiao Li, Zhao Song, and Jiaming Yang. Federated adversarial learning: A framework with con-
vergence analysis. In International Conference on Machine Learning, pp. 19932–19959. PMLR,
2023b.

Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen. Large language models in finance: A
survey. In Proceedings of the Fourth ACM International Conference on AI in Finance, pp. 374–
382, 2023c.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. Advances in neural information processing systems, 31, 2018.

Yuanzhi Li, Tengyu Ma, and Hongyang R Zhang. Learning over-parametrized two-layer neural
networks beyond ntk. In Conference on Learning Theory, 2020.

Weixin Liang, Zachary Izzo, Yaohui Zhang, Haley Lepp, Hancheng Cao, Xuandong Zhao, Lingjiao
Chen, Haotian Ye, Sheng Liu, Zhi Huang, et al. Monitoring ai-modified content at scale: A case
study on the impact of chatgpt on ai conference peer reviews. arXiv preprint arXiv:2403.07183,
2024a.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, Zhuoyan Xu, and Junze Yin. Conv-basis: A
new paradigm for efficient attention inference and gradient computation in transformers. arXiv
preprint arXiv:2405.05219, 2024b.

Jae Hyun Lim, Nikola B Kovachki, Ricardo Baptista, Christopher Beckham, Kamyar Azizzade-
nesheli, Jean Kossaifi, Vikram Voleti, Jiaming Song, Karsten Kreis, Jan Kautz, et al. Score-based
diffusion models in function space, 2023. URL https://arxiv. org/abs/2302.07400, 2023.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language mod-
els. Advances in Neural Information Processing Systems, 36, 2024.

Tao Luo, Zhi-Qin John Xu, Zheng Ma, and Yaoyu Zhang. Phase diagram for two-layer relu neural
networks at infinite-width limit. Journal of Machine Learning Research, 2021.

Kaifeng Lyu, Zhiyuan Li, Runzhe Wang, and Sanjeev Arora. Gradient descent on two-layer nets:
Margin maximization and simplicity bias. Advances in Neural Information Processing Systems,
34:12978–12991, 2021.

Eran Malach, Pritish Kamath, Emmanuel Abbe, and Nathan Srebro. Quantifying the benefit of using
differentiable learning over tangent kernels. arXiv preprint arXiv:2103.01210, 2021.

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based
view of language model fine-tuning. In International Conference on Machine Learning, pp.
23610–23641. PMLR, 2023.

Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin Ghahra-
mani. Gaussian process behaviour in wide deep neural networks. In International Conference on
Learning Representations, 2018.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers neural
networks: dimension-free bounds and kernel limit. In Conference on Learning Theory, pp. 2388–
2464. PMLR, 2019.

Andrea Montanari and Yiqiao Zhong. The interpolation phase transition in neural networks: Memo-
rization and generalization under lazy training. The Annals of Statistics, 50(5):2816–2847, 2022.

Alexander Munteanu, Simon Omlor, Zhao Song, and David Woodruff. Bounding the width of neural
networks via coupled initialization a worst case analysis. In International Conference on Machine
Learning, pp. 16083–16122. PMLR, 2022.

Lorenzo Noci, Chuning Li, Mufan Li, Bobby He, Thomas Hofmann, Chris J Maddison, and Dan
Roy. The shaped transformer: Attention models in the infinite depth-and-width limit. Advances
in Neural Information Processing Systems, 36, 2024.

Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Daniel A Abolafia, Jeffrey Penning-
ton, and Jascha Sohl-Dickstein. Bayesian convolutional neural networks with many channels are
gaussian processes. In International Conference on Learning Representations, 2019.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

OpenAI. Introducing ChatGPT. https://openai.com/blog/chatgpt, 2022. Accessed:
2023-09-10.

OpenAI. Video generation models as world simulators, 2024. https://openai.com/
research/video-generation-models-as-world-simulators.

Samet Oymak and Mahdi Soltanolkotabi. Overparameterized nonlinear learning: Gradient descent
takes the shortest path? In International Conference on Machine Learning, pp. 4951–4960.
PMLR, 2019.

15

https://openai.com/blog/chatgpt
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global con-
vergence guarantees for training shallow neural networks. IEEE Journal on Selected Areas in
Information Theory, 1(1):84–105, 2020.

Samet Oymak, Zalan Fabian, Mingchen Li, and Mahdi Soltanolkotabi. Generalization guaran-
tees for neural networks via harnessing the low-rank structure of the jacobian. arXiv preprint
arXiv:1906.05392, 2019.

Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On the role
of attention in prompt-tuning. In International Conference on Machine Learning, pp. 26724–
26768. PMLR, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Lianke Qin, Saayan Mitra, Zhao Song, Yuanyuan Yang, and Tianyi Zhou. Fast heavy inner product
identification between weights and inputs in neural network training. In 2023 IEEE International
Conference on Big Data (BigData), pp. 128–133. IEEE, 2023a.

Lianke Qin, Zhao Song, and Baocheng Sun. Is solving graph neural tangent kernel equivalent to
training graph neural network? arXiv preprint arXiv:2309.07452, 2023b.

Lianke Qin, Zhao Song, and Yuanyuan Yang. Efficient sgd neural network training via sublinear
activated neuron identification. arXiv preprint arXiv:2307.06565, 2023c.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. In International Conference
on Learning Representations, 2021.

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task. In The Twelfth International Conference on Learning Representations, 2024.

Henry Reeve and Ata Kaban. Optimistic bounds for multi-output learning. In International Confer-
ence on Machine Learning, pp. 8030–8040. PMLR, 2020.

Maria Refinetti, Sebastian Goldt, Florent Krzakala, and Lenka Zdeborov. Classifying high-
dimensional gaussian mixtures: Where kernel methods fail and neural networks succeed. In
International Conference on Machine Learning, pp. 8936–8947. PMLR, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Mark Rudelson and Roman Vershynin. Hanson-wright inequality and sub-gaussian concentration.
arXiv preprint arXiv:1306.2872, 2013.

Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of
transformers. Advances in Neural Information Processing Systems, 36, 2024.

Kulin Shah, Sitan Chen, and Adam Klivans. Learning mixtures of gaussians using the ddpm objec-
tive. Advances in Neural Information Processing Systems, 36:19636–19649, 2023.

Heejune Sheen, Siyu Chen, Tianhao Wang, and Harrison H Zhou. Implicit regularization of gradient
flow on one-layer softmax attention. arXiv preprint arXiv:2403.08699, 2024.

Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention:
Attention with linear complexities. In Proceedings of the IEEE/CVF winter conference on appli-
cations of computer vision, pp. 3531–3539, 2021.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Zhenmei Shi, Junyi Wei, and Yingyu Liang. A theoretical analysis on feature learning in neural
networks: Emergence from inputs and advantage over fixed features. In International Conference
on Learning Representations, 2022.

Zhenmei Shi, Jiefeng Chen, Kunyang Li, Jayaram Raghuram, Xi Wu, Yingyu Liang, and Somesh
Jha. The trade-off between universality and label efficiency of representations from contrastive
learning. In The Eleventh International Conference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=rvsbw2YthH_.

Zhenmei Shi, Yifei Ming, Ying Fan, Frederic Sala, and Yingyu Liang. Domain generalization via
nuclear norm regularization. In Conference on Parsimony and Learning (Proceedings Track),
2023b. URL https://openreview.net/forum?id=hJd66ZzXEZ.

Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context
learning differently? In R0-FoMo:Robustness of Few-shot and Zero-shot Learning in Large Foun-
dation Models, 2023c. URL https://openreview.net/forum?id=2J8xnFLMgF.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. Provable guarantees for neural networks via gradient
feature learning. Advances in Neural Information Processing Systems, 36, 2024.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020.

Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv preprint
arXiv:2101.03288, 2021.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach
to density and score estimation. In Uncertainty in Artificial Intelligence, pp. 574–584. PMLR,
2020.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in neural information processing systems, 34:1415–
1428, 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In Proceedings
of the 40th International Conference on Machine Learning, pp. 32211–32252, 2023.

Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix chernoff bound.
arXiv preprint arXiv:1906.03593, 2019.

Zhao Song and Mingquan Ye. Efficient asynchronize stochastic gradient algorithm with structured
data. arXiv preprint arXiv:2305.08001, 2023.

Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocessing help training over-parameterized
neural networks? Advances in Neural Information Processing Systems, 34:22890–22904, 2021c.

Zhao Song, Junze Yin, and Lichen Zhang. Solving attention kernel regression problem via pre-
conditioner. In International Conference on Artificial Intelligence and Statistics, pp. 208–216.
PMLR, 2024a.

Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural net-
work in subquadratic time. In ITCS, 2024b.

Yiyou Sun, Zhenmei Shi, Yingyu Liang, and Yixuan Li. When and how does known class help
discover unknown ones? provable understanding through spectral analysis. In International Con-
ference on Machine Learning, pp. 33014–33043. PMLR, 2023.

17

https://openreview.net/forum?id=rvsbw2YthH_
https://openreview.net/forum?id=hJd66ZzXEZ
https://openreview.net/forum?id=2J8xnFLMgF

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Yiyou Sun, Zhenmei Shi, and Yixuan Li. A graph-theoretic framework for understanding open-
world semi-supervised learning. Advances in Neural Information Processing Systems, 36, 2024.

Zhongxiang Sun. A short survey of viewing large language models in legal aspect. arXiv preprint
arXiv:2303.09136, 2023.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez,
Ting Fang Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine,
29(8):1930–1940, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural compu-
tation, 23(7):1661–1674, 2011.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. Advances in Neural Information Processing
Systems, 32, 2019.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

Yuchen Wu, Minshuo Chen, Zihao Li, Mengdi Wang, and Yuting Wei. Theoretical insights for
diffusion guidance: A case study for gaussian mixture models. arXiv preprint arXiv:2403.01639,
2024.

Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional abil-
ity? an investigation into limitations and scalability. In ICLR 2024 Workshop on Mathematical
and Empirical Understanding of Foundation Models, 2024a. URL https://openreview.
net/forum?id=4XPeF0SbJs.

Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, and Yingyu Liang. Towards few-shot
adaptation of foundation models via multitask finetuning. In The Twelfth International Confer-
ence on Learning Representations, 2024b. URL https://openreview.net/forum?id=
1jbh2e0b2K.

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760,
2019.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

Zhantao Yang, Ruili Feng, Han Zhang, Yujun Shen, Kai Zhu, Lianghua Huang, Yifei Zhang, Yu Liu,
Deli Zhao, Jingren Zhou, et al. Lipschitz singularities in diffusion models. In The Twelfth Inter-
national Conference on Learning Representations, 2023.

Mo Zhou, Rong Ge, and Chi Jin. A local convergence theory for mildly over-parameterized two-
layer neural network. In Conference on Learning Theory, pp. 4577–4632. PMLR, 2021.

18

https://openreview.net/forum?id=4XPeF0SbJs
https://openreview.net/forum?id=4XPeF0SbJs
https://openreview.net/forum?id=1jbh2e0b2K
https://openreview.net/forum?id=1jbh2e0b2K

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural
networks. Advances in neural information processing systems, 32, 2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes
over-parameterized deep relu networks. arXiv preprint arXiv:1811.08888, 2018.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
parameterized deep relu networks. Machine learning, 109:467–492, 2020.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Appendix
Roadmap. In Section A, we introduce some definitions that will be used in the proof. In Section B,
we provide the basic concentration. In Section C, we provide the proof of our inductions. In Sec-
tion D, we establish a bound for the weight of induction Part 1. In Section E, we establish a bound
for the loss of induction Part 2. In Section F, we introduce the NTK regression. In Section G, we
introduce the diffusion. In Section H, we discuss the potential implications of our results for pop-
ular frameworks such as attention mechanisms and feature learning. In Section ??, we provide the
potential limitations of this work. In Section ??, we discuss the societal impacts of our work.

A DEFINITION

Claim A.1 (Restatement of Claim 3.4). We have

∆wr(τ) := m

n∑
i=1

d∑
ℓ=1

(Fℓ,i(τ)− yℓ,i) ·
(
(⟨aℓ,r · 1m − aℓ,Si(τ)⟩) · Si,r(τ)

)
· xi

Proof of Claim 3.4. We can show that

∆wr(τ)/m =

n∑
i=1

d∑
ℓ=1

(Fℓ,i(τ)− yℓ,i) · (⟨aℓ ◦ er − aℓ · Si,r(τ),Si(τ)⟩)xi

=

n∑
i=1

d∑
ℓ=1

(Fℓ,i(τ)− yℓ,i) ·
(
(aℓ,r − ⟨aℓ,Si(τ)⟩) · Si,r(τ)

)
· xi

=

n∑
i=1

d∑
ℓ=1

(Fℓ,i(τ)− yℓ,i) ·
(
⟨aℓ,r · 1m − aℓ︸ ︷︷ ︸

m×1

,Si(τ)︸ ︷︷ ︸
m×1

⟩ · Si,r(τ)
)
· xi,

where the first step follows from the definition of ∆wr(τ), the second step follows from ⟨aℓ ◦
er, x⟩ = aℓ,rxr, and the last step is due to the Fact A.4.

We present the following definition to simplify the notation.
Definition A.2. We define D

D := 4m−1λ−1 exp(3B)
√
nd · ∥F (0)− Y ∥F

Fact A.3. For any vectors u, v ∈ Rn, the squared Euclidean distance between u and v can be
expressed as:

∥u− v∥22 = ∥u∥22 − 2u⊤v + ∥v∥22.

Fact A.4. Let 1m be a vector of dimension m consisting of all ones, and Si(τ) ∈ Rm
≥0 be the

indicator of some function τ at position i. We have:

1 = ⟨1m,Si(τ)⟩

Fact A.5. For any real number |x| ≤ 0.1, the following inequality holds:

(1− x)1/2 ≤ 1− 0.5x

Fact A.6. For any real number |x| ≤ 0.1, we have

| exp(x)− 1| ≤ 2|x|

Fact A.7. For any x ∈ (0, 0.1), we have
∞∑
i=0

xi ≤ 1

1− x

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Fact A.8. For any |x| ≤ 0.01, we have

exp(x) = 1 + x+Θ(1)x2

We state the standard Hoeffding inequality,
Lemma A.9 (Hoeffding inequality (Hoeffding, 1963)). If the below conditions are true

• Let x1, · · · , xn denote n independent variables

• xi ∈ [αi, βi], for all i ∈ [n]

• Let x =
∑n

i=1 xi.

Then we have

Pr[|x− E[x]| ≥ t] ≤ 2 exp

(
− 2t2∑

i∈[n](βi − αi)2

)
.

Lemma A.10 (Hanson-Wright inequality (Hanson & Wright, 1971; Rudelson & Vershynin, 2013)).
Let x ∈ Rn denote a random vector with independent entries xi with E[xi] = 0 and |xi| ≤ K. Let
A be an n× n matrix. Then, for every t ≥ 0,

Pr[|x⊤Ax− E[x⊤Ax]| > t] ≤ 2 · exp(−cmin{t2/(K4∥A∥2F), t/(K2∥A∥)}).

B BASIC CONCENTRATION

In Section B.1, we introduce some concentration basic tools. In Section B.2, given w perturbation
within a small ball, we bound the changes of H .

B.1 SOME CONCENTRATION BASIC TOOLS

The goal of this section is to prove Lemma B.1.
Lemma B.1. If the following conditions hold

• Let B > 1 denote a parameter be defined as Definition 4.1.

• Let W = [w1, · · · , wm] and wr be random Gaussian vectors from N (0, σ2Id).

• Let V = [v1, · · · , vm] and vr denote the vector where ∥vr − wr∥2 ≤ R, ∀r ∈ [m].

• Let xi ∈ Rd and ∥xi∥2 ≤ 1, ∀i ∈ [n].

• Let R ∈ (0, 0.01).

• Let Si and S̃i be the softmax function corresponding to W and V respectively.

• Let αi = ⟨1m, exp(W⊤xi)⟩ and α̃i = ⟨1m, exp(V ⊤xi)⟩, ∀i ∈ [n].

Then, with probability at least 1− δ/poly(nd), we have

• Standard inner product

– Part 1. |⟨wr, xi⟩| ≤ B, ∀i ∈ [n], ∀r ∈ [m]

– Part 2. |⟨vr, xi⟩| ≤ B +R, ∀i ∈ [n], ∀r ∈ [m]

– Part 3. |⟨wr − vr, xi + xj⟩| ≤ 2R, ∀i, j ∈ [n], ∀r ∈ [m]

• exp function

– Part 4. exp(−B) ≤ exp(⟨wr, xi⟩) ≤ exp(B), ∀i ∈ [n], ∀r ∈ [m]

– Part 5. exp(−B −R) ≤ exp(⟨vr, xi⟩) ≤ exp(B +R), ∀i ∈ [n], ∀r ∈ [m]

– Part 6. | exp(⟨wr − vr, xi + xj⟩)− 1| ≤ 4R, ∀i, j ∈ [n], ∀r ∈ [m]

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

– Part 7. | exp(⟨wr, xi⟩)− exp(⟨vr, xi⟩)| ≤ R exp(B +R), ∀i ∈ [n], ∀r ∈ [m]

• softmax S function

– Part 8. |αi − α̃i| ≤ mR exp(B +R),∀i ∈ [n]

– Part 9. |α−1
i − α̃−1

i | ≤ R
m exp(3B + 2R),∀i ∈ [n]

– Part 10. |Si,r| ≤ exp(2B)/m,∀i ∈ [n],∀r ∈ [m]

– Part 11. |S̃i,r| ≤ exp(2B + 2R)/m,∀i ∈ [n],∀r ∈ [m]

– Part 12. |Si,r − S̃i,r| ≤ R
m exp(4B + 3R),∀i ∈ [n],∀r ∈ [m]

– Part 13. for any z ∈ Rm and ∥z∥∞ ≤ 1, we have |⟨z,Si⟩ − ⟨z, S̃i⟩| ≤ R exp(4B +
3R),∀i ∈ [n]

Proof. As eventually we choose m = poly(nd), we use B > 0 defined in Definition 4.1.

Proof of Part 1, 2, 4 and 5.

We can get the proof by Gaussian tail bound.

Proof of Part 3 and 6.

Due to ∥xi∥2 ≤ 1 and ∥xj∥2 ≤ 1 and ∥∆wr∥2 ≤ R, we can have

|⟨∆wr, (xi + xj)⟩| ≤ 2R ≤ 0.1. (7)

Then, we have

| exp(⟨∆wr, (xi + xj)⟩)− 1| ≤ 2|⟨∆wr, (xi + xj)⟩|
≤ 4R

where the first step follows from the Fact A.6, and the last step follows from Eq. (7).

Proof of Part 7. Because ∥xi∥2 ≤ 1 and ∥∆wr∥2 ≤ R, we can have

|⟨∆wr, xi⟩| ≤ R ≤ 0.1. (8)

By convex increasing property of exp function, we have

| exp(⟨wr, xi⟩)− exp(⟨vr, xi⟩)| ≤max{exp′(⟨wr, xi⟩), exp′(⟨vr, xi⟩} · |⟨∆wr, xi⟩|
≤ exp(B +R) · |⟨∆wr, xi⟩|
≤ exp(B +R)R.

where the first step follows from Taylor expansion and exp′ denote the derivative of exp, the second
step follows from Part 4 and Part 5 and the last step follows from Eq. (8).

Proof of Part 8.

|αi − α̃i| = |
∑
r∈[m]

expi,r −
∑̃

r∈[m]
expi,r|

≤
∑
r∈[m]

|expi,r − ẽxpi,r|

≤mR exp(B +R),

where the third step is due to Part 7.

Proof of Part 9.

Similarly, we have

|α−1
i − α̃−1

i | = | α̃i − αi

αiα̃i
|

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

≤ mR exp(B +R)

|αiα̃i|

≤ mR exp(B +R)

|m exp(−B)m exp(−B −R)|

=
R

m
exp(3B + 2R).

where the first step is due to simple algebra, the second step is from Part 8, the third step follows
Part 4, 5, and the last step is because of simple algebra.

Proof of Part 10 and 11.

Trivially follows Part 4 and Part 5.

Proof of Part 12.

|Si,r − S̃i,r| = |α−1
i expi,r −α̃−1

i ẽxpi,r|
≤ |α−1

i expi,r −α−1
i ẽxpi,r|+ |α−1

i ẽxpi,r − α̃−1
i ẽxpi,r|

For the first part, we have

|α−1
i expi,r −α−1

i ẽxpi,r| = α−1
i | expi,r −ẽxpi,r|

≤ α−1
i exp(B +R)R

≤ exp(B +R)R

m exp(−B)

=
R

m
exp(2B +R),

where the second step follows Part 7 and the third step follows Part 4.

For the second part, we have

|α−1
i ẽxpi,r − α̃−1

i ẽxpi,r| = ẽxpi,r|α−1
i − α̃−1

i |

≤ ẽxpi,r
R

m
exp(3B + 2R)

≤ exp(B +R)
R

m
exp(3B + 2R)

=
R

m
exp(4B + 3R),

where the second step follows Part 9, and the third step follows Part 5.

Thus, we have

|Si,r − S̃i,r| ≤
R

m
exp(4B + 3R).

Proof of Part 13.

Note that ∥z∥∞ ≤ 1. We have

|⟨z,Si⟩ − ⟨z, S̃i⟩| = |⟨z,Si − S̃i⟩|
≤m∥Si − S̃i∥∞
≤R exp(4B + 3R)

where the first step follows from simple algebra, the second step follows from |⟨a, b⟩| ≤ m ·
maxi∈[m] |aibi|, and the last step is due to Part 12.

B.2 KERNEL PERTURBATION

The purpose of this section is to prove Lemma B.2. In the proof, we do not use concentration
inequality. Please see Remark 5.2 for more details.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Lemma B.2 (Restatement of Lemma 5.1). If the following conditions hold

• Let B ≥ 1 denote a parameter be defined as Definition 4.1.

• Let R ∈ (0, 0.01).

• Let xi ∈ Rd and ∥xi∥2 ≤ 1 for all i ∈ [n].

• Let W̃ = [w̃1, · · · , w̃m] ∈ Rd×m, where w̃1, · · · , w̃m are are i.i.d. draw from N (0, σ2Id).

• Let W = [w1, · · · , wm] ∈ Rd×m and satisfy ∥w̃r − wr∥2 ≤ R for any r ∈ [m].

• Let vℓ,r = aℓ,r · 1m − aℓ ∈ Rm, for any ℓ ∈ [d] and for any r ∈ [m]. Note that aℓ,r is the
r-th in aℓ.

• Let αi = ⟨1m, exp(W⊤xi)⟩ and α̃i = ⟨1m, exp(V ⊤xi)⟩, ∀i ∈ [n].

• Let H be defined as Definition 3.6.

Then, we have

• Part 1. Then with probability at least 1− δ/poly(nd),

|[Hℓ1,ℓ2]i,j(W)− [Hℓ1,ℓ2]i,j(W̃)| ≤ R · exp(10B).

• Part 2. Then with probability at least 1− δ, we have

∥H(W)−H(W̃)∥F ≤ Rnd · exp(10B).

Proof of Lemma 5.1. We define five real numbers B1, B2, B3, B4, B5 ∈ R as follows,

B1 := α−1
i α−1

j

1

m

m∑
r=1

⟨vℓ1,r,Si⟩⟨vℓ2,r,Sj⟩ expi,r expj,r −α−1
i α−1

j

1

m

m∑
r=1

⟨vℓ1,r,Si⟩⟨vℓ2,r,Sj⟩ẽxpi,r ẽxpj,r

B2 := α−1
i α−1

j

1

m

m∑
r=1

⟨vℓ1,r,Si⟩⟨vℓ2,r,Sj⟩ẽxpi,r ẽxpj,r − α−1
i α−1

j

1

m

m∑
r=1

⟨vℓ1,r,Si⟩⟨vℓ2,r, S̃j⟩ẽxpi,r ẽxpj,r

B3 := α−1
i α−1

j

1

m

m∑
r=1

⟨vℓ1,r,Si⟩⟨vℓ2,r, S̃j⟩ẽxpi,r ẽxpj,r − α−1
i α−1

j

1

m

m∑
r=1

⟨vℓ1,r, S̃i⟩⟨vℓ2,r, S̃j⟩ẽxpi,r ẽxpj,r

B4 := α−1
i α−1

j

1

m

m∑
r=1

⟨vℓ1,r, S̃i⟩⟨vℓ2,r, S̃j⟩ẽxpi,r ẽxpj,r − α−1
i α̃−1

j

1

m

m∑
r=1

⟨vℓ1,r, S̃i⟩⟨vℓ2,r, S̃j⟩ẽxpi,r ẽxpj,r

B5 := α−1
i α̃−1

j

1

m

m∑
r=1

⟨vℓ1,r, S̃i⟩⟨vℓ2,r, S̃j⟩ẽxpi,r ẽxpj,r − α̃−1
i α̃−1

j

1

m

m∑
r=1

⟨vℓ1,r, S̃i⟩⟨vℓ2,r, S̃j⟩ẽxpi,r ẽxpj,r

Thus, we have

|[Hℓ1,ℓ2]i,j(W)− [Hℓ1,ℓ2]i,j(W̃)|/m2 ≤ |B1|+ |B2|+ |B3|+ |B4|+ |B5|.

To bound B1

We rewrite B1 as

B1 = α−1
i α−1

j

1

m

m∑
r=1

⟨vℓ1,r,Si⟩⟨vℓ2,r,Sj⟩(exp(w⊤
r (xi + xj))− exp(w̃⊤

r (xi + xj))).

Recall that ∥vℓ1,r∥∞ ≤ 2 and ∥Si∥1 ≤ 1. Thus, |⟨vℓ1,r,Si⟩| ≤ 2.

By Fact A.4, we know that |⟨vℓ1,r,Si⟩⟨vℓ2,r,Sj⟩| ≤ 2 · 2 = 4. By Part 4 of Lemma B.1, with
probability 1− δ/poly(nd), we know that |α−1

i | ≤ 1
m exp(B).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

We will condition on the above event is holding in the rest of the proof.

By Part 7 of Lemma B.1,

| exp(w̃⊤
r (xi + xj))− exp(w⊤

r (xi + xj))| ≤ 2R exp(2B + 2R).

Finally, we know that

|B1| ≤
8R

m2
exp(5B).

To bound B2 and B3

We can rewrite B2 as follows

|B2| = |α−1
i α−1

j

1

m

m∑
r=1

⟨vℓ1,r,Si⟩ẽxpi,r ẽxpj,r(⟨vℓ2,r,Sj⟩ − ⟨vℓ2,r, S̃j⟩)|

≤ α−1
i α−1

j

1

m

m∑
r=1

|⟨vℓ1,r,Si⟩|ẽxpi,r ẽxpj,r|(⟨vℓ2,r,Sj⟩ − ⟨vℓ2,r, S̃j⟩)|.

Following the similar strategy as B1, by Part 13 of Lemma B.1, we know that

|B2| ≤
1

m
exp(B) · 1

m
exp(B) · 2 · exp(B +R) · exp(B +R) · 4R exp(4B + 3R)

≤8R

m2
exp(9B).

Similarly, we have

|B3| ≤
8R

m2
exp(9B).

To bound B4 and B5

For the term B4, we can rewrite

|B4| = |(α−1
j − α̃−1

j) · α−1
i

1

m

m∑
r=1

⟨vℓ1,r, S̃i⟩⟨vℓ2,r, S̃j⟩ẽxpi,r ẽxpj,r|

≤ |α−1
j − α̃−1

j | · α−1
i

1

m

m∑
r=1

|⟨vℓ1,r, S̃i⟩⟨vℓ2,r, S̃j⟩|ẽxpi,r ẽxpj,r.

Thus, by Part 9 of Lemma B.1, using similar proof strategy as B1 as know

|B4| ≤
R

m
exp(3B + 2R) · 1

m
exp(B) · 2 · 2 · exp(B +R) · exp(B +R)

≤4R

m2
exp(7B).

Similarly, we have

|B5| ≤
4R

m2
exp(7B).

C INDUCTION

In Section C.1, we provide the proof of our main result. In Section C.2, we provide an induction
lemma for weights part. In Section C.3, we provide an induction lemma for loss part. In Section C.4,
we provide an induction lemma for gradient part.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C.1 MAIN RESULT

Our main result is presented as follows.

Theorem C.1 (Main result. Restatement of Theorem 4.2). For any ϵ, δ ∈ (0, 0.1), if the following
conditions hold

• Let λ = λmin(H
∗) > 0

• Let m = Ω(λ−2n2d2 exp(18B) log2(nd/δ))

• Let η = 0.1λ/(mn2d2 exp(16B))

• Let T̂ = Ω((mηλ)−1 log(nd/ϵ)) = Ω(λ−2n2d2 exp(16B) · log(nd/ϵ))

Then, after T̂ iterations, with probability at least 1− δ, we have

∥F (T̂)− Y ∥2F ≤ ϵ.

Proof of Theorem 4.2. Let σ = 1. We have ∥F (0)− Y ∥2F ≤ nd by Lemma D.3.

Using the choice of T̂ , it follows directly from the alternative application of Lemma C.3 and
Lemma C.2.

Since exp(Θ(B)) = (nd)o(1), we can simplify the nd exp(Θ(B)) = (nd)1+o(1).

C.2 INDUCTION PART 1. FOR WEIGHTS

We provide an induction lemma for weights part.

Lemma C.2 (Induction Part 1. For Weights). Let τ be a fixed integer.

If the below conditions are true

• General Property 1. Let λ = λmin(H
∗) > 0

• General Property 2. η = 0.1λ/(mn2d2 exp(16B))

• General Property 3. Let D be defined as Definition A.2

• General Property 4. D < R = λ/(2nd exp(10B))

• General Property 5. m = Ω(λ−2n2d2 exp(18B) log2(nd/δ))

• Weights Property. ∥wr(i)− wr(0)∥2 ≤ R for all i ∈ [τ]

• Loss Property. ∥F (i)− Y ∥2F ≤ ∥F (0)− Y ∥2F · (1−mηλ/2)i, ∀i ∈ [τ]

• Gradient Property. η∥∆wr(i)∥2 ≤ 0.01, ∀r ∈ [m], ∀i ∈ [τ]

Then, for τ + 1 and ∀r ∈ [m], we have

∥wr(τ + 1)− wr(0)∥2 ≤ D.

Proof. We have

η

∞∑
i=0

(1−mηλ/2)i/2

≤ η

∞∑
i=0

(1−mηλ/4)i

≤ η
1

mηλ/4

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

≤ 4

mλ
(9)

where the first step is due to the Fact A.5, the second stepis due to the Fact A.7, the last step is
because of simple algebra.

We use the gradient’s norm to measure the weights difference:

∥wr(0)− wr(τ + 1)∥2

≤ η

τ∑
i=0

∥∆wr(i)∥2

≤ η

τ∑
i=0

exp(3B)
√
nd · ∥F (i)− Y ∥F

≤ η exp(3B)
√
nd

τ∑
i=0

(1−mηλ/2)i/2 · ∥F (0)− Y ∥F

≤ 4m−1λ−1 exp(3B)
√
nd · ∥F (0)− Y ∥F

= D

where the first step follows from wr(i + 1) − wr(i) = η · ∆wr(i), the second step follows from
Lemma D.1 for τ times, the third step follows from Loss Property in Lemma statement, the fourth
step follows from Eq. (9), the last step is from General Property 3 in Lemma statement.

C.3 INDUCTION PART 2. FOR LOSS

We provide an induction lemma for loss part.

Lemma C.3 (Induction Part 2. For Loss). Let τ be a fixed integer.

If the following conditions hold

• General Property 1. Let λ = λmin(H
∗) > 0

• General Property 2. η = 0.1λ/(mn2d2 exp(16B))

• General Property 3. Let D be defined as Definition A.2

• General Property 4. D < R = λ/(2nd exp(10B))

• General Property 5. m = Ω(λ−2n2d2 exp(18B) log2(nd/δ))

• Weights Property. ∥wr(τ)− wr(0)∥2 ≤ D < R, ∀r ∈ [m]

• Loss Property. ∥F (i)− Y ∥2F ≤ ∥F (0)− Y ∥2F · (1−mηλ/2)i, ∀i ∈ [τ]

• Gradient Property. η∥∆wr(i)∥2 ≤ 0.01 ∀r ∈ [m], ∀i ∈ [τ]

Then we have

∥F (τ + 1)− Y ∥2F ≤ (1−mηλ/4)τ+1 · ∥F (0)− Y ∥2F .

Proof. We have

∥F (τ)− Y ∥2F ≤ ∥F (τ − 1)− Y ∥2F · (1−mηλ/2)

which follows Lemma E.2.

Thus, we complete the proof by induction.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

C.4 INDUCTION PART 3. FOR GRADIENT

We provide an induction lemma for gradient part.
Lemma C.4 (Induction Part 3. For Gradient). Let τ be a fixed integer.

If the following conditions hold

• General Property 1. Let λ = λmin(H
∗) > 0

• General Property 2. η = 0.1λ/(mn2d2 exp(16B))

• General Property 3. Let D be defined as Definition A.2

• General Property 4. D < R = λ/(2nd exp(10B))

• General Property 5. m = Ω(λ−2n2d2 exp(18B) log2(nd/δ))

• Weights Property. ∥wr(τ)− wr(0)∥2 ≤ D < R, ∀r ∈ [m]

• Loss Property. ∥F (i)− Y ∥2F ≤ ∥F (0)− Y ∥2F · (1−mηλ/2)i, ∀i ∈ [τ]

• Gradient Property. η∥∆wr(i)∥2 ≤ 0.01 ∀r ∈ [m], ∀i ∈ [τ]

Then we have

η∥∆wr(τ + 1)∥2 ≤ 0.01,∀r ∈ [m]

Proof. This is trivially follows from Lemma D.1 and Lemma D.2.

D INDUCTION PART 1: FOR WEIGHTS

In Section D.1, we propose the lemma for bounding gradient and its corresponding proof. In Sec-
tion D.2, we propose the bounding initialization loss and its corresponding proof.

D.1 BOUNDING THE GRADIENT AT ANY TIME

In this section, we bound the gradient.
Lemma D.1. If the following condition hold,

• Let B > 1 denote a parameter be defined as Definition 4.1

• Let R ∈ (0, 0.01)

• ∥wr(τ)− wr(0)∥2 ≤ R

• Let vℓ,r = aℓ,r · 1m − aℓ ∈ Rm, for any ℓ ∈ [d] and for any r ∈ [m]

For any timestamp τ , we have

∥∆wr(τ)∥2 ≤ exp(3B)
√
nd · ∥F (τ)− Y ∥F .

Proof. We have

∥∆wr(τ)∥2 =

∥∥∥∥∥m
n∑

i=1

d∑
ℓ=1

(yℓ,i − Fℓ,i) · xi · ⟨vℓ,r,Si(τ)⟩ · Si,r(τ)

∥∥∥∥∥
2

≤ exp(3B)

n∑
i=1

d∑
ℓ=1

|yℓ,i − Fℓ,i(τ)|

≤ exp(3B)
√
nd · ∥F (τ)− Y ∥F

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

where the first step follows from Claim 3.4 and Definition 3.3, the second step follows from
|⟨vℓ,r,Si⟩| ≤ 2 and |Si,r| ≤ exp(2B + 2R)/m by Part 11 of Lemma B.1, the last step follows
from Cauchy-Schwartz inequality.

Lemma D.2. If the following conditions hold,

• η = 0.1λ/(mn2d2 exp(16B))

• ∥wr(τ)− wr(0)∥2 ≤ R

Then, for any timestamp τ , we have

η∥∆wr(τ)∥2 ≤ 0.01

Proof. This trivially follows from Lemma D.1 and choice of η.

D.2 BOUNDING THE INITIALIZATION LOSS

In this section, we bound the initialization loss.
Lemma D.3. We have

∥F (0)− Y ∥F ≤ O(
√
nd).

Proof. This trivially follows from ∥yi∥ ≤ 1,∀i ∈ [n] and symmetric initialization from Defini-
tion 3.7.

E INDUCTION PART 2: FOR LOSS

In Section E.1, we decompose the loss ∥F (k + 1) − Y ∥2F into four parts, namely C0, C1, C2, and
C3. In Section E.2, we show our choices of m and η. In Section E.3, we establish bounds for C0. In
Section E.4, we establish bounds for C1. In Section E.5, we establish bounds for C2. In Section E.6,
we establish bounds for C3.

E.1 DECOMPOSITION FOR ∥ vec(F (τ + 1)− Y)∥22

Here, we decompose the loss ∥ vec(F (τ + 1)− Y)∥22 into four parts C0, C1, C2 and C3.
Lemma E.1. Assuming the following condition is met:

• Let λ = λmin(H
∗)

• Let αi(τ) := ⟨exp(W (τ)⊤xi),1m⟩.

• Let scalar v0,ℓ,i ∈ R be defined as follows

v0,ℓ,i :=m
∑
r∈[m]

aℓ,r(αi(τ + 1)−1 − αi(τ)
−1) · (exp(⟨wr(τ + 1), xi⟩))

• Let scalar v1,ℓ,i ∈ R be defined as follows

v1,ℓ,i :=m

m∑
r=1

aℓ,r · αi(τ)
−1 exp((⟨wr(τ), xi⟩) · (−η⟨∆wr(τ), xi⟩)

• Let scalar v2,ℓ,i ∈ R be defined as follows

v2,ℓ,i :=m

m∑
r=1

aℓ,r · αi(τ)
−1 exp((⟨wr(τ), xi⟩) · η2 ·Θ(1) · ⟨∆wr(τ), xi⟩2

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

• Gradient Property. η∥∆wr(i)∥2 ≤ 0.01, ∀r ∈ [m], ∀i ∈ [τ]

• C0 = 2⟨vec(F (τ)− Y), vec(v0)⟩

• C1 = 2⟨vec(F (τ)− Y), vec(v1)⟩

• C2 = 2⟨vec(F (τ)− Y), vec(v2)⟩

• C3 = ∥F (τ + 1)− F (τ)∥2F

then

∥F (τ + 1)− Y ∥2F = ∥F (t)− Y ∥2F + C0 + C1 + C2 + C3.

Proof. The expression ∥Y −F (τ+1)∥2F = ∥ vec(Y −F (τ+1))∥22 can be rewritten in the following:

∥ vec(Y − F (τ + 1))∥22
= ∥ vec(Y − F (τ)− (F (τ + 1)− F (τ)))∥22
= ∥ vec(Y − F (τ))∥22 − 2 vec(Y − F (τ))⊤ vec(F (τ + 1)− F (τ)) + ∥ vec(F (τ + 1)− F (τ))∥22.

(10)

where the first step follows from simple algebra, the last step follows from Fact A.3.

Recall the update rule (Definition 3.5),

wr(τ + 1) = wr(τ)− η ·∆wr(τ)

In the following manner, ∀ℓ ∈ [d], we can express Fℓ(τ + 1)− Fℓ(τ) ∈ Rn:

Fℓ,i(τ + 1)− Fℓ,i(τ)

=m
∑
r∈[m]

aℓ,r · (αi(τ + 1)−1 exp(⟨wr(τ + 1), xi⟩)− αi(τ)
−1 exp(⟨wr(τ), xi⟩))

= +m
∑
r∈[m]

aℓ,r(αi(τ + 1)−1 − αi(τ)
−1) · (exp(⟨wr(τ + 1), xi⟩))

+m
∑
r∈[m]

aℓ,rαi(τ)
−1 · (exp(⟨wr(τ + 1), xi⟩)− exp(⟨wr(τ), xi⟩))

= +m
∑
r∈[m]

aℓ,r(αi(τ + 1)−1 − αi(τ)
−1) · (exp(⟨wr(τ + 1), xi⟩))

+m
∑
r∈[m]

aℓ,r · αi(τ)
−1 exp((⟨wr(τ), xi⟩) · (exp(−η⟨∆wr(τ), xi⟩)− 1)

= +m
∑
r∈[m]

aℓ,r(αi(τ + 1)−1 − αi(τ)
−1) · (exp(⟨wr(τ + 1), xi⟩))

+m
∑
r∈[m]

aℓ,r · αi(τ)
−1 exp((wr(τ)

⊤xi) · (−η⟨∆wr(τ), xi⟩+Θ(1)η2⟨∆wr(τ), xi⟩2)

= v0,ℓ,i + v1,ℓ,i + v2,ℓ,i

where the first step is due to the definition of Fℓ,i(τ), the second step is from the simple algebra, the
third step is due to |η∆wr(τ)

⊤xi| ≤ 0.01 (due to Gradient Property and ∥xi∥2 ≤ 1), the fourth
step follows from the Fact A.8, the last step follows from

v0,ℓ,i :=m
∑
r∈[m]

aℓ,r(αi(τ + 1)−1 − αi(τ)
−1) · (exp(⟨wr(τ + 1), xi⟩))

v1,ℓ,i :=m

m∑
r=1

aℓ,r · αi(τ)
−1 exp((⟨wr(τ), xi⟩) · (−η⟨∆wr(τ), xi⟩)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

v2,ℓ,i :=m

m∑
r=1

aℓ,r · αi(τ)
−1 exp((⟨wr(τ), xi⟩) · η2 ·Θ(1) · ⟨∆wr(τ), xi⟩2

Here v0,ℓ,i and v1,ℓ,i are linear in η and v2,ℓ,i is quadratic in η. Thus, v0,ℓ,i and v1,ℓ,i are the first
order term, and v2,ℓ,i is the second order term.

We can rewrite the second term in the Eq. (10) above as below:

⟨vec(Y − F (τ)), vec(F (τ + 1)− F (τ))⟩
= ⟨vec(Y − F (τ)), vec(v0 + v1 + v2)⟩
= ⟨vec(Y − F (τ)), vec(v0)⟩+ ⟨vec(Y − F (τ)), vec(v1)⟩+ ⟨vec(Y − F (τ)), vec(v2)⟩

Therefore, we can conclude that

∥F (τ + 1)− Y ∥2F = ∥F (τ)− Y ∥2F + C0 + C1 + C2 + C3.

E.2 CHOICE OF PARAMETERS

Here, we show our choice of parameters m, η,R,B.

Lemma E.2. If the below conditions are true

• Condition 1. Let λ = λmin(H
∗) > 0

• Condition 2. m = Ω(λ−2n2d2 exp(18B) log2(nd/δ))

• Condition 3. η = 0.1λ/(mn2d2 exp(16B))

• Condition 4. R = λ/(2nd exp(10B))

– Required by Claim E.5

• Condition 5. B = max{Cσ
√

log(nd/δ), 1}

• Condition 6. D = 4m−1λ−1 exp(3B)
√
nd · ∥F (0)− Y ∥F

• Condition 7. D < R

• Condition 8. η∥∆wr(τ)∥2 ≤ 0.01, ∀r ∈ [m]

– Required by Lemma E.1, Claim E.3 and Claim E.7

Then it holds that

∥F (τ + 1)− Y ∥2F ≤ ∥F (τ)− Y ∥2F · (1−mηλ/2)

holds with probability at least 1− δ.

Proof. We can show

∥F (τ + 1)− Y ∥2F
= ∥F (τ)− Y ∥2F + C0 + C1 + C2 + C3

≤ (1− 0.8mηλ+ 0.1mηλ+ 2mη2n2d2 exp(9B) + η2m2 · n2d2 · exp(16B)) · ∥F (τ)− Y ∥2F
≤ (1− 0.7mηλ+ 2η2m2 · n2d2 · exp(16B)) · ∥F (τ)− Y ∥2F .

where the first step follows from Lemma E.1, the second step follows from Lemma E.3 for C0,
Lemma E.4, Claim E.5 for C1, Claim E.6 for C2 and Claim E.7 for C3, the last step follows from
the simple algebra.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Choice of η. Next, we want to choose η such that

(1− 0.7mηλ+ 2η2m2 · n2d2 · exp(16B)) ≤ (1−mηλ/2). (11)

Using the choice of η in Condition 3

2η2m2 · n2d2 · exp(16B) ≤ 0.2mηλ

This indicates:

∥F (τ + 1)− Y ∥2F ≤ (1−mηλ/2) · ∥F (τ)− Y ∥2F . (12)

Lower bound for m, over-parametrization size. We require the following conditions

• m ≥ Ω(λ−2n2d exp(18B) log2(nd/δ)) (required by Lemma E.3)

• m ≥ Ω(λ−2n2d exp(12B) log2(nd/δ)) (required by Lemma E.4)

• D = 4m−1λ−1 exp(3B)
√
nd · ∥F (0) − Y ∥F < R = λ/(2nd exp(10B))} (required by

Condition 7.)

Therefore, by ∥Y − F (0)∥F = O(
√
nd) from Lemma D.3, it suffices to choose:

m = Ω(λ−2n2d2 exp(18B) log2(nd/δ)).

E.3 BOUNDING C0

Here, we explain about how to bound C0.
Lemma E.3. If the following conditions hold

• Let scalar v0,ℓ,i ∈ R be defined as follows

v0,ℓ,i :=m
∑
r∈[m]

aℓ,r(αi(τ + 1)−1 − αi(τ)
−1) · (exp(⟨wr(τ + 1), xi⟩))

• Let αi(τ) := ⟨exp(W (τ)⊤xi),1m⟩.

• Let m ≥ Ω(λ−2n2d exp(18B) log2(nd/δ))

• Gradient Property. η∥∆wr(i)∥2 ≤ 0.01, ∀r ∈ [m], ∀i ∈ [τ]

• We define C0 as follows

C0 = 2⟨vec(F (τ)− Y), vec(v0)⟩

Here vec(v0) ∈ Rnd is the vectorization of v0 ∈ Rn×d and vec(F (τ) − Y) ∈ Rnd is the
vectorization of F (τ)− Y ∈ Rn×d.

Then we have

|C0| ≤ 0.1mηλ · ∥F (τ)− Y ∥2F

Proof. We can rewrite v0,ℓ,i as follows:

v0,ℓ,i = m

m∑
r=1

aℓ,r((αi(τ + 1))−1 − αi(τ)
−1) exp(⟨wr(τ + 1), xi⟩)

= m

m∑
r=1

aℓ,rαi(τ + 1)−1αi(τ)
−1 · (⟨1m, exp(W (τ + 1)xi)− exp(W (τ)xi)⟩) exp(⟨wr(τ + 1), xi⟩)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

=m

m∑
r=1

aℓ,rαi(τ + 1)−1αi(τ)
−1(

m∑
r2=1

exp(wr2(τ + 1)xi)− exp(wr2(τ)xi)) exp(⟨wr(τ + 1), xi⟩)

= m(

m∑
r=1

aℓ,rαi(τ + 1)−1αi(τ)
−1

m∑
r2=1

−η⟨∆wr2(τ), xi⟩ exp(wr2(τ)xi) exp(⟨wr(τ + 1), xi⟩) + η2∆2)

= m(

m∑
r=1

aℓ,r

m∑
r2=1

−η⟨∆wr2(τ), xi⟩Si,r2(τ) · Si,r(τ + 1)︸ ︷︷ ︸
first order term

+ η2∆2︸ ︷︷ ︸
second order term

) (13)

where the first step follows from lemma statement, the second step follows from a−1 − b−1 = b−a
ab ,

the third step follows from simple algebra, the fourth step follows from simple algebra, and the last
step follows from |η∆wr(τ)

⊤xi| ≤ 0.01 (due to Gradient Property and ∥xi∥2 ≤ 1).

The second order term η2∆2 in Eq. (13) can be bounded in a similar way as the proof of Claim E.6.

Further, we can rewrite the first-order term in Eq. (13)

m

m∑
r=1

aℓ,r

m∑
r2=1

−η⟨∆wr2(τ), xi⟩Si,r2(τ) · Si,r(τ + 1) = m2(Q1,i,ℓ +Q2,i,ℓ) (14)

where

Q1,i,ℓ :=
1

m

m∑
r=1

aℓ,r(−η⟨∆wr(τ), xi⟩)Si,r(τ) · Si,r(τ + 1)

Q2,i,ℓ :=
1

m

m∑
r=1

aℓ,r
∑
r2 ̸=r

(−η⟨∆wr2(τ), xi⟩)Si,r2(τ) · Si,r(τ + 1)

Let us consider how to handle the first term in Eq. (13),

Q1,i,ℓ =
1

m

m∑
r=1

aℓ,r(−η⟨∆wr(τ), xi⟩)Si,r(τ) · Si,r(τ + 1)

=

m∑
r=1

aℓ,rSi,r · Si,r(τ + 1)(−η

n∑
j=1

d∑
ℓ2=1

(Fℓ2,j(τ)− yℓ2,j) ·
(
(⟨aℓ2,r · 1m − aℓ2 ,Sj⟩) · Sj,r

)
· x⊤

j)xi

where the second step follows from computing ∆wr(τ) explicitly (see Claim 3.4).

Similarly as proof of Lemma E.4, we can use concentration to bound

n∑
i=1

d∑
ℓ=1

Q1,i,ℓ(Fℓ,i − yℓ,i)

Note that 0 < Sj,r < exp(3B)
m by Part 11 of Lemma B.1. The above small term is equivalent to

−η
exp(9B)

m3
·

n∑
i=1

n∑
j=1

m∑
r=1

d∑
ℓ=1

d∑
ℓ2=1

(Fℓ2,j(τ)− yℓ2,j) · σi,j,r,ℓ,ℓ2 · Ci,j,r,ℓ,ℓ2 · (Fℓ,i(τ)− yℓ,i),

where σi,ℓ,ℓ2,j,r ∼ [−1,+1] and |Ci,ℓ,ℓ2,j,r| ≤ 10. We define

P1,r,ℓ,ℓ2 := (Fℓ2,j − yℓ2,j)σi,j,r,ℓ,ℓ2Ci,j,r,ℓ,ℓ2(Fℓ,i − yℓ,i)

Similarly as Lemma E.4, for each fixed i, j ∈ [n], using Hanson-Wright inequality (Lemma A.10),
we can show

Pr[|
m∑
r=1

d∑
ℓ=1

d∑
ℓ2=1

P1,r,ℓ,ℓ2 | ≤ 100∥Fj − yj∥2∥Fi − yi∥2 ·
√
md log(nd/δ)]

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

≥ 1− δ/poly(nd).

By mean inequality, we have
n∑

i=1

n∑
j=1

∥Fj − yj∥2 · ∥Fi − yi∥2 ≤ n∥F − y∥2F .

Thus, we have the first term with probability at least 1− poly(nd), such that

|
n∑

i=1

d∑
ℓ=1

Q1,i,ℓ(Fℓ,i − yℓ,i)| ≤ η
n exp(9B)

m3
∥F − y∥2F

√
md log(nd/δ)

Similarly, we can compute

n∑
i=1

d∑
ℓ=1

Q2,i,ℓ(Fℓ,i − yℓ,i)

Using Hanson-Wright inequality (Lemma A.10), we have the second term with probability at least
1− poly(nd), such that

|
n∑

i=1

d∑
ℓ=1

Q2,i,ℓ(Fℓ,i − yℓ,i)| ≤ η
n exp(9B)

m2
∥F − y∥2F

√
md log(nd/δ)

Thus, we can complete the proof by the Lemma statement m ≥ Ω(λ−2n2d exp(18B) log2(nd/δ)).

E.4 BOUNDING C1

Here, we give the bound of the first order term C1. Note that this term is making progress.
Lemma E.4. Assuming the following condition is met:

• Let λ = λmin(H
∗)

• Let αi(τ) := ⟨exp(W (τ)⊤xi),1m⟩

• Let m ≥ Ω(λ−2n2d exp(12B) log2(nd/δ))

• Let scalar v1,ℓ,i ∈ R be defined as follows

v1,ℓ,i :=m

m∑
r=1

aℓ,r · αi(τ)
−1 exp((⟨wr(τ), xi⟩) · (−η⟨∆wr(τ), xi⟩)

• C1 = 2⟨vec(F (τ)− Y), vec(v1)⟩

then

C1 ≤ −1.6mη vec(F (τ)− Y)⊤H(τ) vec(F (τ)− Y).

Proof. To simplify the notation, we omit writing (τ) in Si,r(τ). Then, we can express v1,ℓ,i ∈ R as
follows:

v1,ℓ,i = m
∑
r∈[m]

aℓ,r · Si,r · (−η⟨xi,∆wr(τ)⟩)

= m2
∑
r∈[m]

aℓ,r · Si,r · (−η

n∑
j=1

d∑
ℓ2=1

(Fℓ2,j(τ)− yℓ2,j) ·
(
(⟨aℓ2,r · 1m − aℓ2 ,Sj⟩) · Sj,r

)
· x⊤

j)xi

= m2(Q1,ℓ,i +Q2,ℓ,i) (15)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

where the second step using equation for ∆wr(τ) (see Claim 3.4).

Note that ⟨aℓ,r · 1m, Si⟩ = aℓ,r, so in the above equation,

Q1,ℓ,i :=
∑
r∈[m]

⟨aℓ,r · 1m − aℓ, Si⟩ · Si,r · (−η

n∑
j=1

d∑
ℓ2=1

(Fℓ2,j(τ)− yℓ2,j) ·
(
(⟨aℓ2,r · 1m − aℓ2 ,Sj⟩) · Sj,r

)
· x⊤

j)xi

Q2,ℓ,i :=
∑
r∈[m]

⟨aℓ, Si⟩ · Si,r · (−η

n∑
j=1

d∑
ℓ2=1

(Fℓ2,j(τ)− yℓ2,j) ·
(
(⟨aℓ2,r · 1m − aℓ2 ,Sj⟩) · Sj,r

)
· x⊤

j)xi

The quantity
∑

i∈[n]

∑
ℓ∈[d] Q1,ℓ,i(Fℓ,i − Yℓ,i) is corresponding to first term (Q1,ℓ,i) in Eq. (15). It

is ∑
i∈[n]

∑
ℓ∈[d]

Q1,ℓ,i(Fℓ,i − Yℓ,i) = − 1

m
η vec(F (τ)− Y)⊤H(τ)⊤ vec(F (τ)− Y) (16)

The quantity
∑

i∈[n]

∑
ℓ∈[d] Q2,ℓ,i(Fℓ,i − Yℓ,i) is corresponding to second term (Q2,ℓ,i) in Eq. (15).

Note that 0 < Sj,r < exp(3B)
m by Part 11 of Lemma B.1. The quantity,∑

i∈[n]

∑
ℓ∈[d]

Q2,ℓ,i(Fℓ,i − Yℓ,i) (17)

is equivalent to

−η
exp(6B)

m2
·

n∑
i=1

n∑
j=1

m∑
r=1

d∑
ℓ=1

d∑
ℓ2=1

(Fℓ2,j(τ)− yℓ2,j) · σi,j,r,ℓ,ℓ2 · Ci,j,r,ℓ,ℓ2 · (Fℓ,i(τ)− yℓ,i),

where σi,j,r,ℓ,ℓ2 ∈ {−1,+1} and |Ci,j,r,ℓ,ℓ2 | ≤ 10.

Note that there are four cases

• i = j, ℓ = ℓ2, this is a p.s.d. case that always makes progress, thus we can drop it.

• i ̸= j, ℓ = ℓ2 we will use random variable P1 to handle

• i = j, ℓ ̸= ℓ2 we will use random variable P2 to handle

• i ̸= j, ℓ ̸= ℓ2 we will use random variable P2 to handle

For each fixed i, j ∈ [n]. We define

P1,r,ℓ := (Fℓ,j − yℓ,j)σi,j,r,ℓCi,j,r,ℓ(Fℓ,i − yℓ,i)

P2,r,ℓ,ℓ2 := (Fℓ2,j − yℓ2,j)σi,j,r,ℓ,ℓ2Ci,j,r,ℓ,ℓ2(Fℓ,i − yℓ,i)

The random variables related to P1,r,ℓ are the following

m∑
r=1

d∑
ℓ=1

P1,r,ℓ

The random variables related to P2,r,ℓ,ℓ2 are the following

m∑
r=1

d∑
ℓ=1

d∑
ℓ2=1

P2,r,ℓ,ℓ2

For each i ̸= j ∈ [n] and ℓ = ℓ2, using Hoeffding inequality (see Lemma A.9), we can show

Pr[|
m∑
r=1

d∑
ℓ=1

P1,r,ℓ| ≤ 100∥Fj − yj∥2∥Fi − yi∥2 ·
√

md log(nd/δ)]

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

≥ 1− δ/poly(nd).

Similarly, we consider i = j and ℓ ̸= ℓ2 by Hanson-Wright inequality (Lemma A.10), we have

Pr[|
m∑
r=1

d∑
ℓ=1

d∑
ℓ2=1

P2,r,ℓ,ℓ2 | ≤ 100∥Fj − yj∥2∥Fi − yi∥2 ·
√
md log(nd/δ)]

≥ 1− δ/poly(nd).

By mean inequality, we have
n∑

i=1

n∑
j=1

∥Fj − yj∥2 · ∥Fi − yi∥2 ≤ n∥F − y∥2F .

Note that by Lemma condition, we have

1

m
λ ≳

n exp(6B)

m2
·
√
md log(nd/δ) ⇐⇒ m ≳ λ−2,

the equation (Eq. (16) and the bound for Eq. (17)) above indicates that ⟨vec(Y − F (τ)), vec(v1)⟩
can be expressed as

vec(v1)
⊤ vec(Y − F (τ)) ≥ 0.8mη · vec(F (τ)− Y)⊤︸ ︷︷ ︸

1×nd

H(τ)⊤︸ ︷︷ ︸
nd×nd

vec(F (τ)− Y). (18)

We finish the proof.

Claim E.5. If the below conditions are true

• Let B ≥ 1 be defined as Definition 4.1

• Let λ = λmin(H
∗) > 0

• C1 = −mη vec(F (τ)− Y)⊤H(τ) vec(F (τ)− Y).

• R = λ/(2nd exp(10B))

Then, we have

C1 ≤ −1

2
mηλ · ∥F (τ)− Y ∥2F

and

λmin(H(τ)) ≥ λ/2.

holds with probability at least 1− δ.

Proof. By Lemma 5.1, with probability at least 1− δ, we have

∥H∗ −H(τ)∥F
≤ Rnd · exp(10B)

≤ λ/2 (19)

where the first step follows from the definition of H(τ), the last step comes from choice of λ (see
Claim Statement).

Given that λ = λmin(H
∗), by eigenvalue perturbation theory

λmin(H(τ))

≥ λmin(H
∗)− ∥H∗ −H(τ)∥

≥ λmin(H
∗)− ∥H∗ −H(τ)∥F

≥ λmin(H
∗)− λ/2

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

≥ λ/2.

where the first step comes from triangle inequality, the second step is due to Frobenius norm, the
third step is due to Eq.(19), the last step follows from λmin(H

∗) = λ.

Finally, we have

vec(F (τ)− Y)⊤H(τ) vec(F (τ)− Y) ≥ λ/2 · ∥F (τ)− Y ∥2F .

Thus, we complete the proof.

E.5 BOUNDING C2

Here, we give the bound of the second order term C2.
Claim E.6. If the below conditions are true

• Let λ = λmin(H
∗)

• Let αi(τ) := ⟨exp(W (τ)⊤xi),1m⟩

• Let scalar v2,ℓ,i ∈ R be defined as follows

v2,ℓ,i :=m

m∑
r=1

aℓ,r · αi(τ)
−1 exp((⟨wr(τ), xi⟩) · η2 ·Θ(1) · ⟨∆wr(τ), xi⟩2

• C2 = 2⟨vec(F (τ)− Y), vec(v2)⟩

Then we can conclude that

C2 ≤ 2mη2n2d2 exp(9B)∥F (τ)− Y ∥2F .

with probability at least 1− n · exp(−mR).

Proof. Let pi,r ∈ [−1, 1]. We have

|v2,ℓ,i| =m
∑
r∈[m]

aℓ,r · Si,r · (η2pi,r⟨xi,∆wr(τ)⟩2)

≤mη2nd exp(9B)∥F (τ)− Y ∥2F ,

where the last step follows Lemma D.1 and Part 11 of Lemma B.1.

Thus,

C2 = 2⟨vec(F (τ)− Y), vec(v2)⟩
≤ 2∥F (τ)− Y ∥F ∥v2∥F
≤ 2mη2n2d2 exp(9B)∥F (τ)− Y ∥2F ,

where the first step follows Cauchy-Schwartz inequality, and the second step follows ∥F (τ) −
Y ∥F ≤ O(

√
nd) by induction statement (See Lemma C.3).

E.6 BOUNDING ∥F (τ + 1)− F (τ)∥2F

Here, we give the bound of the third order term C3.
Claim E.7. If the below conditions are true

• Let B ≥ 1 be defined as Definition 4.1

• C3 = ∥F (τ + 1)− F (τ)∥2F .

• R ∈ (0, 0.01)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

• Gradient Property. η∥∆wr(i)∥2 ≤ 0.01, ∀r ∈ [m], ∀i ∈ [τ]

Then with probability at least 1− δ, we have

C3 ≤ η2m2 · n2d2 · exp(16B) · ∥F (τ)− Y ∥2F .

Proof. Note that we denote αi as ⟨1m, exp(W⊤xi)⟩. According to definition of Fℓ,i(τ), we have

Fℓ,i(τ + 1)− Fℓ,i(τ)

= ma⊤ℓ (

+ αi(τ + 1)−1 exp((W (τ + 1)⊤xi)− αi(τ)
−1 exp((W (τ + 1)⊤xi)

+ αi(τ)
−1 exp((W (τ + 1)⊤xi)− αi(τ)

−1 exp((W (τ)⊤xi)

)

Then we have

|Fℓ,i(τ + 1)− Fℓ,i(τ)| (20)

≤ m

m∑
r=1

|αi(τ + 1)−1 − αi(τ)
−1| exp(wr(τ + 1)⊤xi)

+m

m∑
r=1

αi(τ)
−1 exp(wr(τ)

⊤xi) · | exp(−η∆wr(τ)
⊤xi)− 1|

where it follows from triangle inequality.

For the second term in Eq. (20), we have

m

m∑
r=1

αi(τ)
−1 exp(wr(τ)

⊤xi) · | exp(−η∆wr(τ)
⊤xi)− 1|

≤ exp(B +R) exp(B +R)

m∑
r=1

| exp(−η∆wr(τ)
⊤xi)− 1|

≤ exp(2B + 2R)

m∑
r=1

2η∥∆wr(τ)∥2

= 2η exp(2B + 2R)

m∑
r=1

∥∆wr(τ)∥2

≤ 2η exp(2B + 2R) ·m · exp(3B)
√
nd∥F (τ)− Y ∥F

≤ ηm exp(6B)
√
nd∥F (τ)− Y ∥F

where the first step comes from Lemma B.1, the second step is due to η∥∆wr(τ)∥2 ≤ 0.01 (this is
stated in Claim assumption) and Fact A.8, the third step is from simple algebra, the fourth step is
due to Lemma D.1, the last step follows from simple algebra.

Similarly, for the first term in Eq. (20) we have

m

m∑
r=1

|αi(τ + 1)−1 − αi(τ)
−1| exp(wr(τ + 1)⊤xi)

≤m2 exp(B +R)|αi(τ + 1)−1 − αi(τ)
−1|

≤m exp(B +R)|η∆wr(τ)
⊤xi| exp(3B + 2R)

≤ ηm exp(4B + 3R)∥∆wr(τ)∥2
≤ ηm exp(7B + 3R)

√
nd∥F (τ)− Y ∥F

where the first step follows from Part 5 of Lemma B.1, the second step follows from Part 9 of
Lemma B.1 where R = |η∆wr(τ)

⊤xi|, the third step follows from simple algebra, and the last step
follows from Lemma D.1.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Thus we have

|Fℓ,i(τ + 1)− Fℓ,i(τ)| ≤ ηm exp(8B)
√
nd∥F (τ)− Y ∥F . (21)

Finally, we get

∥F (τ + 1)− F (τ)∥2F ≤ nd · (ηm exp(8B)
√
nd∥F (τ)− Y ∥F)2

≤ η2m2 · n2d2 · exp(16B) · ∥F (τ)− Y ∥2F
where the first step is because of Eq. (21), the last step comes from simple algebra.

F NTK REGRESSION

In this section, we introduce the NTK regression, as we will show that the neural network is “equiv-
alent” to this regression so that we can give a final guarantee on the test data. To clarify the function,
we use Fnn to denote F as a neural network function. We use xte ∈ Rd to denote the test data.
We would like to control the error between the neural network Fnn and the function Fntk. For
convenience, we call this error “coupling error”, which is the difference between the trained neural
network and its corresponding NTK regression.

Recall that, by Definition 3.6, we have the H∗ = H(W (0)). Recall [H∗]i,j ∈ Rd×d is the kernel
between xi and xj . Similarly, ∀ℓ1, ℓ2 ∈ [d], for test data, we can define the NTK induced feature
map as

[K∗
ℓ1,ℓ2]te,j :=

1

m
x⊤
texj

m∑
r=1

⟨vℓ1,r,Ste(0)⟩ ·mSte,r(0) · ⟨vℓ2,r,Sj(0)⟩ ·mSj,r(0)

[K(τ)ℓ1,ℓ2]te,j :=
1

m
x⊤
texj

m∑
r=1

⟨vℓ1,r,Ste(τ)⟩ ·mSte,r(τ) · ⟨vℓ2,r,Sj(τ)⟩ ·mSj,r(τ),

where K∗
te,Kte(τ) ∈ Rd×nd. Similarly, we have K∗

i = [H∗]i ∈ Rd×nd,Ki(τ) = [H(τ)]i ∈
Rd×nd for training data xi. Then, we define the kernel regression predictor.

Definition F.1 (NTK regression predictor). We define NTK regression predictor as

Fntk(γ(τ), xte) :=mK∗
teγ(τ), (22)

where γ(τ) ∈ Rnd is the parameter at timestamp τ .

Recall that we have a training dataset Dn = {(xi, yi)}ni=1. Then, we denote the corresponding
objective function for Fntk as

Lntk(γ(τ)) =
1

2

n∑
i=1

∥Fntk(γ(τ), xi)− yi∥22. (23)

Thus, based on Eq. (23), the gradient desent (GD) updating rule of γ(τ) is given by

γ(τ + 1)︸ ︷︷ ︸
nd×1

= γ(τ)︸︷︷︸
nd×1

−η · (m H∗︸︷︷︸
nd×nd

γ(τ)︸︷︷︸
nd×1

− vec(Y)︸ ︷︷ ︸
nd×1

), γ(0) = 0nd, (24)

where the Eq. (24) is according to γ(τ + 1) = γ(τ)− η∇γLntk(γ(τ)).

F.1 EQUIVALENCE BETWEEN TRAINED NET AND KERNEL REGRESSION

We provide a stronger bound between Fntk and Fnn result compared to Lemma F.1 in (Arora et al.,
2019b). Our following statement is stronger in the two following senses: their result only holds
when t → ∞, and our result holds for all t ∈ [0,∞); also their result only works for 1 dimension
output space, our result holds arbitrary d dimensional output space.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Theorem F.2 (Kernel value perturbation ⇒ prediction perturbation). Fix ϵH ≤ 1
2λ. If for all τ ≥ 0,

∥K∗
ℓ,te−Kℓ,te(τ)∥F ≤ ϵℓ,test and ∥H∗−H(τ)∥F ≤ ϵH , then for any xte ∈ Rd, ℓ ∈ [d] and τ ≥ 0,

we have

|Fntk(γ(τ), xte)ℓ − Fnn(W (τ), xte)ℓ| ≤ O

(√
nd

λ
ϵℓ,test +

√
nd

λ2
log2

(
nd

ϵHmλ

)
ϵH

)
.

Proof of Theorem F.2. Our proof relies on a careful analysis of the trajectories induced by gradient
flow for optimizing the neural network predictor Fnn and the NTK predictor Fntk. Then, we can
have a similar argument to gradient descent at any timestamp τ .

Recall that for any xte, xi ∈ Rd, we have K∗
te,K

∗
i ∈ Rd×nd be the feature map induced by NTK.

For any x ∈ Rd, we define ϕ(x) ∈ Rd×d as following, for any ℓ ∈ [d],

ϕ(x)ℓ =
1√
m
x

m∑
r=1

⟨vℓ,r,S(0)⟩ ·mSr(0).

We denote ϕ(X) ∈ Rd×nd as the stack of feature map of X ∈ Rd×n.

Note the optimal solution in Eq. (22) can be rewritten as

min
γ

∥γ∥2 such that mK∗
i γ = yi for i = 1, . . . , n.

We have the optimal solution for kernel regression is γ∗ := m−1(H∗)−1 vec(Y) and its correspond-
ing prediction for xte will be Fntk(γ(τ), xte) = K∗

te(H
∗)−1 vec(Y). The solution to this program

can be rewritten as applying gradient flow on the

min
β

n∑
i=1

∥
√
mϕ(xi)

⊤β − yi∥22

with initialization β(0) = 0d. We use β(τ) to denote this parameter at timestamp τ trained by
gradient flow. We denote

Fntk2(β(τ), xte) :=
√
mϕ(xte)

⊤β(τ)

where Fntk2(β(τ), xte) be the predictor for xte at time τ . Then we have

Fntk2(β(τ), xte) =
√
mϕ(xte)

⊤︸ ︷︷ ︸
Rd×d

β(τ)︸︷︷︸
Rd

=
√
mϕ(xte)

⊤︸ ︷︷ ︸
Rd×d

(
√
mϕ(X)︸ ︷︷ ︸

Rd×nd

) γ(τ)︸︷︷︸
Rnd

= m K∗
te︸︷︷︸

Rd×nd

γ(τ)

= Fntk(γ(τ), xte)

where the second step follows β(τ) =
√
mϕ(X)γ(τ) the third step follows K∗

te = ϕ(xte)
⊤ϕ(X).

With these notations, as τ goes to infinity, we denote, for any ℓ ∈ [d],

Fntk2(xte)ℓ =

∫ ∞

τ=0

dFntk2(β(τ), xte)ℓ
dτ

dτ

where we have used the fact that the initial prediction is 0 as β(0) = 0d. Similarly for Fnn(xte)ℓ.
Let Fntk2,i(τ) = Fntk2(β(τ), xi) and Fntk2(τ) ∈ Rd×n. Similarly, for the NN predictor Fnn. Now
we take a closer look at the time derivative:

dFntk2(β(τ), xte)ℓ
dτ

=

〈
∂Fntk2(β(τ), xte)ℓ

∂β(τ)
,
dβ(τ)

dτ

〉
=

〈
∂Fntk2(β(τ), xte)ℓ

∂β(τ)
,−∂L(β(τ), {xi}ni=1)

∂β(τ)

〉

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

= −

〈
∂Fntk2(β(τ), xte)ℓ

∂β(τ)
,

n∑
i=1

d∑
ℓ2=1

(Fntk2,i,ℓ2(τ)− yi,ℓ2)
∂Fntk2(β(τ), xi)ℓ2

∂β(τ)

〉

= −m

〈
ϕ(xte)ℓ,

n∑
i=1

d∑
ℓ2=1

(Fntk2,i,ℓ2(τ)− yi,ℓ2)ϕ(xi)ℓ2

〉
= −m vec(K∗

ℓ,te)
⊤ vec(Fntk2(τ)− Y) (25)

where the first step follows from simple algebra, the second step follows from ODE formulation
(we remark that this is a very standard step in all the NTK literature), the third step follows from
Eq. (23), the fourth step follows from the definition of ϕ(xte)ℓ, the last step follows from simple
algebra.

We can obtain a time derivative of the same form for Fnn.

dFnn(W (τ), xte)ℓ
dτ

=

〈
∂Fnn(W (τ), xte)ℓ

∂W (τ)
,
dW (τ)

dτ

〉
=

〈
∂Fnn(W (τ), xte)ℓ

∂W (τ)
,−∂L(W (τ), {xi}ni=1)

∂W (τ)

〉
= −

〈
∂Fnn(W (τ), xte)ℓ

∂W (τ)
,

n∑
i=1

d∑
ℓ2=1

(Fnn,i,ℓ2(τ)− yi,ℓ2)
∂Fnn(W (τ), xi)ℓ2

∂W (τ)

〉
= −m vec(Kℓ,te(τ))

⊤ vec(Fnn(τ)− Y) (26)
where the first step follows from simple algebra, the second step is standard in NTK literature, the
third step follows from Eq. (23), the last step follows from simple algebra.

Thus we analyze the difference between the NN predictor and NTK predictor via this integral form
|Fnn(xte)ℓ − Fntk2(xte)ℓ|

=

∣∣∣∣Fnn(W (0), xte)ℓ +

∫ ∞

τ=0

(
dFnn(W (τ), xte)ℓ

dτ
− dFntk2(β(τ), xte)ℓ

dτ

)
dτ

∣∣∣∣
= |Fnn(W (0), xte)ℓ|+

∣∣∣∣−m

∫ ∞

τ=0

(
vec(Kℓ,te(τ))

⊤ vec(Fnn(τ)− Y)− vec(K∗
ℓ,te)

⊤ vec(Fntk2(τ)− Y)
)
dτ

∣∣∣∣
=

∣∣∣∣−m

∫ ∞

τ=0

(
vec(Kℓ,te(τ))

⊤ vec(Fnn(τ)− Y)− vec(K∗
ℓ,te)

⊤ vec(Fntk2(τ)− Y)
)
dτ

∣∣∣∣
≤ m

∣∣∣∣∫ ∞

τ=0

vec(Kℓ,te(τ)−K∗
ℓ,te)

⊤ vec(Fnn(τ)− Y)dτ

∣∣∣∣+m

∣∣∣∣∫ ∞

τ=0

vec(K∗
ℓ,te)

⊤ vec(Fnn(τ)− Fntk2(τ))dτ

∣∣∣∣
≤ m max

0≤t≤∞
∥Kℓ,te(τ)−K∗

ℓ,te∥F
∫ ∞

τ=0

∥Fnn(τ)− Y ∥Fdτ +m max
0≤t≤∞

∥K∗
ℓ,te∥F

∫ ∞

τ=0

∥Fnn(τ)− Fntk2(τ)∥Fdτ

≤ mϵℓ,test

∫ ∞

τ=0

∥Fnn(τ)− Y ∥Fdτ +m max
0≤t≤∞

∥K∗
ℓ,te∥F

∫ ∞

τ=0

∥Fnn(τ)− Fntk2(τ)∥Fdτ ,

where the first step follows from the difference between the NN predictor and NTK predictor, the
second step follows from Eq. (25) and Eq. (26), the third step follows |Fnn(W (0), xte)ℓ| = 0 by
symmetric initialization from Definition 3.7, the fourth step follows from simple algebra, the fifth
step follows from Frobenius norm, the last step follows from simple algebra.

For the first term, recall ∥H∗ −H(τ)∥F ≤ ϵH and, by Claim E.5, we have

λmin(H(τ)) ≥ 1

2
λ.

Using this fact we know ∥Fnn(τ)−Y ∥F ≤ exp(−m
2 λτ)∥Fnn(0)−Y ∥F (The reason to obtain this

is due to solve ODE).

Therefore, by Lemma D.3, we can bound∫ ∞

τ=0

∥Fnn(τ)− Y ∥Fdτ =

∫ ∞

τ=0

exp
(
−m

2
λτ
)
∥Fnn(0)− Y ∥Fdτ

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

= O(

√
nd

mλ
).

To bound
∫∞
τ=0

∥Fnn(τ) − Fntk2(τ)∥Fdτ , we observe that Fnn(τ) → y and Fntk2(τ) → y with

linear convergence rate. Therefore, we can choose some τ0 = C
mλ log

(
nd

ϵH ·mλ

)
so that

∫ ∞

τ0

∥Fnn(τ)− Fntk2(τ)∥Fdτ ≤
∫ ∞

τ0

∥Fnn(τ)− Y ∥Fdτ +

∫ ∞

τ0

∥Fntk2(τ)− Y ∥Fdτ

≤ O

(
1

mλ
(∥Fnn(τ0)− Y ∥F + ∥Fntk2(τ0)− Y ∥F)

)
≤ O

(√
nd

mλ
exp (−mλτ0)

)
≤ O(ϵH).

where the first step follows from simple algebra, the second step follows from integral range is τ0,
the third step follows from Lemma D.3, the last step follows from choice of τ0.

Thus it suffices to bound
∫ τ0
τ=0

∥Fnn(τ)− Fntk2(τ)∥Fdτ ≤ τ0 max0≤t≤τ0 ∥Fnn(τ)− Fntk2(τ)∥F .

First observe that

∥Fnn(τ)− Fntk2(τ)∥F ≤ ∥Fnn(0)∥F +

∫ τ

s=0

∥∥∥∥d(Fnn(s)− Fntk2(s))

ds

∥∥∥∥
F

ds

=

∫ τ

s=0

∥∥∥∥d(Fnn(s)− Fntk2(s))

ds

∥∥∥∥
F

ds,

where the last step follows symmetric initialization from Definition 3.7.

Note
d(Fnn(τ)− Fntk2(τ))

dτ
= −mH(τ) vec(Fnn(τ)− Y) +mH∗ vec(Fntk2(τ)− Y)

= −mH∗ vec(Fnn(τ)− Fntk2(τ)) +m(H∗ −H(τ)) vec(Fnn(τ)− Y)

where the first step follows from definition of Fnn and Fntk2.

Since H∗ is positive semidefinite, −H∗ vec(Fnn(τ) − Fntk2(τ)) term only makes ∥Fnn(τ) −
Fntk2(τ)∥F smaller. Therefore, we have

∥Fnn(τ)− Fntk2(τ)∥F ≤ m

∫ τ

s=0

∥Fnn(s)− Y ∥F ∥H(τ)−H∗∥Fds

≤ mτ∥Fnn(0)− Y ∥F ϵH

≤ O
(
mτ

√
ndϵH

)
,

where the last step is by Lemma D.3.

Therefore, we have∫ τ0

τ=0

∥Fnn(τ)− Fntk2(τ)∥Fdτ ≤ O
(
mτ20

√
ndϵH

)
= O

(√
nd

mλ2
log2

(
nd

ϵHmλ

)
ϵH

)
.

where the first step follows from integral range is τ0, the second step follows from the choice of τ0.

Lastly, as Fntk2(xte)ℓ = Fntk(xte)ℓ, we put things together and get

|Fntk(xte)ℓ − Fnn(xte)ℓ| ≤ O

(√
nd

λ
ϵℓ,test +

√
nd

λ2
log2

(
nd

ϵHmλ

)
ϵH

)
.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

From the above, after we change the integration from (0,∞) to (0, τ), the statement still holds.
Then, based on the gradient flow version, we can have a gradient descent version with a constant
error factor by replacing integral with geometric summarization (for example

∑∞
i=0 a

i < 2, when
a ∈ (0, 0.5)).

G DIFFUSION

In Section G.1, we provide the proof of our main result of diffusion. In Section G.2, we provide
some tools from previous works.

We first define an auxiliary function F̃ntk of the same functional form as Fntk, but trained on a
pseudo dataset S̃ := {ỹi, xi}ni=1 with ỹi := FH(xi) + ϵi and ϵi := yi − F∗(xi). Then, we have the
following claim.
Claim G.1 (Loss decomposition). We can decompose our target function as the following

1

T

∫ T

0

E[∥Fnn(W (τ), (t, x(t)))− F∗(t, x(t))∥22]dt ≤ Z1 + Z2 + Z3 + Z4,

where

Z1 =
1

T

∫ T

0

E[∥Fnn(W (τ), (t, x(t)))− Fntk(γ(τ), (t, x(t)))∥22]dt (coupling)

Z2 =
1

T

∫ T

0

E[∥Fntk(γ(τ), (t, x(t)))− F̃ntk(γ(τ), (t, x(t)))∥22]dt (label mismatch)

Z3 =
1

T

∫ T

0

E[∥F̃ntk(γ(τ), (t, x(t)))− FH(t, x(t))∥22]dt (early stopping)

Z4 =
1

T

∫ T

0

E[∥FH(t, x(t))− F∗(t, x(t))∥22]dt. (approximation).

The coupling error term is the gap between neural networks Fnn and a kernel function Fntk. The
approximation error term is the gap between the target function F∗ and its corresponding RKHS
function FH . These two terms transfer the problem of neural networks training into the problem of
kernel regression.

G.1 MAIN RESULT OF DIFFUSION

In this section, we prove the main result of diffusion.
Theorem G.2 (Restatement of Theorem 6.6). Suppose Assumptions 6.1, 6.2, 6.3, 6.4 hold and we set
m = Ω(λ−2n3d3 exp(18B) log2(nd/δ)) and η = 0.1λ/(mn2d2 exp(16B)). Moreover, suppose
T̂ satisfies Assumption 6.5 with corresponding ϵ(n, T̂). Then for large enough RH, with probability
at least 1− δ, it holds that

1

T

∫ T

0

λ(t)E[∥sW (T̂)(t, x(t))−∇ log pt(Xt)∥22]dt

≤ O

(
1

λ
√
n
+ ϵ(n, T̂) + dA2(RH) + dA(RH) +

√
dA(RH)Γδ + Γδ

)
.

Proof of Theorem 6.6. Note that the m and η satisfy the conditions in Theorem 4.2. The reason
about a different m is that we choose a different R and apply Lemma E.2 one more time. Recall the
ϵℓ,test and ϵH are defined in Theorem F.2.

Note that H∗ = H(0). By Lemma 5.1, Part 2, let R = λ/(2n2d2 exp(10B)), we have with
probability at least 1− δ such that

∥ H∗︸︷︷︸
nd×nd

− H(τ)︸ ︷︷ ︸
nd×nd

∥F ≤ ϵH =
λ

2nd
.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Note that K∗
ℓ,te and Kℓ,te share the same weight perturbation as H∗ and H(τ). Thus, by using the

same proof as Lemma 5.1, Part 1, we have

∥K∗
ℓ,te︸ ︷︷ ︸

n×d

−Kℓ,te︸ ︷︷ ︸
n×d

∥F ≤ ϵℓ,test =
λ

2n1.5d1.5
.

We have

∥Fntk(γ(τ), xte)− Fnn(W (τ), xte)∥2
≤

√
dmax

ℓ∈d
|Fntk(γ(τ)ℓ, xte)− Fnn(W (τ), xte)ℓ|

≤ O

(√
nd

λ
max
ℓ∈[d]

ϵℓ,test +

√
nd

λ2
log2

(
nd

ϵHmλ

)
ϵH

)
≤ O

(√
nd

λ

λ

n1.5d1.5
+

√
nd

λ2
log2

(
nd

mλ

)
λ

nd

)
≤ O

(
1

λ
√
n
log2

(
nd

mλ

))
≤ O

(
1

λ
√
n

)
where the first step follows from simple algebra, the second step is by Theorem F.2.

Thus, we finish the proof by Claim G.1, where coupling is from above, label mismatch is from
Theorem G.4, early stopping is from Assumption 6.5 and approximation is from Theorem G.3.

G.2 TOOLS FROM PREVIOUS WORKS

We have the following statements from previous works (Han et al., 2024b).

Theorem G.3 (Theorem 3.6 in (Han et al., 2024b), universal approximation of score function).
Suppose Assumptions 6.1, 6.3 and 6.4 hold. Let RH be larger than a constant c1, i.e., C(d+1, 0) in
Proposition 6 of (Bach, 2017), which depends only on d. There exists a function FH ∈ H such that
∥FH∥2H ≤ dRH and

1

T

∫ T

0

E[∥FH(t, x(t))− F∗(t, x(t))∥22]dt ≤ dA2(RH).

Theorem G.4 (Theorem 3.10 in (Han et al., 2024b), label mismatch). Suppose Assumptions 6.1
and 6.2 hold. If we initialize both Fntk and F̃ntk properly, then with probability at least 1 − δ it
holds simultaneously for all τ that

1

T

∫ T

0

E[∥Fntk(γ(τ), (t, x(t)))− F̃ntk(γ(τ), (t, x(t)))∥22]dt

≤ dA(RH) + C0(
√

dA(RH)Γδ + Γδ)

where C0 is a constant defined in Theorem 1 of (Reeve & Kaban, 2020).

H DISCUSSION

In this section, we provide discussions about the potential extensions of our method on various
popular frameworks, such as attention mechanism (Section H.1) and feature learning (Section H.2).

H.1 SELF-ATTENTION LEARNING

The self-attention can be written as

F (WKX,WQX,WV X) ∈ Rd×n′
, (27)

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

where WK ,WQ,WV ∈ Rd×d denotes key, query, and value matrix respectively and X ∈ Rd×n′
is

a sequence of n′ tokens. As our work is a first step to understanding softmax, it is natural to consider
how to extend our results to self-attention. It is well-known that using two reformulation tricks:
tensor-trick and SVM-trick (Gao et al., 2023b;c; Alman & Song, 2024a), any analysis for softmax
function can be naturally generalized to attention function F (WKX,WQX,WV X). Therefore,
we conjecture that we can borrow the idea from (Gao et al., 2023b;c; Alman & Song, 2024a) to
decouple Eq (27) into the value term and the softmax term. And, we can alternatively optimize the
weights for the softmax term (W k,WQ) and the value term (WV). We leave this valuable direction
as a future work.

H.2 FEATURE LEARNING

Recently, there is a line of work showing that feature learning may be beyond NTK on sample
complexity or time complexity, e.g., (Allen-Zhu & Li, 2019; Wei et al., 2019; Hanin & Nica, 2019;
Allen-Zhu et al., 2019a; Daniely & Malach, 2020; Chen et al., 2020; Yang & Hu, 2020; Huang &
Yau, 2020; Li et al., 2020; Ghorbani et al., 2020; Refinetti et al., 2021; Malach et al., 2021; Luo et al.,
2021; Damian et al., 2022; Shi et al., 2022; 2024) and many more. It is worth studying the feature
learning ability of two-layer softmax NN to figure out what feature pattern the softmax prefers to
learn and how it happens. We leave this valuable direction as a future work.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

45

	Introduction
	Related Works
	Neural Tangent Kernel
	Softmax and Attention in LLMs
	Diffusion Model

	Preliminary
	Model, Data, and Algorithm
	Neural Tangent Kernel

	Main Results
	Technical Overview
	Technical Novelty and Comparison to the Existing Literature

	Extension on Diffusion
	Preliminary of Diffusion
	Main Result of Diffusion

	Conclusion
	Definition
	Basic Concentration
	Some Concentration Basic Tools
	Kernel Perturbation

	Induction
	Main Result
	Induction Part 1. For Weights
	Induction Part 2. For Loss
	Induction Part 3. For Gradient

	Induction Part 1: For Weights
	Bounding the Gradient at any Time
	Bounding the Initialization Loss

	Induction Part 2: For Loss
	Decomposition for
	Choice of Parameters
	Bounding
	Bounding
	Bounding
	Bounding

	NTK Regression
	Equivalence between Trained Net and Kernel Regression

	Diffusion
	Main Result of Diffusion
	Tools From Previous Works

	Discussion
	Self-attention Learning
	Feature Learning

