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Abstract

In this work, we develop a norm-based generalization bound for a shallow Transformer model

trained using Gradient Descent. This is achieved in three major steps i.e., (a) Defining a class

of Transformer models whose weights stay close to their initialization during training. (b) Upper

bounding the Rademacher complexity of this class. (c) Upper bounding the empirical loss of all

transformer models belonging to the above-defined class for all training steps. We end up with an

upper bound on the true loss which tightens sublinearly with increasing number of training examples

N for all values of model dimension dm. We also perform experiments on MNIST dataset to support

our theoretical findings.

1 Introduction

The deep learning community has achieved outstanding performance on language and vision tasks which were once

considered very complex for neural network models. Transformers have played a central role in the development of

highly impressive conversational large language models (LLMs) like GPT-4 (Achiam et al., 2023), LLaMA (Touvron

et al., 2023) and Gemini (Team et al., 2023). Vision transformers (Dosovitskiy et al., 2020) have similarly achieved

outstanding results in image generation and classification. This tremendous success of transformer models has led to

anticipation of early Artificial General Intelligence (AGI). However, theoretical understanding of transformer models

is still limited. It is very crucial to develop mathematical theorems which give some guarantees on the generalization

abilities of transformers and other modern neural network architectures.

Various generalization bounds have been proposed for transformer models (Edelman et al., 2021; Trauger & Tewari,

2024; Fu et al., 2024). The researchers compute an upper bound on the difference between the true loss and the

empirical loss i.e., [LD(f) − LS(f)] for all f ∈ F where F is some class of transformer models. With this kind

of bound, if we wish to analyze the model’s true loss LD(f), we need to first perform training and obtain the final

empirical loss LS(f). In another approach of presenting generalization bounds, researchers directly upper bound the

true loss LD(f). With this type of bound, we can analyze the model’s true loss without having to first obtain the

empirical loss LS(f) through training. Arora et al. (2019) and Cao & Gu (2019) presented an upper bound on the

true loss LD(f) for a 2-layer fully connected ReLU neural network and a deep L-layer fully connected neural network

respectively. In this work, we extend this approach of directly upper bounding the true loss to transformer models.

We develop a generalization bound for a class of transformers whose weights remain very close to their initialization

during training. In other-words, we assume that the difference between the transformer’s weights at any training step

and the transformer’s weights at initialization is bounded. This is mostly true especially in modern networks which

are considered to be highly over-parameterized i.e., having significantly more number of parameters than number of

training examples required to generalize well. After defining this class of transformer models, we then proceed to

compute an upper bound on the Rademacher complexity for the above defined class of transformer models. Construct-

ing this upper bound on the Rademacher complexity involves employing the concept of covering numbers. Lastly we

utilize the convergence theorem proposed by Wu et al. (2024) to derive an upper bound on the empirical loss for all

transformer models belonging to the class defined above.

Specifically, our main contribution is developing an upper bound on the true loss for a class of transformer models

whose weights remain close to their initialization during training. We find that this bound tightens sublinearly with

increasing number of training examples N for all values of model dimension dm.
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2 Related Work

Researchers have developed several generalization bounds for neural networks (Bartlett et al., 2017; Neyshabur et al.,

2015; 2017; 2018; Pitas et al., 2018; Golowich et al., 2017; Li et al., 2018; Arora et al., 2018; Dziugaite & Roy,

2017; Zhou et al., 2018; Chen et al., 2019; Long & Sedghi, 2019). Norm-based generalization bounds have also been

developed for transformer models. Edelman et al. (2021) derived a norm-based generalization bound for transformers

which scales logarithmically with sequence length of the input. Trauger & Tewari (2024) also presented another bound

for transformers which is independent of the sequence length of the input. All these results involve computing an upper

bound on the difference between true loss and empirical loss i.e., [LD(f)−LS(f)] for all f ∈ F . As mentioned earlier,

this means that in order to study the true loss of the neural network, training must first be completed to obtain the final

LS(f).

In another direction of computing generalization bounds, researchers directly upper-bound the true loss LD(f) for

all f ∈ F . This requires analysis of the convergence of the neural network optimization in order to obtain a bound

on empirical loss LS(f) which is then used to get the final bound on LD(f). Once we have the final bound us-

ing this approach, we can directly analyze the true loss of the neural network without the need to first obtain em-

pirical loss through training. Following this direction, Arora et al. (2019) presented a generalization bound for an

over-parameterized two-layer ReLU fully connected neural network trained using gradient descent. In the over-

parameterization regime, the infinite-width neural tangent kernel (NTK) matrix was crucial in developing the bound.

Cao & Gu (2019) also proposed a generalization bound for an over-parameterized deep L-layer fully connected neural

network. The authors utilize Neural Tangent Random Features (NTRF) to develop this generalization bound. This

second direction for computing generalization bounds by directly upper bounding the true loss LD(f) for all f ∈ F
has not been explored for transformer models. Our paper focuses on closing this gap. In order to incorporate the

training dynamics, we rely on the global convergence theorem of a shallow transformer presented by Wu et al. (2024).

Other results on the convergence of transformers have also been proposed (Kohler & Krzyzak, 2023; Huang et al.,

2024; Shen et al., 2024; Gurevych et al., 2022). It is important to note that our transformer generalization bound

can not be directly compared to to the transformer generalization bounds proposed by Edelman et al. (2021) and

Trauger & Tewari (2024). This is because their bound is on the difference between true loss and empirical loss i.e.,

[LD(f) − LS(f)] for all f ∈ F while our bound is on the true loss i.e., LD(f) for all f ∈ F .

3 Preliminaries

3.1 Problem Setup

3.1.1 Training Examples

We are given N training examples S = {(Xn, yn)}N
n=1 where {Xn}N

n=1 ∈ R
N×ds×d are the instances and y ,

{yn}N
n=1 ∈ R

N are the labels. ds is the sequence length of the inputs and d is the input dimension.

3.1.2 Model

The model used in this work is a popular transformer encoder which is also used by Wu et al. (2024). Given an input

X ∈ R
ds×d, we define each of the transformer layers.

Self-attention layer

The self-attention layer is defined as follows;

A1 , σs

(
(XW T

Q)(XW T
K)T

√
dm

)
(XW T

V )

where σs is the row-wise softmax, WQ, WK , WV ∈ R
dm×d are the query, key and value matrices in the self-attention

layer. dm is the model dimension. We shall be interested in the effect of the self-attention layer on each row X(i,:) of
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the input X where i ∈ [ds]. We therefore define βi as the i-th row of the softmax output;

βi = σs

(
X(i,:)W T

QWKXT

√
dm

)T

= σs

(
XW T

KWQ(X(i,:))T

√
dm

)

We also define zi as the final output of the self-attention layer for each row X(i,:);

zi = (XW T
V )Tβi = WV XTσs

(
XW T

KWQ(X(i,:))T

√
dm

)

Feed -forward ReLU layer

The layer with ReLU activation function is defined as follows;

A2 , σr(A1WH)

where σr is the ReLU activation function. For ease of calculations, WH is set as WH = I ∈ R
dm×dm Once again,

define ki as the final output of the Feed -forward ReLU layer for each row X(i,:);

ki = σr(zi) = σr

(
WV XTσs

(
XW T

KWQ(X(i,:))T

√
dm

))

Average Pooling layer

The pooling is applied column-wise to reduce sequence length dimension from ds to 1. This is done to ensure a scalar

output from our transformer.

a3 , ϕ(A2)

where ϕ represents the column-wise average pooling. We can also define a3 in terms of each ki;

fpre =
1

ds

ds∑

i=1

ki =
1

ds

ds∑

i=1

σr

(
WV XTσs

(
XW T

KWQ(X(i,:))T

√
dm

))

Output layer

The final output layer is defined as follows;

f(X) , wT
Ofpre

where wO ∈ R
dm is the weight vector in the output layer. We can as well define the final model output f(X) in terms

of each row X(i,:) of the input X;

f(X) =
1

ds
wT

O

ds∑

i=1

σr

(
WV XTσs

(
XW T

KWQ(X(i,:))T

√
dm

))

Define θ as a vector representing the union of all parameters of the transformer model as shown below;

θ = {WQ, WK , WV , wO}

When we pass a single input X ∈ R
ds×d to the model, the output is given as f(X) ∈ R. When we give all inputs to

the model as a batch {Xn}N
i=1 ∈ R

N×ds×d, the output of the model will be f , {f(Xn)}N
n=1 ∈ R

N and output of

the last hidden layer will be Fpre , {fpre(Xn)}N
n=1 ∈ R

N×dm .
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3.1.3 Initialization

Similar to Wu et al. (2024) we use the LeCun initialization described below. The parameters WQ, WK , WV are

initialized as W
(ij)
Q ∼ N (0, 1

d ), W
(ij)
K ∼ N (0, 1

d ), W
(ij)
V ∼ N (0, 1

d ) for i ∈ [dm] and j ∈ [d] while w
(i)
O is

initialized as w
(i)
O ∼ N (0, 1

dm
) for i ∈ [dm].

3.1.4 Empirical Loss

We consider any loss function ℓ(f(Xn), yn) which is 1-Lipschitz in the first argument;

LS(f) =
1

N

N∑

n=1

ℓ(f(Xn), yn)

This empirical loss is to be optimized using Gradient Descent algorithm shown below;

Input: data (Xn, yn)N
n=1, step size γ

Initialize weights as follows: θ0 := {W 0
Q, W 0

K , W 0
V , w0

O}
for t = 0 to t′ − 1 do

W t+1
Q = W t

Q − γ · ∇WQ
ℓ(θt)

W t+1
K = W t

K − γ · ∇WK
ℓ(θt)

W t+1
V = W t

V − γ · ∇WV
ℓ(θt)

wt+1
O = wt

O − γ · ∇wO
ℓ(θt)

end for

Output: the model based on θt′

.

3.1.5 True Loss

We are interested in upper bounding the true loss defined as follows;

LD(f) = E(X,y)∼D[ℓ(f(X), y)]

3.2 Rademacher complexity

The theorem of Rademacher complexity is widely used to compute generalization bounds for machine learning models.

As per Mohri et al. (2012) theorem 3.1 and Arora et al. (2019) theorem B.1, suppose that the loss function ℓ(·, ·)
is bounded in [0, c] and is ρ-Lipschitz in the first argument. Then with probability at least 1 − δ over the sample

S = {(Xn, yn)}N
n=1 of size N :

sup
f∈F

{LD(f) − LS(f)} ≤ 2ρRS(F) + 3c

√
log(2/δ)

2N

where LD(f) is the true loss, LS(f) is the empirical loss and RS(F) is the empirical Rademacher complexity of a

function class F for samples S = {(Xn, yn)}N
n=1 of size N defined as follows;

RS(F) =
1

N
Eǫ∼unif({1,−1})

[
sup
f∈F

N∑

n=1

ǫnf(Xn)

]

In order to construct our generalization bound, we shall upper bound both the Rademacher complexity RS(F) and the

training loss LS(f) for all f ∈ F .

3.3 Covering number bound

For a given class F , the covering number N∞(F ; ǫ; {Xn}N
n=1; ‖ · ‖2) is the smallest size of a collection (a cover)

C ⊂ F such that ∀f ∈ F , ∃f̂ ∈ C satisfying max
n

‖f(Xn) − f̂(Xn)‖2 ≤ ǫ.
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The Rademacher complexity of the class F with respect to samples S = {(Xn, yn)}N
n=1 can be upper bounded using

the covering number of F (Edelman et al., 2021);

RS(F) ≤ c · inf
δ≥0

(
δ +

∫ A

δ

√
log N∞(F ; ǫ; {Xn}N

n=1; ‖ · ‖2)

N
dǫ

)

for some constant c > 0 and |f | ≤ A for all f ∈ F .

4 Results

For ease of proof, and WLOG, let us set the input feature dimension d to be equal to the model dimension dm i.e.,

d = dm.

4.1 Defining a class of Transformer models whose weights stay close to their initialization

Recall that we defined θ as a vector representing the union of all parameters of the transformer model as shown below;

θ = {WQ, WK , WV , wO}
The squared ℓ2-norm of the parameter vector can be expressed as the sum of the squared Frobenius norms (for matri-

ces) and squared ℓ2-norms (for vectors);

‖θ‖2
2 = ‖WQ‖2

F + ‖WK‖2
F + ‖WV ‖2

F + ‖wO‖2
2

We can therefore say that for all training steps t > 0;

‖θt+1 − θ0‖2
2 = ‖W t+1

Q − W 0
Q‖2

F + ‖W t+1
K − W 0

K‖2
F

+ ‖W t+1
V − W 0

V ‖2
F + ‖wt+1

O − w0
O‖2

2

≤ R2
Q + R2

K + R2
V + R2

O

where ‖W t+1
Q − W 0

Q‖F ≤ RQ, ‖W t+1
K − W 0

K‖F ≤ RK , ‖W t+1
V − W 0

V ‖F ≤ RV , ‖wt+1
O − w0

O‖2 ≤ RO for some

positive constants RO, RV , RQ, RK

Setting R =
√

R2
Q + R2

K + R2
V + R2

O, we end up with;

‖θt+1 − θ0‖2 ≤ R

Let us now define our hypothesis class Fθ
0

R comprised of the transformer models whose parameters θ stay in a ball

close to θ0 for all training steps t > 0;

Fθ
0

R =
{

fθ(Xn) : ∀t > 0, ‖θt+1 − θ0‖2 ≤ R
}

4.2 Upper bounding the Rademacher complexity

The following lemma gives an upper bound on the Rademacher complexity of our class of transformer models i.e., an

upper bound on RS(Fθ
0

R ).

Lemma 1. Suppose that we have ηV = ‖W 0
V ‖F + RV , ηO = ‖w0

O‖2 + RO, ηK = ‖W 0
K‖F + RK , ηQ = ‖W 0

Q‖F +
RQ where RO, RV , RK , RQ remain as defined above. Also assume that the inputs have full rank and are bounded as

‖Xn‖F ≤
√

dsRX for all n ∈ [N ] where RX is some positive constant. The empirical Rademacher complexity of the

class of Transformer models Fθ
0

R =
{

fθ(Xn) : ∀t > 0, ‖θt+1 − θ0‖2 ≤ R
}

given θ = {WQ, WK , WV , wO} can

be upper bounded as follows;

RS(Fθ
0

R ) . O
(

1

N

√
P

N

(
1 + log

(
A

√
N

P

)))

where . hides logarithmic dependencies on quantities besides N and ds, A = ηOηV (
√

dsRX) and P =

(
√

dsRX)2
((√

dmηV

) 2
3 +

(√
dmηKηQηV

) 2
3

)3

log(Nds)

5



Under review as submission to TMLR

Proof of lemma 1

Define the following quantities for simplicity ηV = ‖W 0
V ‖F + RV , ηO = ‖w0

O‖2 + RO, ηK = ‖W 0
K‖F + RK , ηQ =

‖W 0
Q‖F + RQ where RO, RV , RK , RQ remain as defined above in section 4.1.

Our class of interest in section 4.1 was Fθ
0

R =
{

fθ(Xn) : ‖θt+1 − θ0‖2 ≤ R
}

and we want to compute upper bound

on the Rademacher complexity RS(Fθ
0

R ) which is given as follows;

1
Nds

Eǫ∼unif(−1,1)




sup
wO,W T

KWQ,WV :
‖wO‖2≤ηO

‖WV ‖F ≤ηV∥∥∥W
T
K

WQ√
dm

∥∥∥
F

≤ ηK ηQ√
dm

∑N
n=1 ǫnwT

O

∑ds

i=1 σr

(
WV XT

nσs

(
XnW

T
KWQ(X

(i,:)
n )T

√
dm

))




Given the as-

sumption that Xn has full rank, the rows i ∈ [ds] of the input matrix Xn are independent. Therefore, by linearity of

expectation and also noting that supremum is only with respect to the weight parameters and not the input data, we

can factor out the summation over the rows i ∈ [ds] as follows;

1
Nds

∑ds

i=1 Eǫ∼unif(−1,1)




sup
wO,W T

KWQ,WV :
‖wO‖2≤ηO

‖WV ‖F ≤ηV∥∥∥W
T
K

WQ√
dm

∥∥∥
F

≤ ηK ηQ√
dm

∑N
n=1 ǫnwT

Oσr

(
WV XT

nσs

(
XnW

T
KWQ(X

(i,:)
n )T

√
dm

))




For a fixed set of parameters, supremum will be same for each i ∈ [ds] and since expectation is with respect to i.i.d.

Rademacher random variables will also be same for each i. We can thus collapse the summation over i as shown

below;

ds

Nds
Eǫ∼unif(−1,1)




sup
wO,W T

KWQ,WV :
‖wO‖2≤ηO

‖WV ‖F ≤ηV∥∥∥W
T
K

WQ√
dm

∥∥∥
F

≤ ηK ηQ√
dm

∑N
n=1 ǫnwT

Oσr

(
WV XT

nσs

(
XnW

T
KWQ(X

(i,:)
n )T

√
dm

))




= 1
N Eǫ∼unif(−1,1)




sup
wO,W T

KWQ,WV :
‖wO‖2≤ηO

‖WV ‖F ≤ηV∥∥∥W
T
K

WQ√
dm

∥∥∥
F

≤ ηK ηQ√
dm

∑N
n=1 ǫnwT

Oσr

(
WV XT

nσs

(
XnW

T
K WQ(X

(i,:)
n )T

√
dm

))




This implies that RS(Fθ
0

R ) = RS(Gθ
0

R ) where Gθ
0

R is defined as follows for any i ∈ [ds];

Gθ
0

R :=



(X(i,:))T −→ wT

Oσr

(
WV XT

nσs

(
XnW T

KWQ(X
(i,:)
n )T

√
dm

))
:

‖wO‖2≤ηO

‖WV ‖F ≤ηV∥∥∥W
T
K

WQ√
dm

∥∥∥
F

≤ ηK ηQ√
dm





The following lemma gives an upper bound on RS(Gθ
0

R ). Its proof can be found in the appendix section;
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Lemma 2. For any fixed ǫ > 0 and X1, . . . , XN ∈ R
ds×d such that ‖Xn‖F ≤

√
dsRX for all n ∈ [N ], the

Rademacher complexity of Gθ
0

R satisfies the bound given below;

RS(Gθ
0

R ) . c

√
P

N

(
1 + log

(
A

√
N

P

))

where . hides logarithmic dependencies on quantities besides N and ds, A = ηOηV (
√

dsRX) and P =

(
√

dsRX)2
((√

dmηV

) 2
3 +

(√
dmηKηQηV

) 2
3

)3

log(Nds).

Finally, the upper bound on the Rademacher complexity RS(Fθ
0

R ) can be given as;

RS(Fθ
0

R ) = RS(Gθ
0

R )

.

√
P

N

(
1 + log

(
A

√
N

P

))

. O
(√

P

N

(
1 + log

(
A

√
N

P

)))

4.3 Upper bounding the empirical loss

Define α as the minimum singular value of F 0
pre, i.e., α , σmin(F 0

pre) and also define Φ(θ) as follows;

Φ(θ) =
1

2
‖f(θ) − y‖2

2

We now state the following assumption about the input data matrix X;

Assumption 3. Assume that the input data has full row rank and is bounded as ||X||F ≤
√

dsRX with some positive

constant RX . Furthermore, For any data pair (Xn, Xn′), with n 6= n′ and n, n′ ∈ [N ], then we assume that;

P(|〈XT
nXn, XT

n′Xn′〉| ≥ t) ≤ exp(−tĉ)

with some constant ĉ > 0

The lemma below gives an upper bound on the empirical loss for all training steps t > 0.

Lemma 4. Suppose that we have ηV = ‖W 0
V ‖F + RV , ηO = ‖w0

O‖2 + RO, ηK = ‖W 0
K‖F + RK , ηQ = ‖W 0

Q‖F +

RQ, ξQ = ‖W 0
Q‖2 + RQ, ξK = ‖W 0

K‖2 + RK , ξV = ‖W 0
V ‖2 + RV where RO, RV , RK , RQ remain as defined

earlier. Under assumption 3, if dm ≥ Ω̃(N3), α2 ≥ 8ρM
√

2Φ(θ0), α3 ≥ (32ρ2z
√

2Φ(θ0))/ηO and ℓ(θ) is any loss

function which is 1-Lipschitz in the first argument, then with probability at least 1 − 8e−dm/2 − δ − exp(−Ω((N −
1)−ĉd−1

s )), for proper δ, when training using GD with small step size γ ≤ 1/k where k is a constant depending on

(ξQ, ξK , ξV , ηO, Φ(θ0), ρ, d
−1/2
m ), the empirical loss can be bounded as follows for all t > 0;

LS(fθt) ≤ min

(
α2

8ρM̂
√

N
,

α3ηO

32ρ4ẑ
√

N

)

where Ω̃ omits the logarithmic factor and the other quantities are defined as follows; ρ , N1/2d
3/2
s RX , z , η2

O(1 +
(4/dm)R4

Xd2
sξ2

V (ξ2
Q + ξ2

K)), ẑ , η2
O(1 + (4/dm)R4

Xd2
sη2

V (η2
Q + η2

K)),

M = max(ξV R−1
O , ηOR−1

V , (2/
√

dm)R2
XdsξKξV ηOR−1

Q , 2/
√

dm)R2
XdsξQξV ηOR−1

K ),

M̂ = max(ηV R−1
O , ηOR−1

V , (2/
√

dm)R2
XdsηKηV ηOR−1

Q , (2/
√

dm)R2
XdsηQηV ηOR−1

K ).

Proof of lemma 4

For the purpose of simplification, define the following quantities at initialization;

ξQ , ‖W 0
Q‖2 + RQ ≤ ‖W 0

Q‖F + RQ , ηQ

ξK , ‖W 0
K‖2 + RK ≤ ‖W 0

K‖F + RK , ηK

ξV , ‖W 0
V ‖2 + RV ≤ ‖W 0

V ‖F + RV , ηV

ηO , ‖w0
O‖2 + RO
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where RQ, RK , RV , RO are as defined before. As mentioned earlier, α is the minimum singular value of F 0
pre, i.e.,

α , σmin(F 0
pre) and Φ(θ) is given as Φ(θ) = 1

2 ||f(θ) − y||22.

According to Wu et al. (2024) theorem 1, under assumption 3, if dm ≥ Ω̃(N3), α2 ≥ 8ρM
√

2Φ(θ0) and α3 ≥
(32ρ2z

√
2Φ(θ0))/ηO, then with probability at least 1 − 8e−dm/2 − δ − exp(−Ω((N − 1)−ĉd−1

s )) for proper δ, GD

converges to a global minimum as follows for a sufficiently small step size γ ≤ 1/k with k as a constant depending

on (ξQ, ξK , ξV , ηO, Φ(θ0), ρ, d
−1/2
m ):

Φ(θt) ≤
(

1 − γ
α2

2

)t

Φ(θ0), ∀t ≥ 0

where M = max(ξV R−1
O , ηOR−1

V , (2/
√

dm)R2
XdsξKξV ηOR−1

Q , (2/
√

dm)R2
XdsξQξV ηOR−1

K ) and ρ ,

N1/2d
3/2
s RX , z , η2

O(1 + (4/dm)R4
Xd2

sξ2
V (ξ2

Q + ξ2
K)).

We can observe that Φ(θt) decays exponentially as training proceeds. This implies the following bound;

Φ(θt) ≤ Φ(θ0), ∀t ≥ 0

From the first condition i.e.,α2 ≥ 8ρM
√

2Φ(θ0), we can say that Φ(θ0) ≤ α4/(128ρ2M2). We therefore end up

with the bound below;

Φ(θt) ≤ α4

128ρ2M2
, ∀t ≥ 0

From the second condition i.e.,α3 ≥ (32ρ2z
√

2Φ(θ0))/ηO, we can say that Φ(θ0) ≤ (α6η2
O)/(2048ρ4z2). We

therefore end up with the bound below;

Φ(θt) ≤ α6η2
O

2048ρ4z2
, ∀t ≥ 0

Combining the two bounds on Φ(θt), we obtain the final bound as;

Φ(θt) ≤ min

(
α4

128ρ2M2
,

α6η2
O

2048ρ4z2

)
, ∀t ≥ 0

Our empirical loss i.e., LS(fθt) = 1
N

∑N
n=1 ℓ(fθt(Xn), yn) for all t > 0 can be bounded as follows;

LS(fθt) ≤ 1

N

N∑

n=1

(
ℓ(fθt(Xn), yn) − ℓ(yn, yn)

)

≤ 1

N

N∑

n=1

|fθt(Xn) − yn| because ℓ(·, ·) is 1-Lipschitz in the first argument

≤ 1√
N

‖fθt − y‖2

=

√
2Φ(θt)

N

≤ min

(
α2

8ρM
√

N
,

α3ηO

32ρ4z
√

N

)

where M = max(ξV R−1
O , ηOR−1

V , (2/
√

dm)R2
XdsξKξV ηOR−1

Q , (2/
√

dm)R2
XdsξQξV ηOR−1

K ) and ρ ,

N1/2d
3/2
s RX , z , η2

O(1 + (4/dm)R4
Xd2

sξ2
V (ξ2

Q + ξ2
K)).

Upper bounding ξO, ξV , ξK , ξQ using ηO, ηV , ηK , ηQ, the upper bound on the empirical loss for all training

steps can therefore be written as;

LS(fθt) ≤ min

(
α2

8ρM̂
√

N
,

α3ηO

32ρ4ẑ
√

N

)

where M̂ = max(ηV R−1
O , ηOR−1

V , (2/
√

dm)R2
XdsηKηV ηOR−1

Q , (2/
√

dm)R2
XdsηQηV ηOR−1

K ) and ẑ , η2
O(1 +

(4/dm)R4
Xd2

sη2
V (η2

Q + η2
K))

8
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4.4 Main result

This is our main theorem which uses lemma 1 and 4 to obtain a final bound on the true loss for a class of transformer

models whose weights stay close to their initialization during training. For all model dimensions dm, the bound

tightens with increasing number of training examples N as expected.

Theorem 5. Suppose that we have ηV = ‖W 0
V ‖F +RV , ηO = ‖w0

O‖2 +RO, ηK = ‖W 0
K‖F +RK , ηQ = ‖W 0

Q‖F +

RQ, ξQ = ‖W 0
Q‖2+RQ, ξK = ‖W 0

K‖2+RK , ξV = ‖W 0
V ‖2+RV where RO, RV , RK , RQ remain as defined earlier.

Under assumption 3, if dm ≥ Ω̃(N3), α2 ≥ 8ρM
√

2Φ(θ0), α3 ≥ (32ρ2z
√

2Φ(θ0))/ηO and ℓ(θ) is any loss function

which is 1-lipschitz in the first argument, then with probability at least 1−8e−dm/2 −2δ−exp(−Ω((N −1)−ĉd−1
s )), if

the transformer model is trained using Gradient Descent with small step size γ ≤ 1/k where k is a constant depending

on (ξQ, ξK , ξV , ηO, ℓ(θ0), ρ, d
−1/2
m ), the true loss LD(f) can be bounded as follows;

LD(f) . min

(
α2

8ρM̂
√

N
,

α3ηO

32ρ4ẑ
√

N

)
+ O



√

P

N

(
1 + log

(
A

√
N

P

))
+

√
log R

δ

N




where Ω̃ omits the logarithmic factor, . hides logarithmic dependencies on quantities besides N , ds and δ and the

other quantities are defined as follows; ρ , N1/2d
3/2
s RX ,

z , η2
O(1 + (4/dm)R4

Xd2
sξ2

V (ξ2
Q + ξ2

K)), ẑ , η2
O(1 + (4/dm)R4

Xd2
sη2

V (η2
Q + η2

K)),

M = max(ξV R−1
O , ηOR−1

V , (2/
√

dm)R2
XdsξKξV ηOR−1

Q , (2/
√

dm)R2
XdsξQξV ηOR−1

K ),

M̂ = max(ηV R−1
O , ηOR−1

V , (2/
√

dm)R2
XdsηKηV ηOR−1

Q , (2/
√

dm)R2
XdsηQηV ηOR−1

K ),

A = ηOηV (
√

dsRX) and P = (
√

dsRX)2
((√

dmηV

) 2
3 +

(√
dmηKηQηV

) 2
3

)3

log(Nds).

Proof of Theorem 5

Recall that we defined our hypothesis class as follows;

Fθ
0

R =
{

fθ(Xn) : ‖θt+1 − θ0‖2 ≤ R
}

Let us set Ri = i for i ∈ {1, 2, . . . , R}. This means that we can define a class of models whose parameter norm is

bounded as ‖θt+1 − θ0‖2 ≤ Ri for i ∈ {1, 2, . . . , R} as follows;

Fθ
0

Ri
=
{

fθ(Xn) : ‖θt+1 − θ0‖2 ≤ Ri

}

From Rademacher complexity and a union bound over a finite set of Ri’s, for any random initialization (θ0), with

probability at least 1 − δ over the sample S = {(Xn, yn)}N
n=1 of size N , we have that;

sup
f∈Fθ0

Ri

{LD(f) − LS(f)} ≤ 2RS(Fθ
0

Ri
) +

√
log 2R

δ

2N

for all i ∈ {1, 2, 3, . . . , R}. Note that Ri ≤ R for all i ∈ {1, 2, . . . , R} which implies that RS(Fθ
0

Ri
) ≤ RS(Fθ

0

R ) for

any i ∈ {1, 2, . . . , R}. This gives us the following bound on RS(Fθ
0

Ri
) for all i ∈ {1, 2, . . . , R};

RS(Fθ
0

Ri
) . O

(√
P

N

(
1 + log

(
A

√
N

P

)))

where P = (
√

dsRX)2
((√

dmηV

) 2
3 +

(√
dmηKηQηV

) 2
3

)3

log(Nds) and A = ηOηV (
√

dsRX). From lemma 4,

with probability at least 1 − 8e−dm/2 − δ − exp(−Ω((N − 1)−ĉd−1
s )), the training loss for our transformer model can

be bounded as follows for all t > 0;

LS(fθt) ≤ min

(
α2

8ρM̂
√

N
,

α3ηO

32ρ4ẑ
√

N

)

9



Under review as submission to TMLR

where ρ , N1/2d
3/2
s RX , ẑ , η2

O(1 + (4/dm)R4
Xd2

sη2
V (η2

Q + η2
K)) and

M̂ = max(ηV R−1
O , ηOR−1

V , (2/
√

dm)R2
XdsηKηV ηOR−1

Q , (2/
√

dm)R2
XdsηQηV ηOR−1

K ).

Putting everything together, with probability atleast 1 − 8e−dm/2 − 2δ − exp(−Ω((N − 1)−ĉd−1
s )), we have that;

LD(f) . min

(
α2

8ρM̂
√

N
,

α3ηO

32ρ4ẑ
√

N

)
+ O



√

P

N

(
1 + log

(
A

√
N

P

))
+

√
log R

δ

N




where . hides logarithmic dependencies on quantities besides N , ds and δ.

5 Conclusion

In this paper we present an upper bound on the true loss of a class of transformer models whose weights stay close to

their initialization during training. We believe that this bound plays a crucial role in the theoretical understanding of

transformer models. This bound can also be extended to transformer models with many layers and multiple attention

heads.
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Iryna Gurevych, Michael Kohler, and Gözde Gül Şahin. On the rate of convergence of a classifier based on a trans-

former encoder. IEEE Transactions on Information Theory, 68(12):8139–8155, 2022.

Ruiquan Huang, Yingbin Liang, and Jing Yang. Non-asymptotic convergence of training transformers for next-

token prediction. ArXiv, abs/2409.17335, 2024. URL https://api.semanticscholar.org/CorpusID:

272910946.

Michael Kohler and Adam Krzyzak. On the rate of convergence of an over-parametrized transformer classifier learned

by gradient descent. arXiv preprint arXiv:2312.17007, 2023.

Xingguo Li, Junwei Lu, Zhaoran Wang, Jarvis D. Haupt, and Tuo Zhao. On tighter generalization bound for deep

neural networks: Cnns, resnets, and beyond. CoRR, abs/1806.05159, 2018. URL http://arxiv.org/abs/

1806.05159.

Philip M. Long and Hanie Sedghi. Size-free generalization bounds for convolutional neural networks. CoRR,

abs/1905.12600, 2019. URL http://arxiv.org/abs/1905.12600.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. The MIT Press,

2012. ISBN 026201825X.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural networks. CoRR,

abs/1503.00036, 2015. URL http://arxiv.org/abs/1503.00036.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. A pac-bayesian approach to

spectrally-normalized margin bounds for neural networks. CoRR, abs/1707.09564, 2017. URL http://arxiv.

org/abs/1707.09564.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards understanding the

role of over-parametrization in generalization of neural networks. CoRR, abs/1805.12076, 2018. URL http:

//arxiv.org/abs/1805.12076.

Konstantinos Pitas, Mike E. Davies, and Pierre Vandergheynst. Pac-bayesian margin bounds for convolutional neural

networks - technical report. CoRR, abs/1801.00171, 2018. URL http://arxiv.org/abs/1801.00171.

Wei Shen, Ruida Zhou, Jing Yang, and Cong Shen. On the training convergence of transformers for in-context

classification. arXiv preprint arXiv:2410.11778, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk,

Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable multimodal models. arXiv

preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste

Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models.

arXiv preprint arXiv:2302.13971, 2023.

Jacob Trauger and Ambuj Tewari. Sequence length independent norm-based generalization bounds for transformers.

In International Conference on Artificial Intelligence and Statistics, pp. 1405–1413. PMLR, 2024.

Yongtao Wu, Fanghui Liu, Grigorios Chrysos, and Volkan Cevher. On the convergence of encoder-only shallow

transformers. Advances in Neural Information Processing Systems, 36, 2024.

Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P Adams, and Peter Orbanz. Non-vacuous generalization bounds

at the imagenet scale: a pac-bayesian compression approach. arXiv preprint arXiv:1804.05862, 2018.

11



Under review as submission to TMLR

A Proof of lemma 2

We want to obtain an upper bound on RS(Gθ
0

R ) where Gθ
0

R is defined as follows;

Gθ
0

R :=



(X(i,:))T −→ wT

Oσr

(
WV XT

nσs

(
XnW T

KWQ(X
(i,:)
n )T

√
dm

))
:

‖wO‖2≤ηO

‖WV ‖F ≤ηV∥∥∥W
T
K

WQ√
dm

∥∥∥
F

≤ ηK ηQ√
dm





Let’s begin by defining the following bounds on the matrices;

‖WV ‖2 ≤ ‖W 0
V ‖2 + bV ≤ ηV

‖WV ‖2,1 ≤ ‖W 0
V ‖2,1 + BV ≤

√
dmηV

∥∥∥∥
W T

KWQ√
dm

∥∥∥∥
2,1

≤
(
‖(W 0

K)T‖1,2 + BK

) (
‖W 0

Q‖2,1 + BQ

)
√

dm

≤ dmηKηQ√
dm

=
√

dmηKηQ

‖XT
n‖2,∞ ≤ BX ≤ ‖Xn‖F ≤

√
dsRX ∀n ∈ [N ]

where bV , BV , BK , BQ, BX are some positive constants and RO, RV , RK , RQ, RX remain as defined earlier. The

norm ‖·‖2,1 interpreted as first taking the ℓ2-norm for each column of a matrix and then summing these column norms.

Define another class Gθ
0

B as shown below;

Gθ
0

B :=





(X(i,:))T −→ wT
Oσr

(
WV XT

nσs

(
XnW T

KWQ(X(i,:)
n )T

))
:

‖wO‖2≤ηO

‖WV ‖2≤‖W
0
V ‖2+bV

‖WV ‖2,1≤‖W
0
V ‖2,1+BV∥∥∥W

T
K

WQ√
dm

∥∥∥
2,1

≤ (‖(W
0
K

)T‖1,2+BK)(‖W
0
Q

‖2,1+BQ)√
dm





The following lemma gives an upper bound on the log covering number of the class Gθ
0

B ;

Lemma 6. ((Edelman et al., 2021) Corollary 4.5). For any fixed ǫ > 0 and X1, . . . , XN ∈ R
ds×d such that

‖XT
n‖2,∞ ≤ BX for all n ∈ [N ], the covering number of Gθ

0

B satisfies the bound given below;

log N∞(Gθ
0

B ; ǫ; {Xn}N
n=1, ‖ · ‖2)

. B2
X ·

(
(
‖W 0

V ‖2,1 + BV

) 2
3 +

((
(‖(W

0
K)T‖1,2+BK)(‖W

0
Q‖2,1+BQ)√

dm

)(
‖W 0

V ‖2 + bV

)) 2
3

)3

ǫ2
· log(Nds)

where . hides logarithmic dependencies on quantities besides N and ds.

Upper bounding the norms ‖ · ‖2,1 and ‖ · ‖2,∞ using the Frobenius norm, ‖ · ‖F , we end up with;

log N∞(Gθ
0

R ; ǫ; {Xn}N
n=1, ‖ · ‖2) . (

√
dsRX)2 ·

((√
dmηV

) 2
3 +

(√
dmηKηQηV

) 2
3

)3

ǫ2
· log(Nds)

This can also be written as;

log N∞(Gθ
0

R ; ǫ; {Xn}N
n=1, ‖ · ‖2) .

P

ǫ2

where P = (
√

dsRX)2
((√

dmηV

) 2
3 +

(√
dmηKηQηV

) 2
3

)3

log(Nds).

12
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We can now write the bound on the Rademacher complexity RS(Gθ
0

R ) as follows for some constant c > 0 and |f | ≤ A

for all f ∈ Gθ
0

R ;

RS(Gθ
0

R ) ≤ c · inf
δ≥0


δ +

∫ A

δ

√
log N∞(Gθ0

R ; ǫ; {Xn}N
n=1; ‖ · ‖2)

N
dǫ




. c · inf
δ≥0

(
δ +

∫ A

δ

√
P

ǫ2N
dǫ

)

= c · inf
δ≥0

(
δ +

√
P

N

∫ A

δ

1

ǫ
dǫ

)

= c · inf
δ≥0

(
δ +

√
P

N
log

(
A

δ

))

= c

√
P

N

(
1 + log

(
A

√
N

P

))

Note that |f | ≤ A for all f ∈ Gθ
0

R . A can be obtained as follows;
∣∣∣∣∣w

T
Oσr

(
WV XT

nσs

(
XnW T

KWQ(X
(i,:)
n )T

√
dm

))∣∣∣∣∣

≤ ‖wO‖2

∥∥∥∥∥σr

(
WV XT

nσs

(
XnW T

KWQ(X
(i,:)
n )T

√
dm

))∥∥∥∥∥
2

= ‖wO‖2

∥∥∥∥∥σr

(
WV XT

nσs

(
XnW T

KWQ(X
(i,:)
n )T

√
dm

))∥∥∥∥∥
2

≤ ‖wO‖2

∥∥∥∥∥WV XT
nσs

(
XnW T

KWQ(X
(i,:)
n )T

√
dm

)∥∥∥∥∥
2

(because ‖σr(z)‖2 ≤ ‖z‖2)

≤ ‖wO‖2 ‖WV ‖2

∥∥∥∥∥XT
nσs

(
XnW T

KWQ(X
(i,:)
n )T

√
dm

)∥∥∥∥∥
2

≤ ‖wO‖2 ‖WV ‖2 ‖Xn‖2

∥∥∥∥∥σs

(
XnW T

KWQ(X
(i,:)
n )T

√
dm

)∥∥∥∥∥
2

≤ ‖wO‖2 ‖WV ‖2 ‖Xn‖2 (because ‖σs(z)‖2 ≤ ‖σs(z)‖1 = 1)

≤ ‖wO‖2 ‖WV ‖F ‖Xn‖F

≤ (‖w0
O‖2 + RO)(‖W 0

V ‖F + RV )(
√

dsRX)

= ηOηV (
√

dsRX)

This means that A = ηOηV (
√

dsRX).

B Experiments

We use the transformer model defined in section 3.1.2 to perform classification of images. From MNIST dataset, we

extract the images belonging to classes 0 and 1 and create our new dataset. Each image of size 28 × 28 is broken into

tokens each of dimension d = 64. The main goal of the experiments is to demonstrate that the test loss of the trained

transformer model decreases with increasing number of of samples i.e., N = 400, N = 1200 and N = 10000. This

trend holds for all the values of model dimension which we tested i.e., dm = 64, dm = 1024 and dm = 4096. The

learning rate used is 0.1, the optimization algorithm is batch gradient descent and the loss function is the cross-entropy

loss. The results for the experiments are presented below. Each figure shows the training loss and test loss of the

transformer model as training proceeds.
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Figure 1: Evolution of training loss (top) and test loss(bottom) for each epoch of training for model dimension dm =
64.
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Figure 2: Evolution of training loss (top) and test loss(bottom) for each epoch of training for model dimension dm =
1024.
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Figure 3: Evolution of training loss (top) and test loss(bottom) for each epoch of training for model dimension dm =
4096.

Table 1: Lowest test loss and the epoch at which it was achieved for different values of dm and N .

dm N Lowest Test Loss Epoch

64 400 0.1048 147

64 1200 0.0668 165

64 10000 0.0263 546

1024 400 0.1839 95

1024 1200 0.0760 271

1024 10000 0.0045 251

4096 400 0.1269 139

4096 1200 0.0899 169

4096 10000 0.0123 312
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