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Abstract

In this work, we establish a norm-based generalization bound for a shallow Transformer model
trained via gradient descent under the bounded-drift (lazy training) regime, where model parameters
remain close to their initialization throughout training. Our analysis proceeds in three stages: (a)
we formally define a hypothesis class of Transformer models constrained to remain within a small
neighborhood of their initialization; (b) we derive an upper bound on the Rademacher complex-
ity of this class, quantifying its effective capacity; and (c) we establish an upper bound on the
empirical loss achieved by gradient descent under suitable assumptions on model width, learning
rate, and data structure. Combining these results, we obtain a high-probability bound on the true
loss that decays sublinearly with the number of training samples N and depends explicitly on model
and data parameters. The resulting bound demonstrates that, in the lazy regime, wide and shallow
Transformers generalize similarly to their linearized (NTK) counterparts. Empirical evaluations on
both text and image datasets support the theoretical findings.

1 Introduction

Deep learning models have achieved remarkable success on language and vision tasks that were once considered in-
tractable for neural networks. Transformer architectures, in particular, have played a central role in this progress,
underpinning large-scale language models such as GPT-4 (Achiam et al., 2023), LLaMA (Touvron et al., 2023), and
Gemini (Team et al., 2023). Beyond language, Vision Transformers (Dosovitskiy et al., 2020) have demonstrated com-
petitive or superior performance on image classification and generation tasks. These empirical successes have fueled
optimism about the capabilities of modern neural networks and, in some cases, speculation about the emergence of
artificial general intelligence. Despite this progress, the theoretical understanding of Transformer models particularly
their generalization behavior remains limited.

A central challenge in the theory of deep learning is to explain why modern neural network models generalize well.
For Transformers, several recent works have developed generalization bounds by controlling the generalization gap,
that is, the difference between the true loss and the empirical loss, LD(f) − LS(f), over a suitable hypothesis class F
(Edelman et al., 2021; Trauger & Tewari, 2024; Fu et al., 2024). Such bounds are valuable for understanding capacity
control and architectural inductive biases, but they require training to complete in order to evaluate the empirical loss
LS(f) before any conclusions about the true loss can be drawn.

An alternative line of work directly upper-bounds the true loss LD(f) by combining statistical complexity control
with explicit analysis of optimization dynamics. This approach yields guarantees on generalization without requiring
post hoc evaluation of the empirical loss. For fully connected networks, Arora et al. (2019b) established such a bound
for overparameterized two-layer ReLU networks trained by gradient descent, leveraging convergence results in the
neural tangent kernel (NTK) regime. This framework was later extended to deep fully connected networks using
Neural Tangent Random Features in Cao & Gu (2019). However, this optimization-aware true-loss perspective is less
explored for Transformer architectures.
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In this work, we take a step toward closing this gap by deriving a generalization bound for a class of Transformer
models whose parameters remain close to their initialization throughout training. This bounded-drift assumption
corresponds to the lazy training regime, which is commonly associated with highly overparameterized networks trained
using small learning rates. Under this regime, training dynamics are approximately linearized around initialization,
enabling tractable analysis while still capturing important aspects of overparameterized learning.

Our analysis proceeds in three steps. First, we formally define a hypothesis class of shallow Transformer models whose
parameters remain within a fixed-radius neighborhood of their initialization. Second, we derive an upper bound on
the Rademacher complexity of this class using covering-number arguments, thereby controlling its statistical capacity.
Third, we leverage a recent global convergence theorem for shallow Transformers (Wu et al., 2024) to obtain an explicit
upper bound on the empirical loss for all models in this class. Combining these ingredients yields a high-probability
upper bound on the true loss.

Specifically, our main contribution is an optimization-aware generalization bound that directly upper-bounds the
true loss for a class of shallow Transformer models trained in the bounded-drift (lazy) regime. The resulting bound
decreases sublinearly with the number of training samples N and holds uniformly over model dimension dm, under
suitable overparameterization and data assumptions.

2 Related Work

Generalization bounds for neural networks. Generalization in neural networks has been extensively studied using
classical complexity measures such as VC dimension, Rademacher complexity, and covering numbers. Early norm-
and margin-based bounds for fully connected networks were developed in Bartlett et al. (2017); Neyshabur et al. (2015;
2017), with later refinements incorporating spectral norms, path norms, and data-dependent quantities (Neyshabur
et al., 2018; Pitas et al., 2018; Golowich et al., 2017; Li et al., 2018; Arora et al., 2018). PAC-Bayes and compression-
based approaches further improved the tightness of these bounds and, in some cases, yielded non-vacuous guarantees
for large networks (Zhou et al., 2018; Chen et al., 2019; Long & Sedghi, 2019). Despite this progress, classical
complexity-based bounds are widely recognized to be quantitatively loose for modern overparameterized architectures,
motivating alternative perspectives that incorporate optimization dynamics or data-dependent structure.

Generalization bounds for Transformers. Several works have specialized norm-based generalization analyses to
Transformer architectures. Edelman et al. (2021) derive a generalization gap bound for Transformers that scales
logarithmically with sequence length by exploiting bounded self-attention norms and sparse variable creation. This line
was strengthened by Trauger & Tewari (2024), who obtain sequence-length-independent generalization gap bounds
via refined covering-number arguments applicable to both supervised and masked-token objectives. Related analyses
study Lipschitz properties and norm control in attention mechanisms, yielding architecture-aware capacity bounds for
Transformers (Dong et al., 2021; Tsai et al., 2023). Beyond norm-based bounds, PAC-Bayes and algorithmic stability
frameworks have been applied to Transformers and large language models. Compression-based PAC-Bayes analyses
yield non-vacuous generalization bounds for large pretrained models by relating generalization to compressibility and
posterior complexity (Lotfi et al., 2023). Stability-based approaches analyze sensitivity to data or task perturbations;
for example, Li et al. (2023b) study in-context learning through multitask stability, while related stability analyses
for attention and fine-tuning appear in Yao et al. (2025); Deora (2024). Yang et al. (2025b) study generalization of
Transformers for multi-step reasoning tasks.

Optimization-aware bounds and NTK-based analyses. A different line of work derives generalization guarantees
by explicitly coupling optimization dynamics with statistical complexity control in overparameterized regimes. For
fully connected networks, Arora et al. (2019b) establish a true-loss bound for two-layer ReLU networks trained by gra-
dient descent using neural tangent kernel (NTK) theory, and Cao & Gu (2019) extend this approach to deep networks
via neural tangent random features. More broadly, NTK-based analyses characterize convergence and generalization
behavior of wide networks under lazy training dynamics (Jacot et al., 2018; Arora et al., 2019a). These works motivate
optimization-aware analyses for more structured architectures such as Transformers.

Training dynamics of Transformers. Understanding the optimization and convergence behavior of Transformers
has recently attracted significant attention. Wu et al. (2024) establish global convergence guarantees for shallow
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Transformers under suitable overparameterization and data assumptions, providing a Transformer analogue of NTK-
style results for fully connected networks. Related works analyze convergence rates, representational dynamics, and
optimization stability in attention-based architectures (Kohler & Krzyzak, 2023; Huang et al., 2024a; Shen et al., 2024;
Gurevych et al., 2022; Ahn et al., 2023; Tarzanagh et al., 2023; Li et al., 2023a; Tian et al., 2023; Song et al., 2024;
Huang et al., 2023; Chen & Li, 2024; Yang et al., 2024; Deora et al., 2023; Gao et al., 2024; Huang et al., 2024b;
Jelassi et al., 2022; Wang et al., 2024; Yang et al., 2025a; Li et al., 2025; Yang et al., 2025b).

Positioning of the present work. Our work complements the above literature by providing, an optimization-aware
true-loss bound for a Transformer architecture. Specifically, we combine (i) a Rademacher complexity bound for
a bounded-drift Transformer hypothesis class with (ii) an explicit empirical-loss bound derived from a global con-
vergence theorem for shallow Transformers (Wu et al., 2024). Unlike norm-based, PAC-Bayes, and stability-based
approaches that bound LD(f) − LS(f) post hoc, our analysis directly upper-bounds LD(f) under lazy-regime train-
ing dynamics. We emphasize that our results apply to single-layer Transformers under bounded drift and are therefore
complementarynot directly comparableto existing analyses of deep or non-lazy Transformer models.

3 Preliminaries

3.1 Problem Setup

3.1.1 Training Examples

We are given N training examples S = {(Xn, yn)}N
n=1 where {Xn}N

n=1 ∈ RN×ds×d are the instances and y ≜
{yn}N

n=1 ∈ RN are the labels. ds is the sequence length of the inputs and d is the input dimension.

3.1.2 Model

The model used in this work is a popular transformer encoder which is also used by Wu et al. (2024). Given an input
X ∈ Rds×d, we define each of the transformer layers.

Self-attention layer
The self-attention layer is defined as follows;

A1 ≜ σs

(
(XW T

Q)(XW T
K)T

√
dm

)
(XW T

V )

where σs is the row-wise softmax, WQ, WK , WV ∈ Rdm×d are the query, key and value matrices in the self-attention
layer. dm is the model dimension. We shall be interested in the effect of the self-attention layer on each row X(i,:) of
the input X where i ∈ [ds]. We therefore define βi as the i-th row of the softmax output;

βi = σs

(
X(i,:)W T

QWKXT

√
dm

)T

= σs

(
XW T

KWQ(X(i,:))T
√

dm

)

We also define zi as the final output of the self-attention layer for each row X(i,:);

zi = (XW T
V )Tβi = WV XTσs

(
XW T

KWQ(X(i,:))T
√

dm

)

Feed -forward ReLU layer
The layer with ReLU activation function is defined as follows;

A2 ≜ σr(A1WH)
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where σr is the ReLU activation function. For ease of calculations, WH is set as WH = I ∈ Rdm×dm Once again,
define ki as the final output of the Feed -forward ReLU layer for each row X(i,:);

ki = σr(zi) = σr

(
WV XTσs

(
XW T

KWQ(X(i,:))T
√

dm

))

Average Pooling layer
The pooling is applied column-wise to reduce sequence length dimension from ds to 1. This is done to ensure a scalar
output from our transformer.

a3 ≜ φ(A2)

where φ represents the column-wise average pooling. We can also define a3 in terms of each ki;

fpre = 1
ds

ds∑
i=1

ki = 1
ds

ds∑
i=1

σr

(
WV XTσs

(
XW T

KWQ(X(i,:))T
√

dm

))

Output layer
The final output layer is defined as follows;

f(X) ≜ wT
Ofpre

where wO ∈ Rdm is the weight vector in the output layer. We can as well define the final model output f(X) in terms
of each row X(i,:) of the input X;

f(X) = 1
ds

wT
O

ds∑
i=1

σr

(
WV XTσs

(
XW T

KWQ(X(i,:))T
√

dm

))
Define θ as a vector representing the union of all parameters of the transformer model as shown below;

θ = {WQ, WK , WV , wO}

When we pass a single input X ∈ Rds×d to the model, the output is given as f(X) ∈ R. When we give all inputs to
the model as a batch {Xn}N

n=1 ∈ RN×ds×d, the output of the model will be f ≜ {f(Xn)}N
n=1 ∈ RN and output of

the last hidden layer will be Fpre ≜ {fpre(Xn)}N
n=1 ∈ RN×dm .

3.1.3 Initialization

Similar to Wu et al. (2024) we use the LeCun initialization described below. The parameters WQ, WK , WV are
initialized as W

(ij)
Q ∼ N (0, 1

d ), W
(ij)
K ∼ N (0, 1

d ), W
(ij)
V ∼ N (0, 1

d ) for i ∈ [dm] and j ∈ [d] while w
(i)
O is

initialized as w
(i)
O ∼ N (0, 1

dm
) for i ∈ [dm].

3.1.4 Empirical Loss

We consider any loss function ℓ(f(Xn), yn) which is 1-Lipschitz in the first argument;

LS(f) = 1
N

N∑
n=1

ℓ(f(Xn), yn)

This empirical loss is to be optimized using Gradient Descent algorithm shown below;

Input: data (Xn, yn)N
n=1, step size γ
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Initialize weights as follows: θ0 := {W 0
Q, W 0

K , W 0
V , w0

O}
for t = 0 to t′ − 1 do
W t+1

Q = W t
Q − γ · ∇WQ

ℓ(θt)
W t+1

K = W t
K − γ · ∇WK

ℓ(θt)
W t+1

V = W t
V − γ · ∇WV

ℓ(θt)
wt+1

O = wt
O − γ · ∇wO

ℓ(θt)
end for
Output: the model based on θt′

.

3.1.5 True Loss

We are interested in upper bounding the true loss defined as follows;

LD(f) = E(X,y)∼D[ℓ(f(X), y)]

3.2 Rademacher complexity

The theorem of Rademacher complexity is widely used to compute generalization bounds for machine learning models.
As per Mohri et al. (2012) theorem 3.1 and Arora et al. (2019b) theorem B.1, suppose that the loss function ℓ(·, ·)
is bounded in [0, c] and is ρ-Lipschitz in the first argument. Then with probability at least 1 − δ over the sample
S = {(Xn, yn)}N

n=1 of size N :

sup
f∈F

{LD(f) − LS(f)} ≤ 2ρRS(F) + 3c

√
log(2/δ)

2N

where LD(f) is the true loss, LS(f) is the empirical loss and RS(F) is the empirical Rademacher complexity of a
function class F for samples S = {(Xn, yn)}N

n=1 of size N defined as follows;

RS(F) = 1
N

Eϵ∼unif({1,−1})

[
sup
f∈F

N∑
n=1

ϵnf(Xn)

]
In order to construct our generalization bound, we shall upper bound both the Rademacher complexity RS(F) and the
training loss LS(f) for all f ∈ F .

3.3 Covering number bound

For a given class F , the covering number N∞(F ; ϵ; {Xn}N
n=1; ‖ · ‖2) is the smallest size of a collection (a cover)

C ⊂ F such that ∀f ∈ F , ∃f̂ ∈ C satisfying max
n

‖f(Xn) − f̂(Xn)‖2 ≤ ϵ.

The Rademacher complexity of the class F with respect to samples S = {(Xn, yn)}N
n=1 can be upper bounded using

the covering number of F (Edelman et al., 2021);

RS(F) ≤ c · inf
δ≥0

(
δ +

∫ A

δ

√
log N∞(F ; ϵ; {Xn}N

n=1; ‖ · ‖2)
N

dϵ

)
for some constant c > 0 and |f | ≤ A for all f ∈ F .

4 Results

In this section, we develop a theoretical framework to analyze the generalization properties of Transformer models
whose parameters remain close to their initialization during training. We begin by formally defining a class of models
that satisfy this bounded-drift property, which corresponds to the lazy training regime. We then derive an upper bound
on the Rademacher complexity of this class, followed by an upper bound on the empirical loss using convergence
guarantees under gradient descent. Combining these results, we present our main theorem that establishes a high-
probability bound on the true loss. Finally, we discuss the scope and limitations of our findings in light of existing
results, and conclude with key insights and directions for future work.
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For ease of proof, and without loss of generality, let us set the input feature dimension d to be equal to the model
dimension dm i.e., d = dm.

4.1 Defining a class of Transformer models whose weights stay close to their initialization

To rigorously analyze the generalization behavior of Transformers, we first need to formalize the notion of models
whose parameters remain close to their initialization throughout training. This assumption (often referred to as the
bounded-drift assumption) characterizes the lazy training regime, where model updates are small, and the network
operates in a nearly linear regime around initialization. In this subsection, we define the parameter space and construct
a hypothesis class of Transformer models confined within a ball of radius R centered at the initialization point. This
setup enables the derivation of subsequent complexity and loss bounds under analytically tractable conditions.

Recall that we defined θ as a vector representing the union of all parameters of the transformer model as shown below;

θ = {WQ, WK , WV , wO}

The squared ℓ2-norm of the parameter vector can be expressed as the sum of the squared Frobenius norms (for matri-
ces) and squared ℓ2-norms (for vectors);

‖θ‖2
2 = ‖WQ‖2

F + ‖WK‖2
F + ‖WV ‖2

F + ‖wO‖2
2

We can therefore say that for all training steps t > 0;

‖θt+1 − θ0‖2
2 = ‖W t+1

Q − W 0
Q‖2

F + ‖W t+1
K − W 0

K‖2
F + ‖W t+1

V − W 0
V ‖2

F + ‖wt+1
O − w0

O‖2
2

≤ R2
Q + R2

K + R2
V + R2

O

where ‖W t+1
Q − W 0

Q‖F ≤ RQ, ‖W t+1
K − W 0

K‖F ≤ RK , ‖W t+1
V − W 0

V ‖F ≤ RV , ‖wt+1
O − w0

O‖2 ≤ RO for some
positive constants RO, RV , RQ, RK

Setting R =
√

R2
Q + R2

K + R2
V + R2

O gives ‖θt+1 − θ0‖2 ≤ R. We then define our hypothesis class Fθ0

R comprised

of the transformer models whose parameters θ stay in a ball close to θ0 for all training steps t > 0;

Fθ0

R =
{

fθ(Xn) : ∀t > 0, ‖θt+1 − θ0‖2 ≤ R
}

4.2 Upper bounding the Rademacher complexity

To establish a generalization bound, we must first control the capacity of the hypothesis class of models under con-
sideration. The Rademacher complexity provides a data-dependent measure of this capacity, quantifying how well the
model class can fit random noise. In this subsection, we derive an upper bound on the Rademacher complexity of the
bounded-drift Transformer class defined above. Our result shows that under reasonable assumptions on the input fea-

tures and parameter norms, the Rademacher complexity scales as O
(√

P
N log(A

√
N
P )
)

, indicating that generalization
improves with an increasing number of samples and controlled parameter magnitudes. This bound parallels similar
results for shallow transformer and provides the foundation for our overall generalization analysis.

The following lemma gives an upper bound on the Rademacher complexity of our class of transformer models i.e., an
upper bound on RS(Fθ0

R ).
Lemma 1. Suppose that we have ηV = ‖W 0

V ‖F + RV , ηO = ‖w0
O‖2 + RO, ηK = ‖W 0

K‖F + RK , ηQ = ‖W 0
Q‖F +

RQ where RO, RV , RK , RQ remain as defined above. Also assume that the inputs have full rank and are bounded as
‖Xn‖F ≤

√
dsRX for all n ∈ [N ] where RX is some positive constant. The empirical Rademacher complexity of the

class of Transformer models Fθ0

R =
{

fθ(Xn) : ∀t > 0, ‖θt+1 − θ0‖2 ≤ R
}

given θ = {WQ, WK , WV , wO} can
be upper bounded as follows

RS(Fθ0

R ) ≲ O

(
1
N

√
P

N

(
1 + log

(
A

√
N

P

)))
where ≲ hides logarithmic dependencies on quantities besides N and ds, A = ηOηV (

√
dsRX) and P =

(
√

dsRX)2
((√

dmηV

) 2
3 +

(√
dmηKηQηV

) 2
3
)3

log(Nds)
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Proof. Define the following quantities for simplicity ηV = ‖W 0
V ‖F + RV , ηO = ‖w0

O‖2 + RO, ηK = ‖W 0
K‖F +

RK , ηQ = ‖W 0
Q‖F + RQ where RO, RV , RK , RQ remain as defined above in section 4.1.

Our class of interest in section 4.1 was Fθ0

R =
{

fθ(Xn) : ‖θt+1 − θ0‖2 ≤ R
}

and we want to compute upper bound
on the empirical Rademacher complexity RS(Fθ0

R ) which is given as follows:

RS(Fθ0

R ) = 1
N

Eϵ∼unif(−1,1)


sup

wO,W T
KWQ,WV :

‖wO‖2≤ηO

‖WV ‖F ≤ηV∥∥∥W T
K

WQ√
dm

∥∥∥
F

≤
ηK ηQ√

dm

N∑
n=1

ϵn
1
ds

wT
O

ds∑
i=1

σr

(
WV XT

nσs

(
XnW T

KWQ(X(i,:)
n )T

√
dm

))


= 1
Nds

Eϵ∼unif(−1,1)


sup

wO,W T
KWQ,WV :

‖wO‖2≤ηO

‖WV ‖F ≤ηV∥∥∥W T
K

WQ√
dm

∥∥∥
F

≤
ηK ηQ√

dm

N∑
n=1

ϵnwT
O

ds∑
i=1

σr

(
WV XT

nσs

(
XnW T

KWQ(X(i,:)
n )T

√
dm

))


Applying subadditivity of the supremum:

RS(Fθ0

R ) ≤ 1
Nds

ds∑
i=1

Eϵ


sup

‖wO‖2≤ηO

‖WV ‖F ≤ηV∥∥∥W >
K

WQ√
dm

∥∥∥
F

≤
ηK ηQ√

dm

N∑
n=1

ϵn w>
O σr

(
WV X>

n σs

(
XnW >

K WQ(X(i,:)
n )>

√
dm

))


= ds · 1
Nds

Eϵ


sup

‖wO‖2≤ηO

‖WV ‖F ≤ηV∥∥∥W >
K

WQ√
dm

∥∥∥
F

≤
ηK ηQ√

dm

N∑
n=1

ϵn w>
O σr

(
WV X>

n σs

(
XnW >

K WQ(X(i,:)
n )>

√
dm

))


= 1
N

Eϵ


sup

‖wO‖2≤ηO

‖WV ‖F ≤ηV∥∥∥W >
K

WQ√
dm

∥∥∥
F

≤
ηK ηQ√

dm

N∑
n=1

ϵn w>
O σr

(
WV X>

n σs

(
XnW >

K WQ(X(i,:)
n )>

√
dm

))


︸ ︷︷ ︸
= RS(Gθ0

R
)

for any fixed i ∈ [ds]. Hence,

RS(Fθ0

R ) ≤ RS(Gθ0

R )
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where RS(Gθ0

R ) is defined as follows

Gθ0

R :=
{

(X(i,:))> 7→ w>
Oσr

(
WV X>

n σs( XnW >
K WQ(X(i,:)

n )>
√

dm
)
)

: ‖wO‖2 ≤ ηO, ‖WV ‖F ≤ ηV ,
∥∥∥W >

K WQ√
dm

∥∥∥
F

≤ ηKηQ√
dm

}
.

The following lemma gives an upper bound on RS(Gθ0

R ). Its proof can be found in the appendix section;

Lemma 2. For any fixed ϵ > 0 and X1, . . . , XN ∈ Rds×d such that ‖Xn‖F ≤
√

dsRX for all n ∈ [N ], the
Rademacher complexity of Gθ0

R satisfies the bound given below;

RS(Gθ0

R ) ≲ c

√
P

N

(
1 + log

(
A

√
N

P

))

where ≲ hides logarithmic dependencies on quantities besides N and ds, A = ηOηV (
√

dsRX) and P =

(
√

dsRX)2
((√

dmηV

) 2
3 +

(√
dmηKηQηV

) 2
3
)3

log(Nds).

Finally, the upper bound on the Rademacher complexity RS(Fθ0

R ) can be given as;

RS(Fθ0

R ) ≤ RS(Gθ0

R )

≲
√

P

N

(
1 + log

(
A

√
N

P

))

≲ O

(√
P

N

(
1 + log

(
A

√
N

P

)))

This completes the proof.

4.3 Upper bounding the empirical loss

Having bounded the complexity of our hypothesis class, we next analyze the empirical loss achieved by gradient de-
scent under the bounded-drift condition. This subsection establishes that, given suitable conditions on model width,
learning rate, and data structure, the empirical loss decays exponentially during training. Using results from con-
vergence analyses of Transformers in the lazy regime, we derive an explicit upper bound on the empirical loss as a
function of key quantities such as α, ρ, and ηO. This provides a quantitative connection between network conditioning,
data complexity, and training behavior, ensuring that even under restricted parameter updates, the model achieves low
empirical loss with high probability.

Define α as the minimum singular value of F 0
pre, i.e., α ≜ σmin(F 0

pre) and also define Φ(θ) as follows;

Φ(θ) = 1
2

‖f(θ) − y‖2
2

We now state the following assumption about the input data matrix X;

Assumption 3. Assume that the input data has full row rank and is bounded as ||X||F ≤
√

dsRX with some positive
constant RX . Furthermore, For any data pair (Xn, Xn′), with n 6= n′ and n, n′ ∈ [N ], then we assume that;

P(|〈XT
nXn, XT

n′Xn′〉| ≥ t) ≤ exp(−tĉ)

with some constant ĉ > 0

The lemma below gives an upper bound on the empirical loss for all training steps t > 0.

Lemma 4. Suppose that we have ηV = ‖W 0
V ‖F + RV , ηO = ‖w0

O‖2 + RO, ηK = ‖W 0
K‖F + RK , ηQ = ‖W 0

Q‖F +
RQ, ξQ = ‖W 0

Q‖2 + RQ, ξK = ‖W 0
K‖2 + RK , ξV = ‖W 0

V ‖2 + RV where RO, RV , RK , RQ remain as defined
earlier. Under assumption 3, if dm ≥ Ω̃(N3), α2 ≥ 8ρM

√
2Φ(θ0), α3 ≥ (32ρ2z

√
2Φ(θ0))/ηO and ℓ(θ) is any loss

8
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function which is 1-Lipschitz in the first argument, then with probability at least 1 − 8e−dm/2 − δ − exp(−Ω((N −
1)−ĉd−1

s )), for proper δ, when training using GD with small step size γ ≤ 1/k where k is a constant depending on
(ξQ, ξK , ξV , ηO, Φ(θ0), ρ, d

−1/2
m ), the empirical loss can be bounded as follows for all t > 0;

LS(fθt) ≤ min
(

α2

8ρM̂
√

N
,

α3ηO

32ρ2ẑ
√

N

)

where Ω̃ omits the logarithmic factor and the other quantities are defined as follows; ρ ≜ N1/2d
3/2
s RX , z ≜ η2

O(1 +
(4/dm)R4

Xd2
sξ2

V (ξ2
Q + ξ2

K)), ẑ ≜ η2
O(1 + (4/dm)R4

Xd2
sη2

V (η2
Q + η2

K)),
M = max(ξV R−1

O , ηOR−1
V , (2/

√
dm)R2

XdsξKξV ηOR−1
Q , 2/

√
dm)R2

XdsξQξV ηOR−1
K ),

M̂ = max(ηV R−1
O , ηOR−1

V , (2/
√

dm)R2
XdsηKηV ηOR−1

Q , (2/
√

dm)R2
XdsηQηV ηOR−1

K ).

Proof. For the purpose of simplification, define the following quantities at initialization;

ξQ ≜ ‖W 0
Q‖2 + RQ ≤ ‖W 0

Q‖F + RQ ≜ ηQ

ξK ≜ ‖W 0
K‖2 + RK ≤ ‖W 0

K‖F + RK ≜ ηK

ξV ≜ ‖W 0
V ‖2 + RV ≤ ‖W 0

V ‖F + RV ≜ ηV

ηO ≜ ‖w0
O‖2 + RO

where RQ, RK , RV , RO are as defined before. As mentioned earlier, α is the minimum singular value of F 0
pre, i.e.,

α ≜ σmin(F 0
pre) and Φ(θ) is given as Φ(θ) = 1

2 ||f(θ) − y||22.
According to Wu et al. (2024) theorem 1, under assumption 3, if dm ≥ Ω̃(N3), α2 ≥ 8ρM

√
2Φ(θ0) and α3 ≥

(32ρ2z
√

2Φ(θ0))/ηO, then with probability at least 1 − 8e−dm/2 − δ − exp(−Ω((N − 1)−ĉd−1
s )) for proper δ, GD

converges to a global minimum as follows for a sufficiently small step size γ ≤ 1/k with k as a constant depending
on (ξQ, ξK , ξV , ηO, Φ(θ0), ρ, d

−1/2
m ):

Φ(θt) ≤
(

1 − γ
α2

2

)t

Φ(θ0), ∀t ≥ 0

where M = max(ξV R−1
O , ηOR−1

V , (2/
√

dm)R2
XdsξKξV ηOR−1

Q , (2/
√

dm)R2
XdsξQξV ηOR−1

K ) and ρ ≜
N1/2d

3/2
s RX , z ≜ η2

O(1 + (4/dm)R4
Xd2

sξ2
V (ξ2

Q + ξ2
K)).

We can observe that Φ(θt) decays exponentially as training proceeds. This implies the following bound;

Φ(θt) ≤ Φ(θ0), ∀t ≥ 0

From the first condition i.e.,α2 ≥ 8ρM
√

2Φ(θ0), we can say that Φ(θ0) ≤ α4/(128ρ2M2). We therefore end up
with the bound below;

Φ(θt) ≤ α4

128ρ2M2 , ∀t ≥ 0

From the second condition i.e.,α3 ≥ (32ρ2z
√

2Φ(θ0))/ηO, we can say that Φ(θ0) ≤ (α6η2
O)/(2048ρ4z2). We

therefore end up with the bound below;

Φ(θt) ≤ α6η2
O

2048ρ4z2 , ∀t ≥ 0

Combining the two bounds on Φ(θt), we obtain the final bound as;

Φ(θt) ≤ min
(

α4

128ρ2M2 ,
α6η2

O

2048ρ4z2

)
, ∀t ≥ 0

9
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Our empirical loss i.e., LS(fθt) = 1
N

∑N
n=1 ℓ(fθt(Xn), yn) for all t > 0 can be bounded as follows;

LS(fθt) ≤ 1
N

N∑
n=1

(
ℓ(fθt(Xn), yn) − ℓ(yn, yn)

)
≤ 1

N

N∑
n=1

|fθt(Xn) − yn| because ℓ(·, ·) is 1-Lipschitz in the first argument

≤ 1√
N

‖fθt − y‖2

=
√

2Φ(θt)
N

≤ min
(

α2

8ρM
√

N
,

α3ηO

32ρ2z
√

N

)
where M = max(ξV R−1

O , ηOR−1
V , (2/

√
dm)R2

XdsξKξV ηOR−1
Q , (2/

√
dm)R2

XdsξQξV ηOR−1
K ) and ρ ≜

N1/2d
3/2
s RX , z ≜ η2

O(1 + (4/dm)R4
Xd2

sξ2
V (ξ2

Q + ξ2
K)).

Upper bounding ξO, ξV , ξK , ξQ using ηO, ηV , ηK , ηQ, the upper bound on the empirical loss for all training
steps can therefore be written as;

LS(fθt) ≤ min
(

α2

8ρM̂
√

N
,

α3ηO

32ρ2ẑ
√

N

)
where M̂ = max(ηV R−1

O , ηOR−1
V , (2/

√
dm)R2

XdsηKηV ηOR−1
Q , (2/

√
dm)R2

XdsηQηV ηOR−1
K ) and ẑ ≜ η2

O(1 +
(4/dm)R4

Xd2
sη2

V (η2
Q + η2

K)). This completes the proof.

4.4 Main result

With both the Rademacher complexity and empirical loss bounds in place, we now combine these results to obtain our
main theorem i.e., a high-probability upper bound on the true loss (expected generalization error) of shallow Trans-
former models under bounded parameter drift. The theorem demonstrates that the true loss decreases with the number
of training samples N and depends explicitly on the initialization scale, data structure, and model dimension dm. The
bound captures the essence of lazy training: when model parameters remain near initialization, generalization behav-
ior aligns with that of linearized models governed by the neural tangent kernel (NTK). While this result establishes a
rigorous theoretical foundation for shallow Transformers, it also highlights the need for further analysis to extend such
guarantees to deeper and more expressive models.
Theorem 5. Suppose that we have ηV = ‖W 0

V ‖F +RV , ηO = ‖w0
O‖2 +RO, ηK = ‖W 0

K‖F +RK , ηQ = ‖W 0
Q‖F +

RQ, ξQ = ‖W 0
Q‖2+RQ, ξK = ‖W 0

K‖2+RK , ξV = ‖W 0
V ‖2+RV where RO, RV , RK , RQ remain as defined earlier.

Under assumption 3, if dm ≥ Ω̃(N3), α2 ≥ 8ρM
√

2Φ(θ0), α3 ≥ (32ρ2z
√

2Φ(θ0))/ηO and ℓ(θ) is any loss function
which is 1-lipschitz in the first argument, then with probability at least 1−8e−dm/2 −2δ−exp(−Ω((N −1)−ĉd−1

s )), if
the transformer model is trained using Gradient Descent with small step size γ ≤ 1/k where k is a constant depending
on (ξQ, ξK , ξV , ηO, ℓ(θ0), ρ, d

−1/2
m ), the true loss LD(f) can be bounded as follows;

LD(f) ≲ min
(

α2

8ρM̂
√

N
,

α3ηO

32ρ2ẑ
√

N

)
+ O

√P

N

(
1 + log

(
A

√
N

P

))
+

√
log R

δ

N


where Ω̃ omits the logarithmic factor, ≲ hides logarithmic dependencies on quantities besides N , ds and δ and the
other quantities are defined as follows; ρ ≜ N1/2d

3/2
s RX ,

z ≜ η2
O(1 + (4/dm)R4

Xd2
sξ2

V (ξ2
Q + ξ2

K)), ẑ ≜ η2
O(1 + (4/dm)R4

Xd2
sη2

V (η2
Q + η2

K)),
M = max(ξV R−1

O , ηOR−1
V , (2/

√
dm)R2

XdsξKξV ηOR−1
Q , (2/

√
dm)R2

XdsξQξV ηOR−1
K ),

M̂ = max(ηV R−1
O , ηOR−1

V , (2/
√

dm)R2
XdsηKηV ηOR−1

Q , (2/
√

dm)R2
XdsηQηV ηOR−1

K ),

A = ηOηV (
√

dsRX) and P = (
√

dsRX)2
((√

dmηV

) 2
3 +

(√
dmηKηQηV

) 2
3
)3

log(Nds).
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Proof. Recall that we defined our hypothesis class as follows;

Fθ0

R =
{

fθ(Xn) : ‖θt+1 − θ0‖2 ≤ R
}

Let us set Ri = i for i ∈ {1, 2, . . . , R}. This means that we can define a class of models whose parameter norm is
bounded as ‖θt+1 − θ0‖2 ≤ Ri for i ∈ {1, 2, . . . , R} as follows;

Fθ0

Ri
=
{

fθ(Xn) : ‖θt+1 − θ0‖2 ≤ Ri

}
From Rademacher complexity and a union bound over a finite set of Ri’s, for any random initialization (θ0), with
probability at least 1 − δ over the sample S = {(Xn, yn)}N

n=1 of size N , we have that;

sup
f∈Fθ0

Ri

{LD(f) − LS(f)} ≤ 2RS(Fθ0

Ri
) +

√
log 2R

δ

2N

for all i ∈ {1, 2, 3, . . . , R}. Note that Ri ≤ R for all i ∈ {1, 2, . . . , R} which implies that RS(Fθ0

Ri
) ≤ RS(Fθ0

R ) for
any i ∈ {1, 2, . . . , R}. This gives us the following bound on RS(Fθ0

Ri
) for all i ∈ {1, 2, . . . , R};

RS(Fθ0

Ri
) ≲ O

(√
P

N

(
1 + log

(
A

√
N

P

)))

where P = (
√

dsRX)2
((√

dmηV

) 2
3 +

(√
dmηKηQηV

) 2
3
)3

log(Nds) and A = ηOηV (
√

dsRX). From lemma 4,

with probability at least 1 − 8e−dm/2 − δ − exp(−Ω((N − 1)−ĉd−1
s )), the training loss for our transformer model can

be bounded as follows for all t > 0;

LS(fθt) ≤ min
(

α2

8ρM̂
√

N
,

α3ηO

32ρ2ẑ
√

N

)
where ρ ≜ N1/2d

3/2
s RX , ẑ ≜ η2

O(1 + (4/dm)R4
Xd2

sη2
V (η2

Q + η2
K)) and

M̂ = max(ηV R−1
O , ηOR−1

V , (2/
√

dm)R2
XdsηKηV ηOR−1

Q , (2/
√

dm)R2
XdsηQηV ηOR−1

K ).
Putting everything together, with probability atleast 1 − 8e−dm/2 − 2δ − exp(−Ω((N − 1)−ĉd−1

s )), we have that;

LD(f) ≲ min
(

α2

8ρM̂
√

N
,

α3ηO

32ρ2ẑ
√

N

)
+ O

√P

N

(
1 + log

(
A

√
N

P

))
+

√
log R

δ

N


where ≲ hides logarithmic dependencies on quantities besides N , ds and δ. This completes the proof.

4.5 Discussion

Our main theorem provides a generalization bound for a class of Transformer models whose weights remain close to
their initialization during training. This bounded-drift assumption effectively constrains the training dynamics to what
is commonly referred to as the lazy training regime. In this setting, the model behaves similarly to its linearized form
around initialization, which has been extensively studied in the context of neural tangent kernels (NTK).

The implication of this assumption is that the results derived here apply most accurately to wide and shallow Trans-
formers trained with sufficiently small learning rates that prevent the parameters from deviating significantly from
their initial values. Such a setting captures the early or near-linear training phase of overparameterized models, where
the NTK remains nearly constant and generalization can be controlled through classical complexity measures such as
the Rademacher complexity.

Compared to prior results on generalization bounds for neural networks under the lazy regime (e.g., for two-layer
networks and linearized models), our bound maintains a similar dependence on the sample size N and model width dm.

Specifically, the O
(√

P
N log(A

√
N
P )
)

term scales analogously to existing NTK-based results, while the dependence
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on α and ρ in the empirical loss component reflects the conditioning of the pre-activation features and the interaction
between model width and sequence length. However, unlike the more general results that extend to deep networks or
non-lazy regimes through complex stability analyses or overparameterization assumptions, our result explicitly applies
to single-layer (shallow) Transformer architectures only.

We also note that relaxing the bounded-drift assumption to capture non-lazy or feature-learning regimes remains an
open problem. In such regimes, weights undergo significant changes during training, resulting in evolving representa-
tions and coupling across layers. Extending our analysis to this setting would require novel techniques to handle the
dynamic evolution of the NTK or an equivalent representation matrix. Similarly, extending the bound to deeper multi-
layer architectures would require careful control of layerwise dependencies, possibly through hierarchical complexity
bounds or layerwise Lipschitz control arguments.

Overall, our results contribute to the growing theoretical understanding of Transformers under simplified but analyti-
cally tractable conditions. They highlight the relationship between network width, data complexity, and generalization
under bounded parameter drift, reinforcing the intuition that in the lazy regime, wide and shallow Transformers behave
as near-linear models governed by their initialization structure.

Comparison with other norm-based Transformer bounds. Our result differs substantively from norm-based
bounds tailored to Transformers. Edelman et al. (2021) obtain a gap bound that scales only logarithmically with se-
quence length by analyzing bounded-norm self-attention and the sparse variable creation inductive bias, while Trauger
& Tewari (2024) strengthen this line by proving sequence-length-independent gap bounds via a covering-number anal-
ysis that upper-bounds the Rademacher complexity of Transformer classes and applies also to masked-token training
objectives. In contrast, our theorem provides a true-loss bound that explicitly couples a data-dependent optimization
guarantee (lazy-regime convergence for a shallow Transformer) with a capacity term. Practically, this means (i) norm-
based results (Edelman et al., 2021; Trauger & Tewari, 2024) can be evaluated after training completes by plugging in
norms to bound |LD(f) − LS(f)|, and they cleanly characterize how sequence length enters (logarithmically or not
at all), whereas (ii) our bound ties generalization to optimization-side quantities such as α, ρ, and (ηQ, ηK , ηV , ηO)
under bounded drift and thus characterizes when low true risk is guaranteed without first computing LS(f). Concep-
tually, the results are complementary: norm-based bounds offer architecture-wide, training-regime-agnostic control of
the generalization gap (with refined sequence-length dependence), while our analysis isolates the lazy, shallow regime
and provides optimization-aware control of the level of the true loss.

Relation to PAC-Bayes and stability-based bounds. Compared to PAC-Bayes/compression bounds for LLMs
(Lotfi et al., 2023; Zhou et al., 2018), our result targets a different regime and objective: we operate under a bounded-
drift (lazy) assumption and obtain a true-loss bound for a single-layer Transformer trained by gradient descent, with
explicit dependence on quantities like α, ρ, and (ηQ, ηK , ηV , ηO). PAC-Bayes bounds, in contrast, typically control
|LD(f)−LS(f)| via a data-informed posterior and compression, and have been instantiated for large, deep, pretrained
language models without requiring lazy dynamics. Stability-based results for Transformers (e.g., in-context learning)
quantify sensitivity to sample perturbations through stability coefficients (Li et al., 2023b), again bounding the gen-
eralization gap rather than the true loss. Thus, our contribution is complementary: it connects optimization-driven
lazy training (bounded drift + shallow width assumptions) to generalization, while PAC-Bayes and stability provide
depth-agnostic, training-regime-agnostic controls on the gap. Extending our approach to remove the lazy assump-
tion or to handle deeper stacks could help bridge these viewpoints, potentially yielding hybrid bounds that combine
optimization-aware true-loss control with posterior- or stability-based gap terms (Yao et al., 2025; Deora, 2024).

5 Limitations

While our analysis provides a rigorous generalization bound for shallow Transformer models trained under bounded
parameter drift, it is important to clarify the scope and limitations of the results.

Loose nature of Rademacher-based bounds. Our generalization analysis relies on upper bounds on the empirical
Rademacher complexity of a constrained hypothesis class. It is well known that classical Rademacher complexity
bounds for neural networks are often quantitatively loose, especially for large, overparameterized models such as
Transformers. In particular, these bounds are typically worst-case and may not tightly reflect the effective capacity of
models encountered in practice. Consequently, while our results establish a principled scaling behavior with respect
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to sample size, width, and norm constraints, the resulting bounds should be interpreted as qualitative guarantees rather
than sharp predictors of empirical performance.

Restrictive nature of the lazy (bounded-drift) regime. A central assumption in our analysis is that the Transformer
parameters remain close to their initialization throughout training, corresponding to the lazy or NTK regime. Although
this assumption enables tractable theoretical analysis and connects our results to classical kernel-based generalization
theory, it does not fully capture the training dynamics observed in practical Transformer training, where substantial
feature learning and representation drift typically occur. As a result, our guarantees are most relevant for wide, shallow
Transformers trained with sufficiently small learning rates, or for early training phases before significant departure
from initialization.

Comparison with existing analyses of Transformer training dynamics. There exists a growing body of prior work
that studies Transformer training dynamics using alternative analytical tools, including mean-field limits, dynamical
systems analyses, signal propagation, and task-specific convergence characterizations. These approaches often provide
finer-grained insights into representation learning, optimization trajectories, or task-dependent inductive biases beyond
what is captured by Rademacher-based complexity measures. Our work is not intended to subsume these analyses;
rather, it complements them by offering a unified generalization bound that explicitly couples optimization guarantees
(via lazy-regime convergence) with statistical capacity control for a well-defined hypothesis class.

Architectural and depth limitations. Our results apply only to single-layer (shallow) Transformer architectures.
Extending the analysis to deeper stacks introduces significant technical challenges, including the control of layerwise
interactions, accumulation of approximation errors, and evolving attention representations. Addressing these chal-
lenges would likely require new techniques beyond the bounded-drift framework employed here, such as hierarchical
complexity bounds, stability arguments, or depth-dependent norm control.

Outlook. Despite these limitations, we view our analysis as a useful step toward understanding how optimization
dynamics and generalization interact in Transformer models under analytically tractable conditions. An important
direction for future work is to relax the bounded-drift assumption and to integrate alternative toolssuch as stability,
PAC-Bayes, or feature-learning analyses with optimization-aware bounds, in order to more faithfully capture the
behavior of modern deep Transformers trained beyond the lazy regime.

6 Conclusion

In summary, we established a generalization bound for shallow Transformer models trained in the bounded-drift
(lazy) regime, where the model parameters remain close to their initialization throughout training. By combining
Rademacher complexity analysis with an upper bound on the empirical loss, we obtained a probabilistic bound on the
true loss that decreases with the number of samples N and depends explicitly on model and data parameters.

Our theoretical results align with existing findings for wide, overparameterized models analyzed under the NTK frame-
work, but they are specific to single-layer Transformers. This limitation ensures that our claims remain within the the-
oretical scope supported by the bounded-drift assumption. Extending the analysis to deeper architectures or non-lazy
training regimes (where substantial feature learning occurs) remains an important direction for future research.

Through this work, we provide a rigorous foundation for understanding how bounded-drift dynamics influence gen-
eralization in Transformer models and set the stage for future extensions that aim to capture the richer behavior of
modern, deeper architectures trained beyond the lazy regime.
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A Proof of lemma 2

We want to obtain an upper bound on RS(Gθ0

R ) where Gθ0

R is defined as follows;

Gθ0

R :=

(X(i,:))T −→ wT
Oσr

(
WV XT

nσs

(
XnW T

KWQ(X(i,:)
n )T

√
dm

))
:

‖wO‖2≤ηO

‖WV ‖F ≤ηV∥∥∥W T
K

WQ√
dm

∥∥∥
F

≤
ηK ηQ√

dm


Let’s begin by defining the following bounds on the matrices;

‖WV ‖2 ≤ ‖W 0
V ‖2 + bV ≤ ηV

‖WV ‖2,1 ≤ ‖W 0
V ‖2,1 + BV ≤

√
dmηV∥∥∥∥W T

KWQ√
dm

∥∥∥∥
2,1

≤
(
‖(W 0

K)T‖1,2 + BK

) (
‖W 0

Q‖2,1 + BQ

)
√

dm

≤ dmηKηQ√
dm

=
√

dmηKηQ

‖XT
n‖2,∞ ≤ BX ≤ ‖Xn‖F ≤

√
dsRX ∀n ∈ [N ]

where bV , BV , BK , BQ, BX are some positive constants and RO, RV , RK , RQ, RX remain as defined earlier. The
norm ‖·‖2,1 interpreted as first taking the ℓ2-norm for each column of a matrix and then summing these column norms.
Define another class Gθ0

B as shown below;

Gθ0

B :=

(X(i,:))T −→ wT
Oσr

(
WV XT

nσs

(
XnW T

KWQ(X(i,:)
n )T

))
:

‖wO‖2≤ηO

‖WV ‖2≤‖W 0
V ‖2+bV

‖WV ‖2,1≤‖W 0
V ‖2,1+BV∥∥∥W T

K
WQ√

dm

∥∥∥
2,1

≤
(‖(W 0

K
)T‖1,2+BK)(‖W 0

Q
‖2,1+BQ)√

dm


The following lemma gives an upper bound on the log covering number of the class Gθ0

B ;

Lemma 6. ((Edelman et al., 2021) Corollary 4.5). For any fixed ϵ > 0 and X1, . . . , XN ∈ Rds×d such that
‖XT

n‖2,∞ ≤ BX for all n ∈ [N ], the covering number of Gθ0

B satisfies the bound given below;

log N∞(Gθ0

B ; ϵ; {Xn}N
n=1, ‖ · ‖2)

≲ B2
X ·

((
‖W 0

V ‖2,1 + BV

) 2
3 +

((
(‖(W 0

K)T‖1,2+BK)(‖W 0
Q‖2,1+BQ)√

dm

)(
‖W 0

V ‖2 + bV

)) 2
3
)3

ϵ2 · log(Nds)

where ≲ hides logarithmic dependencies on quantities besides N and ds.

Upper bounding the norms ‖ · ‖2,1 and ‖ · ‖2,∞ using the Frobenius norm, ‖ · ‖F , we end up with;

log N∞(Gθ0

R ; ϵ; {Xn}N
n=1, ‖ · ‖2) ≲ (

√
dsRX)2 ·

((√
dmηV

) 2
3 +

(√
dmηKηQηV

) 2
3
)3

ϵ2 · log(Nds)

This can also be written as;

log N∞(Gθ0

R ; ϵ; {Xn}N
n=1, ‖ · ‖2) ≲ P

ϵ2

where P = (
√

dsRX)2
((√

dmηV

) 2
3 +

(√
dmηKηQηV

) 2
3
)3

log(Nds).
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We can now write the bound on the Rademacher complexity RS(Gθ0

R ) as follows for some constant c > 0 and |f | ≤ A

for all f ∈ Gθ0

R ;

RS(Gθ0

R ) ≤ c · inf
δ≥0

δ +
∫ A

δ

√
log N∞(Gθ0

R ; ϵ; {Xn}N
n=1; ‖ · ‖2)

N
dϵ


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√
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ϵ2N
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1
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log
(
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= c

√
P

N

(
1 + log

(
A

√
N

P

))

Note that |f | ≤ A for all f ∈ Gθ0

R . A can be obtained as follows;∣∣∣∣∣wT
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(because ‖σr(z)‖2 ≤ ‖z‖2)
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√
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√
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This means that A = ηOηV (
√

dsRX).

B Experiments

B.1 Image Classification

We use the transformer model defined in section 3.1.2 to perform classification of images. From MNIST dataset, we
extract the images belonging to classes 0 and 1 and create our new dataset. Each image of size 28 × 28 is broken into
tokens each of dimension d = 64. The main goal of the experiments is to demonstrate that the test loss of the trained
transformer model decreases with increasing number of of samples i.e., N = 400, N = 1200 and N = 10000. This
trend holds for all the values of model dimension which we tested i.e., dm = 64, dm = 1024 and dm = 4096. The
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learning rate used is 0.1, the optimization algorithm is batch gradient descent and the loss function is the cross-entropy
loss. The results for the experiments are presented below. Each figure 1-3 shows the training loss and test loss of the
transformer model as training proceeds.
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Figure 1: Evolution of training loss (top) and test loss(bottom) for each epoch of training for model dimension dm =
64.
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Figure 2: Evolution of training loss (top) and test loss(bottom) for each epoch of training for model dimension dm =
1024.
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Figure 3: Evolution of training loss (top) and test loss(bottom) for each epoch of training for model dimension dm =
4096.

Table 1: Lowest test loss and the epoch at which it was achieved for different values of dm and N .
dm N Lowest Test Loss Epoch
64 400 0.1048 147
64 1200 0.0668 165
64 10000 0.0263 546

1024 400 0.1839 95
1024 1200 0.0760 271
1024 10000 0.0045 251
4096 400 0.1269 139
4096 1200 0.0899 169
4096 10000 0.0123 312

B.2 Text Classification

We also perform similar experiments for text classification using the 20 Newsgroups dataset restricted to the categories
sci.med and sci.space. Each text document is represented as a sequence of 40 tokens (ds = 40), where each token
corresponds to a 50-dimensional GloVe embedding (d = 50). This forms the input sequence for our shallow Trans-
former model. The main goal of these experiments is to demonstrate that the test loss of the trained Transformer model
decreases as the number of training samples increases, i.e., for N = 400, N = 1200, and N = 10000. This decreasing
trend in test loss is observed consistently across all model dimensions tested, namely dm = 64 and dm = 1024. The
learning rate used in the experiments is 0.01, the optimization algorithm is batch gradient descent, and the loss func-
tion employed is the mean squared error (MSE) loss. The results are presented below, where each figure 4-5 shows
the training loss and test loss trajectories of the Transformer model as training progresses over 2000 epochs.
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Figure 4: Evolution of training loss (top) and test loss(bottom) for each epoch of training for model dimension dm =
64.

Figure 5: Evolution of training loss (top) and test loss(bottom) for each epoch of training for model dimension dm =
1024.
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