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Abstract—State uncertainty is one of the primary obstacles to
effective long-horizon task planning in robotics. We tackle state
uncertainty by decomposing it into spatial uncertainty—resolved
by SLAM—and uncertainty about the objects in the environment,
formalized as the object scouting problem and modelled using
the Locally Observable Markov Decision Process (LOMDP). We
introduce a new planning framework called Scouting Partial
Order Planner (SPOP), specifically designed for object scouting
with LOMDPs, which exploits the characteristics of partial order
and regression planning to plan around gaps in knowledge the
robot may have about the existence, location, and state of relevant
objects in its environment. Our preliminary results demonstrate
how the aspects of partial order planning make it uniquely suited
to solving tasks in the object scouting context: SPOP significantly
outperforms alternative planners in this setting.

I. INTRODUCTION

Robots acting in the real world must navigate through space
and interact with the objects around them. One complicating
factor is the uncertainty that pervades this problem: the robot
cannot simply know the state of the its environment, but must
instead measure the world with its sensors to estimate that
state. For navigation, this is typically resolved by SLAM
(Simultaneous Localization And Mapping) problem [1, 2],
which allows a robot to effectively estimate its position in
the world and find a path to a desired reachable location. This
removes the element of spatial uncertainty, enabling efficient
navigation within an envelope of known space.

By contrast, there has been much less progress on resolving
uncertainty for the object manipulation component of mobile
manipulation. While this bears some resemblance to the gen-
eral problem of object search [3, 4], mobile manipulation re-
quires task-relevant reasoning: myriad objects may be present
in the environment, but a robot should focus on locating and
observing those that would progress it towards its goal. We
call this problem setting the object scouting problem, where
a robot must find, localize, and state estimate the objects
required to solve its task.

Our recent work has modelled the task-level planning prob-
lem required to solve object scouting as a Locally Observable
Markov Decision Process (LOMDP) [5]. Objects in LOMDPs
are locally observable: no information is gained about objects
outside of sensor range and line of sight, but the properties
of those within can be effectively sensed until they are fully
observed. Additionally, manipulating an object requires it to
be observed. The result is a model in which the robot actively
constructs an envelope of known objects, within which it can
use an efficient Markov task-level planner. When a task cannot
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be solved using observed objects, the critical concern is to
then decide which type of object to find and observe next.
Merlin et al. [5] showed that even the simplest such planner,
which repeatedly replans whenever a new object is observed
and randomly selects the object to search for, could solve
reasonably large tasks. That naive approach, while effective,
leaves plenty of room for improvement.

We introduce a new LOMDP planner called the Scouting
Partial Order Planner (SPOP) that exploits the synergy
between least commitment planning [6] and the LOMDP
model to generate partial plans that become progressively
more complete as the robot gathers more information about its
environment. In particular, we exploit the freedom offered by
its action ordering system to create the initial partial plan based
only on the currently observed objects, which will include
gaps that must be resolved to obtain a complete plan. The
gaps in these partial plans provide valuable information about
which missing objects would help complete the plan. Once
the relevant objects are found, a subplan utilizing the new
information fills the gap in the plan, obviating the need to
constantly replan from scratch. We demonstrate that this form
of planning outscales all previous solution methods for the
object scouting problem.

II. BACKGROUND

A. Object Scouting

When a robot is planning to solve a goal-directed task,
state uncertainty is undesirable because it imposes enor-
mous computational costs. Nevertheless, state uncertainty is
unavoudable in mobile manipulation tasks. This uncertainty
can be decomposed into uncertainty to do with navigation—
predominantly concerning space, resolved by SLAM—and to
do with manipulation—predominantly concerning object state.
Just as SLAM resolves uncertainty about the robot’s pose,
allowing it to effectively navigate through its world using a
known map, the object scouting problem resolves uncertainty
about object existence, location, and attributes, allowing the
robot to plan object manipulation and interactions in the
context of a “known” state.

When using SLAM, the robot does not typically consider
uncertainty over the map: instead, it treat the map as if it was
exact and plan with it, and if the robot encounters an error
or new regions of map then we update our beliefs and adjust
our plan. So too in object scouting, a reasonable strategy is to
treat the measurement of objects in the robot’s environment
as exact and then plan accordingly. New objects or attributes
may become observed, prompting an update or refresh of the
plan, hence the suitability of LOMDPs. This is especially



appropriate when the robot can repeatedly observe an object
of interest to drive its estimate of that object’s state towards
certainty.

Object scouting unifies two families of methods for object
sensing: object search and interactive object perception. While
object search primarily focuses on locating objects within a
robot’s environment [3], which may require some degree of
manipulation to observe and localize objects in its space [7],
object scouting must also reason about the states of said
objects to determine whether they can be used to satisfy a
task subgoal, considering two differences: 1) it must choose
which objects to find based on the task; and 2) it must also
resolve their state, not just their pose. For example, let us
consider a robot needing to fill a coffee machine with water
using a cup. On one hand, object search simply focuses on
locating any cup that exists in its environment regardless of
its state. On the other hand, object scouting must consider
not only locating a cup but finding one such that it would
satisfy the current subgoal. Specifically, the robot must find
a cup that has enough water in it to then pour into a coffee
maker; if it does not have enough water, then the robot must
further determine how it can acquire a cup with enough water
to proceed with coffee making. Locally Observable Markov
Decision Processes (LOMDPs) were proposed as a task-level
model of the object scouting decision process.

B. Locally Observable Markov Decision Processes

A LOMDP [5] is defined as the tuple:

(S,A,O,Ω, L,R, T, γ) ,

extending the definition of Partially Observable Markov Deci-
sion Processes (POMDP) [8] by including additional structure.
First, the state is factored into n objects: S = Sr × So1 ×
... × Son . Next, because observations are fully accurate but
spatially constrained, the observation space takes the form
Ω = Sr × {So1 ∪ ϕ} × ... × {Son ∪ ϕ}. Information gained
about a given object is independent of every other object, and
for a given object, the observation at a given time step is
either its true state value or nothing (denoted as ϕ). Finally, the
LOMDP introduces a locality function that describes the set
of states that would allow the agent to observe a given object
i: L(i, v) = {s ∈ S | O(i) = soi ∧ (soi = v)} . The locality
function assists in transitioning an object from unobserved to
observed, as passing through an object’s locality guarantees
its becoming observed.

Merlin et al. [5] provided the basic framework for planning
using only what is known (i.e., observed) to the robot and
seeking to search for new, unknown objects to reinitialize
planning again with additional information. Since the robot
may not know the exact objects in a domain, it uses the
existence of Skolem objects, hypothetical objects of each
object class that allow the robot to reason about where it might
be able to find new objects if they existed. When searching for
a new object, the LOMDP provides the agent with locales that
it can plan to reach in order to observe each Skolem object (if it
is at that locale). Each locale is essentially a goal for a subplan

that will terminate with observing any objects present at the
locale. As an alternative to the locale system, objects can be
found using any off the shelf object search algorithm. Recent
work has utilized LOMDPs, as they rely upon the property of
local observability for their task settings [9, 10].

Aside from the LOMDP framework, similar formulations
integrating structure to MDPs have been proposed by related
work. Koller and Parr [11] introduced factored MDPs, in
which the state is broken down into subsets of state variables
(known as factors) that are independent to most other factors
and operate under different transition dynamics. Diuk et al.
[12] introduced object-oriented MDPs (OO-MDPs), which
factors the state space based on objects. Ong et al. [13] pro-
posed mixed observability MDPs (MOMDP), where the state
is decomposed into fully observable and partially observable
factors. The key distinction between MOMDPs and LOMDPs
is that while MOMDPs assume that factors are immutable,
where fully observable factors cannot become partially ob-
servable and vice-versa, LOMDPs are object oriented, and
allow partially observable objects to become fully observable
as more information is gathered about the robot or agent’s
environment.

C. Least Commitment Planning

In the prior lomdp work, they replan from scratch whenever
new information is found. However, it would be beneficial to
be able to retain some of the plan derived from the known
portion of the state for future planning. To that end, we adopt
the principle of least commitment planning, which aims to
generate a plan by logically decomposing the goal rather than
exploring actions in a linear sequence. The output of a least-
commitment planner is a plan represented as a tuple (A,O,L).
A corresponds to the actions in the plan, O the ordering con-
straints between each action a, and L the causal links between
actions. An example O could be (a1 < a2, a1 < a3, a2 < a3),
meaning that action a1 must come before a2 and a3, and action
a2 must come before a3. One possible link would then be
(a

p1−→
1 a3), denoting that action a1 is fulfilling a predicate p1 for

a3. Plans defined this way may have multiple ways to resolve
the ordering constraints. For example, to make coffee, it might
not matter if water or coffee grounds are put in the coffee
machine first, only that they are both in before the machine is
turned on. Either of those plans is valid and consistent with
the output of the planner. That is why this method is referred
to as least commitment: it does not commit to a single order
for its actions, only a set of ordering constraints.

Searching for a plan using this method begins with a goal
given as a set of predicates, which are added to the initial
agenda of the plan. One of those predicates is popped from
the agenda, and the planner attempts to connect it to an action
that will make that predicate become true. First it will attempt
to link the predicate to an action that is already in the set
of planned actions A, including linking to the start state. If
there are no valid actions already in the plan that can fulfil a
predicate, it will then search all possible actions and add one
at random that will resolve the predicate. The ordering O and



links L are updated to reflect that this action is fulfilling a
predicate and the ordering constraints that come with that. If
the newly added action has any preconditions, those must now
be added to the agenda to be resolved later. Before recursing
to resolve the next predicate in the agenda, a link protection
process must be run on the new ordering and links to ensure
that all of the actions are causally consistent with each other.

The computation at each node is more expensive than a
linear forward or reverse planner due to the infinite nature of
the plan-search space [14]. However, partial order planners are
well-suited to the object scouting problem, as they naturally
handle information gathering processes critical to resolving
uncertainty [15] while also integrating with high-level task
planning and reasoning that are resolved at run time [16].

III. PLANNING IN THE OBJECT SCOUTING PROBLEM

A. Scouting Partial Order Planner

We developed SPOP as an extension to the POP (Partial
Order Planner) algorithm introduced by Weld [6] for two
main reasons. First, regression planning changes the branching
factor when planning from the number of actions possible
in a given state to the number of actions that can fulfil a
predicate. The object scouting problem is innately high-level:
it exists in the context of a robot with high-level manipulation
skills and modeling of its environment. When planning at high
levels such as this, there are a significant number of predicates
that are only resolved by a single action. Take for example
making coffee using a coffee machine. There may be only one
skill that will fulfil the predicate machine_on, one that will
fulfil water_in_machine, one for pot_in_machine,
etc. Least commitment planning is uniquely suited to resolve
such instances quickly. Second is the nonlinear nature of least
commitment planning, which allows the agent to leave gaps in
the plan for finding and resolving objects multiple times in a
given plan. On top of that, the partial plan that are generated
can give us valuable information about what might need to
happen in those gaps.

Whenever planning is triggered, a PDDL [17] file is gen-
erated from the known portion of the state and current goal.
This file is passed into and solved by the SPOP algorithm,
as shown in Algorithm 1. As with the POP method, a plan
is represented as a tuple (A,O,L). At each step a predicate
is taken from the agenda and matched with an action that
will fulfill that predicate, updating A,O,L. However, these
domains contain Skolem objects as introduced by the LOMDP;
these are hypothetical objects of each type that represent the
possible existence of that object that has not yet been observed.
The action space is then populated—at least in part—with
actions that rely on Skolem objects as their parameters. These
Skolem actions are considered separately from fully instan-
tiated actions. As SPOP resolves its agenda of predicates,
some of those predicates may have no fully instantiated actions
that can resolve them due to a lack of domain knowledge.
In that case, the planner will check if any Skolem actions
could resolve the predicate instead. If a valid Skolem action
exists it will not add it to the plan because the action is still

hypothetical. Instead it will insert a resolve action linked to
the target predicate, denoting that there is a possible future
subplan (or concept of a plan) that can achieve that predicate
once more information is gathered.

Algorithm 1: SPOP

1 (A,O,L), agenda
2 pred, A need = pop(agenda);

3 possible old ← get satisfying acts(A);
4 possible new ← get satisfying acts(all actions);
5 possible skolem ← get satisfying acts(skolem actions);
6 while not empty(agenda) do
7 if not empty(possible old) then
8 A add=pop(possible old);
9 O ← (A add, A need);

10 L ← (A add, pred, A need);

11 else if not empty(possible new) then
12 A add=pop(possible new);
13 A ← A add;
14 O ← (A add, A need);
15 L ← (A add, pred, A need);
16 for precond in get preconditions(A add) do
17 agenda ← (precond, A add);

18 else if not empty(possible skolem) then
19 A skolem=pop(possible skolem);
20 A resolve = make resolve action(pred);
21 A ← A resolve;
22 O ← (A resolve, A need);
23 L ← (A resolve, pred, A need);
24 for precond in get preconditions(A skolem) do
25 if Is Skolem(precond) then
26 A find = make find action(precond);
27 A ← A find;
28 O ← (A find, A resolve);

29 else
30 return None;

31 plan valid = check consistency(ordering, links);
32 if plan valid then
33 return SPOP((A,O,L), agenda);

34 else
35 continue;

36 return (A,O,L), agenda

The planner then checks each parameter of the Skolem ac-
tion to see if it refers to a Skolem object or one that has already
been found (at least one parameter must be Skolem since the
action is Skolem). If a parameter refers to a Skolem object,
SPOP it then adds a find action for that object type to the
list of planned actions. It also updates the ordering constraints
O to reflect that the find action must occur before the related
resolve action. For example, when considering a robot making
a sandwich, the action spread_jelly has four parameters
of types robot, jelly, bread, and knife and is able to
provide the target predicate jelly_is_spread. If the robot
has not yet explored the kitchen, it does not have any found
objects in the domain of the jelly, bread, and knife
types. Those would be represented by skolem objects in the
domain. However, there is already an object of type robot
that could be slotted into the (Skolem) spread_jelly
action. Therefore, find actions would only be generated for



Fig. 1. Generating the resolve and find actions from a desired Skolem action.

jelly, bread, and knife type objects, but not a robot
type object. This process, shown in Fig. 1, ensures that we
will solve the subplan that achieves the target predicate (which
triggered the creation of the resolve action) after it has found
the necessary missing objects and generated actions pertaining
to them. To continue the example, we will solve a subplan that
achieves jelly_is_spread once we have found instances
of jelly, bread, and knife objects. The resolve action
is then linked in L as resolving the current predicate, and it
continues recursing to link the predicates in rest of the agenda.
Whenever a Skolem action is added to the plan, it indicates that
the task cannot yet be solved until more objects are found and
resolved. Therefore, when attempting to resolve each predicate
from the agenda, we must sure that Skolem actions are only
considered if no existing fully instantiated actions will suffice.

B. Plan Execution

SPOP returns a plan that may consist of any combination
of fully instantiated actions, find actions, and resolve actions.
When executing the plan, fully instantiated actions would be
performed as normal, but find and resolve actions will enter
their own specialized subroutines involving further planning
and interaction with the world. The find action behaves no
differently than described in prior work [5]; it identifies a
locale that could be a potential source of the required object,
plans to reach said locale, and then returns if the object is
found or loops on to the next locale otherwise.

The resolve action is unique to our methodology. SPOP
generates resolve actions when it knows that a certain pred-
icate must be made true, but it lacks the domain knowledge
to do so. When the resolve action is triggered, it generates a
new subplan with the current state as its starting state. The
goal of the resolve subplan must include the target predicate
that originally triggered the creation of the resolve action.
However, when creating the resolve action, the planner cannot
know what all of its effects would be, only that one of those
effects has to be the predicate that caused its creation. There
is a danger that, when planning within the resolve block, there
is an effect of an action that threatens an existing causal link
in the macro plan. Since we have already executed portions
of our plan, we cannot run the link protection process as is
standard, since that requires the ability to rearrange the actions
that have already been taken. Instead, we run a process called
link reinforcement (illustrated as Fig. 2). Before executing a

Fig. 2. When executing a resolve action, other causally linked predicates may
be threatened. To prevent this, any threatened links are added to the goal of
the resolve subplan, reinforcing that they will remain true for the action that
needed them.

resolve subplan, we check to see if any causal links pass over
the resolve action, i.e., if any predicates are supplied by an
action before the resolve and needed by an action after the
resolve. Any predicates that meet this criteria are added to the
goal of the resolve subplan, reinforcing that they will be true
once the resolve subplan terminates.

IV. RESULTS

Since the main baseline for comparison is the Fast-
Downward [18] planning loop implemented in Merlin et al.
[5], we test our planner on the same domain: the PBJ domain.
In this domain, the robot is in a kitchen with some number of
cupboards. Each cupboard contains some number of objects
organized as a stack, so reaching a given object requires
removing all objects in front of it. The robot must retrieve
bread, a knife, jelly, and peanut butter, get them onto a table,
and then spread each ingredient and put together the two
halves of the sandwich. The domain can scale up both the
number of cupboards and the number of objects (in addition
to the four necessary objects). Since this is done in simulation
and some planning is done online actions are considered to be
executed instantaneously, so the time recorded reflects only
the planning time.

We show in Fig 3 the time comparisons for solving the PBJ
domain using SPOP and Fast Downward (FD)1. In the small
1 cupboard domain FD outperforms SPOP by a small margin
due to the increased complexity of the planning algorithm
itself. With larger domains FD quickly fails to scale while
SPOP continues to solve tasks within a handful of seconds.
SPOP was able to scale up to much larger domains than we
tested FD on as shown by I. The longest domain to complete
on average was actually 10 cupboards and 100 objects. This
is because fewer cupboards leads to more objects in a given
cupboards, and therefore lengthier pick and place plans to
retrieve a given object.

1The Fast Downward implementation used includes oracle heuristics for
which objects are likely to advance the plan, as put forward in Merlin et al.
[5]



0 objects 5 objects 10 objects 20 objects 50 objects 100 objects

Avg STD Avg STD Avg STD Avg STD Avg STD Avg STD
Time (s) Time(s) Time (s) Time(s) Time (s) Time(s) Time (s) Time(s) Time (s) Time(s) Time (s) Time(s)

10 cpbrds 0.921 0.011 1.034 0.013 1.216 0.023 1.608 0.038 4.195 0.257 20.781 3.871
20 cpbrds 1.901 0.023 2.030 0.029 2.275 0.037 2.517 0.053 4.160 0.096 8.379 0.224
30 cpbrds 3.239 0.051 3.365 0.047 3.555 0.061 4.180 0.069 5.755 0.092 10.284 0.270

TABLE I
SOLVING LARGER PBJ DOMAINS WITH SPOP, AVERAGES TAKEN OVER 50 TRIALS
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Fig. 3. The times it took to solve each domain size for both Fast Downward
and SPOP

V. CONCLUSIONS

Our work introduces the concept of the object scouting
problem, which can be well modeled as a LOMDP [5]. Since
previous work in the LOMDP setting utilized only the most
generic of planning approaches, we also introduce the SPOP
algorithm, which we show to be particularly well suited to
this problem formulation. SPOP synergizes uniquely with the
object scouting problem by enabling the creation of partial
plans that delay planning over gaps in information, as well as
providing useful subgoal heuristics for what must be planned
in those gaps once the relevant information is observed. Our
preliminary results show that our SPOP algorithm scales at
an order of magnitude faster than the previous methods as a
result of exploiting the nature of partial order planning.
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