
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A PONTRYAGIN PERSPECTIVE ON REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning has traditionally focused on learning state-dependent poli-
cies to solve optimal control problems in a closed-loop fashion. In this work,
we introduce the paradigm of open-loop reinforcement learning where a fixed
action sequence is learned instead. We present three new algorithms: one robust
model-based method and two sample-efficient model-free methods. Rather than
basing our algorithms on Bellman’s equation from dynamic programming, our
work builds on Pontryagin’s principle from the theory of open-loop optimal con-
trol. We provide convergence guarantees and evaluate all methods empirically on
a pendulum swing-up task, as well as on two high-dimensional MuJoCo tasks,
demonstrating remarkable performance compared to existing baselines.

1 INTRODUCTION

π(· | xt)

Closed-loop control

f(xt, ut)

ut

xt+1xt

xt
u0:T−1

Open-loop control

f(xt, ut)

ut

xt+1xt

Figure 1: Comparison of closed-loop (feedback) and open-
loop (feedforward) control. In closed-loop reinforcement
learning (RL), the goal is to learn a policy (π). In open-loop
RL, a fixed sequence of actions (u0:T−1) is learned instead,
with the action ut independent of the states x0:t.

Reinforcement learning (RL) refers to
“the optimal control of incompletely-
known Markov decision processes”
(Sutton & Barto, 2018, p. 2). It has
traditionally focused on applying dy-
namic programming algorithms, such
as value iteration or policy iteration,
to situations where the environment is
unknown. These methods solve opti-
mal control problems in a closed-loop
fashion by learning feedback policies,
which map states xt to actions ut.
In contrast, this work introduces the
paradigm of open-loop reinforcement
learning (OLRL), in which fixed ac-
tion sequences u0:T−1, over a horizon
T , are learned instead. The closed-
loop and open-loop control paradigms
are illustrated in Fig. 1.

An open-loop controller receives no observations from its environment. This makes it impossible
to react to unpredictable events, which is essential in many problems, particularly those with
stochastic or unstable dynamics. For this reason, RL research has historically focused exclusively
on closed-loop control. However, many environments are perfectly predictable. Consider the classic
example of swinging up an inverted pendulum. If there are no disturbances, then this task can be
solved flawlessly without feedback (as we demonstrate in Section 4.1). Where open-loop control
is viable, it brings considerable benefits. First, as there is no need for sensors, it is generally much
cheaper than closed-loop control. Second, it can operate at much higher frequencies, as there is no
bandwidth bottleneck due to sensor delays or computational processing of measurements. Third,
if the environment changes in an unforeseen way, a feedback policy may produce unpredictable
behavior, whereas an open-loop solution, which cannot detect environmental changes, is unaffected.
Finally, the open-loop optimal control problem is much simpler, as it only involves optimizing an
action sequence (finding one action per time step). In contrast, closed-loop optimal control involves
optimizing a policy (finding one action for each state of the system), which can be considerably

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

more expensive in the finite-horizon setting. In this way, open-loop control circumvents the curse
of dimensionality without requiring function approximation.

For these reasons, open-loop control is widely used in practice. A simple application is the control of
electric stoves with simmerstats, which regulate the temperature by periodically switching the power
on and off. Open-loop methods are also applied to much more challenging problems, such as the
control of drinking-water treatment plants (Gamiz et al., 2020) or plasmas in a tokamak (Mattei et al.,
2006). These problems have been also studied by the reinforcement learning community (by Janjua
et al. (2024) and Degrave et al. (2022), respectively). In real-world applications, disturbances are
often not negligible, and open-loop methods are used in combination with closed-loop methods. It
can be shown that, in many situations, such a combination will significantly outperform a solution
based on feedback alone (e.g., Åström & Murray, 2021, Sec. 12.4). Although we focus purely on
open-loop control in this paper, we believe that combinations of open-loop and closed-loop control
have great potential for reinforcement learning. We expand on this discussion, as well as on the
limitations of open-loop control, in Section 6.

There exists a large body of literature on the theory of open-loop optimal control (Pontryagin et al.,
1962). In this work, we introduce a family of three new open-loop RL algorithms by adapting this
theory to the setting of unknown dynamics. Whereas closed-loop RL is largely based on approx-
imating the Bellman equation, the central equation of dynamic programming, we base our algorithms
on approximations of Pontryagin’s principle, the central equation of open-loop optimal control. We
first introduce a model-based method whose convergence we prove to be robust to modeling errors.
We then extend this algorithm to settings with completely unknown dynamics and propose two fully
online model-free methods. Finally, we empirically demonstrate the robustness and sample efficiency
of our methods on an inverted pendulum swing-up task and on two complex MuJoCo tasks.

2 BACKGROUND

We consider a reinforcement learning setup with continuous state space X ⊂ RD, continuous action
space U ⊂ RK , and a fixed horizon T ∈ N. An episode always starts with the same initial state
x0 ∈ X and follows the deterministic dynamics f : X × U → X , such that xt+1 = f(xt, ut) for all
times t ∈ [T − 1]0.1 After every transition, a deterministic reward r(xt, ut) ∈ R is received, and at
the end of an episode, an additional terminal reward rT (xT) ∈ R is computed as a function of the
terminal state xT . We can thus define the value of the state xt at time t as the sum of future rewards

vt(xt;ut:T−1)
.
=

T−1∑
τ=t

r(xτ , uτ) + rT (xT) = r(xt, ut) + vt+1{f(xt, ut);ut+1:T−1},

where we defined vT as the terminal reward function rT . Our goal is to find a sequence of actions
u0:T−1 ∈ UT maximizing the total sum of rewards J(u0:T−1)

.
= v0(x0;u0:T−1). We will tackle this

trajectory optimization problem using gradient ascent. Although our goal is to learn an open-loop
controller (an action sequence), we assume that the state is fully observed during the training process.

Pontryagin’s principle. The gradient of the objective function J with respect to the action ut is

∇utJ(u0:T−1) = ∇ur(xt, ut) +∇uf(xt, ut)∇xvt+1(xt+1;ut+1:T−1)︸ ︷︷ ︸
λt+1∈RD

, (1)

where the terms of J related to the earlier time steps τ ∈ [t− 1]0 vanish, as they do not depend on ut.
We denote Jacobians as (∇yf)i,j

.
=

∂fj
∂yi

. The costates λ1:T are defined as the gradients of the value
function along the given trajectory. They can be computed through a backward recursion:

λT
.
= ∇vT (xT) = ∇rT (xT) (2)

λt
.
= ∇xvt(xt;ut:T−1) = ∇xr(xt, ut) +∇xf(xt, ut)λt+1. (3)

The gradient (1) of the objective function can thus be obtained by means of one forward pass through
the dynamics f (a rollout), yielding the states x0:T , and one backward pass through Eqs. (2) and (3),

1For n ∈ N, we write [n]
.
= {1, 2, . . . , n} and [n]0

.
= {0, 1, . . . , n}. Unless explicitly mentioned, all

time-dependent equations hold for all t ∈ [T − 1]0.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

yielding the costates λ1:T . The stationarity condition arising from setting Eq. (1) to zero, where
the costates are computed from Eqs. (2) and (3), is known as Pontryagin’s principle. (Pontryagin’s
principle in fact goes much further than this, as it generalizes to infinite-dimensional and constrained
settings.) We re-derive Eqs. (1) to (3) using the method of Lagrange multipliers in Appendix B.

3 METHOD

Algorithm 1: Open-loop reinforcement learning
Input: Optimization steps N ∈ N, step size η > 0

1 Initialize u0:T−1 (initial action sequence)
2 for k = 1, 2, . . . , N do

// Forward pass
3 x0:T ← rollout(u0:T−1)

// Backward pass

4 λ̃T ← ∇rT (xT)
5 for t = T − 1, T − 2, . . . , 0 do

// Jacobian estimation
6 At, Bt ≃ ∇xf(xt, ut),∇uf(xt, ut)

// Pontryagin update

7 λ̃t ← ∇xr(xt, ut) +Atλ̃t+1

8 gt ← ∇ur(xt, ut) +Btλ̃t+1

9 ut ← ut + ηgt // Grad. ascent
10 end
11 end

If the dynamics are known, then the tra-
jectory can be optimized by performing
gradient ascent with the gradients com-
puted according to Pontryagin’s equa-
tions (1) to (3). In this work, we adapt
this idea to the domain of reinforcement
learning, where the dynamics are un-
known. In RL, we are able to interact
with the environment, so the forward
pass through the dynamics f is not an
issue. However, the gradient compu-
tation according to Pontryagin’s prin-
ciple requires the Jacobians ∇xft

.
=

∇xf(xt, ut) and ∇uft
.
= ∇uf(xt, ut)

of the unknown dynamics. In our meth-
ods, which follow the structure of Al-
gorithm 1, we therefore replace these
Jacobians by estimates At ≃ ∇xft and
Bt ≃ ∇uft. We now show that, given
sufficiently accurate estimates At and
Bt, this algorithm still converges to a
local maximum of the objective J . In the following sections we then discuss model-based and
model-free methods to obtain such estimates.

3.1 CONVERGENCE OF ALGORITHM 1

Before discussing concrete methods for open-loop RL, whose main concern is the construction of
appropriate estimates At and Bt, we first show that replacing ∇xft and ∇uft with such estimates is
a good idea. In particular, we show that, under certain assumptions on the accuracy of At and Bt,
Algorithm 1 converges to an unbiased local optimum of the true objective J . Our convergence result
relies on the following three assumptions.

Assumption 3.1. All rewards are encoded in the terminal reward rT . In other words, r(x, u) = 0
for all x ∈ X and u ∈ U .

This assumption is without loss of generality, since we can augment the state xt by a single real
variable ρt that captures the sum of the running rewards (i.e., ρ0 = 0 and ρt+1 = ρt + r(xt, ut)). An
equivalent setup that satisfies Assumption 3.1 is then obtained by defining a new terminal reward
function r′T (xT , ρT)

.
= rT (xT) + ρT and setting the running rewards r′ to zero.

Assumption 3.2. There exist constants γ, ζ > 0 with γ + ζ + γζ < 1 such that for any trajectory
(u0:T−1, x0:T) encountered by Algorithm 1, the following properties hold for all t ∈ [T − 1]0:

(a) The error of At+s is bounded, for all s ∈ [T − t], in the following way:

∥At+s −∇xft+s∥ ≤
γ

3s
¯
σ(∇uft)

σ̄(∇uft)

{
s−1∏
i=1

¯
σ(∇xft+i)

σ̄(∇xft+i)

}
¯
σ(∇xft+s).

(b) The error of Bt is bounded in the following way: ∥Bt −∇uft∥ ≤ ζ
¯
σ(∇uft).

Here,
¯
σ(A) and σ̄(A) denote the minimum and maximum singular value of A, and ∥A∥ .

= σ̄(A).

This assumption restricts the errors of the estimates At and Bt which are used in place of the true
Jacobians∇xft and∇uft in Algorithm 1. Although the use of the true system for collecting rollouts

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

prevents a buildup of error in the forward pass, any error in the approximate costate λ̃t can still be
amplified by the Jacobian estimates of earlier time steps, Aτ for τ ∈ [t−1], during the backward pass.
Thus, to ensure convergence to a stationary point of the true objective function, the errors of these
estimates need to be small. This is particularly important for t close to T , as the errors will be amplified
over more time steps. Assumption 3.2 provides a quantitative characterization of this intuition.

Assumption 3.3. There exists a constant L > 0 such that, for all action sequences uA
0:T−1, u

B
0:T−1 ∈

UT and all times t ∈ [T − 1]0, ∥∇ut
J(uA

0:T−1)−∇ut
J(uB

0:T−1)∥ ≤ L∥uA
t − uB

t ∥.
This final assumption states that the objective function J is L-smooth with respect to the action ut at
each time step t ∈ [T − 1]0, which is a standard assumption in nonconvex optimization. This implies
that the dynamics f are smooth as well. We are now ready to state the convergence result.

Theorem 3.4. Suppose Assumptions 3.1 to 3.3 hold with γ, ζ, and L. Let µ .
= 1− γ − ζ − γζ and

ν
.
= 1 + γ + ζ + γζ. If the step size η is chosen small enough such that α .

= µ− 1
2ηLν

2 is positive,
then the iterates (u(k)

0:T−1)
N−1
k=0 of Algorithm 1 satisfy, for all N ∈ N and t ∈ [T − 1]0,

1

N

N−1∑
k=0

∥∇ut
J(u

(k)
0:T−1)∥

2 ≤
J⋆ − J(u

(0)
0:T−1)

αηN
,

where J⋆ .
= supu∈UT J(u) is the optimal value of the initial state.

Proof. See Appendix D.

3.2 MODEL-BASED OPEN-LOOP RL

The most direct way to approximate the Jacobians∇xft and∇uft is by using a (learned or manually
designed) differentiable model f̃ : X ×U → X of the dynamics f and setting At = ∇xf̃(xt, ut) and
Bt = ∇uf̃(xt, ut) in Line 6 of Algorithm 1. Theorem 3.4 guarantees that this model-based open-loop
RL method (see Algorithm A.1) is robust to a certain amount of modeling error. In contrast to this,
consider the more naive method of using the model to directly obtain the gradient by differentiating

J(u0:T−1) ≃ r(x0, u0) + r{f̃(x0, u0)︸ ︷︷ ︸
x̃1

, u1}+ · · ·+ rT {f̃(f̃(· · · f̃(f̃(x0, u0), u1) · · ·), uT−1)︸ ︷︷ ︸
x̃T

}

with respect to the actions u0:T−1 using the backpropagation algorithm. In Appendix C, we show that
this planning approach is exactly equivalent to an approximation of Algorithm 1 where, in addition
to setting At = ∇xf̃(xt, ut) and Bt = ∇uf̃(xt, ut), the forward pass of Line 3 is replaced by the
imagined forward pass x̃0:T through the model f̃ . In Section 4, we empirically demonstrate that
this planning method, whose convergence is not guaranteed by Theorem 3.4, is much less robust
to modeling errors than the open-loop RL approach. Note that neither method is related to model-
predictive control (MPC), which relies on measurements to re-plan at every step. MPC is a closed-loop
method that solves a fundamentally different problem from the one we address in this work.

3.3 MODEL-FREE ON-TRAJECTORY OPEN-LOOP RL

Access to a reasonably accurate model may not always be feasible, and as Algorithm 1 only requires
the Jacobians of the dynamics along the current trajectory, a global model is also not necessary. In
the following two sections, we propose two methods that directly estimate the Jacobians∇xft and
∇uft from rollouts in the environment. We call these methods model-free, as the estimated Jacobians
are only valid along the current trajectory, and thus cannot be used for planning.

Our goal is to estimate the Jacobians ∇xf(x̄t, ūt) and ∇uf(x̄t, ūt) that lie along the trajectory
induced by the action sequence ū0:T−1. These Jacobians measure how the next state (x̄t+1) changes
if the current state or action (x̄t, ūt) are slightly perturbed. More formally, the dynamics f may be
linearized about the reference trajectory (ū0:T−1, x̄0:T) as

f(xt, ut)− f(x̄t, ūt)︸ ︷︷ ︸
∆xt+1

≃ ∇xf(x̄t, ūt)
⊤ (xt − x̄t)︸ ︷︷ ︸

∆xt

+∇uf(x̄t, ūt)
⊤ (ut − ūt)︸ ︷︷ ︸

∆ut

,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(x̄t, ūt)(xt, ut)i

∆x(i)
t+1

∆x(i)
t
,∆u(i)

t

ft
.
= f(x̄t, ūt), ∆x

.
= x− x̄t , ∆u

.
= u− ūt

x̄t+1

x
(i)
t+1

(a)

f(x, u)
ft +∇xf>t ∆x+∇uf>t ∆u
ft + A>t ∆x+ B>t ∆u (least squares fit)

A>t x+ B>t u+ ct (least squares fit)

(xt, ut)k−3 (xt, ut)k−2 (xt, ut)k−1 (xt, ut)k

x
(k−3)
t+1

x
(k−2)
t+1

x
(k−1)
t+1 x

(k)
t+1

(b)

Reference transition
M perturbed transitions

f(x, u)
Transitions of subsequent trajectories
Linearizations of f at subsequent trajectories
Least squares fit weighting all points equally

Figure 2: (a) The Jacobians of f (slope of the green linearization) at the reference point (x̄t, ūt) can
be estimated from the transitions {(x(i)

t , u
(i)
t , x

(i)
t+1)}Mi=1 of M perturbed rollouts. (b) The Jacobians

of subsequent trajectories (indexed by k) remain close. To estimate the Jacobian at iteration k, the
most recent iterate (k − 1) is more relevant than older iterates.

which is a valid approximation if the perturbations ∆x0:T and ∆u0:T−1 are small. By collecting a
dataset of M ∈ N rollouts with slightly perturbed actions, we can thus estimate the Jacobians by
solving the (analytically tractable) least-squares problem

argmin
[A⊤

t B⊤
t]∈RD×(D+K)

M∑
i=1

∥A⊤
t ∆x

(i)
t +B⊤

t ∆u
(i)
t −∆x

(i)
t+1∥2. (4)

This technique is illustrated in Fig. 2a (dashed purple line). Using these estimates in Algorithm 1
yields a model-free method we call on-trajectory, as the gradient estimate relies only on data generated
based on the current trajectory (see Algorithm A.2 for details). We see a connection to on-policy
methods in closed-loop reinforcement learning, where the policy gradient estimate (or the Q-update)
similarly depends only on data generated under the current policy. Like on-policy methods, on-
trajectory methods will benefit greatly from the possibility of parallel environments, which could
reduce the effective complexity of the forward pass stage from M+1 rollouts to that of a single rollout.

Exploiting the Markovian structure. Consider a direct linearization of the objective function J
about the current trajectory. Writing the action sequence as a vector ū .

= vec(ū0:T−1) ∈ RTK , this
linearization is given, for u ∈ RTK close to ū, by

J(u) ≃ J(ū) +∇J(ū)⊤(u− ū).

We can thus estimate the gradient of the objective function by solving the least squares problem

∇J(ū) ≃ argmin
g∈RTK

M∑
i=1

{J(ui)− J(ū)− g⊤(ui − ū)}2,

where {ui} are M ∈ N slightly perturbed action sequences. Due to the dimensionality of ū, this
method requires O(TK) rollouts to estimate the gradient. In contrast to this, our approach leverages
the Markovian structure of the problem, including the fact that we observe the states x0:T in each
rollout. As the Jacobians are estimated jointly at all time steps, we can expect to get a useful gradient
estimate from only O(D2 +DK) rollouts, which significantly reduces the sample complexity if T is
large. This gain in efficiency is demonstrated empirically in Section 4.

3.4 MODEL-FREE OFF-TRAJECTORY OPEN-LOOP RL

The on-trajectory algorithm is sample-efficient in the sense that it leverages the problem structure,
but a key inefficiency remains: the rollout data sampled at each iteration is discarded after the action
sequence is updated. In this section, we propose an off-trajectory method that implicitly uses the
data from previous trajectories to construct the Jacobian estimates. Our approach is based on the
following observation. If the dynamics f are smooth and the step size η is small, then the updated

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

trajectory (u
(k)
0:T−1, x

(k)
0:T) will remain close to the previous iterate (u

(k−1)
0:T−1, x

(k−1)
0:T). Furthermore,

the Jacobians along the updated trajectory will be similar to the previous Jacobians, as illustrated in
Fig. 2b. Thus, we propose to estimate the Jacobians along the current trajectory from a single rollout
only by bootstrapping our estimates using the Jacobian estimates from the previous iteration.

Consider again the problem of estimating the Jacobians from multiple perturbed rollouts, illustrated
in Fig. 2a. Instead of relying on a reference trajectory and Eq. (4), we can estimate the Jacobians by
fitting a linear regression model to the dataset of M perturbed transitions. Solving

argmin
[A⊤

t B⊤
t ct]∈RD×(D+K+1)

M∑
i=1

∥A⊤
t x

(i)
t +B⊤

t u
(i)
t + ct − x

(i)
t+1∥2 (5)

yields an approximate linearization f(xt, ut) ≃ A⊤
t xt +B⊤

t ut + ct = Ftzt, with Ft
.
= [A⊤

t B⊤
t ct]

and zt
.
= (xt, ut, 1) ∈ RD+K+1. This approximation is also shown in Fig. 2a (dotted gray line).2

At iteration k, given the estimate F
(k−1)
t and a new point z(k)t = (x

(k)
t , u

(k)
t , 1) with corresponding

target x(k)
t+1, computing the new estimate F

(k)
t is a problem of online linear regression. We solve this

regression problem using an augmented version of the recursive least squares (RLS) algorithm (e.g.,
Ljung, 1999, Sec. 11.2). By introducing a prior precision matrix Q

(0)
t

.
= q0I for each time t, where

q0 > 0, in Algorithm A.3 we compute the update at iteration k ∈ N as

Q
(k)
t = αQ

(k−1)
t + (1− α)q0I + z

(k)
t {z

(k)
t }⊤ (6)

F
(k)
t = F

(k−1)
t + {Q(k)

t }−1z
(k)
t {x

(k)
t+1 − F

(k−1)
t z

(k)
t }⊤.

Forgetting and stability. The standard RLS update of the precision matrix corresponds to Eq. (6)
with α = 1. In the limit as q0 → 0, the RLS algorithm is equivalent to the batch processing of Eq. (5),
which treats all points equally. However, as illustrated in Fig. 2b, points from recent trajectories should
be given more weight, as transitions that happened many iterations ago will give little information
about the Jacobians along the current trajectory. We thus incorporate a forgetting factor α ∈ (0, 1)
into the precision update with the effect that past data points are exponentially downweighted:

Q
(k)
t = αQ

(k−1)
t + z

(k)
t {z

(k)
t }⊤ ⇝ Q

(k)
t = αkq0I +

k∑
i=1

αk−iz
(i)
t {z

(i)
t }⊤. (7)

This forgetting factor introduces a new problem: instability. If subsequent trajectories lie close to
each other, then the sum of outer products may become singular (clearly, if all z(i)t are identical,
then the sum has rank 1). As the prior q0I is downweighted, at some point inverting Q may become
numerically unstable. Our modification in Eq. (6) adds (1 − α)q0I in each update, which has
the effect of removing the αk coefficient in front of q0I in Eq. (7). If the optimization procedure
converges, then eventually subsequent trajectories will indeed lie close together. Although Eq. (6)
prevents issues with instability, the quality of the Jacobian estimates will still degrade, as this
estimation inherently requires perturbations (see Section 3.3). In Algorithm A.3, we thus slightly
perturb the actions used in each rollout to get more diverse data.

4 EXPERIMENTS

4.1 INVERTED PENDULUM SWING-UP

We empirically evaluate our algorithms on the inverted pendulum swing-up problem shown in Fig. 3.
The state at time t is xt = (ℓ, ℓ̇, θ, θ̇)t ∈ R4, where ℓ is the position of the cart on the bar and θ is the
pendulum angle. The action ut is the horizontal force F applied to the cart at time t. Episodes are of
length T = 100, the running reward r(x, u) ∝ −u2 penalizes large forces, and the terminal reward
rT (x) = −∥x∥1 defines the goal state to be at rest in the upright position.

2If we replace Eq. (4) by Eq. (5) in Algorithm A.2, we get a slightly different on-trajectory with similar
performance.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Return: −0.019

θ

`

F

Tip trajectory
0 100Time t

Figure 3: The inverted pendulum swing-up
problem. The goal is to control the force F
such that the tip of the pendulum swings up
above the base. The shown solution was found
by the on-trajectory method of Section 3.3.

0 10−3 10−2 10−1 100 101

Model misspecification s

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

e
ra

te Model-based OLRL
Naive planning
MLP model OLRL
MLP model planning

Figure 4: The model-based open-loop RL algorithm
can solve the pendulum problem reliably even with
a considerable model error.

Performance metrics. We monitor several performance criteria, all of which are based on the return
J . First, we define Jmax

.
= maxk∈[N]0 J(u

(k)
0:T−1) as the return achieved by the best action sequence

over a complete learning process of N optimization steps. Based on this quantity, we say that the
swing-up task is solved if Jmax > −0.03. This threshold was determined empirically. If the algorithm
or the model is randomized, then [Jmax > −0.03] is a Bernoulli random variable whose mean, which
we call the solve rate, depends on the quality of the learning algorithm. We repeat all experiments
with 100 random seeds and show 95% bootstrap confidence intervals in all plots.

Robustness: model-based open-loop RL. We start with the model-based method for open-loop RL
of Section 3.2 (Algorithm A.1). In Theorem 3.4, we proved that this method can accommodate some
model error and still converge to a local maximum of the true objective. In Fig. 4, we empirically
analyze this robustness property on the pendulum system. This system has five parameters: the
masses of the cart and the pendulum tip, the length of the pendulum, and the friction coefficients for
linear and rotational motion. To test the robustness of our algorithm against model misspecification,
we use a pendulum system with inaccurate parameters as the model f̃ . Concretely, if mi is the ith

parameter of the true system, we sample the corresponding model parameter m̃i from a log-normal
distribution centered at mi, such that m̃i = ξmi, with ln ξ ∼ N (0, s2). The severity of the model
error is then controlled by the scale parameter s. In Fig. 4, we compare the performance of our method
with the planning procedure described in Section 3.2, in which the forward pass is performed through
the model f̃ instead of the real system f . Whereas the planning method only solves the pendulum
reliably with the true system as the model (s = 0), the open-loop RL method can accommodate a
considerable model misspecification.

In a second experiment, we represent the model f̃ by a small multi-layer perceptron (MLP). The
model is learned from 1000 rollouts on the pendulum system, with the action sequences sampled from
a pink noise distribution, as suggested by Eberhard et al. (2023). Figure 4 shows the performance
achieved with this model by our proposed algorithm and by the planning method. As the MLP model
represents a considerable misspecification of the true dynamics, only the open-loop RL method
manages to solve the pendulum task.

Structure: on-trajectory open-loop RL. In Section 3.3, we proposed a model-free approach
(Algorithm A.2) that uses rollouts to directly estimate the Jacobians needed to update the action
sequence. It is clear from Eq. (4) that more rollouts (i.e., larger M) will give more accurate Jacobian
estimates, and therefore increase the quality of the gradient approximation. In Fig. 5, we analyze
the sample efficiency of the on-trajectory open-loop RL algorithm by comparing the performance
achieved at different values of M , where the number N of optimization steps remains fixed. We
compare our method to the finite-difference approach described at the end of Section 3.3 and to the
gradient-free cross-entropy method (CEM; Rubinstein, 1999). Both these methods also update the
action sequence on the basis of M perturbed rollouts in the environment. As in our method, the M
action sequences are perturbed using Gaussian white noise with noise scale σ. We describe both
baselines in detail in Appendix F. The oracle performance shown in Fig. 5 corresponds to Algorithm 1
with the true gradient, i.e., At = ∇xft and Bt = ∇uft.

We note two things in Fig. 5. First, the performance of both the finite-difference method and CEM
heavily depends on the choice of the noise scale σ, whereas our method performs identically for

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

2 5 10 20 50
M + 1

−1

−0.1
A

vg
.m

ax
.r

et
ur

n
J

m
ax

On-traj. OLRL

Oracle
Solved

2 5 10 20 50
M + 1

Number of rollouts per iteration

Finite differences

2 5 10 20 50
M

CEM

σ = 0.0001 σ = 0.001 σ = 0.01

Figure 5: The on-trajectory open-loop RL method
is more sample-efficient than the finite-difference
and cross-entropy methods. It is also much less
sensitive to the noise scale σ.

0 20000 40000
Episodes

−3

−2

−1

0

A
ve

ra
ge

re
tu

rn
J

104 106

Episodes

On-traj. OLRL
Off-traj. OLRL

MLP model OLRL
Finite differences

CEM
Oracle

Figure 6: Learning curves on the pendulum task.
On the right, we show a longer time period in log
scale. The off-trajectory open-loop RL method
converges almost as fast as the oracle method.

all three values of σ. Second, even for tuned values of σ, the finite-difference method and CEM
still need approximately twice as many rollouts per iteration as the open-loop RL method to reliably
swing up the pendulum. At 10 rollouts per iteration, our method matches the oracle’s performance,
while both baselines are below the solved threshold of Jmax = −0.03. This empirically confirms our
theoretical claims at the end of Section 3.3, where we argue that exploiting the Markovian structure
of the problem leads to increased sample efficiency.

Efficiency: off-trajectory open-loop RL. Finally, we turn to the method proposed in Section 3.4
(Algorithm A.3), which promises increased sample efficiency by estimating the Jacobians in an
off-trajectory fashion. The performance of this algorithm is shown in Fig. 6, where the learning
curves of all our methods as well as the two baselines and the oracle are plotted. For the on-trajectory
methods compared in Fig. 5, we chose for each the minimum number of rollouts M such that, under
the best choice for σ, the method would reliably solve the swing-up task. The hyperparameters for all
methods are summarized in Appendix G. It can be seen that the off-trajectory method, which only
requires one rollout per iteration, converges much faster than the on-trajectory open-loop RL method.

4.2 MUJOCO

0 10000 20000
Episodes

0

100

200

300

A
ve

ra
ge

re
tu

rn
J

Ant-v4

Off-traj. OLRL

0 10000 20000
Episodes

HalfCheetah-v4

SAC (closed-loop)
SAC (open-loop)

Figure 7: Learning curves of our off-trajectory open-loop
RL method and soft actor-critic for two MuJoCo tasks. All
experiments were repeated with 20 random seeds, and we
show 95%-bootstrap confidence intervals for the average
return. The horizon is fixed to T = 100.

While the inverted pendulum system
is an illustrative example for explor-
ing the different merits of our al-
gorithms, it is a relatively simple
task with smooth, low-dimensional,
and deterministic dynamics. In
this section, we test our method
in two considerably more challeng-
ing environments: the Ant-v4 and
HalfCheetah-v4 tasks provided
by the OpenAI Gym library (Brock-
man et al., 2016; Towers et al., 2023),
implemented in MuJoCo (Todorov
et al., 2012). These environments are
high-dimensional, they exhibit non-
smooth contact dynamics, and the ini-
tial state is randomly sampled at the
beginning of each episode.

We tackle these two tasks with our model-free off-trajectory method (Algorithm A.3). The results are
shown in Fig. 7, where we compare to the closed-loop RL baseline soft actor-critic (SAC; Haarnoja
et al., 2018a). It can be seen that the open-loop RL method performs comparably to SAC, even though
SAC learns a closed-loop policy that is capable of adapting its behavior to the initial condition.3 In

3In this comparison, our method is further disadvantaged by the piecewise constant “health” terms in the re-
ward function of Ant-v4. Our method, exclusively relying on the gradient of the reward function, ignores these.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the figure, we also analyze the open-loop performance achieved by SAC. Whereas the closed-loop
performance is the return obtained in a rollout where the actions are taken according to the mean of
the Gaussian policy, the open-loop return is achieved by blindly executing exactly the same actions
in a new episode. The discrepancy in performance is thus completely due to the stochasticity in the
initial state. In Appendix E, we show that our method also works with a longer horizon T .

The results demonstrate that the open-loop RL algorithm is robust to a certain level of stochasticity in
the initial state of stable dynamical systems. Additionally, while our convergence analysis depends on
the assumption of smooth dynamics, these experiments empirically demonstrate that the algorithms
are also able to tackle non-smooth contact dynamics. Finally, we see that the high dimensionality
of the MuJoCo systems is handled without complications. While soft actor-critic is an elegant and
powerful algorithm, the combination with deep function approximation can make efficient learning
more difficult. Our methods are considerably simpler and, because they are based on Pontryagin’s
principle rather than dynamic programming, they evade the curse of dimensionality by design, and
thus do not require any function approximation.

5 RELATED WORK

Our work is inspired by numerical optimal control theory (Betts, 2010; Geering, 2007), which
deals with the numerical solution of trajectory optimization problems, a setting that has also been
studied in machine learning (Schaal & Atkeson, 2010; Howe et al., 2022). As in our approach,
an important aspect of solution methods is to exploit the Markovian structure of the dynamics to
reduce computation (Carraro et al., 2015; Schäfer et al., 2007). However, all these methods deal
with situations where the dynamics are known, whereas our algorithms only requires an approximate
model (model-based open-loop RL) or no model at all (model-free open-loop RL). Another set of
related methods is known as iterative learning control (Moore, 1993; Ma et al., 2022; 2023), which is
a control-theoretic framework that iteratively improves the execution of a task by optimizing over
feedforward trajectories. However, these methods are often formulated for trajectory tracking tasks,
while we consider a more general class of reinforcement learning problems. Chen & Braun (2019)
explore an idea similar as in our Algorithm A.1; their model-based control algorithm combines a
rollout in a real system with an inaccurate model to construct an iterative LQR feedback controller.

Recently, deep neural networks have been used to learn representations of complex dynamical systems
(Fragkiadaki et al., 2015) and Pontryagin’s principle was leveraged in the optimization of control tasks
based on such models (Jin et al., 2020; Böttcher et al., 2022). However, these methods only consider
the setting of closed-loop control. The combination of an exact forward pass with an approximate
backward pass, which our methods are based on, has also been explored in different settings in the
deep learning literature, such as spiking (Lee et al., 2016) or physical (Wright et al., 2022) neural
networks, or networks that include nondifferentiable procedures, for example used for rendering
(Niemeyer et al., 2020) or combinatorial optimization (Vlastelica et al., 2020).

6 DISCUSSION

While open-loop control is a well-established field with countless applications (Diehl et al., 2006;
van Zundert & Oomen, 2018; Sferrazza et al., 2020), the setting of incompletely-known dynamics
has received little attention. This paper makes an important first step towards understanding how
principles from open-loop optimal control can be combined with ideas from reinforcement learning
while preserving convergence guarantees. We propose three algorithms that address this open-loop
RL problem, from robust trajectory optimization with an approximate model to sample-efficient
learning under fully unknown dynamics. This work focuses on reinforcement learning in continuous
state and action spaces, a class of problems known to be challenging (Recht, 2019). Although this
setting allows us to leverage continuous optimization techniques, we expect that most ideas will
transfer to the discrete setting, and we would be interested to see further research on this topic.

It is interesting to note that there are many apparent parallels between our open-loop RL algorithms
and their closed-loop counterparts. The distinction between model-based and model-free methods
is similar as in closed-loop RL. Likewise, the on-trajectory and off-trajectory methods we present
show a tradeoff between sample efficiency and stability that is reminiscent of the tradeoffs between
on-policy and off-policy methods in closed-loop RL. The question of exploration, which is central to

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

reinforcement learning, also arises in our case. We do not address this complex problem thoroughly
here but instead rely on additive Gaussian noise to sample diverse trajectories.

Limitations of Open-Loop RL. Another important open question is how open-loop methods fit into
the reinforcement learning landscape. An inherent limitation of these methods is that an open-loop
controller can, by definition, not react to unexpected changes in the system’s state, be it due to random
disturbances or an adversary. If these disturbances are small, and the system is not sensitive to small
changes in the initial condition or the action sequence (roughly speaking, if the system is stable and
non-chaotic), then such a reaction is not necessary. In this situation, open-loop RL works even for
long time-horizons T , as we highlight in our MuJoCo experiments (see Appendix E). However, an
open-loop controller cannot balance an inverted pendulum in its unstable position4, track a reference
trajectory in noisy conditions, or play Go, where reactions to the opponent’s moves are constantly
required. In these situations open-loop RL is not viable or only effective over a very small horizon T .

Open-loop control can be viewed as a special case of closed-loop control, and therefore it is clear
that closed-loop control is much more powerful. Historically, control theory has dealt with both
closed-loop and open-loop control (Åström & Murray, 2021; Skogestad & Postlethwaite, 2005;
Åström & Hägglund, 1995) and there is a broad consensus in the control community that both are
important (Betts, 2010; Verscheure et al., 2009; Horn et al., 2013). However, the setting of open-loop
control with unknown dynamics, which is naturally formulated through the lens of reinforcement
learning, has so far received much less consideration from the community. Our algorithms provide
a first solution to the open-loop RL problem and are not intended to replace any of the existing
closed-loop RL algorithms. Instead, we think open-loop and closed-loop methods should complement
each other. In control engineering, it is common practice to combine feedback and feedforward
techniques, and such approaches are also thinkable in RL. For example, a high-level policy could
execute low-level feedforward trajectories using the options framework (Sutton et al., 1999); a related
idea is explored by Hansen et al. (1996). We believe that ultimately a combination of open-loop and
closed-loop techniques will be fruitful in reinforcement learning and think that this is an important
direction for future research.

REPRODUCIBILITY STATEMENT

We include all code required for reproduction of our results in the supplementary material. Detailed
descriptions of all algorithms (including baselines) are provided in Appendices A and F, and all
hyperparameters are listed in Appendix G. All empirical results include bootstrap confidence intervals
based on multiple random seeds (100 for the inverted pendulum experiments and 20 for the MuJoCo
experiments). Our theoretical result (Theorem 3.4) is proved in Appendix D, and all assumptions are
explained in detail in Section 3.1.

REFERENCES

K. J. Åström and T. Hägglund. PID Controllers: Theory, Design, and Tuning. International Society
for Measurement and Control, second edition, 1995. 10

K. J. Åström and R. M. Murray. Feedback Systems: An Introduction for Scientists and Engineers.
Princeton University Press, second edition, 2021. 2, 10

J. T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming.
SIAM, 2010. 9, 10

L. Böttcher, N. Antulov-Fantulin, and T. Asikis. AI Pontryagin or how artificial neural networks
learn to control dynamical systems. Nature communications, 13(333), 2022. URL https:
//doi.org/10.1038/s41467-021-27590-0. 9

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning. SIAM
review, 60(2):223–311, 2018. URL https://doi.org/10.1137/16M1080173. 16

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. OpenAI
Gym. arXiv:1606.01540, 2016. URL http://arxiv.org/abs/1606.01540. 8
4Except with a clever trick called vibrational control (Meerkov, 1980).

10

https://doi.org/10.1038/s41467-021-27590-0
https://doi.org/10.1038/s41467-021-27590-0
https://doi.org/10.1137/16M1080173
http://arxiv.org/abs/1606.01540

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

T. Carraro, M. Geiger, S. Körkel, and R. Rannacher (eds.). Multiple Shooting and Time Domain
Decomposition Methods. Springer, 2015. 9

Y. Chen and D. J. Braun. Hardware-in-the-loop iterative optimal feedback control without model-
based future prediction. IEEE Transactions on Robotics, 35(6):1419–1434, 2019. URL https:
//doi.org/10.1109/TRO.2019.2929014. 9

J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese, T. Ewalds, R. Hafner, A. Abdol-
maleki, D. de Las Casas, et al. Magnetic control of tokamak plasmas through deep reinforcement
learning. Nature, 602(7897):414–419, 2022. URL https://doi.org/10.1038/s41586
-021-04301-9. 2

M. Diehl, H. Bock, H. Diedam, and P.-B. Wieber. Fast direct multiple shooting algorithms for optimal
robot control. In Fast Motions in Biomechanics and Robotics: Optimization and Feedback Control,
pp. 65–93. Springer, 2006. URL https://doi.org/10.1007/978-3-540-36119-0_4.
9

O. Eberhard, J. Hollenstein, C. Pinneri, and G. Martius. Pink noise is all you need: Colored
noise exploration in deep reinforcement learning. In Proceedings of the Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum
?id=hQ9V5QN27eS. 7

K. Fragkiadaki, S. Levine, P. Felsen, and J. Malik. Recurrent network models for human dynamics.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 4346–4354, 2015.
URL https://doi.org/10.1109/ICCV.2015.488. 9

J. Gamiz, H. Martínez, A. Grau, Y. Bolea, and R. Vilanova. Feed-forward control for a drinking
water treatment plant chlorination process. In 2020 25th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), volume 1, pp. 462–467, 2020. URL
https://doi.org/10.1109/ETFA46521.2020.9211884. 2

H. P. Geering. Optimal Control with Engineering Applications. Springer, 2007. 9

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 1856–1865.
PMLR, 2018a. URL http://proceedings.mlr.press/v80/haarnoja18b.html.
8, 22

T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, and S. Levine. Soft actor-critic algorithms and applications. arXiv:1812.05905, 2018b.
URL http://arxiv.org/abs/1812.05905. 22

D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 2555–2565.
PMLR, 2019. URL https://proceedings.mlr.press/v97/hafner19a.html. 21

E. Hansen, A. Barto, and S. Zilberstein. Reinforcement learning for mixed open-loop and closed-
loop control. Advances in Neural Information Processing Systems, 9, 1996. URL https:
//proceedings.neurips.cc/paper/1996/hash/ab1a4d0dd4d48a2ba1077c4
494791306-Abstract.html. 10

G. Horn, S. Gros, and M. Diehl. Numerical trajectory optimization for airborne wind energy systems
described by high fidelity aircraft models. In U. Ahrens, M. Diehl, and R. Schmehl (eds.), Airborne
Wind Energy, pp. 205–218. Springer, 2013. URL https://doi.org/10.1007/978-3-6
42-39965-7_11. 10

N. Howe, S. Dufort-Labbé, N. Rajkumar, and P.-L. Bacon. Myriad: a real-world testbed to bridge
trajectory optimization and deep learning. In Advances in Neural Information Processing Systems,
volume 35, pp. 29801–29815, 2022. URL https://proceedings.neurips.cc/paper
_files/paper/2022/hash/c0b91f9a3587bf35287f41dba5d20233-Abstrac
t-Datasets_and_Benchmarks.html. 9

11

https://doi.org/10.1109/TRO.2019.2929014
https://doi.org/10.1109/TRO.2019.2929014
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1007/978-3-540-36119-0_4
https://openreview.net/forum?id=hQ9V5QN27eS
https://openreview.net/forum?id=hQ9V5QN27eS
https://doi.org/10.1109/ICCV.2015.488
https://doi.org/10.1109/ETFA46521.2020.9211884
http://proceedings.mlr.press/v80/haarnoja18b.html
http://arxiv.org/abs/1812.05905
https://proceedings.mlr.press/v97/hafner19a.html
https://proceedings.neurips.cc/paper/1996/hash/ab1a4d0dd4d48a2ba1077c4494791306-Abstract.html
https://proceedings.neurips.cc/paper/1996/hash/ab1a4d0dd4d48a2ba1077c4494791306-Abstract.html
https://proceedings.neurips.cc/paper/1996/hash/ab1a4d0dd4d48a2ba1077c4494791306-Abstract.html
https://doi.org/10.1007/978-3-642-39965-7_11
https://doi.org/10.1007/978-3-642-39965-7_11
https://proceedings.neurips.cc/paper_files/paper/2022/hash/c0b91f9a3587bf35287f41dba5d20233-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/c0b91f9a3587bf35287f41dba5d20233-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/c0b91f9a3587bf35287f41dba5d20233-Abstract-Datasets_and_Benchmarks.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

M. K. Janjua, H. Shah, M. White, E. Miahi, M. C. Machado, and A. White. GVFs in the real world:
making predictions online for water treatment. Machine Learning, 113(8):5151–5181, 2024. URL
https://doi.org/10.1007/s10994-023-06413-x. 2

W. Jin, Z. Wang, Z. Yang, and S. Mou. Pontryagin differentiable programming: An end-to-end
learning and control framework. In Advances in Neural Information Processing Systems, volume 33,
pp. 7979–7992, 2020. URL https://proceedings.neurips.cc/paper/2020/hash
/5a7b238ba0f6502e5d6be14424b20ded-Abstract.html. 9

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the Third
International Conference on Learning Representations, 2014. URL http://arxiv.org/ab
s/1412.6980. 22

J. H. Lee, T. Delbruck, and M. Pfeiffer. Training deep spiking neural networks using backpropagation.
Frontiers in Neuroscience, 10, 2016. URL https://doi.org/10.3389/fnins.2016.0
0508. 9

L. Ljung. System Identification: Theory for the User. Prentice Hall, 1999. 6

H. Ma, D. Büchler, B. Schölkopf, and M. Muehlebach. A learning-based iterative control framework
for controlling a robot arm with pneumatic artificial muscles. In Proceedings of Robotics: Science
and Systems, 2022. URL https://www.roboticsproceedings.org/rss18/p029
.html. 9

H. Ma, D. Büchler, B. Schölkopf, and M. Muehlebach. Reinforcement learning with model-based
feedforward inputs for robotic table tennis. Autonomous Robots, 47:1387–1403, 2023. URL
https://doi.org/10.1007/s10514-023-10140-6. 9

M. Mattei, R. Albanese, G. Ambrosino, and A. Portone. Open loop control strategies for plasma
scenarios: Linear and nonlinear techniques for configuration transitions. In Proceedings of
the 45th IEEE Conference on Decision and Control, pp. 2220–2225, 2006. URL https:
//doi.org/10.1109/CDC.2006.377412. 2

S. Meerkov. Principle of vibrational control: Theory and applications. IEEE Transactions on
Automatic Control, 25(4):755–762, 1980. URL https://doi.org/10.1109/TAC.1980
.1102426. 10

K. L. Moore. Iterative Learning Control for Deterministic Systems. Springer, 1993. URL https:
//doi.org/10.1007/978-1-4471-1912-8. 9

M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger. Differentiable volumetric rendering:
Learning implicit 3D representations without 3D supervision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3504–3515, 2020. URL https:
//openaccess.thecvf.com/content_CVPR_2020/html/Niemeyer_Differen
tiable_Volumetric_Rendering_Learning_Implicit_3D_Representations
_Without_3D_Supervision_CVPR_2020_paper.html. 9

C. Pinneri, S. Sawant, S. Blaes, J. Achterhold, J. Stueckler, M. Rolinek, and G. Martius. Sample-
efficient cross-entropy method for real-time planning. In Proceedings of the 2020 Conference
on Robot Learning, volume 155 of Proceedings of Machine Learning Research, pp. 1049–1065.
PMLR, 2021. URL https://proceedings.mlr.press/v155/pinneri21a.html.
21

L. Pontryagin, V. Boltayanskii, R. Gamkrelidze, and E. Mishchenko. Mathematical Theory of Optimal
Processes. Wiley, 1962. 2

A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-Baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html. 22

B. Recht. A tour of reinforcement learning: The view from continuous control. Annual Review of
Control, Robotics, and Autonomous Systems, 2:253–279, 2019. URL https://doi.org/10
.1146/annurev-control-053018-023825. 9

12

https://doi.org/10.1007/s10994-023-06413-x
https://proceedings.neurips.cc/paper/2020/hash/5a7b238ba0f6502e5d6be14424b20ded-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/5a7b238ba0f6502e5d6be14424b20ded-Abstract.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.3389/fnins.2016.00508
https://www.roboticsproceedings.org/rss18/p029.html
https://www.roboticsproceedings.org/rss18/p029.html
https://doi.org/10.1007/s10514-023-10140-6
https://doi.org/10.1109/CDC.2006.377412
https://doi.org/10.1109/CDC.2006.377412
https://doi.org/10.1109/TAC.1980.1102426
https://doi.org/10.1109/TAC.1980.1102426
https://doi.org/10.1007/978-1-4471-1912-8
https://doi.org/10.1007/978-1-4471-1912-8
https://openaccess.thecvf.com/content_CVPR_2020/html/Niemeyer_Differentiable_Volumetric_Rendering_Learning_Implicit_3D_Representations_Without_3D_Supervision_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Niemeyer_Differentiable_Volumetric_Rendering_Learning_Implicit_3D_Representations_Without_3D_Supervision_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Niemeyer_Differentiable_Volumetric_Rendering_Learning_Implicit_3D_Representations_Without_3D_Supervision_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Niemeyer_Differentiable_Volumetric_Rendering_Learning_Implicit_3D_Representations_Without_3D_Supervision_CVPR_2020_paper.html
https://proceedings.mlr.press/v155/pinneri21a.html
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.1146/annurev-control-053018-023825
https://doi.org/10.1146/annurev-control-053018-023825

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

R. Rubinstein. The cross-entropy method for combinatorial and continuous optimization. Methodol-
ogy and Computing in Applied Probability, 1:127–190, 1999. URL https://doi.org/10.1
023/A:1010091220143. 7, 20

S. Schaal and C. G. Atkeson. Learning control in robotics. IEEE Robotics & Automation Magazine,
17(2):20–29, 2010. URL https://doi.org/10.1109/MRA.2010.936957. 9

A. Schäfer, P. Kühl, M. Diehl, J. Schlöder, and H. G. Bock. Fast reduced multiple shooting methods for
nonlinear model predictive control. Chemical Engineering and Processing: Process Intensification,
46(11):1200–1214, 2007. URL https://doi.org/10.1016/j.cep.2006.06.024. 9

C. Sferrazza, M. Muehlebach, and R. D’Andrea. Learning-based parametrized model predictive
control for trajectory tracking. Optimal Control Applications and Methods, 41(6):2225–2249,
2020. URL https://doi.org/10.1002/oca.2656. 9

S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and Design. Wiley,
second edition, 2005. 10

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT press, second edition,
2018. 1

R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence, 112(1):181–211, 1999. URL https:
//doi.org/10.1016/S0004-3702(99)00052-1. 10

E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012.
URL https://doi.org/10.1109/IROS.2012.6386109. 8

M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d. Cola, T. Deleu, M. Goulão, A. Kallinteris,
A. KG, M. Krimmel, et al. Gymnasium, 2023. URL https://github.com/Farama-Fou
ndation/Gymnasium. 8

J. van Zundert and T. Oomen. On inversion-based approaches for feedforward and ILC. Mechatronics,
50:282–291, 2018. URL https://doi.org/10.1016/j.mechatronics.2017.09.0
10. 9

D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and M. Diehl. Time-optimal path
tracking for robots: A convex optimization approach. IEEE Transactions on Automatic Control,
54(10):2318–2327, 2009. URL https://doi.org/10.1109/TAC.2009.2028959. 10

M. Vlastelica, A. Paulus, V. Musil, G. Martius, and M. Rolínek. Differentiation of blackbox combina-
torial solvers. In Proceedings of the Eighth International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=BkevoJSYPB. 9

L. G. Wright, T. Onodera, M. M. Stein, T. Wang, D. T. Schachter, Z. Hu, and P. L. McMahon. Deep
physical neural networks trained with backpropagation. Nature, 601(7894):549–555, 2022. URL
https://doi.org/10.1038/s41586-021-04223-6. 9

13

https://doi.org/10.1023/A:1010091220143
https://doi.org/10.1023/A:1010091220143
https://doi.org/10.1109/MRA.2010.936957
https://doi.org/10.1016/j.cep.2006.06.024
https://doi.org/10.1002/oca.2656
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1109/IROS.2012.6386109
https://github.com/Farama-Foundation/Gymnasium
https://github.com/Farama-Foundation/Gymnasium
https://doi.org/10.1016/j.mechatronics.2017.09.010
https://doi.org/10.1016/j.mechatronics.2017.09.010
https://doi.org/10.1109/TAC.2009.2028959
https://openreview.net/forum?id=BkevoJSYPB
https://doi.org/10.1038/s41586-021-04223-6

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ALGORITHMS

In this section, we provide detailed descriptions of the three open-loop RL algorithms presented in
the main text. The model-based algorithm of Section 3.2 is listed in Algorithm A.1, the model-free
on-trajectory method of Section 3.3 is listed in Algorithm A.2, and the off-trajectory method of
Section 3.4 is listed in Algorithm A.3. The hyperparameters we use in these algorithms are discussed
in Appendix G.

Algorithm A.1: Model-based open-loop RL

Input: Model f̃ : X × U → X , optimization steps N ∈ N, step size η > 0
1 Initialize u0:T−1 (initial action sequence)
2 for k = 1, 2, . . . , N do

// Forward pass
3 x0:T ← rollout(u0:T−1)

// Backward pass

4 λ̃T ← ∇rT (xT)
5 for t = T − 1, T − 2, . . . , 0 do
6 λ̃t ← ∇xr(xt, ut) +∇xf̃(xt, ut)λ̃t+1

7 gt ← ∇ur(xt, ut) +∇uf̃(xt, ut)λ̃t+1

8 ut ← ut + ηgt // Gradient ascent
9 end

10 end

Algorithm A.2: Model-free on-trajectory open-loop RL
Input: Number of rollouts M ∈ N, noise scale σ > 0, optimization steps N ∈ N, step size

η > 0
1 Initialize ū0:T−1 (initial action sequence)
2 for k = 1, 2, . . . , N do

// Forward passes
3 x̄0:T ← rollout(ū0:T−1)
4 for i = 1, 2, . . . ,M do
5 u

(i)
0:T−1 ∼ N (ū0:T−1, σI)

6 x
(i)
0:T ← rollout(u

(i)
0:T−1)

7 ∆u
(i)
0:T−1 ← u

(i)
0:T−1 − ū0:T−1

8 ∆x
(i)
0:T ← x

(i)
0:T − x̄0:T

9 end
// Backward pass

10 λ̃T ← ∇rT (x̄T)
11 for t = T − 1, T − 2, . . . , 0 do

// Jacobian estimation

12 At, Bt ← argminAt∈RD×D,Bt∈RK×D

∑M
i=1∥A⊤

t ∆x
(i)
t +B⊤

t ∆u
(i)
t −∆x

(i)
t+1∥2

// Pontryagin update

13 λ̃t ← ∇xr(x̄t, ūt) +Atλ̃t+1

14 gt ← ∇ur(x̄t, ūt) +Btλ̃t+1

15 ūt ← ūt + ηgt // Gradient ascent
16 end
17 end

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm A.3: Model-free off-trajectory open-loop RL
Input: Forgetting factor α ∈ [0, 1], noise scale σ > 0, initial precision q0 > 0, optimization

steps N ∈ N, step size η > 0
1 Initialize ū0:T−1 (initial action sequence)
2 Initialize Ft ∈ RD×(D+K+1),∀t ∈ [T − 1]0
3 Qt ← q0I ∈ R(D+K+1)×(D+K+1),∀t ∈ [T − 1]0
4 for k = 1, 2, . . . , N do

// Forward pass
5 u0:T−1 ∼ N (ū0:T−1, σI)
6 x0:T ← rollout(u0:T−1)

// Backward pass

7 λ̃T ← ∇rT (xT)
8 for t = T − 1, T − 2, . . . , 0 do

// Jacobian estimation
9 zt ← [x⊤

t u⊤
t 1]⊤

10 Qt ← αQt + (1− α)q0I + ztz
⊤
t

11 Ft ← Ft +Q−1
t zt(xt+1 − Ftzt)

⊤

12 [A⊤
t B⊤

t ct]← Ft

// Pontryagin update

13 λ̃t ← ∇xr(xt, ut) +Atλ̃t+1

14 gt ← ∇ur(xt, ut) +Btλ̃t+1

15 ūt ← ūt + ηgt // Gradient ascent
16 end
17 end

B DERIVATION OF PONTRYAGIN’S PRINCIPLE

In this section, we will derive Pontryagin’s principle, Eqs. (1) to (3), using the method of Lagrange
multipliers. In the following we view the objective J as a function of states and actions, that is

J(x0:T , u0:T−1)
.
=

T−1∑
t=0

r(xt, ut) + rT (xT).

We maximize J with respect to x0:T and u0:T−1 subject to the constraint that xt+1 = f(xt, ut) for
all t = [T − 1]0. The corresponding Lagrangian is

L(x0:T , u0:T−1, λ1:T)
.
=

T−1∑
t=0

{r(xt, ut) + λ⊤
t+1(f(xt, ut)− xt+1)}+ rT (xT),

where the constraints are included through the multipliers λ1:T . The costate equations are then
obtained by setting the partial derivatives of the Lagrangian with respect to x0:T to zero:

∇xt
L = ∇xr(xt, ut) +∇xf(xt, ut)λt+1 − λt

.
= 0

=⇒ λt = ∇xr(xt, ut) +∇xf(xt, ut)λt+1

∇xT
L = ∇rT (xT)− λT

.
= 0

=⇒ λT = ∇rT (xT).

Setting the partial derivatives of the Lagrangian with respect to λ1:T to zero yields the dynamics
equations, and the partial derivatives of the Lagrangian with respect to u0:T−1 are

∇ut
L = ∇ur(xt, ut) +∇uf(xt, ut)λt+1,

which is the same expression for the gradient of the objective as in Eq. (1).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C PONTRYAGIN’S PRINCIPLE FROM BACKPROPAGATION

In Section 3.2, we mention that computing the gradient of

J(u0:T−1) =

T−1∑
t=0

r(xt, ut) + rT (xT)

= r(x0, u0) + r{f(x0, u0)︸ ︷︷ ︸
x1

, u1}+ r{f(f(x0, u0), u1)︸ ︷︷ ︸
x2

, u2}+ · · ·

+ r{f(f(· · · f(f(x0, u0), u1) · · ·), uT−2)︸ ︷︷ ︸
xT−1

, uT−1}

+ rT {f(f(· · · f(f(x0, u0), u1) · · ·), uT−1)︸ ︷︷ ︸
xT

}

by means of the backpropagation algorithm, i.e. a repeated application of the chain rule, leads
naturally to Pontryagin’s principle. The chain rule states that for g : Rn → Rk, h : Rk → Rm and
x ∈ Rn,

∇(h ◦ g)(x) = ∇g(x)∇h{g(x)},
where ∇g : Rn → Rn×k, ∇h : Rk → Rk×m and ∇(h ◦ g) : Rn → Rn×m. From this, we can
compute the gradient of the objective function with respect to the action ut at time t ∈ [T − 1]0 as

∇ut
J(u0:T−1) = ∇ur(xt, ut) +∇uf(xt, ut)∇xr(xt+1, ut+1)

+∇uf(xt, ut)∇xf(xt+1, ut+1)∇xr(xt+2, ut+2)

+ · · ·
+∇uf(xt, ut)∇xf(xt+1, ut+1) · · · ∇xf(xT−2, uT−2)∇xr(xT−1, uT−1)

+∇uf(xt, ut)∇xf(xt+1, ut+1) · · · ∇xf(xT−1, uT−1)∇rT (xT)

= ∇ur(xt, ut) +∇uf(xt, ut)λt+1,

where we have introduced the shorthand λt+1 for the blue part. This is the same expression for the
gradient as in Eq. (1), and it can easily be seen that this definition of λt satisfies the costate equations
(2) and (3).

D PROOF OF THEOREM 3.4

In this section, we prove Theorem 3.4, our convergence result of Algorithm 1. The main part of
the proof is contained in the proof of Theorem D.3, which provides a lower bound for the inner
product between the approximate and true gradients as well as an upper bound for the norm of the
approximate gradients. Intuitively, this theorem turns Assumption 3.2, which is a statement about the
error of the approximate Jacobians, into a statement about the error of the approximate gradient. We
then show that Theorem 3.4 follows by making use of the L-smoothness (Assumption 3.3) of the
objective function. This latter part is a standard result in the analysis of stochastic gradient methods
(e.g., Bottou et al., 2018).

Before coming to the main result, we introduce the following shorthand notation. Given a fixed
trajectory (u0:T−1, x0:T), we define

∇Jt
.
= ∇uftλt+1, εt

.
= At −∇xft, ε′t

.
= Bt −∇uft and δt+1

.
= λ̃t+1 − λt+1

for all times t ∈ [T − 1]0. By Eq. (1) and Assumption 3.1, the first quantity defines the true gradient
and the approximate gradient is given by gt = Btλ̃t+1. We also state two small lemmas, which we
will use routinely in the following proof.

Lemma D.1. Let x, y ∈ Rn for n ∈ N and α ∈ R such that ∥x∥ ≤ α∥y∥. Then, |x⊤y| ≤ α∥y∥2.

Proof. ∥x∥ ≤ α∥y∥ =⇒ ∥x∥∥y∥ ≤ α∥y∥2 =⇒ |x⊤y| ≤ α∥y∥2 (by Cauchy-Schwarz).

Lemma D.2. Let A,B ∈ Rm×n for some m,n ∈ N and x, y ∈ Rn such that σ̄(A)∥x∥ ≤
¯
σ(B)∥y∥.

Then, ∥Ax∥ ≤ ∥By∥.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. This is a simple corollary of the Courant-Fischer (min-max) theorem. The min-max theorem
states that, for a symmetric matrix C ∈ Rn×n, the minimum and maximum eigenvalues

¯
λ(C) and

λ̄(C) are characterized in the following way:

¯
λ(C) = min

z∈Rn

∥z∥=1

z⊤Cz and λ̄(C) = max
z∈Rn

∥z∥=1

z⊤Cz.

This can be extended to a characterization of the singular values , σ̄(A) and
¯
σ(B) by relating them to

the eigenvalues of A⊤A and B⊤B, respectively:

σ̄(A) =
√

λ̄(A⊤A) = max
z∈Rn

∥z∥=1

√
z⊤A⊤Az = max

z∈Rn

∥z∥=1

∥Az∥ ≥ 1

∥x∥
∥Ax∥,

¯
σ(B) =

√
¯
λ(B⊤B) = min

z∈Rn

∥z∥=1

√
z⊤B⊤Bz = min

z∈Rn

∥z∥=1

∥Bz∥ ≤ 1

∥y∥
∥By∥.

Combining these inequalities, we get:

∥Ax∥ ≤ σ̄(A)∥x∥ ≤
¯
σ(B)∥y∥ ≤ ∥By∥.

Theorem D.3. Suppose Assumptions 3.1 and 3.2 hold with γ and ζ and define µ
.
= 1− γ − ζ − γζ

and ν
.
= 1 + γ + ζ + γζ. Then,

g⊤t ∇Jt ≥ µ∥∇Jt∥2 and ∥gt∥ ≤ ν∥∇Jt∥,
for all t ∈ [T − 1]0.
Proof. Let t ∈ [T − 1]0 be fixed. Decomposing the left-hand side of the first inequality, we get

g⊤t ∇Jt = λ̃⊤
t+1B

⊤
t ∇uftλt+1

= (λt+1 + δt+1)
⊤(∇uft + ε′t)

⊤∇uftλt+1

= ∥∇Jt∥2 + λ⊤
t+1ε

′⊤
t ∇uftλt+1︸ ︷︷ ︸

a

+ δ⊤t+1∇uf
⊤
t ∇uftλt+1︸ ︷︷ ︸
b

+ δ⊤t+1ε
′⊤
t ∇uftλt+1︸ ︷︷ ︸

c

≥ ∥∇Jt∥2 − |a| − |b| − |c|.
We will now show that

|a| ≤ ζ∥∇Jt∥2 and |b| ≤ γ∥∇Jt∥2 and |c| ≤ γζ∥∇Jt∥2,

which, when taken together, will give us

g⊤t ∇Jt ≥ (1− γ − ζ − γζ)∥∇Jt∥2 = µ∥∇Jt∥2.
We first derive the bound on |a|:

σ̄(ε′t) ≤ ζ
¯
σ(∇uft) (Assumption 3.2b)

=⇒ ∥ε′tλt+1∥ ≤ ζ∥∇uftλt+1∥ (Lemma D.2) (8)

=⇒ |λ⊤
t+1ε

′⊤
t ∇uftλt+1︸ ︷︷ ︸

a

| ≤ ζ∥∇Jt∥2. (Lemma D.1)

The expression for b involves δt+1, which is the error of the approximate costate λ̃t+1. This error
comes from the cumulative error build-up due to εt+1:T−1, the errors of the approximate Jacobians
used in the backward pass. To bound |b| we therefore first need to bound this error build-up. To this
end, we now show that for all s ∈ [T − t],

∥δt+s∥ ≤
γ

3s−1
κ−1(∇uft)

s−1∏
i=1

κ−1(∇xft+i)∥λt+s∥, (9)

where we write the inverse condition number of a matrix A as κ−1(A)
.
=

¯
σ(A)/σ̄(A). To prove this

bound, we perform a backward induction on s. First, consider s = T − t. The right-hand side of
Eq. (9) is clearly nonnegative. The left-hand side is

∥δT ∥ = ∥λ̃T − λT ∥ = 0,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

as λ̃T = λT . Thus, the inequality holds for s = T − t. We now complete the induction by showing
that it holds for any s ∈ [T − t− 1], assuming that it holds for s+ 1. We start by decomposing δt+s:

δt+s = λ̃t+s − λt+s

= At+sλ̃t+s+1 −∇xft+sλt+s+1

= (∇xft+s + εt+s)(λt+s+1 + δt+s+1)−∇xft+sλt+s+1

= εt+sλt+s+1 +∇xft+sδt+s+1 + εt+sδt+s+1.

Now, we can bound ∥δt+s∥ by bounding these individual contributions:

∥δt+s∥ ≤ ∥εt+sλt+s+1︸ ︷︷ ︸
a′

∥+ ∥∇xft+sδt+s+1︸ ︷︷ ︸
b′

∥+ ∥εt+sδt+s+1︸ ︷︷ ︸
c′

∥.

We start with ∥a′∥:

σ̄(εt+s) ≤
γ

3s
κ−1(∇uft)

s−1∏
i=1

κ−1(∇xft+i)
¯
σ(∇xft+s) (Assumption 3.2a)

=⇒ ∥εt+sλt+s+1︸ ︷︷ ︸
a′

∥ ≤ γ

3s
κ−1(∇uft)

s−1∏
i=1

κ−1(∇xft+i)∥∇xft+sλt+s+1︸ ︷︷ ︸
λt+s

∥. (Lemma D.2)

Now, ∥b′∥:

∥δt+s+1∥ ≤
γ

3s
κ−1(∇uft)

s∏
i=1

κ−1(∇xft+i)∥λt+s+1∥

(Induction hypothesis)

⇐⇒ σ̄(∇xft+s)∥δt+s+1∥ ≤
γ

3s
κ−1(∇uft)

s−1∏
i=1

κ−1(∇xft+i)
¯
σ(∇xft+s)∥λt+s+1∥

(Definition of κ−1)

=⇒ ∥∇xft+sδt+s+1︸ ︷︷ ︸
b′

∥ ≤ γ

3s
κ−1(∇uft)

s−1∏
i=1

κ−1(∇xft+i)∥∇xft+sλt+s+1︸ ︷︷ ︸
λt+s

∥.

(Lemma D.2)

And finally, ∥c′∥:
σ̄(εt+s) ≤

¯
σ(∇xft+s) ≤ σ̄(∇xft+s) (10)

=⇒ σ̄(εt+s)∥δt+s+1∥ ≤
γ

3s
κ−1(∇uft)

s∏
i=1

κ−1(∇xft+i)σ̄(∇xft+s)∥λt+s+1∥

(Induction hypothesis)

⇐⇒ σ̄(εt+s)∥δt+s+1∥ ≤
γ

3s
κ−1(∇uft)

s−1∏
i=1

κ−1(∇xft+i)
¯
σ(∇xft+s)∥λt+s+1∥

(Definition of κ−1)

=⇒ ∥εt+sδt+s+1︸ ︷︷ ︸
c′

∥ ≤ γ

3s
κ−1(∇uft)

s−1∏
i=1

κ−1(∇xft+i)∥∇xft+sλt+s+1︸ ︷︷ ︸
λt+s

∥. (Lemma D.2)

Here, Eq. (10) follows from Assumption 3.2a by noting that that the constant before
¯
σ(∇xft+s) on

the right-hand side is not greater than 1. We can now put all three bounds together to give us Eq. (9):

∥δt+s∥ ≤ ∥a′∥+ ∥b′∥+ ∥c′∥ ≤ 3 · γ
3s

κ−1(∇uft)

s−1∏
i=1

κ−1(∇xft+i)∥λt+s∥.

Equipped with a bound on δt+s, we are ready to bound |b| and |c|. Starting with |b|, we have:

∥δt+1∥ ≤ γκ−1(∇uft)∥λt+1∥ (Eq. (9) for s = 1)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

⇐⇒ σ̄(∇uft)∥δt+1∥ ≤ γ
¯
σ(∇uft)∥λt+1∥ (Definition of κ−1)

=⇒ ∥∇uftδt+1∥ ≤ γ∥∇uftλt+1∥ (Lemma D.2) (11)

=⇒ | δ⊤t+1∇uf
⊤
t ∇uftλt+1︸ ︷︷ ︸
b

| ≤ γ∥∇Jt∥2. (Lemma D.1)

And finally, we can bound |c|:
σ̄(ε′t) ≤ ζ

¯
σ(∇uft) ≤ ζσ̄(∇uft) (Assumption 3.2b)

=⇒ σ̄(ε′t)κ
−1(∇uft)∥λt+1∥ ≤ ζ

¯
σ(∇uft)∥λt+1∥ (Definition of κ−1)

=⇒ σ̄(ε′t)∥δt+1∥ ≤ γζ
¯
σ(∇uft)∥λt+1∥ (Eq. (9) for s = 1)

=⇒ ∥ε′tδt+1∥ ≤ γζ∥∇uftλt+1∥ (Lemma D.2) (12)

=⇒ | δ⊤t+1ε
′⊤
t ∇uftλt+1︸ ︷︷ ︸

c

| ≤ γζ∥∇Jt∥2. (Lemma D.1)

This concludes the proof of the first inequality showing that

g⊤t ∇Jt ≥ µ∥∇Jt∥2.
The second inequality,

∥gt∥ ≤ ν∥∇Jt∥,
follows easily from the work we have already done. To show this, we start by decomposing gt:

gt = Btλ̃t+1

= (∇uft + ε′t)(λt+1 + δt+1)

= ∇Jt +∇uftδt+1 + ε′tλt+1 + ε′tδt+1.

To bound the norm of gt, we again make use of the triangle inequality:

∥gt∥ ≤ ∥∇Jt∥+ ∥∇uftδt+1∥+ ∥ε′tλt+1∥+ ∥ε′tδt+1∥
≤ (1 + γ + ζ + γζ)∥∇Jt∥
= ν∥∇Jt∥,

where we have used Eqs. (8), (11) and (12).

Proof of Theorem 3.4. Let N ∈ N and t ∈ [T − 1]0 be fixed. In Algorithm A.1, the iterates are
computed, for all k ∈ [N − 1]0, as

u
(k+1)
t = u

(k)
t + ηg

(k)
t ,

where g
(k)
t is the approximate gradient at iteration k. We denote the true gradient at iteration k by

∇J (k)
t . From the L-smoothness of the objective function (Assumption 3.3), it follows that

J(u
(k+1)
0:T−1) ≥ J(u

(k)
0:T−1) +∇utJ(u

(k)
0:T−1)

⊤(u
(k+1)
t − u

(k)
t)− L

2
∥u(k+1)

t − u
(k)
t ∥2

= J(u
(k)
0:T−1) +∇J

(k)
t

⊤
(ηg

(k)
t)− L

2
∥ηg(k)t ∥2

≥ J(u
(k)
0:T−1) + ηµ∥∇J (k)

t ∥2 −
η2Lν2

2
∥∇J (k)

t ∥2 (Theorem D.3)

= J(u
(k)
0:T−1) + η

(
µ− ηLν2

2︸ ︷︷ ︸
α

)
∥∇J (k)

t ∥2.

Theorem 3.4 demands that η > 0 is set small enough such that α > 0, which is possible because
0 < µ < ν and L > 0. Thus, we get

ηα∥∇J (k)
t ∥2 ≤ J(u

(k+1)
0:T−1)− J(u

(k)
0:T−1)

=⇒ 1

N

N−1∑
k=0

∥∇J (k)
t ∥2 ≤

1

αηN

N−1∑
k=0

{
J(u

(k+1)
0:T−1)− J(u

(k)
0:T−1)

}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

=
1

αηN

{
J(u

(N)
0:T−1)− J(u

(0)
0:T−1)

}
≤

J⋆ − J(u
(0)
0:T−1)

αηN
,

where J⋆ .
= supu∈UT J(u) is the optimal value of the initial state.

E FURTHER EXPERIMENTS

In this section, we repeat the MuJoCo experiments of Section 4.2 with longer time-horizons T . The
results are shown in Fig. 8. Our algorithms are sensitive to the horizon T , as the costates, which are
propagated backward in time, attain some error at each propagation step due to the approximation
errors of the Jacobians. For this reason, Theorem 3.4 demands (through Assumption 3.2) more
accurate Jacobians at later time steps. Thus, for large T , our convergence result requires more
accurate Jacobian estimates. However, in Fig. 8, we see that Algorithm A.3 is able to cope with
longer horizons for the two MuJoCo environments. The reason for this discrepancy between our
theoretical and empirical result is that Theorem 3.4 does not consider the stability of the system
under consideration. The two MuJoCo systems, Ant-v4 and HalfCheetah-v4, are stable along
the trajectories encountered during training, which prevents an exponential build-up of error in the
costate propagation.

0 5000 10000 15000 20000
Episodes

100

200

300

400

500

A
ve

ra
ge

re
tu

rn
J

Ant-v4

0 5000 10000 15000 20000
Episodes

0

100

200

300

400

HalfCheetah-v4

T = 100
T = 200
T = 300

Figure 8: Learning curves of our off-trajectory algorithm for the two MuJoCo tasks. All experiments
were repeated with 20 random seeds, and we show 95%-bootstrap confidence intervals for the average
return.

F BASELINES

We compare our algorithms against two baselines: the finite-difference approach discussed at the end
of Section 3.3 and the gradient-free cross-entropy method (CEM; Rubinstein, 1999). These methods
are listed in Algorithms F.1 and F.2.

Similarly to the finite-difference method and our on-trajectory algorithm, in CEM, we also perform
M ∈ N rollouts of perturbed action sequences {ui ∼ N (ū, σI)}Mi=1. Here, ū is the current action
sequence and σ > 0 is a noise scale parameter. We then construct the elite set S of the L < M
perturbed action sequences with the highest returns, where L ∈ N is a hyperparameter. Finally, the
current action sequence ū is updated to be the mean of the elite sequences, such that ū← 1

L

∑
u∈S u.

This method can be considerably more efficient than the simple finite-difference method. Here, we are
not trying to estimate the gradient anymore, so we can potentially improve the action sequence with far
fewer rollouts than would be needed in the finite-difference approach. However, this method suffers
from the same fundamental deficiency as the finite-difference method: it ignores the Markovian
structure of the RL problem and treats the objective function J as a black box. CEM is commonly
used in model-based closed-loop reinforcement learning for planning. In this setting, the rollouts are
hallucinated using the approximate model. Instead of executing the complete open-loop trajectory,
the model-predictive control framework is typically employed. The planning procedure is repeated

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

after each step in the real environment with the executed action being the first item in the planned
action sequence. Thus, this setting is very different from our open-loop RL objective. For this reason,
we slightly modify the CEM algorithm to better fit our requirements. In model-based RL, typically
both mean ū and standard variation σ are adapted in CEM (Hafner et al., 2019; Pinneri et al., 2021).
In our experiments, this approach led to very fast convergence (σ → 0) to suboptimal trajectories.
We thus only fit the mean and keep the noise scale fixed, which we empirically observed to give much
better results.

Algorithm F.1: Finite-difference method
Input: Number of rollouts M ∈ N, noise scale σ > 0, step size η > 0

1 Initialize ū0:T−1 (initial action sequence)
2 ū← vec(ū0:T−1) ∈ RTK

3 for k = 1, 2, . . . , N do
// Forward passes

4 x̄0:T ← rollout(ū0:T−1)

5 J̄ ←
∑T−1

t=0 r(x̄t, ūt) + rT (x̄T)
6 for i = 1, 2, . . . ,M do
7 u0:T−1 ∼ N (ū0:T−1, σI)
8 x0:T ← rollout(u0:T−1)

9 ui ← vec(u0:T−1) ∈ RTK

10 Ji ←
∑T−1

t=0 r(xt, ut) + rT (xT)
11 end

// Gradient estimation

12 g ← argming∈RTK

∑M
i=1{Ji − J̄ − g⊤(ui − ū)}2

// Gradient ascent
13 ū← ū+ ηg

14 ū0:T−1 ← reshape(ū) ∈ RT×K

15 end

Algorithm F.2: Cross-entropy method
Input: Number of rollouts M ∈ N, noise scale σ > 0, size of elite set L ∈ N

1 Initialize ū0:T−1 (initial action sequence)
2 ū← vec(ū0:T−1) ∈ RTK

3 for k = 1, 2, . . . , N do
// Forward passes

4 for i = 1, 2, . . . ,M do
5 u0:T−1 ∼ N (ū0:T−1, σI)
6 x0:T ← rollout(u0:T−1)

7 ui ← vec(u0:T−1) ∈ RTK

8 Ji ←
∑T−1

t=0 r(xt, ut) + rT (xT)
9 end

// Elite set computation
10 S ← arg partitionL{(−Ji)Mi=1}1:L

// Action sequence update
11 ū← 1

L

∑
i∈S ui

12 ū0:T−1 ← reshape(ū) ∈ RT×K

13 end

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 1: Pendulum experiments hyperparameters

Parameter Value

Number of optimization steps N 50000
Step size η 0.001
Noise scale σ 0.001
Number of perturbed rollouts M 10
Forgetting factor α 0.8
Initial precision q0 0.001
Cross-entropy method: M 5 20
Finite-difference method: M 5 20
Finite-difference method: σ5 0.0001
MLP model: hidden layers [16, 16]
MLP model: training rollouts 1000
MLP model training: epochs 10
MLP model training: batch size 100
MLP model training: step size 0.002
MLP model training: weight decay 0.001

Table 2: MuJoCo experiments hyperparameters

Parameter Value

Number of optimization steps N 20000
Step size η 0.0001
Noise scale σ 0.03
Initial precision q0 0.0001

Forgetting factor α
HalfCheetah-v4, T = 100 0.9
HalfCheetah-v4, T = 200 0.8
HalfCheetah-v4, T = 300 0.8
Ant-v4, T = 100 0.95
Ant-v4, T = 200 0.9
Ant-v4, T = 300 0.85

G HYPERPARAMETERS

Unless stated otherwise, we used the hyperparameters listed in Table 1 in the inverted penulum
experiments of Section 4.1, and those listed in Table 2 in the MuJoCo experiments of Section 4.2
and Appendix E. In each experiment, all actions in the initial action trajectory u

(0)
0:T−1 are sampled

from a zero-mean Gaussian distribution with standard deviation 0.01. We use the Adam optimizer
(Kingma & Ba, 2014) both for training the MLP model and for performing the gradient ascent steps
in Algorithms A.1 to A.3 and F.1. We did not optimize the hyperparameters of soft actor-critic (SAC),
but kept the default values suggested by Haarnoja et al. (2018a), as these are already optimized for
the MuJoCo environments. The entropy coefficient of the SAC algorithm is tuned automatically
according to the procedure described by Haarnoja et al. (2018b). In our experiments, we make use of
the Stable-Baselines3 (Raffin et al., 2021) implementation of SAC.

For our off-trajectory method, we found it worthwile to tune the forgetting factor α to the specific
task at hand. Large α means that data is retained for longer, which both makes the algorithm more
sample efficient (i.e., faster convergece) and the Jacobian estimates more biased (i.e., convergence to
a worse solution). In Fig. 9, we show this trade-off in the learning curves for the MuJoCo tasks (with
the horizon T = 200). We found that the performance is much less senstitive to the choice of noise
scale σ and initial precision q0 than to the choice of the forgetting factor α.

0 5000 10000 15000 20000
Episodes

200

250

300

350

A
ve

ra
ge

re
tu

rn
J

Ant-v4

0 5000 10000 15000 20000
Episodes

0

100

200

300

HalfCheetah-v4

0.8

0.85

0.9

0.95

0.99

Fo
rg

et
tin

g
fa

ct
or
α

Figure 9: Analysis of the influence of the forgetting factor α on the performance of the off-trajectory
method (Algorithm A.3) in the MuJoCo environments (T = 200). All experiments were repeated
with 20 random seeds, and we show 95%-bootstrap confidence intervals for the average return.

5 This value was chosen on the basis of the experiment presented in Fig. 5.

22

	Introduction
	Background
	Method
	Convergence of Algorithm 1
	Model-based open-loop RL
	Model-free on-trajectory open-loop RL
	Model-free off-trajectory open-loop RL

	Experiments
	Inverted pendulum swing-up
	MuJoCo

	Related work
	Discussion
	Algorithms
	Derivation of Pontryagin's principle
	Pontryagin's principle from backpropagation
	Proof of Theorem 3.4
	Further experiments
	Baselines
	Hyperparameters

