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Abstract

The adversarial vulnerability of Deep Neural Networks (DNNs) has been well-
known and widely concerned, often under the context of learning top-1 attacks (e.g.,
fooling a DNN to classify a cat image as dog). This paper shows that the concern is
much more serious by learning significantly more aggressive ordered top-K clear-
box 1 targeted attacks proposed in [Zhang and Wu, 2020]. We propose a novel and
rigorous quadratic programming (QP) method of learning ordered top-K attacks
with low computing cost, dubbed as QuadAttacK. Our QuadAttacK directly
solves the QP to satisfy the attack constraint in the feature embedding space (i.e.,
the input space to the final linear classifier), which thus exploits the semantics of the
feature embedding space (i.e., the principle of class coherence). With the optimized
feature embedding vector perturbation, it then computes the adversarial perturbation
in the data space via the vanilla one-step back-propagation. In experiments, the
proposed QuadAttacK is tested in the ImageNet-1k classification using ResNet-
50, DenseNet-121, and Vision Transformers (ViT-B and DEiT-S). It successfully
pushes the boundary of successful ordered top-K attacks from K = 10 up to
K = 20 at a cheap budget (1× 60) and further improves attack success rates for
K = 5 for all tested models, while retaining the performance for K = 1.

1 Introduction

As the development of machine deep learning and Artificial Intelligence (AI) continues to accelerate,
the need to address potential vulnerabilities of Deep Neural Networks (DNNs) becomes increasingly
crucial towards building safe-enabled and trustworthy learning and AI systems. Among these
vulnerabilities, adversarial attacks [Xie et al., 2017, Kos et al., 2018, Sharif et al., 2016, Ebrahimi
et al., 2018, Qin et al., 2019, Lin et al., 2017, Papernot et al., 2017, Liu et al., 2017, Xie et al.,
2019b, Dong et al., 2019, Goodfellow et al., 2015, Kannan et al., 2018, Madry et al., 2017, Xie
et al., 2019a], that can almost arbitrarily manipulate the prediction of a trained DNN for a given
testing data by learning visually imperceptible perturbations, especially under clear-box target attack
settings, are of particular interest in terms of revealing the shortcut learning of discriminatively-trained
DNNs [Geirhos et al., 2020]. Clear-box targeted adversarial attacks are often learned under the top-1
attack setting with the objective of causing catastrophic performance drop of the top-1 accuracy on
adversarial examples against the clean counterparts.

To generalize the vanilla setting of learning top-1 attacks, much more aggressive ordered top-K
attacks have been proposed in [Zhang and Wu, 2020], which aim to learn adversarial examples that
manipulate a trained DNN to predict any specified K attack targets in any given order as the top-K
predicted classes. As shown in Fig. 5, in the ImageNet-1k [Russakovsky et al., 2015] classification

1This is often referred to as white/black-box attacks in the literature. We choose to adopt neutral terminology,
clear/opaque-box attacks in this paper, and omit the prefix clear-box for simplicity.
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Figure 1: Adversarial examples learned by our QuadAttacK (K = 20) for a same clean image using
four different networks: two popular convolutional neural networks (ResNet-50 [He et al., 2016] and
DenseNet-121 [Huang et al., 2017]), and two widely used Vision Transformers (ViT-B [Dosovitskiy
et al., 2020] and DEiT-S [Touvron et al., 2021]). The ground-truth label is agama. The ordered
top-20 targets (randomly sampled and kept unchanged for the four models) are: [sea cucumber,
barrow, odometer, bloodhound, hen-of-the-woods, ringneck snake, snail, tiger shark,
Pembroke, altar, wig, submarine, macaw, combination lock, ram, Irish wolfhound,
confectionery, buckle, chime, garden spider]. For example, the top-20 classes of the clean image
by DEiT-S are [agama, frilled lizard, shovel, reel, common iguana, Yorkshire terrier, coho, alligator lizard, hand
blower, meerkat, ostrich, mongoose, fiddler crab, eft, wing, bustard, green lizard, whiptail, brass, American
chameleon], which have more or less visual similarities. More examples are the Appendix B.

task, consider a clean testing image of ‘Agama’ that can be correctly classified by some trained DNNs
such as the four networks we tested, let’s say a desired list of the ordered top-20 attack targets as
shown in the caption. An ordered top-K attack method would seek to find the adversarial perturbation
to the input image that manipulates the DNN’s predictions to ensure that the top-20 predicted classes
of the perturbed image match the specified list in the given order.

Why to learn ordered top-K attacks? They facilitate exploiting the principle of “class coherence"
that reflect real-world scenarios where the relative importance or priority of certain classes is crucial
to recognize the relationships or logic connecting classes within ordinal or nominal context. Unlike
unordered top-K or top-1 attacks, ordered top-K attacks can subtly manipulate predictions while
maintaining coherence within the expected context.

• An Ordinal Example. Imagine a cancer risk assessment tool that analyzes 2D medical images (e.g.,
mammograms) to categorize patients’ cancer risk into the ordinal 7-level risk ratings ([Extremely
High Risk, Very High Risk, High Risk, Moderate Risk, Low Risk, Minimal Risk, No Risk]), An
oncologist could use this tool to triage patients, prioritizing those in the highest risk categories
for immediate intervention. An attacker aiming to delay treatment might use an ordered top-3
adversarial attack to change a prediction for a patient initially assessed as Very High Risk. They
could target the classes [Moderate, Low, Minimal], subtly downgrading the urgency without
breaking the logical sequence of risk categories. An unordered attack, in contrast, might lead to
a sequence like [Low, Very High, Minimal], disrupting the ordinal relationship between classes.
Such a disruption could raise red flags, making the attack easier to detect.

• A Nominal Example. Traffic control systems could use deep learning to optimize flow by adjusting
the timing of traffic lights based on the types of vehicles seen. Priority might be given to certain
vehicle classes, such as public transit or emergency vehicles, to improve response times. Imagine
a city’s traffic control system, which has specific traffic light timing behavior for the nominal
vehicle categories [Emergency Vehicle, Public Transit, Commercial Vehicle, Personal Car, Bicycle].
Public transit might be given slightly extended green lights during rush hours to encourage public
transportation use. An attacker wanting to cause delays for personal cars without raising alarms
could launch an ordered top-2 adversarial attack, targeting the sequence [Commercial Vehicle,
Public Transit]. This would cause the system to interpret most personal cars as commercial vehicles
during the attack, applying the extended green light times meant for public transit to lanes primarily

2



Clean Image

Fe
at

ur
e

Em
be

dd
in

g

Mean

Lo
gi

ts

Linear
Classifier 

C
at

eg
or

ic
al

D
is

tri
bu

tio
n

Softmax

Ordered Top-K Targets 

Target 1

...

Target K

or

Fe
at

ur
e

Pe
rtu

rb
at

io
n

Quadratic
Programming

As linear constraints of logits

Clamp

Surrogate loss

Figure 2: Illustration of the proposed QuadAttackK method in comparison with the prior art (e.g., the
adversarial distillation (AD) method [Zhang and Wu, 2020]).

used by commercial vehicles. An unordered top-2 attack that may result in [Emergency Vehicle,
Commercial Vehicle], would likely be quickly detected, as emergency vehicle priority changes are
significant and could be easily noticed by traffic operators (this weakness is exacerbated in any
top-1 attack or unordered attacks).

Successful ordered top-K attacks can potentially provide several advantages: enabling better
controllability in learning attacks that are more difficult to detect, revealing deeper vulnerability of
trained DNNs, and testing the robustness of an attack method itself, especially when K is relatively
large (e.g., K ≥ 15) and the computing budget is relatively low (e.g., 60 steps of optimization).

Learning ordered top-K attacks is an extremely challenging problem. The adversarial distillation
method [Zhang and Wu, 2020] is the state of the art method (see Sec. 3.1), which presents a heuristic
knowledge-oriented design of the ordered top-K target distribution, and then minimizes the Kullback-
Leibler divergence between the designed distribution and the DNN output distribution (after softmax).
It often completely fails when K > 10. In this paper, we show it is possible to learn those attacks for
a variety of DNNs, including ResNet-50 [He et al., 2016], DenseNet-121 [Huang et al., 2017] and
Vision Transformers [Dosovitskiy et al., 2020, Touvron et al., 2021].

The key to learning clear-box targeted attacks (K ≥ 1) lies in the objective function for
optimization, which usually consists of two terms, one is the ℓp norm (e.g., ℓ2) of the learned
adversarial perturbation (to be as small as possible to be visually imperceptible), and the other is the
surrogate loss capturing the specified attack constraints such as the top-K extended C&W (hinge)
loss [Carlini and Wagner, 2017] and the adversarial distillation loss proposed in [Zhang and Wu, 2020]
(see Sec. 3.1). The trade-off between the two terms are often searched in optimization with respect to
a certain computing budget (e.g., 9× 30 means to test 9 different trade-off parameter assignments
based on linear search in a predefined range, and to run 30 forward-backward computation iterations
of the DNN per trade-off parameter search step). After the optimization, Attack Success Rates (ASR,
higher is better) and some ℓp norms (e.g., ℓ1 and ℓ2) of learned successful perturbations (smaller
is better) are used as evaluation metrics. As illustrated in Fig. 2, in this paper, we propose a novel
formulation which is different from the prior art in the three aspects as follows:

• We identify that while sufficient to capture the top-K attack constraint, hand-crafted surrogate losses
are not necessary and often introduce inconsistency and artifacts in optimization (see Sec. 3.2). We
eliminate the need of introducing surrogate losses. Instead, we keep the top-K attack constraints
in the vanilla form and cast the optimization problem as quadratic programming (QP). We solve
the QP by leveraging a recently proposed differentiable QP layer (for PyTorch) [Amos and Kolter,
2017]. We present an efficient implement to parallelize the batched QP layer for any ordered top-K
targets specified individually for each instance in a batch.

• We observe that directly minimizing the ℓp norm of learned perturbations together with the hand-
crafted surrogate loss could miss the chance of exploiting semantic structures of the feature
embedding space (i.e., the input to the final linear classifier). Instead, we minimize the Euclidean
distance between the feature embedding vectors at two consecutive iterations in the optimization.
This can be understood as the latent perturbation learning versus the raw data perturbation learn-
ing(see Sec. 3.3). Our proposed latent perturbation learning enables more consistent optimization
trajectories in pursuing the satisfaction of the specified top-K attack constraints. The minimized
Euclidean distance is then used as the loss together with the ℓp norm of the learned perturbation in
computing the adversarial perturbation via back-propagation at each iteration.
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2 Related Work and Our Contributions

Adversarial Attacks have remained as a critical concern for DNNs, where imperceptible perturba-
tions to input data can lead to significant misclassification [Xie et al., 2017, Hendrik Metzen et al.,
2017, Chen et al., 2019, Liu et al., 2018]. Various approaches have been proposed to investigate the
vulnerabilities of DNNs and exploit their sensitivity to non-robust features. Notable works include
the seminal discovery of visually imperceptible adversarial attacks [Szegedy et al., 2013], which
highlighted the need to evaluate the brittleness of DNNs and address it with explicit defense methods
[Madry et al., 2017, Cohen et al., 2019, Wang et al., 2020, Wong et al., 2020]. Clear-box attacks,
which assume full access to the DNN model, have been particularly effective in uncovering vulnera-
bilities [Madry et al., 2017]. The C&W method [Carlini and Wagner, 2017], for instance, introduced
loss functions that have been widely adopted to generate adversarial examples. Momentum-based
methods like [Dong et al., 2018, Lin et al., 2019] and gradient projection techniques like PGD [Madry
et al., 2017] have also been successful in crafting adversarial examples.

Unordered top-K Attacks aim to manipulate the top-K predicted classes of a DNN without enforc-
ing a specific order among them. A common approach is to optimize a loss function that combines
multiple objectives, such as maximizing the probability of the target classes while minimizing the
probabilities of other classes simultaneously. [Tursynbek et al., 2022] presents a geometry inspired
method that allows taking gradient steps in favor of simultaneously maximizing all target classes
while maintaining a balance between them. Other approaches, for example, may use sorting strategies
[Kumano et al., 2022] to limit the set of logits involved simultaneously in a loss and target specific
logits that contribute most to a misclassification. The “Superclass” attacks have been proposed in [Ku-
mano et al., 2022], for which ordered top-K attacks can been seen as a generalization. Non-targeted
top-K attacks are studied in [Zhang et al., 2022].

Ordered top-K Attacks [Zhang and Wu, 2020] require preserving both the attack success rate and
the order of the top-K predicted classes. Following the intuitions from [Kumano et al., 2022] we
note that adversarial sample detection and defense methods [Lee et al., 2018, Huang and Li, 2021,
Aldahdooh et al., 2022] may benefit from the fact that many adversarial attacks tend to generate
a nonsensical class prediction (e.g. the top-K predictions may all be from a different super-class
[Kumano et al., 2022]). An ordered top-K adversarial attack may choose to create an attack that is
semantically plausible and have a higher potential to fool detection methods and defense methods.
The sorting constraint in ordered top-K attacks adds a layer of complexity to the optimization
problem. By enforcing a specific order among the top-K predictions, the attacker must not only
manipulate the logits to maximize the target classes’ probabilities but also ensure that the predicted
order aligns with the desired order. In [Zhang and Wu, 2020], two methods are presented through the
use of semantic information in the form of class language embedding.

Constrained Optimization in DNNs, such as OptNet [Amos and Kolter, 2017] and other differen-
tiable optimization works [Agrawal et al., 2019, Butler and Kwon, 2023], have introduced powerful
formulations for integrating optimization layers within the network. These types of works have
produced many DNN based problem solutions while also being able to use domain knowledge to
constrain solutions and reduce data requirements [Sangalli et al., 2021] and solve problems otherwise
intractable with DNNs [Wang et al., 2019, Mandi et al., 2020]. While OptNet’s quadratic solver
is typically used as a layer, our focus is on attacking a pre-trained model with a fixed architecture.
Thus, we leverage the principles of constrained optimization to formulate an objective function that
captures the constraints of ordered top-K adversarial attacks. This adaptation allows us to guide the
attack process to satisfy the ordering constraints while maximizing target class probabilities, which
provides new insights for enhancing attack effectiveness and robustness.

Our Contributions This paper makes two main contributions to the field of learning clear-box
targeted adversarial attacks:

• It presents a quadratic programming (QP) approach to learning ordered top-K attacks, dubbed
as QuadAttacK. It eliminates hand-crafting surrogate loss functions to capture the top-K attack
constraint. It provides a QP based formulation to better exploit the semantics of the feature
embedding space in capturing the top-K attack requirement.

• It obtains state-of-the-art adversarial attack performance in ImageNet-1k classification using both
ConvNets (ResNet-50 and DenseNet-121) and Transformer models (ViT-B and DEiT-S). It pushes
the limit of the number of targets, K to a large number, for which the prior art completely fails.
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3 Approach

In this section, we first define the problem of learning ordered top-K attacks following [Zhang and
Wu, 2020], as well as the extended top-K C&W (CWK ) method and the adversarial distillation (AD)
method. We then present details of our proposed QP based formulation, i.e., QuadAttacK.

3.1 Learning Ordered top-K Clear-Box Targeted Attacks: the Problem and the Prior Art

We consider image classification DNNs, which consist of a feature backbone and a head linear
classifier. Denote by F : x ∈ R3×H×W → z ∈ RD×h×w the feature backbone which transforms
an input image to its feature map, where an input image x is often a RGB image of the spatial
height and width, H and W (e.g., 224 × 224), clean or perturbed, and the feature map z is in
a D-dim feature space with the the spatial height and width, h and w (e.g., 7 × 7) based on the
overall spatial downsampling stride implemented in the feature backbone. Let z̄ ∈ RD be feature
embedding vector for x via any spatial reduction method (e.g. global average pooling). Denote by
f : z̄ ∈ RD → l ∈ RC the linear head classifier, where C is the number of classes (e.g., 1000 in
ImageNet-1k [Russakovsky et al., 2015]), and l is the output logit vector. We have,

l = f (F (x; θ);A,B) = A · z̄ +B, (1)
where θ collects all the model parameters of the feature backbone, and A ∈ RC×D and B ∈ RC the
weight and bias parameters of the head linear classifier. In learning clear-box attacks, we assume all
the information of the network are available, and the parameters (θ,A,B) are frozen throughout.

Denote by (x, y) a pair of clean image and its ground-truth label (y ∈ Y = {1, 2, · · · , C}). For
learning attacks, we assume x can be correctly classified by the network, i.e., y = argmaxi li.
Denote by T the ordered list of attack target(s) with the cardinality K = |T |, where the ground-
truth label is excluded, y /∈ T , and by T c = Y \ T the complement set. Let δ(x, T ;F, f) be
the adversarial perturbation to be learned. An ordered top-K adversarial example is defined by
x̂ = x+ δ(x, T ;F, f) if the top-K prediction classes for x̂ equal to T based on its logits l̂ ( Eqn. 1).

Learning ordered top-K attacks is often posed as a constrained optimization problem,
minimize

δ
||δ||p, (2)

subject to l̂ti > l̂ti+1
, i ∈ [1,K − 1], ti ∈ T,

l̂tK > l̂j , tK ∈ T, ∀j ∈ T c,

x̂ = x+ δ ∈ [0, 1]3×H×W ,

l̂ = f(F (x̂; θ);A,B),
where the first two constraints capturing the ordered top-K attack requirement. This traditional
formulation leads to the challenge in optimization, even with K = 1 as pointed out in the vanilla
C&W method [Carlini and Wagner, 2017]. Some surrogate loss, L(x̂), is necessary to ensure the first
two terms are satisfied when L(x̂) is minimized. We have,

minimize λ · L(x̂) + ||δ||p, (3)

subject to x̂ = x+ δ ∈ [0, 1]3×H×W ,
where λ is the trade-off parameter between the visual imperceptibility of learned perturbations and
the ASR. The remaining constraint can be addressed via a projected descent in optimization. So, the
optimization can enjoy the straightforward back-propagation algorithm that is used in training the
DNN on clean images.

The extended top-K C&W (hinge) loss [Zhang and Wu, 2020] is defined by,

LK
CW (x̂) =

K∑
i=1

max

(
0, max

j∈Y\{t1,··· ,ti}
l̂j − min

t∈{t1,··· ,ti}
l̂t

)
. (4)

And, the adversarial distillation loss [Zhang and Wu, 2020] is defined by,
LK
AD(x̂) = KL(p̂||PAD) =

∑
ti∈T

p̂ti(log p̂ti − logPAD
ti ) +

∑
j∈T c

p̂j(log p̂j − logPAD
j ), (5)

where p̂ = Softmax(l̂) and PAD is the knowledge-oriented heuristically-designed adversarial distri-
bution with the top-K constraints satisfied (see [Zhang and Wu, 2020] for details). KL(·||·) is the
Kullback-Leibler divergence between two distributions.

5



3.2 Limitations of the Prior Art

From the optimization perspective, we observe there are two main drawbacks in the aforementioned
formulations (Eqns. 3, 4, 5):

• The two surrogate loss formulations (Eqns. 4 and 5) are sufficient, but not necessary. They actually
introduce inconsistency and artifacts in optimization. The extended top-K C&W loss in Eqn. 4 is
not aware of, and thus can not preserve, the subset of targets whose relative order has been satisfied.
For example, consider there are 5 classes in total, and a specified ordered top-3 list of targets,
[2, 3, 1]. Assume at a certain iteration, the predicted classes for x̂ in sort are [4, 2, 3, 5, 1], in which
the relative order of the specified 3 targets has been satisfied. The loss L3

CW (x̂) =
∑3

i=1(l̂4 − l̂i),
which mainly focuses on pushing down the logit l̂4 and/or pulling up the logits, l̂i’s (i = 1, 2, 3).
So, at the next iteration, it may results in the sorted prediction like [1, 3, 2, 4, 5], leading to a totally
wrong relative order. The adversarial distillation loss in Eqn. 5 has similar problems, i.e., the first
part,

∑
i∈T p̂i(log p̂i − logPAD

i ) is not aware of some satisfied relative order. It further enforces
order between non-target classes since the adversarial distribution PAD needs to be specified before
the optimization, as shown in the second part,

∑
j∈T c p̂j(log p̂j − logPAD

j ).
• Directly minimizing ||δ||p in Eqn. 3 (i.e., adversarial learning in the data space) may actually

hinder the effectiveness of learning adversarial examples due to the fact that the ℓp norm is totally
unaware of the underlying data structures in the complex data space. Since a trained DNN is
kept frozen in learning attacks, we can first perform adversarial learning in the feature embedding
space (i.e., the head linear classifier’s input space, z̄ in Eqn. 1), which has been learned to be
discriminatively and/or semantically meaningful. With a learned adversarial perturbation for z̄, we
can easily compute the perturbation for the input data.

We address these limitations in this paper by proposing a novel QP based formulation – QuadAttackK.
We present the detail of our QuadAttacK in the following sub-sections.

3.3 The Proposed QuadAttacK

We first show that any specified ordered top-K attack requirements, T , can be cast as linear constraints
in a compact matrix form, denoted by DT . Consider ℓ2 norm of Eqn. 2, we can rewrite it as,

minimize
δ

||x̂− x||22, (6)

subject to DT · l̂ > 0, DT ∈ {−1, 0, 1}C−1×C ,

x̂ = x+ δ ∈ [0, 1]3×H×W ,

l̂ = f(F (x̂; θ);A,B),
where DT is a C − 1× C matrix constructed from the specified targets T , and C is the number of
classes in total. Consider the aforementioned toy example where C = 5 and the ordered top-3 attack
targets are T = [2, 3, 1], we have,

l̂2 − l̂3 > 0,

l̂3 − l̂1 > 0, (7)

l̂1 − l̂4 > 0,

l̂1 − l̂5 > 0,

DT · l̂ > 0, DT =

 0 1 −1 0 0
−1 0 1 0 0
1 0 0 −1 0
1 0 0 0 −1

 ,

(8)

where Eqn. 7 is the vanilla form of expressing the specified top-3 attack requirements, and Eqn. 8 is
the equivalent compact matrix form.

However, Eqn. 6 can not be easily solved via QP due to the highly nonconvex nature of the feature
backbone F in the third term of the constraints. This nonconvexity hinders the ability to solve the
problem and find an optimal solution while satisfying constraints. Eqn. 6 aims to directly seek the
adversarial perturbations in the data space, which has to include the nonconvex feature backbone F
in the optimization. Since F is a frozen transformation in learning attacks, and the head classifier f
is a linear function, we can separate the learning of ordered top-K attacks in two steps:

i) We first satisfy the ordered top-K constraints without resorting to hand-crafted surrogate losses via
QP in the feature embedding space (i.e., the output space of F and the input space of f ). The last
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constraint in Eqn. 6 will be replaced by l̂ = A · z̄+B (see Eqn. 1). Denote by δ the image perturbation
at the current iteration. We have the current feature embedding vector z̄ = Mean(F (x+ δ; θ)). our
proposed QuadAttacK first solves the perturbed ẑ via QP,

minimize
ẑ

||ẑ − z̄||22, (9)

subject to DT · l̂ > 0,

l̂ = A · ẑ +B.

ii) After having found ẑ we then use the residual (Euclidean distance) ||z̄ − ẑ||22 as the loss to find the
perturbed image x̂. Specifically, with the optimized ẑ (i.e., the closest point in latent space where
top-K attack constraints are satisfied), we compute the image perturbation using vanilla one-step
back-propagation with a learning rate γ and a loss weighting parameter λ. We find that both γ or λ
may be used to control the tradeoff between attack success and magnitude of the perturbation found
(see Fig. 3 and Appendix A). We have,

δ∗ =δ − γ · ∂

∂δ

(
λ · ||ˆ̄z − z̄||2 + ||δ||p

)
, (10)

δ̂ =Clamp(x+ δ∗; 0, 1)− x, x̂ = x+ δ̂,
where Clamp(·; 0, 1) is an element-wise projection of the input onto [0, 1].

Understanding QuadAttacK: In our QuadAttacK, the matrix A plays a crucial role in encoding
useful semantic class relationships. For instance, if classes like “cat" and “building" have distinct and
separate representations in the latent space, the matrix A will reflect these differences. As a result,
the optimization problem would naturally prioritize target logits that have high activations for either
“cat" or “building," but not both simultaneously. This semantic constraint in the feature embedding
space helps guide the search towards relevant and meaningful perturbations that maintain the desired
order constraints while avoiding conflicting activations for disparate classes. By incorporating the
matrix A to capture semantic relationships, our QuadAttacK not only overcomes the nonconvexity
challenge of the original problem but also leverages meaningful class information to guide the search
and generate effective adversarial perturbations.

3.4 Fast and Parallel Quadratic Programming Solutions

An efficient solver is crucial for addressing the QP formulation of learning ordered top-K adversarial
attacks. To that end, a fast, parallel, and GPU-capable quadratic programming solver is required.
In this context, the qpth package created by [Amos and Kolter, 2017] emerges as a suitable choice,
providing a PyTorch-enabled differentiable quadratic programming solver that enables efficient
optimization while harnessing the power of GPUs,

minimize
ẑ

1

2
ẑ⊤Qẑ + p⊤ẑ (11)

subject to Gẑ ≤ h,

W ẑ = b.

The main challenge lies in transforming our current formulation into one compatible with the qpth
package (Eqn. 11). This involves structuring the objective and constraints to match the required
standard form, as well as building the required matrices Q,G and h from attack targets in an efficient
and parallel way. Finding Q and p is straightforward from an expansion of our squared Euclidean
distance objective since ||z̄ − ẑ||22 = ẑ⊤ẑ − 2z̄⊤ẑ + z̄⊤z̄. The term z̄⊤z̄ is a constant in our
optimization so we can just consider the optimization of ẑT ẑ − 2z̄T ẑ. From this we can trivially see
Q = 2I where I is the identity matrix and p = −2z̄⊤. Further, since we need no equality constraints
W = 0, b = 0. To formulate G and h we can rewrite the constraints in Eqn 9 as follows,

DT · (Aẑ +B) > 0 ⇒ −DT ·Aẑ ≤ DT ·B − η, (12)
where η is the slack variable which is a small non-zero constant to allow our constraints to define
a closed-convex set allowing equality in our constraint but still maintaining top-K order when the
constraint is satisfied. We have found η = 0.2 is an acceptable value, but other small values will also
work. Intuitively if our current value for ẑ does not satisfy our top-K constraints then η = 0 would
find a ẑ on the boundary of the latent space that satisfies our constraints. The higher η is the further
away from the boundary and inside the set ẑ becomes. From the above rearrangement we can easily
see G = −DT ·A and h = DT ·B − η in Eqn. 11.
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(a) DEiT-S and ResNet-50 w/ K = 5 and 1× 30 (b) DEiT-S and ResNet-50 w/ K = 10 and 1× 60
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Figure 3: ASR vs ℓ2 energy tradeoff curves, which holistically compare the capacity of our QuadAttacK
against the prior art – the adversarial distillation method [Zhang and Wu, 2020], verifying our QuadAttacK’s
advantages.

4 Experiments

In this section, we evaluate our QuadAttacK with K = 1, 5, 10, 15, 20 in the ImageNet-1k bench-
mark [Russakovsky et al., 2015] using two representative pretrained ConvNets: the ResNet-50 [He
et al., 2016] and the DenseNet-121 Huang et al. [2017], and two representative pretrained Transform-
ers: the vanilla Vision Transformer (Base) [Dosovitskiy et al., 2020] and the data-efficient variant
DEiT (small) [Touvron et al., 2021]. The ImageNet-1k pretrained checkpoints of the four networks
are from the mmpretrain package [Contributors, 2023], in which we implement our QuadAttacK
and re-produce both CWK and AD [Zhang and Wu, 2020].

Data and Metric. In ImageNet-1k [Russakovsky et al., 2015], there are 50, 000 images for validation.
To study attacks, we utilize the subset of images for which the predictions of all the four networks are
correct. To reduce the computational demand, we randomly sample a smaller subset following [Zhang
and Wu, 2020]: We iterate over all 1000 categories and randomly sample an image labeled with
it, resulting in 1000 test images in total. For each K, we randomly sample 5 groups of K targets
with ground-truth (GT) label exclusive for each image in our selected test set, and then compute the
Best, Mean and Worst ASRs, as well as the associated ℓ1, ℓ2 and ℓ∞ energies. We mainly focus
on low-cost learning of attacks (within 60 steps of optimization) for better practicality and better
understanding of the underlying effectiveness of different attack methods. We also learn attacks with
higher budgets (9× 60 and 9× 30) for K = 5, 10. We use a default value for the trade-off parameter
λ in Eqn. 3 and Eqn. 10. Details are provided in the Appendix A and our released code repository.

Baselines. We compare our QuadAttacK with previous state-of-the-art methods, namely, the top-K
extended CWK method and the Adversarial Distillation (AD) proposed in [Zhang and Wu, 2020].
We reproduce them in our code repository and test them on the four networks under the same settings
for fair comparisons.

An important detail in optimization: In optimization, perturbations are initialized with some small
energy white Gaussian noise. During the initial steps of optimization, the optimizer takes steps with
large increases in perturbation energy since happens to be away from many required energies for
a successful attack. These large increases in energy induces a momentum in the optimizer, which
makes it difficult to reduce L2 energy in future iterations even if our objective function’s gradient
points towards a direction with minimal energy. By introducing a small number of warmup steps (e.g.,
5, as commonly done in training a network on ImageNet from scratch) after which the optimizer’s
state is reset, we observe the performance of all analyzed methods are significantly improved. Our
QuadAttacK benefits most.

Results. The comparison results are shown in Table 1. Our proposed QuadAttacK retains perfor-
mance comparably for K = 1, and obtains consistently better performance, often by a large margin,
for K = 5, 10, 15, 20. Especially, it addresses the challenges associated with large values of K
(e.g. K ≥ 10) under the low-cost budget setting (1× 60). The prior art completely fails, while our
QuadAttacK can still obtain appealing ASRs.

Analyses on the Trade-Off Between ASRs and Attack Energies. Since we have two metrics (ASR
and attack energy), the trade-off between them needs to be compared in order to comprehensively
understand different methods. The trade-off curves (Fig. 3) explore the concept of how a higher
success rate may be achieved by choosing to have higher energies and conversely a lower energy
may be achieved by choosing to have a lower success rate. They holistically compare the capacity of
QuadAttacK against the prior art – the adversarial distillation method [Zhang and Wu, 2020].

8



Protocol Attack Method Best Mean Worst
ASR↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓ ASR↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓ ASR↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

ResNet-50 [He et al., 2016]

Top-20 QuadAttacK1×60 0.2760 2350.79 7.71 0.0941 0.2546 2363.38 7.74 0.0939 0.2420 2381.09 7.80 0.0936

Top-15 QuadAttacK1×60 0.9520 1960.29 6.45 0.0763 0.9400 1957.23 6.44 0.0763 0.9290 1963.93 6.46 0.0767
QuadAttacK1×30 0.3640 2275.78 7.31 0.0711 0.3270 2279.91 7.32 0.0710 0.3050 2266.93 7.28 0.0706

Top-10

AD1×60 0.1150 1584.19 5.23 0.0687 0.1002 1576.03 5.21 0.0685 0.0880 1578.91 5.22 0.0682
QuadAttacK1×60 0.9990 1538.45 5.08 0.0560 0.9982 1534.04 5.06 0.0561 0.9970 1527.30 5.04 0.0559
QuadAttacK1×30 0.9640 1789.45 5.75 0.0538 0.9576 1797.20 5.78 0.0541 0.9530 1795.44 5.77 0.0540
AD9×60 0.2210 1341.07 4.49 0.0643 0.2020 1352.55 4.53 0.0643 0.1900 1370.06 4.58 0.0637
QuadAttacK9×60 1.0000 533.11 1.92 0.0430 0.9992 540.04 1.94 0.0433 0.9970 537.46 1.93 0.0431
QuadAttacK9×30 0.9950 1052.24 3.55 0.0471 0.9926 1052.56 3.55 0.0470 0.9910 1045.70 3.53 0.0471

Top-5

CWK
1×30 0.2100 1377.22 4.40 0.0413 0.1934 1378.16 4.40 0.0415 0.1800 1374.54 4.39 0.0414

AD1×30 0.8480 1351.05 4.32 0.0389 0.8324 1352.17 4.32 0.0390 0.8140 1357.48 4.34 0.0391
QuadAttacK1×30 0.9450 765.54 2.55 0.0289 0.9380 759.47 2.54 0.0289 0.9330 757.77 2.53 0.0289
CWK

9×30 0.4470 1003.94 3.28 0.0382 0.4216 1026.70 3.35 0.0384 0.4080 1042.19 3.40 0.0384
AD9×30 0.9550 549.73 1.91 0.0342 0.9498 557.15 1.93 0.0342 0.9380 553.08 1.92 0.0341
QuadAttacK9×30 0.9970 462.81 1.60 0.0277 0.9948 465.20 1.61 0.0278 0.9930 461.15 1.60 0.0277

Top-1
CWK

1×30 1.0000 483.86 1.53 0.0142 0.9978 483.88 1.53 0.0142 0.9960 485.16 1.54 0.0142
AD1×30 1.0000 465.62 1.48 0.0141 0.9990 467.67 1.48 0.0141 0.9980 469.54 1.49 0.0142
QuadAttacK1×30 1.0000 446.84 1.44 0.0143 0.9990 448.22 1.44 0.0143 0.9980 448.70 1.45 0.0144

DenseNet-121 [Huang et al., 2017]

Top-20 QuadAttacK1×60 0.9310 2394.04 7.82 0.0907 0.9184 2388.03 7.80 0.0908 0.9070 2387.15 7.80 0.0908
QuadAttacK1×30 0.3280 2626.42 8.42 0.0793 0.3204 2630.12 8.43 0.0794 0.3160 2632.14 8.44 0.0795

Top-15 QuadAttacK1×60 0.9910 1880.34 6.17 0.0682 0.9846 1882.11 6.18 0.0683 0.9790 1874.28 6.15 0.0679
QuadAttacK1×30 0.9130 2176.90 6.98 0.0644 0.9072 2174.17 6.97 0.0641 0.9020 2167.97 6.95 0.0639

Top-10

CWK
1×60 0.1650 2088.38 6.74 0.0755 0.1388 2090.22 6.75 0.0750 0.1260 2082.13 6.73 0.0750

AD1×60 0.5200 1432.66 4.78 0.0650 0.5110 1426.53 4.76 0.0646 0.4920 1429.76 4.77 0.0641
QuadAttacK1×60 0.9980 1387.24 4.61 0.0495 0.9960 1395.19 4.63 0.0498 0.9930 1392.97 4.62 0.0497
QuadAttacK1×30 0.9930 1623.21 5.23 0.0471 0.9894 1626.75 5.24 0.0471 0.9870 1637.11 5.27 0.0470
CWK

9×60 0.4630 1902.17 6.19 0.0726 0.4470 1895.21 6.16 0.0724 0.4120 1902.44 6.18 0.0723
AD9×60 0.6830 1070.25 3.66 0.0588 0.6648 1073.88 3.67 0.0587 0.6460 1071.64 3.66 0.0587
QuadAttacK9×60 0.9990 451.30 1.61 0.0394 0.9984 443.78 1.59 0.0393 0.9970 446.99 1.60 0.0399
AD9×30 0.0940 1588.57 5.17 0.0581 0.0778 1572.15 5.12 0.0578 0.0690 1572.70 5.13 0.0580
QuadAttacK9×30 0.9990 838.91 2.84 0.0406 0.9956 841.88 2.85 0.0407 0.9930 843.84 2.86 0.0407

Top-5

CWK
1×30 0.5560 1062.48 3.45 0.0376 0.5358 1064.42 3.46 0.0377 0.5130 1057.52 3.44 0.0378

AD1×30 0.9120 716.61 2.46 0.0355 0.9040 714.59 2.45 0.0354 0.8890 710.44 2.44 0.0354
QuadAttacK1×30 0.9400 676.94 2.28 0.0269 0.9284 680.24 2.28 0.0268 0.9130 677.48 2.28 0.0267
CWK

9×30 0.8690 899.15 2.97 0.0363 0.8566 905.02 2.99 0.0364 0.8430 905.64 2.99 0.0364
AD9×30 0.9810 438.53 1.55 0.0326 0.9694 441.40 1.56 0.0329 0.9570 447.02 1.58 0.0332
QuadAttacK9×30 0.9980 427.58 1.47 0.0259 0.9932 431.84 1.49 0.0261 0.9900 424.47 1.46 0.0262

Top-1
CWK

1×30 1.0000 437.41 1.39 0.0134 0.9988 442.44 1.41 0.0135 0.9980 443.43 1.41 0.0135
AD1×30 1.0000 422.10 1.35 0.0137 0.9990 426.98 1.36 0.0137 0.9970 428.25 1.37 0.0137
QuadAttacK1×30 1.0000 377.99 1.25 0.0138 0.9990 383.13 1.26 0.0138 0.9970 386.19 1.27 0.0138

ViT-B [Dosovitskiy et al., 2020]

Top-20 QuadAttacK1×60 0.6100 2651.86 8.68 0.0847 0.5964 2642.73 8.65 0.0841 0.5810 2640.33 8.65 0.0841

Top-15 QuadAttacK1×60 0.7150 1919.22 6.28 0.0618 0.7062 1920.08 6.28 0.0618 0.6950 1927.03 6.30 0.0620

Top-10

QuadAttacK1×60 0.8660 1582.15 5.09 0.0422 0.8480 1579.52 5.08 0.0421 0.8230 1595.84 5.13 0.0420
AD9×60 0.0900 1361.59 4.45 0.0472 0.0690 1398.53 4.56 0.0474 0.0600 1380.14 4.52 0.0476
QuadAttacK9×60 0.9850 991.22 3.36 0.0383 0.9802 978.89 3.33 0.0383 0.9730 979.63 3.33 0.0383
QuadAttacK9×30 0.0590 1200.33 3.80 0.0295 0.0550 1193.83 3.78 0.0296 0.0470 1156.53 3.68 0.0294

Top-5

AD1×30 0.2650 1076.10 3.42 0.0286 0.2450 1079.95 3.43 0.0285 0.2320 1089.83 3.46 0.0285
QuadAttacK1×30 0.4960 1060.31 3.35 0.0267 0.4692 1062.17 3.35 0.0267 0.4380 1060.54 3.35 0.0267
CWK

9×30 0.1110 999.43 3.18 0.0278 0.1070 984.00 3.14 0.0277 0.0970 963.58 3.08 0.0275
AD9×30 0.4760 947.39 3.06 0.0282 0.4580 950.24 3.07 0.0282 0.4320 945.25 3.05 0.0282
QuadAttacK9×30 0.7670 910.88 2.95 0.0264 0.7530 922.78 2.98 0.0264 0.7390 945.03 3.04 0.0266

Top-1
CWK

1×30 0.9940 418.85 1.44 0.0162 0.9914 420.89 1.45 0.0163 0.9890 423.64 1.46 0.0164
AD1×30 0.9910 418.44 1.46 0.0176 0.9898 414.87 1.45 0.0176 0.9870 410.74 1.43 0.0174
QuadAttacK1×30 0.9910 451.55 1.53 0.0169 0.9884 444.51 1.52 0.0169 0.9840 434.08 1.48 0.0167

DeiT-S [Touvron et al., 2021]

Top-20 QuadAttacK1×60 0.7670 2164.35 7.02 0.0707 0.7496 2170.06 7.04 0.0711 0.7320 2179.99 7.08 0.0713

Top-15 QuadAttacK1×60 0.9400 1710.90 5.55 0.0537 0.9308 1712.43 5.55 0.0535 0.9170 1706.33 5.53 0.0534
QuadAttacK1×30 0.0490 1414.01 4.50 0.0379 0.0444 1416.91 4.51 0.0381 0.0410 1427.73 4.54 0.0379

Top-10

AD1×60 0.0610 1247.46 4.05 0.0430 0.0534 1224.28 3.97 0.0419 0.0480 1225.32 3.97 0.0421
QuadAttacK1×60 0.9800 1161.60 3.75 0.0356 0.9778 1163.31 3.76 0.0358 0.9750 1168.52 3.78 0.0358
QuadAttacK1×30 0.2000 1076.08 3.41 0.0278 0.1958 1067.14 3.38 0.0275 0.1920 1062.29 3.36 0.0273
CWK

9×60 0.0390 1000.92 3.24 0.0360 0.0334 1000.35 3.23 0.0352 0.0300 987.21 3.19 0.0350
AD9×60 0.1250 812.31 2.71 0.0356 0.1122 829.99 2.76 0.0356 0.1000 819.51 2.73 0.0350
QuadAttacK9×60 0.9990 546.66 1.95 0.0294 0.9978 543.50 1.95 0.0296 0.9950 542.95 1.95 0.0298
QuadAttacK9×30 0.4410 1019.14 3.25 0.0274 0.4232 1033.34 3.29 0.0277 0.4090 1027.87 3.27 0.0275

Top-5

CWK
1×30 0.0730 924.23 2.94 0.0266 0.0670 913.38 2.91 0.0265 0.0620 903.37 2.88 0.0263

AD1×30 0.4830 1010.38 3.20 0.0271 0.4640 1016.17 3.22 0.0272 0.4400 1019.77 3.23 0.0273
QuadAttacK1×30 0.8250 849.16 2.72 0.0246 0.8068 843.14 2.71 0.0244 0.8000 846.60 2.72 0.0245
CWK

9×30 0.2310 909.93 2.91 0.0268 0.2204 902.41 2.88 0.0266 0.2160 898.71 2.87 0.0264
AD9×30 0.7510 858.41 2.78 0.0267 0.7270 836.38 2.71 0.0264 0.7080 836.42 2.72 0.0265
QuadAttacK9×30 0.9550 592.60 2.00 0.0229 0.9528 579.32 1.96 0.0227 0.9500 573.48 1.94 0.0226

Top-1
CWK

1×30 0.9990 417.62 1.39 0.0149 0.9976 415.49 1.38 0.0148 0.9970 410.32 1.36 0.0147
AD1×30 1.0000 407.16 1.37 0.0158 0.9982 404.24 1.36 0.0157 0.9970 397.79 1.34 0.0156
QuadAttacK1×30 0.9960 294.88 1.08 0.0153 0.9936 295.00 1.08 0.0153 0.9900 297.33 1.09 0.0154

Table 1: Comparisons under the ordered top-K targeted attack protocol using randomly selected and ordered K
targets (GT exclusive) in ImageNet using four popular models (ResNet-50, DenseNet-121, ViT-B and DEiT-S).
The CWK and AD methods are proposed in [Zhang and Wu, 2020]. We test 9×30 for K = 5, and 9×{30, 60}
for K = 10. For each protocol (e.g., top-20) and each budget (e.g., 1×60), if an attack method (e.g., CWK or
AD) is not listed, it means that it fails completely, i.e., zero ASR, and thus is ommitted in the table for clarity.
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Qualitative Results. We show more examples in Appendix B. From those, we note that for our
QuadAttacK, when the target classes deviate significantly from the original predicted classes, we
often observe a perturbation that achieves the prescribed top-K targets without a substantial margin
between each of the top-K targets. This outcome reflects the desirable effect of our approach, as
the primary objective of the ordered top-K attack is to enforce a specific class order rather than
optimizing for class probability differences. Our method’s strength lies in its ability to handle such
scenarios without relying on explicit assumptions about the distances between classes. By prioritizing
the order constraints, our QuadAttacK offers a robust solution that aligns with the fundamental goal
of enforcing class order in adversarial attacks.

5 Limitations of Our QuadAttacK

There are two main limitations that worth further exploring. Our proposed QuadAttacK is specifically
designed for clear-box attack setting, which makes it not directly applicable to opaque-box attacks.
The attacks learned by our QuadAttackK are not easily transferable between different networks,
as they are specifically optimized in the feature embedding space for the target model. Exploring
the transferability of attacks and developing more generalizable strategies across various networks
could be an intriguing direction for future research. In addition, our QuadAttacK entails solving
a QP at each iteration, which introduces additional computational overhead compared to methods
like CWK and AD [Zhang and Wu, 2020]. For example, for ResNet-50, we observed an average
QuadAttacK performs 2.47 attack iterations per second whereas AD performs 32.02 iterations per
second (a factor of 12.96). For ViT-B, QuadAttaK performs 2.96 attack iterations per second whereas
AD performs 11.86 iterations per second (a factor of 4). We note that as the target model becomes
larger, the adversarial loss constitutes a smaller fraction of total runtime thus the ratio tends toward
one. Further, we note that quicker attack iterations of QuadAttacK on ViT-B which indicate our
QP solver converges faster on ViT-B attacks. To address the overhead of our QuadAttacK, we will
explore and compare how the QP solver could be adjusted to initialize the QP solver at the previous
iteration’s solution to nearly eradicate the cost of the QP solver in future work.

6 Broader Impact

Our proposed QuadAttacK method showcases the effectiveness of utilizing QP techniques in the
challenging domain of learning ordered top-K clear-box targeted adversarial attacks. The underlying
QP formulation offers opportunities for exploring other applications beyond adversarial attacks. For
instance, it could be leveraged to design new loss functions going beyond the traditional cross-entropy
loss or the label smoothing variant [Szegedy et al., 2015], and thus jointly optimizing accuracy
and robustness. We can enforce semantically meaningful class orders in training a network from
scratch, thus allowing for the incorporation of explicit constraints in neural network predictions and
potentially resulting in a more interpretable and controlled decision-making process.

Potential Negative Societal Impact. As discussed in the introduction, there are some potential
scenarios in practice for which the proposed ordered top-K adversarial attacks may be risky if applied.
However, since we focus on clear-box attacks, they are less directly applicable in practice compared
to opaque-box attacks, which makes the concern less serious.

7 Conclusions

This paper presents a quadratic programming (QP) based method for learning ordered top-K clear-
box targeted attacks. By formulating the task as a constrained optimization problem, we demonstrate
the capability to achieve successful attacks with larger values of K (K > 10) compared to previous
methods. The proposed QuadAttacK is tested in the ImageNet-1k classification using ResNet-50 and
DenseNet-121, and ViT-B and DEiT-S. It successfully pushes the boundary of successful ordered
top-K attacks from K = 10 up to K = 20 at a cheap budget (1× 60) and further improves attack
success rates for K = 5 for all tested models, while retaining the performance for K = 1. The
promising results highlight the potential of QP and constrained optimization as powerful tools opening
new avenues for research in adversarial attacks and beyond.
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A Experimental Settings

The selection of learning rates γ and λ values (see Eqn. 10) in the context of learning attacks
requires careful consideration to achieve the desired trade-offs (see Fig. 3) and optimize the attack
performance. In this regard, the learning rate is adapted based on the value of the number of targets,
K. Empirically, we observed that as K increases, a higher learning rate tends to yield a better balance
between Attack Success Rate (ASR) and perturbation energy consumption. Specifically, for different
ranges of K, the learning rate is adjusted accordingly, ensuring an appropriate scaling factor to guide
the optimization process. Additionally, we find convolutional models require a larger learning rate
than Transformer models to reach desirable attacks in all tested methods.

• If K < 5, the learning rate is set to γ = 0.75e− 3 (for all the four models).

• If 5 ≤ K < 10, the learning rate is set to γ = 1.0e − 3 (for ViT-B and DEiT-S) and
γ = 2.0e− 3 (for ResNet-50 and DenseNet-121).

• If 10 ≤ K < 15, the learning rate is set to γ = 1.0e − 3 (for ViT-B and DEiT-S) and
γ = 3e− 3 (for ResNet-50 and DenseNet-121).

• If 15 ≤ K < 20, the learning rate is set to γ = 1.5e − 3 (for ViT-B and DEiT-S) and
γ = 3.5e− 3 (for ResNet-50 and DenseNet-121).

• If K ≥ 20, the learning rate is set to γ = 2e− 3 (for ViT-B and DEiT-S) and γ = 4e− 3
(for ResNet-50 and DenseNet-121).

Similarly, the choice of the weight parameter λ in the loss function (Eqn. 10) also plays a crucial role.
We use λ to weight the first term in both Eqn. 3 and Eqn. 10 (the loss term that finds a successful attack
when optimized) and we leave the second term (the energy penalty) unweighted. In challenging
attacks where K ≥ 5, the range of suitable λ values that achieve desirable trade-offs between
ASR and energy is significantly wider compared to easier attacks (K = 1). Given the multitude of
appropriate λ values for difficult attacks, we do not perform explicit tuning of λ in computing results
in Table 1, since different choices of λ would correspond to different points along the energy/ASR
trade-off curve (which are used in generating the trade-off curves in Fig 3).

For attacks with K = 1, selecting an excessively high λ can lead to inefficient energy usage. For
instance, consider an attack with λ = 5 achieving an ASR of 1.0 and an energy cost of 2.0, while
increasing λ to 10 maintains the ASR at 1.0 but raises the energy cost to 5.0. In this case, the choice
of λ = 5 is preferable as it achieves the desired ASR with lower energy consumption.

For our QuadAttacK which operates in a high-dimensional latent space with much higher loss
magnitudes than CWK and AD (which operate in the logit or probability space), a lower value of
λ is necessary to reach the optimal point for K = 1. Hence, we set λ = 0.5 for QuadAttacK and
λ = 5 for the logit/probability space losses for the K = 1 case. For all other values of K, we use
λ = 10 since these attacks are more challenging and require a higher weight on the top-K term to
attain the desired ASR and none of the tested methods reach ASR saturation points on K >= 5 for
the chosen λ.

B More Qualitative Results

In addition to quantitative evaluations in Table 1, we provide detailed visualizations and qualitative
analysis to gain deeper insights into the behavior and impact of our QuadAttacK method on the
classification models. These visualizations offer a comprehensive understanding of the attack process,
showcasing the changes in both image perturbations and attention maps (for Transformer models). By
examining the visual patterns and comparing the distributions of clean and attacked class predictions,
we can explore the effects of our QuadAttacK on the attacked models’ predictions and gain valuable
insights into the robustness of these models. These visual analyses serve as a valuable complement to
our quantitative assessments, providing a holistic perspective on the performance and behavior of our
QuadAttacK across various attack scenarios.

Furthermore, it is important to note that while our QuadAttacK does not prioritize maximizing the
margins between class probabilities, its quadratic programming approach fundamentally enables the
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Figure 4: Examples of attacking DeIT-S [Touvron et al., 2021] with K = 5: the 1st and 2nd rows show results
for CWK and Adversarial Distillation (AD) [Zhang and Wu, 2020] respectively, and the 3rd row shows results
for QuadAttacK. The ground-truth label is Weimaraner. The ordered top-5 targets (randomly sampled and kept
unchanged for the different attack methods) are: [table lamp, langur, wig, hip, piggy bank], while
for example the original top-5 predictions of DEiT-S are [Weimaraner, Bedlington terrier, German
short-haired pointer, Great Dane, Yorkshire terrier].

integration of such constraints if desired for other applications. The flexibility of our method allows
for the incorporation of additional objectives or constraints that prioritize class separability, enabling
researchers to tailor the optimization process according to specific needs. This versatility opens up
avenues for exploring variations of the QuadAttacK framework and adapting it to diverse scenarios
where increasing the margins between class probabilities is a desirable objective.
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Figure 5: Examples of attacking DEiT-S [Touvron et al., 2021] with K = 10: the 1st row shows
results for Adversarial Distillation (AD) [Zhang and Wu, 2020], and the 2rd row shows results for our
QuadAttacK, and CWK fails for this example. The ground-truth label is Weimaraner. The ordered
top-10 targets (randomly sampled and kept unchanged for the different attack methods) are: [table lamp,
langur, wig, hip, piggy bank, American Staffordshire terrier, school bus, crossword
puzzle, entertainment center, ibex], while for example the original top-10 predictions of DEiT-S are
[Weimaraner, Bedlington terrier, German short-haired pointer, Great Dane, Yorkshire
terrier, Siamese cat, butcher shop, silky terrier, Italian greyhound, vizsla].

(a) Clean Image (b) Adversarial Image (c) Adversarial Perturbation

(d) Clean Image’s Class Prob. (e) Adversarial Image’s Class Prob.

Figure 6: Top-15 attack example 1/2 on ResNet-50 [He et al., 2016] with QuadAttacK (ours). The
original Top-15 predictions are [ beaver, mink, otter, weasel, platypus, porcupine,
American coot, water snake, red-breasted merganser, guinea pig, sea lion,
red-backed sandpiper, European gallinule, little blue heron, limpkin ]. The
ordered Top-15 targets (randomly sampled) are: [ oystercatcher, desktop computer,
shovel, bib, crane, spatula, torch, acorn, dalmatian, cheetah, gown, bull
mastiff, microwave, cornet, puffer ].
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(a) Clean Image (b) Adversarial Image (c) Adversarial Perturbation

(d) Clean Image’s Class Prob. (e) Adversarial Image’s Class Prob.

Figure 7: Top-15 attack example 1/2 on DenseNet-121 [Huang et al., 2017] with QuadAttacK
(ours). The original Top-15 predictions are [ chimpanzee, gorilla, siamang, orangutan,
gibbon, sloth bear, colobus, howler monkey, guenon, American black bear,
spider monkey, baboon, macaque, patas, water buffalo ]. The ordered Top-15
targets (randomly sampled) are: [ window shade, garden spider, cowboy hat, comic
book, iPod, mortarboard, leaf beetle, stupa, zucchini, cock, beer bottle,
cab, sunglass, fiddler crab, Windsor tie ].
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(a) Clean Image (b) Adversarial Image (c) Adversarial Perturbation

(d) Clean Image’s Attention (e) Adversarial Image’s Attention

(f) Clean Image’s Class Prob. (g) Adversarial Image’s Class Prob.

Figure 8: Top-15 attack example 1/2 on DeiT-S [Touvron et al., 2021] with QuadAttacK (ours).
The original Top-15 predictions are [ nematode, isopod, digital clock, jellyfish,
crossword puzzle, flatworm, drumstick, jack-o’-lantern, knot, bassoon,
safety pin, paper towel, thunder snake, matchstick, trombone ]. The or-
dered Top-15 targets (randomly sampled) are: [ axolotl, quail, hyena, carbonara, hen,
oboe, mud turtle, robin, Italian greyhound, oystercatcher, space shuttle,
airliner, Bedlington terrier, miniature pinscher, iron ].
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(a) Clean Image (b) Adversarial Image (c) Adversarial Perturbation

(d) Clean Image’s Attention (e) Adversarial Image’s Attention

(f) Clean Image’s Class Prob. (g) Adversarial Image’s Class Prob.

Figure 9: Top-15 attack example 1/2 on ViT-B [Dosovitskiy et al., 2020] with QuadAttacK
(ours). The original Top-15 predictions are [ Band Aid, airship, warplane, airliner,
wing, mouse, space bar, face powder, missile, ballpoint, space shuttle,
kite, modem, revolver, speedboat ]. The ordered Top-15 targets (randomly sampled)
are: [ padlock, king snake, screwdriver, Welsh springer spaniel, bookshop,
triumphal arch, shoe shop, Italian greyhound, diamondback, missile,
drilling platform, worm fence, sea snake, African elephant, joystick ].
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(a) Clean Image (b) Adversarial Image (c) Adversarial Perturbation

(d) Clean Image’s Class Prob. (e) Adversarial Image’s Class Prob.

Figure 10: Top-10 attack example 1/2 on ResNet-50 [He et al., 2016] with QuadAttacK (ours).
The original Top-10 predictions are [ mink, beaver, hippopotamus, chimpanzee, weasel,
otter, American alligator, mud turtle, Rottweiler, terrapin ]. The ordered
Top-10 targets (randomly sampled) are: [ tiger cat, black-and-tan coonhound, dung
beetle, hook, banded gecko, hognose snake, skunk, ashcan, patio, admiral
].
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(a) Clean Image (b) Adversarial Image (c) Adversarial Perturbation

(d) Clean Image’s Class Prob. (e) Adversarial Image’s Class Prob.

Figure 11: Top-10 attack example 1/2 on DenseNet-121 [Huang et al., 2017] with QuadAttacK
(ours). The original Top-10 predictions are [ coyote, red wolf, grey fox, dhole, dingo,
red fox, kit fox, lynx, timber wolf, hyena ]. The ordered Top-10 targets (randomly
sampled) are: [ chain, hermit crab, tiger cat, sweatshirt, packet, European fire
salamander, electric locomotive, mobile home, fiddler crab, car mirror ].
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(a) Clean Image (b) Adversarial Image (c) Adversarial Perturbation

(d) Clean Image’s Attention (e) Adversarial Image’s Attention

(f) Clean Image’s Class Prob. (g) Adversarial Image’s Class Prob.

Figure 12: Top-10 attack example 1/2 on DeiT-S [Touvron et al., 2021] with QuadAttacK (ours).
The original Top-10 predictions are [ wooden spoon, ladle, French horn, snowmobile,
mortar, spatula, paddle, rocking chair, fly, frying pan ]. The ordered Top-
10 targets (randomly sampled) are: [ tennis ball, langur, toy terrier, pool table,
patio, ballpoint, bee eater, fireboat, toy poodle, soup bowl ].
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(a) Clean Image (b) Adversarial Image (c) Adversarial Perturbation

(d) Clean Image’s Attention (e) Adversarial Image’s Attention

(f) Clean Image’s Class Prob. (g) Adversarial Image’s Class Prob.

Figure 13: Top-10 attack example 1/2 on ViT-B [Dosovitskiy et al., 2020] with QuadAttacK (ours).
The original Top-10 predictions are [ chocolate sauce, ice cream, trifle, pomegranate,
bakery, fig, hay, strawberry, burrito, rapeseed ]. The ordered Top-10 targets
(randomly sampled) are: [ goblet, shopping cart, titi, maillot, racer, espresso
maker, zebra, Shih-Tzu, hand blower, speedboat ].
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(a) Clean Image (b) Adversarial Image (c) Adversarial Perturbation

(d) Clean Image’s Class Prob. (e) Adversarial Image’s Class Prob.

Figure 14: Top-5 attack example 1/2 on ResNet-50 [He et al., 2016] with QuadAttacK (ours). The
original Top-5 predictions are [ Gordon setter, cocker spaniel, Irish setter, Sussex
spaniel, English setter ]. The ordered Top-5 targets (randomly sampled) are: [ indri,
television, grasshopper, espresso maker, Yorkshire terrier ].
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(a) Clean Image (b) Adversarial Image (c) Adversarial Perturbation

(d) Clean Image’s Class Prob. (e) Adversarial Image’s Class Prob.

Figure 15: Top-5 attack example 1/2 on DenseNet-121 [Huang et al., 2017] with QuadAttacK
(ours). The original Top-5 predictions are [ Gordon setter, Yorkshire terrier, Bernese
mountain dog, black-and-tan coonhound, Brabancon griffon ]. The ordered Top-
5 targets (randomly sampled) are: [ indri, television, grasshopper, espresso maker,
Yorkshire terrier ].
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(a) Clean Image (b) Adversarial Image (c) Adversarial Perturbation

(d) Clean Image’s Attention (e) Adversarial Image’s Attention

(f) Clean Image’s Class Prob. (g) Adversarial Image’s Class Prob.

Figure 16: Top-5 attack example 1/2 on DeiT-S [Touvron et al., 2021] with QuadAttacK (ours).
The original Top-5 predictions are [ home theater, cinema, projector, theater curtain,
pool table ]. The ordered Top-5 targets (randomly sampled) are: [ tow truck, snow
leopard, cairn, EntleBucher, Leonberg ].
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(a) Clean Image (b) Adversarial Image (c) Adversarial Perturbation

(d) Clean Image’s Attention (e) Adversarial Image’s Attention

(f) Clean Image’s Class Prob. (g) Adversarial Image’s Class Prob.

Figure 17: Top-5 attack example 1/2 on ViT-B [Dosovitskiy et al., 2020] with QuadAttacK
(ours). The original Top-5 predictions are [ Band Aid, airship, warplane, airliner, wing
]. The ordered Top-5 targets (randomly sampled) are: [ padlock, king snake, screwdriver,
Welsh springer spaniel, bookshop ].
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(a) Clean Image (b) Adversarial Image (c) Adversarial Perturbation

(d) Clean Image’s Class Prob. (e) Adversarial Image’s Class Prob.

Figure 18: Top-1 attack example 1/2 on ResNet-50 [He et al., 2016] with QuadAttacK (ours). The
original Top-1 predictions are [ ashcan ]. The ordered Top-1 targets (randomly sampled) are: [
eggnog ].
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(a) Clean Image (b) Adversarial Image (c) Adversarial Perturbation

(d) Clean Image’s Class Prob. (e) Adversarial Image’s Class Prob.

Figure 19: Top-1 attack example 1/2 on DenseNet-121 [Huang et al., 2017] with QuadAttacK
(ours). The original Top-1 predictions are [ starfish ]. The ordered Top-1 targets (randomly
sampled) are: [ crayfish ].
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(a) Clean Image (b) Adversarial Image (c) Adversarial Perturbation

(d) Clean Image’s Attention (e) Adversarial Image’s Attention

(f) Clean Image’s Class Prob. (g) Adversarial Image’s Class Prob.

Figure 20: Top-1 attack example 1/2 on DeiT-S [Touvron et al., 2021] with QuadAttacK (ours).
The original Top-1 predictions are [ sandal ]. The ordered Top-1 targets (randomly sampled)
are: [ espresso ].
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(a) Clean Image (b) Adversarial Image (c) Adversarial Perturbation

(d) Clean Image’s Attention (e) Adversarial Image’s Attention

(f) Clean Image’s Class Prob. (g) Adversarial Image’s Class Prob.

Figure 21: Top-1 attack example 1/2 on ViT-B [Dosovitskiy et al., 2020] with QuadAttacK (ours).
The original Top-1 predictions are [ bluetick ]. The ordered Top-1 targets (randomly sampled)
are: [ hen ].
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