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ABSTRACT

Vision-language models such as CLIP have shown great impact on diverse down-
stream tasks for zero-shot or label-free predictions. However, when it comes to
low-level vision such as image restoration their performance deteriorates dramati-
cally due to corrupted inputs. In this paper, we present a degradation-aware vision-
language model (DA-CLIP) to better transfer pretrained vision-language models
to low-level vision tasks as a multi-task framework for image restoration. More
specifically, DA-CLIP trains an additional controller that adapts the fixed CLIP
image encoder to predict high-quality feature embeddings. By integrating the em-
bedding into an image restoration network via cross-attention, we are able to pilot
the model to learn a high-fidelity image reconstruction. The controller itself will
also output a degradation feature that matches the real corruptions of the input,
yielding a natural classifier for different degradation types. In addition, we con-
struct a mixed degradation dataset with synthetic captions for DA-CLIP training.
Our approach advances state-of-the-art performance on both degradation-specific
and unified image restoration tasks, showing a promising direction of prompting
image restoration with large-scale pretrained vision-language models. Our code
is available at https://github.com/Algolzw/daclip-uir.

1 INTRODUCTION
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Figure 1: This paper leverages large-scale pretrained vision-language models for multi-task image
restoration. Compared to CLIP (Radford et al., 2021), our approach precisely predicts the degrada-
tion embeddings for corrupted inputs and also outputs high-quality features for better image restora-
tion performance. For all examples above, the right results are produced by our single unified model.
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Large-scale pretrained vision-language models (VLMs) such as CLIP (Radford et al., 2021) have
recently garnered significant attention, in part because of their wide-reaching usefulness on many
fundamental computer vision tasks (Gu et al., 2021; Zhang et al., 2022; 2023). However, existing
VLMs have so far had limited impact on low-level vision tasks such as image restoration (IR),
presumably because they do not capture the fine-grained difference between image degradation types
such as “blurry” and “noisy” (Ni et al., 2023). Consequently, the existing VLMs often misalign
image features to degradation texts. This is not surprising, considering that VLMs are generally
trained on diverse, web-scale datasets, in contrast to most image restoration models which are trained
on comparatively small datasets that are curated for a specific task without corresponding image-text
pairs (Li et al., 2019; Zhang et al., 2017; Zamir et al., 2022).

Image restoration methods often simply learn to generate images pixel-by-pixel without leveraging
task knowledge, which usually requires repeated training of the same model for specific degradation
types. A recent line of work has, however, focused on unified image restoration, where a single
model is trained on a mixed degradation dataset and implicitly classify the type of degradation in the
restoration process (Li et al., 2022a; Potlapalli et al., 2023). While the results are impressive, they
are still limited to a small number of degradation types and the specific datasets that go with them.
In particular, they do not make use of the vast amount of information embedded in VLMs.

In this paper, we combine the large-scale pretrained vision-language model CLIP with image restora-
tion networks and present a multi-task framework that can be applied to both degradation-specific
and unified image restoration problems. Specifically, aiming at addressing feature mismatching be-
tween corrupted inputs and clean captions, we propose an Image Controller that adapts the VLM’s
image encoder to output high-quality (HQ) content embeddings aligned with clean captions. Mean-
while, the controller itself also predicts a degradation embedding to match the real degradation types.
This novel framework, which we call degradation-aware CLIP (DA-CLIP), incorporates the human-
level knowledge from VLMs into general networks that improve image restoration performance and
enable unified image restoration. In addition, to learn high-quality features and degradation types
from low-quality (LQ) inputs, we construct a large mixed-degradation dataset for ten different image
restoration tasks based on BLIP (Li et al., 2022b). As shown in Figure 1, our DA-CLIP accurately
classifies the ten different degradation types and can readily be integrated into existing restoration
models, helping produce visually appealing results across the different degradations.

Our main contributions are summarised as follows: (1) We present DA-CLIP to leverage large-scale
pretrained vision-language models as a universal framework for image restoration. The key compo-
nent is an image controller that predicts the degradation and adapts the fixed CLIP image encoder
to output high-quality content embeddings from corrupted inputs. (2) We use cross-attention to in-
tegrate the content embedding into restoration networks to improve their performance. Moreover,
we introduce a prompt learning module to better utilize the degradation context for unified image
restoration. (3) We construct a mixed degradation dataset containing ten different degradation types
with high-quality synthetic captions. This dataset can be used to train either DA-CLIP or a unified
image restoration model. (4) We demonstrate the effectiveness of DA-CLIP by applying it to im-
age restoration models for both degradation-specific and unified image restoration. Our approach
achieves highly competitive performance across all ten degradation types.

2 BACKGROUND AND RELATED WORK

Image restoration Image restoration aims to recover a high-quality image from its corrupted coun-
terpart, which is a fundamental and long-standing problem in computer vision and contains various
tasks such as image denoising (Zhang et al., 2017), deraining (Ren et al., 2019), dehazing (Song
et al., 2023), deblurring (Kupyn et al., 2018), etc. Most existing works focus on the degradation-
specific task which trains multiple models for different tasks separately by directly learning the target
with common pixel-based losses (e.g., ℓ1 or ℓ2). Recently, however, increasing attention has been
paid to unified image restoration where multiple image restoration tasks are handled with a single
model (Li et al., 2022a; Potlapalli et al., 2023). These works achieve impressive results by using an
additional encoder (Li et al., 2022a; Zhou et al., 2022) or a visual prompt module (Potlapalli et al.,
2023) to implicitly cluster inputs according to the degradation type. However, they are still limited to
a few image restoration tasks and do not consider auxiliary information about the degradation type.
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(a) Degradation-aware CLIP (DA-CLIP) (b) Image restortion with DA-CLIP
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Figure 2: Overview of our method. DA-CLIP freezes both the text and image encoders of a pre-
trained CLIP but learns an additional image controller with contrastive learning. This controller
predicts degradation features to match real corruptions and then controls the image encoder to output
high-quality content features. Once trained, DA-CLIP can be integrated into other image restoration
models by simply adding a cross-attention module and a degradation feature prompting module.

Blind image restoration (BIR) To deal with unknown degradation levels, BIR comes into view and
has shown promising results for photos captured in the real-world (Zhang et al., 2021; Wang et al.,
2021; Xie et al., 2021). In particular, BSRGAN (Zhang et al., 2021) and Real-ESRGAN (Wang
et al., 2021) utilize GANs with practical degradation settings. Inspired by recent advanced diffusion
models, StableSR (Wang et al., 2023) and DiffBIR (Lin et al., 2023) propose to exploit diffusion
priors to generate realistic outputs. Although pretrained diffusion weights are well utilized in these
methods, they do not make use of the semantic information embedded in vision-language models.

Vision-language models (VLMs) Recent works have demonstrated the great potential of applying
pretrained VLMs to improve downstream tasks with generic visual and text representations (Radford
et al., 2021; Jia et al., 2021; Li et al., 2022b). A classic VLM usually consists of a text encoder and
an image encoder and tries to learn aligned multimodal features from noisy image-text pairs with
contrastive learning (Radford et al., 2021). BLIP (Li et al., 2022b) further proposes to remove noisy
web data by bootstrapping synthetic captions. Although VLMs provide a strong capability of zero-
shot and label-free classification for downstream tasks, they have so far had limited effect on image
restoration due to the need for specialized and accurate terminology. A noteworthy approach for fine-
tuning vision-language models is so-called prompt learning (Zhou et al., 2022), where the prompt’s
context words are represented by learnable vectors that are then optimized for the downstream task.

Text-to-image generation Text-to-image models such as stable diffusion (Rombach et al., 2022)
have gained extraordinary attention from both researchers and the general public. ControlNet (Zhang
& Agrawala, 2023) builds upon this work and proposes to add controls to the diffusion network to
make it adapt to task-specific conditions. InstructPix2Pix (Brooks et al., 2023) further combines
GPT-3 (Brown et al., 2020) with stable diffusion to perform an instruction-based image-to-image
translation. Although it can generate highly realistic images, it can not be directly applied to image
restoration tasks since the latter requires highly accurate reconstruction abilities.

3 DEGRADATION-AWARE CLIP

At the core of our approach is the idea of controlling a pre-trained CLIP model to output the high-
quality image feature from a corrupted image while simultaneously predicting the degradation type.
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Figure 3: (a) Controlling the ViT-based image encoder with a trainable controller. (b) Learning the
prompt with degradation embeddings predicted from the controller.

As summarised in Figure 2, the image content embedding eIc matches the clean caption embedding
eTc . Moreover, the image degradation embedding eId predicted by the controller specifies the corrup-
tion type of the input, i.e. the corresponding degradation embedding eTd from text encoder. These
features can then be integrated into other image restoration models to improve their performance.

3.1 IMAGE CONTROLLER

The image controller is a copy of the CLIP image encoder but wrapped with a few zero-initialised
connections to add controls to the encoder. It manipulates the outputs of all encoder blocks to con-
trol the prediction of the image encoder. In this paper, we use ViT (Dosovitskiy et al., 2020) as the
default backbone for both the encoder and the controller. Figure 3(a) illustrates the controlling pro-
cedure, where the output of the controller consists of two parts: an image degradation embedding
eId and hidden controls hc. Note that the latter contains all outputs from the transformer blocks,
which are subsequently added to the corresponding encoder blocks to control their predictions. The
connections between the transformer blocks are simple dense neural networks with all parameters
initialized to zero, which gradually influence the image encoder during training (Zhang & Agrawala,
2023). Since our training dataset is tiny compared to the web-scale datasets used in VLMs, this con-
trolling strategy alleviates overfitting while preserving the capability of the original image encoder.

Optimising the image controller We freeze all weights of the pretrained CLIP model and only
fine-tune the image controller. To make the degradation-embedding spaces discriminative and well-
separated, we use a contrastive objective (Tian et al., 2020) to learn the embedding matching process.
Let N denote the number of paired embeddings (from text encoder and image encoder/controller)
in a training batch. The contrastive loss is defined as:

Lcon(x,y) = − 1

N

N∑
i=1

log

(
exp (x⊺

i yi/τ)∑N
j=1 exp(x

⊺
i yj/τ)

)
, (1)

where x and y are normalised vectors, and τ is a learnable temperature parameter that controls the
contrastive strength. Minimising Equation 1 amounts to optimising the cosine similarity between
correctly paired embeddings while enlarging the difference with other embeddings, similar to the
cross-entropy loss (Radford et al., 2021). To optimise both content and degradation embeddings, we
use the following joint objective:

Lc(ω) = Lcon(e
I
c , e

T
c ;ω) + Lcon(e

I
d, e

T
d ;ω), (2)

where ω represents the learnable parameters of the controller. Note that all image-based embeddings
(i.e., eIc and eId) are obtained from the LQ image and all text-based embeddings (i.e., eTc and eTd ) are
from the clean caption and real degradation. Learning to align these embeddings enables DA-CLIP
to predict real degradation types and HQ content features for corrupted image inputs.
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3.2 IMAGE RESTORATION WITH DA-CLIP

We use IR-SDE (Luo et al., 2023a) as the base framework for image restoration. It adapts a U-Net
architecture similar to DDPM (Ho et al., 2020) but removes all self-attention layers. To inject clean
content embeddings into the diffusion process, we introduce a cross-attention (Rombach et al., 2022)
mechanism to learn semantic guidance from pre-trained VLMs. Considering the varying input sizes
in image restoration tasks and the increasing cost of applying attention to high-resolution features,
we only use cross-attention in the bottom blocks of the U-Net for sample efficiency.

On the other hand, the predicted degradation embeddings are useful for unified image restoration,
where the aim is to process low-quality images of multiple degradation types with a single model (Li
et al., 2022a). As illustrated in Figure 1, our DA-CLIP accurately classifies the degradation across
different datasets and various degradation types, which is crucial for unified image restoration (Li
et al., 2022a). Moreover, to make use of these degradation embeddings, we combine them with a
prompt learning (Zhou et al., 2022) module to further improve the results, as shown in Figure 3(b).
Given state xt and low-quality image µ, our final diffusion network is conditioned on the time t
and additional embeddings eIc and eId, as ϵθ(xt, µ, t, e

I
c , e

I
d), which can be trained with either noise-

matching loss (Ho et al., 2020) or maximum likelihood loss (Luo et al., 2023a;b).

Generally, we can use cross-attention to integrate content embedding into networks to improve
their performance on an image restoration task. In contrast, the prompt module combined with
degradation embedding specifically aims to improve the classification of the degradation type in the
context of unified image restoration.

LQ ImageHQ Image

several people are 
sitting at tables 

outside of a building 
snowy

Degradation
typeClean caption

BLIP

Generated image-text-degradation pair

Figure 4: An example of generating the image-text-degradation tuple with BLIP. The clean caption
generated from the HQ image is accurate and does not convey the degradation information.

4 DATASET CONSTRUCTION

A crucial point of this paper is to leverage powerful vision-language models to learn multiple image
degradations and extract degradation-free features for image restoration. For this purpose, we collect
a large dataset with ten different image degradation types: blurry, hazy, JPEG-compression, low-
light, noisy, raindrop, rainy, shadowed, snowy, and inpainting. Table 1 summarises the tasks and
the number of training and testing images for each degradation type, and more details are provided
in Appendix A. Example low-quality images for the ten degradations are also shown in Figure 1.

Generating image-text-degradation pairs In order to train DA-CLIP on the mixed-degradation
dataset, we use the bootstrapped vision-language framework BLIP (Li et al., 2022b) to generate
synthetic captions for all HQ images. Since the inputs are clean, the generated captions are assumed
to be accurate and of high-quality. As illustrated in Figure 4, we are then able to construct image-
text-degradation pairs by directly combining these clean captions, LQ images, and the corresponding
degradation types. This dataset allows us to train either vision-language models (based on image-
text-degradation pairs) or a unified image restoration framework (based on LQ-HQ image pairs).

Table 1: Details of the collected training and testing datasets with different image degradation types.

Dataset Blurry Hazy JPEG Low-light Noisy Raindrop Rainy Shadowed Snowy Inpainting

#Train 2 103 6 000 3 550 485 3 550 861 1 800 2 680 1 872 29 900
#Test 1 111 1 000 29 15 68 58 100 408 601 100
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5 EXPERIMENTS

We experimentally evaluate our method on two types of tasks: degradation-specific image restora-
tion and unified image restoration. In the degradation-specific setting (Section 5.1), restoration
models are separately trained for each of the considered degradation types. In unified image restora-
tion (Section 5.2), a single model is instead jointly trained on all degradation types. Implementation
details and additional results are provided in Appendix B and Appendix C.

Model Evaluation Our DA-CLIP is mainly evaluated in terms of how it affects the performance of
the downstream image restoration model, which we evaluate both on multiple degradation-specific
tasks and on unified image restoration. IR-SDE (Luo et al., 2023a) is used as our primary baseline
model. We use the Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) and
Fréchet inception distance (FID) (Heusel et al., 2017) as our main metrics for perceptual evaluation,
but also report PSNR and SSIM (Wang et al., 2004) for reference. Additionally, we evaluate DA-
CLIP in terms of how well it can classify the ten different degradation types on the mixed dataset.

5.1 DEGRADATION-SPECIFIC IMAGE RESTORATION

We integrate our DA-CLIP into the baseline diffusion model IR-SDE and evaluate them on four
degradation-specific tasks: image deraining on the Rain100H dataset (Yang et al., 2017), low-light
image enhancement on LOL (Wei et al., 2018), image deblurring on the GoPro dataset (Nah et al.,
2017), and image dehazing on RESIDE-6k (Qin et al., 2020). All training and testing datasets are
taken from the mixed degradation dataset described in Section 4.

Comparison approaches For all tasks, we compare our method to the prevailing approaches in
their respective fields such as 1) JORDER (Yang et al., 2019), PReNet (Ren et al., 2019), and MPR-
Net (Zamir et al., 2021) for deraining; 2) EnlightenGAN (Jiang et al., 2021), MIRNet (Zamir et al.,
2020), and URetinex-Net (Wu et al., 2022) for low-light enhancement; 3) DeepDeblur (Nah et al.,
2017), DeblurGAN (Kupyn et al., 2018), and DeblurGAN-v2 (Kupyn et al., 2019) for GoPro deblur-
ring; 4) GCANet (Chen et al., 2019), GridDehazeNet (Liu et al., 2019), and DehazeFormer (Song
et al., 2023) for image dehazing. We also compare with MAXIM (Tu et al., 2022), an advanced net-
work architecture that achieves state-of-the-art performance on multiple degradation-specific tasks.

Results The quantitative results on different datasets are summarised in Table 2. Our method
achieves the best perceptual results across all tasks, and even sets a new state-of-the-art perfor-
mance for all metrics on the image deraining task. Compared to the baseline method IR-SDE, our
approach consistently improves its results for all datasets and metrics, demonstrating that the HQ
content embedding from DA-CLIP leads to better performance for downstream image restoration
models. A visual comparison of our method with other approaches is also illustrated in Figure 5.
Our method produces mostly clear and visually appealing results that are close to the HQ images.

5.2 UNIFIED IMAGE RESTORATION

We evaluate our method for unified image restoration on the mixed degradation dataset which con-
tains ten different degradation types (see Section 4 for details).

Comparison approaches We compare our method with three approaches: Restormer (Zamir et al.,
2022), AirNet (Li et al., 2022a), and PromptIR (Potlapalli et al., 2023). Restormer is an advanced
transformer-based network. AirNet trains an extra encoder to differentiate degradation types using
contrastive learning, whereas PromptIR employs a visual prompt module to guide the restoration.
The latter two methods are designed specifically for unified image restoration.

Results We illustrate the comprehensive comparisons in Figure 6 and also provide the average re-
sults across all ten degradation types in Table 3. The results show that our method achieves the
best perceptual results (especially in terms of FID) across the ten degradations, while still having a
good distortion performance. More importantly, by simply integrating DA-CLIP into the network,
we significantly outperform the IR-SDE baseline in terms of all four metrics. A visual compari-
son is shown in Figure 8. On JPEG and noise removal, our method produces realistic-looking but
somewhat noisy images, giving lower distortion metrics for those particular tasks. In Appendix B.3,
we evaluate methods on out-of-distribution light rain images, in which DA-CLIP surpasses all other
unified approaches, demonstrating that our method can generalize to unseen degradation levels.
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Table 2: Quantitative comparison between our method with other state-of-the-art approaches on four
different degradation-specific datasets. The best results are marked in boldface.

Method Distortion Perceptual

PSNR↑ SSIM↑ LPIPS↓ FID↓
JORDER 26.25 0.835 0.197 94.58
PReNet 29.46 0.899 0.128 52.67
MPRNet 30.41 0.891 0.158 61.59
MAXIM 30.81 0.903 0.133 58.72
IR-SDE 31.65 0.904 0.047 18.64
Ours 33.91 0.926 0.031 11.79
(a) Deraining results on the Rain100H dataset.

Method Distortion Perceptual

PSNR↑ SSIM↑ LPIPS↓ FID↓
EnlightenGAN 17.61 0.653 0.372 94.71
MIRNet 24.14 0.830 0.250 69.18
URetinex-Net 19.84 0.824 0.237 52.38
MAXIM 23.43 0.863 0.098 48.59
IR-SDE 20.45 0.787 0.129 47.28
Ours 23.77 0.830 0.083 34.03

(b) Low-light enhancement on the LOL dataset.

Method Distortion Perceptual

PSNR↑ SSIM↑ LPIPS↓ FID↓
DeepDeblur 29.08 0.913 0.135 15.14
DeblurGAN 28.70 0.858 0.178 27.02
DeblurGANv2 29.55 0.934 0.117 13.40
MAXIM 32.86 0.940 0.089 11.57
IR-SDE 30.70 0.901 0.064 6.32
Ours 30.88 0.903 0.058 6.15

(c) Deblurring results on the GoPro dataset.

Method Distortion Perceptual

PSNR↑ SSIM↑ LPIPS↓ FID↓
GCANet 26.59 0.935 0.052 11.52
GridDehazeNet 25.86 0.944 0.048 10.62
DehazeFormer 30.29 0.964 0.045 7.58
MAXIM 29.12 0.932 0.043 8.12
IR-SDE 25.25 0.906 0.060 8.33
Ours 30.16 0.936 0.030 5.52
(d) Dehazing results on the RESIDE-6k dataset.

HQ Image Rainy Image MPRNet MAXIM OursIR-SDE

HQ Image Low-light Image URetinexNet MAXIM OursIR-SDE

HQ Image Hazy Image DehazeFormer MAXIM OursIR-SDE

HQ Image Blurry Image DeblurGAN-v2 MAXIM OursIR-SDE

Figure 5: Comparison of our method with other approaches on 4 different degradation-specific tasks.

Moreover, we further integrate1 DA-CLIP into an MSE-based network NAFNet (Chen et al., 2022)
as a variant of our method. The results are illustrated in Table 3 and Figure 7. We observe that adding
our degradation context significantly improves the results, and the final performance of NAFNet with
DA-CLIP even surpasses PromptIR across all metrics. This demonstrates that DA-CLIP can be inte-
grated with both diffusion-based and direct restoration models, further improving their performance
for unified image restoration. More results can be found in Appendix B.4.

Finally, we evaluate DA-CLIP in terms of degradation type classification as shown in Figure 1 and
Table 4 (in the Appendix). The original CLIP model achieves less than 2% accuracy in recognizing
noisy and raindrop images, and even 0% accuracy for inpainting, which would confuse a down-
stream unified image restoration model. By training the controller on the mixed degradation dataset,
DA-CLIP perfectly predicts all degradations except blurry, for which it achieves 91.6% accuracy.

1We add the prompt module to all blocks and use cross-attention in the bottom layers.
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Figure 6: Comparison of our method with AirNet, PromptIR and IR-SDE for unified image restora-
tion. Each radar plot reports results for the ten different degradation types, for one particular metric.
For the perceptual metrics LPIPS and FID (the two rightmost plots), a lower value is better.

Table 3: Comparison of the average results over ten different
datasets on the unified image restoration task.

Method Distortion Perceptual

PSNR↑ SSIM↑ LPIPS↓ FID↓
NAFNet 26.34 0.847 0.159 55.68
NAFNet + Degradation 27.02 0.856 0.146 48.27
NAFNet + DA-CLIP 27.22 0.861 0.145 47.94

Restormer 26.43 0.850 0.157 54.03
AirNet 25.62 0.844 0.182 64.86
PromptIR 27.14 0.859 0.147 48.26
IR-SDE 23.64 0.754 0.167 49.18
Ours 27.01 0.794 0.127 34.89
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Figure 7: NAFNet with DA-CLIP
for unified image restoration.

5.3 DISCUSSION AND ANALYSIS

We have two different embeddings from the DA-CLIP: an HQ content embedding and a degradation
embedding, which are both predicted from the LQ image. The former can be used for improving
general image restoration performance, whereas the latter is predicted to classify degradation types
for unified image restoration models. As can be observed in Figure 9a, separately applying either
the degradation embedding or the HQ content embedding improves the unified restoration perfor-
mance, and the performance is further improved by applying both embeddings as in our DA-CLIP.
Moreover, directly embedding the ground truth HQ image and the real degradation type leads to an
upper-bound performance of our method, as illustrated in Figure 9b.

We also compare using the HQ content image embedding from our DA-CLIP with the original image
content embedding obtained from the OpenAI CLIP (Radford et al., 2021). For the unified image
restoration task, we observe in Figure 9c that using the original CLIP content embedding fails to
substantially improve the performance. For the degradation-specific setting as shown in Figure 9d,
we also observe that our DA-CLIP clearly outperforms the baseline of using the original CLIP.

As an alternative to using the HQ content and degradation embeddings of DA-CLIP (from the LQ
image), the degradation type and HQ caption could be encoded directly using the CLIP text encoder.
This alternative approach thus requires access to the ground truth degradation label and caption text
for each LQ image. Surprisingly, we observe in Figure 9e that the two degradation embeddings
give very similar performance. And Figure 9f further shows that caption embeddings are also help-
ful for image restoration. Moreover, while using the ground truth text embeddings improves the
baseline performance, it is slightly inferior compared to using our DA-CLIP image embeddings
(Figure 9g), meaning that DA-CLIP has learned to accurately predict the degradation type and HQ
content embeddings. Finally, an analysis of the degradation prompt module is provided in Figure 9h,
demonstrating that prompt learning also facilitates unified image restoration.

While we have demonstrated the effectiveness of our proposed DA-CLIP in various settings, it
is worth acknowledging one potential limitation: increased model complexity and computational
cost. As can be observed in Table 8 in the Appendix, DA-CLIP significantly increases the memory
requirements compared to the baseline models (both NAFNet and IR-SDE). The test-time computa-
tional cost (FLOPs and runtime) is however virtually unaffected.
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Figure 8: Comparison of our method with other approaches on the unified image restoration. All
results in each row are produced by sending images with different degradations to the same model.
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Figure 9: Training curves of model variations, demonstrating the effectiveness of our DA-CLIP.

6 CONCLUSION

This paper presents DA-CLIP to leverage large-scale pretrained vision-language models as a uni-
versal framework for image restoration. At the core of our approach is a controller that accurately
predicts the degradation embeddings from LQ images and also controls the CLIP image encoder
to output clean content embeddings. To train DA-CLIP, we construct a mixed degradation dataset
containing synthetic captions from HQ images. DA-CLIP is then integrated into downstream image
restoration models using a prompt learning module and a cross-attention mechanism. Experimental
evaluation on both degradation-specific and unified image restoration tasks demonstrates that DA-
CLIP consistently improves the restoration performance, across a variety of degradation types. On
the other hand, we notice that the current dataset makes it hard to restore multiple degradations in
the same scene. In future work, we are interested in creating practical models that are more robust
to real-world captured photos and are able to fully restore images with mixed degradation types.
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gan: Blind motion deblurring using conditional adversarial networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8183–8192, 2018. 2, 6

10



Published as a conference paper at ICLR 2024

Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang Wang. Deblurgan-v2: deblurring
(orders-of-magnitude) faster and better. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), pp. 8878–8887, 2019. 6

Boyun Li, Xiao Liu, Peng Hu, Zhongqin Wu, Jiancheng Lv, and Xi Peng. All-in-one image restora-
tion for unknown corruption. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 17452–17462, 2022a. 2, 5, 6, 17

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International Conference
on Machine Learning, pp. 12888–12900. PMLR, 2022b. 2, 3, 5, 19

Siyuan Li, Iago Breno Araujo, Wenqi Ren, Zhangyang Wang, Eric K Tokuda, Roberto Hirata Junior,
Roberto Cesar-Junior, Jiawan Zhang, Xiaojie Guo, and Xiaochun Cao. Single image deraining: A
comprehensive benchmark analysis. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3838–3847, 2019. 2

Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Ben Fei, Bo Dai, Wanli Ouyang, Yu Qiao,
and Chao Dong. Diffbir: Towards blind image restoration with generative diffusion prior. arXiv
preprint arXiv:2308.15070, 2023. 3

Xiaohong Liu, Yongrui Ma, Zhihao Shi, and Jun Chen. Griddehazenet: Attention-based multi-
scale network for image dehazing. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 7314–7323, 2019. 6

Yun-Fu Liu, Da-Wei Jaw, Shih-Chia Huang, and Jenq-Neng Hwang. Desnownet: Context-aware
deep network for snow removal. IEEE Transactions on Image Processing, 27(6):3064–3073,
2018. 14

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017. 14

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11461–11471, 2022.
14

Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Image restora-
tion with mean-reverting stochastic differential equations. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202, pp. 23045–23066. PMLR, 2023a. 5, 6, 16,
17

Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Refusion: En-
abling large-size realistic image restoration with latent-space diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1680–1691, 2023b.
5

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and measuring ecological
statistics. In Proceedings of the 18th IEEE International Conference on Computer Vision (ICCV),
volume 2, pp. 416–423. IEEE, 2001. 14

Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network
for dynamic scene deblurring. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3883–3891, 2017. 6, 14

Minheng Ni, Xiaoming Li, and Wangmeng Zuo. NUWA-LIP: Language-guided image inpainting
with defect-free VQGAN. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14183–14192, 2023. 2

Vaishnav Potlapalli, Syed Waqas Zamir, Salman Khan, and Fahad Shahbaz Khan. Promptir: Prompt-
ing for all-in-one blind image restoration. Advances in Neural Information Processing Systems
(NeurIPS), 2023. 2, 6, 17

11



Published as a conference paper at ICLR 2024

Rui Qian, Robby T Tan, Wenhan Yang, Jiajun Su, and Jiaying Liu. Attentive generative adversarial
network for raindrop removal from a single image. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2482–2491, 2018. 14

Xu Qin, Zhilin Wang, Yuanchao Bai, Xiaodong Xie, and Huizhu Jia. FFA-Net: Feature fusion
attention network for single image dehazing. In Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 11908–11915, 2020. 6, 14

Liangqiong Qu, Jiandong Tian, Shengfeng He, Yandong Tang, and Rynson WH Lau. Deshadownet:
A multi-context embedding deep network for shadow removal. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 4067–4075, 2017. 14

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pp. 8748–8763. PMLR, 2021. 1, 2, 3, 4, 8

Dongwei Ren, Wangmeng Zuo, Qinghua Hu, Pengfei Zhu, and Deyu Meng. Progressive image
deraining networks: a better and simpler baseline. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 3937–3946, 2019. 2, 6

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022. 3, 5

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294, 2022. 14

H Sheikh. Live image quality assessment database release 2. http://live. ece. utexas.
edu/research/quality, 2005. 14

Yuda Song, Zhuqing He, Hui Qian, and Xin Du. Vision transformers for single image dehazing.
IEEE Transactions on Image Processing, 32:1927–1941, 2023. 2, 6

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In European
Conference on Computer Vision, pp. 776–794. Springer, 2020. 4

Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and Lei Zhang. NTIRE 2017
challenge on single image super-resolution: methods and results. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 114–125, 2017.
14

Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao
Li. Maxim: Multi-axis mlp for image processing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5769–5780, 2022. 6

Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK Chan, and Chen Change Loy. Exploiting
diffusion prior for real-world image super-resolution. arXiv preprint arXiv:2305.07015, 2023. 3

Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-esrgan: Training real-world blind
super-resolution with pure synthetic data. In Proceedings of the IEEE/CVF international confer-
ence on computer vision, pp. 1905–1914, 2021. 3

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–
612, 2004. 6

Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. Deep retinex decomposition for low-light
enhancement. arXiv preprint arXiv:1808.04560, 2018. 6, 14

12



Published as a conference paper at ICLR 2024

Wenhui Wu, Jian Weng, Pingping Zhang, Xu Wang, Wenhan Yang, and Jianmin Jiang. Uretinex-net:
Retinex-based deep unfolding network for low-light image enhancement. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5901–5910, 2022. 6

Liangbin Xie, Xintao Wang, Chao Dong, Zhongang Qi, and Ying Shan. Finding discriminative filters
for specific degradations in blind super-resolution. Advances in Neural Information Processing
Systems, 34:51–61, 2021. 3

Wenhan Yang, Robby T Tan, Jiashi Feng, Jiaying Liu, Zongming Guo, and Shuicheng Yan. Deep
joint rain detection and removal from a single image. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1357–1366, 2017. 6, 14, 16

Wenhan Yang, Robby T Tan, Jiashi Feng, Zongming Guo, Shuicheng Yan, and Jiaying Liu. Joint rain
detection and removal from a single image with contextualized deep networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 42(6):1377–1393, 2019. 6

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-
Hsuan Yang, and Ling Shao. Learning enriched features for real image restoration and en-
hancement. In Proceedings of the 16th European Conference on Computer Vision, pp. 492–511.
Springer, 2020. 6

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-
Hsuan Yang, and Ling Shao. Multi-stage progressive image restoration. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14821–14831,
2021. 6

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-
Hsuan Yang. Restormer: efficient transformer for high-resolution image restoration. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
5728–5739, 2022. 2, 6, 16

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks:
A survey. arXiv preprint arXiv:2304.00685, 2023. 2

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a Gaussian denoiser:
Residual learning of deep cnn for image denoising. IEEE Transactions on Image Processing, 26
(7):3142–3155, 2017. 2

Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timofte. Designing a practical degradation
model for deep blind image super-resolution. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 4791–4800, 2021. 3

Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models.
arXiv preprint arXiv:2302.05543, 2023. 3, 4

Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and Hong-
sheng Li. Tip-adapter: Training-free adaption of clip for few-shot classification. In European
Conference on Computer Vision, pp. 493–510. Springer, 2022. 2

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 586–595, 2018. 6

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022. 2, 3, 5

13



Published as a conference paper at ICLR 2024

A MORE DETAILS ABOUT DATASETS

In this section, we give more details about the mixed degradation dataset in Section 4. We collect
images for 10 different image restoration tasks, including blurry, hazy, JPEG-compressing, low-
light, noisy, raindrop, rainy, shadowed, snowy, and inpainting, as shown in Figure 1. The details of
these datasets are listed below:

• Blurry: collected from the GoPro (Nah et al., 2017) dataset containing 2103 and 1111
training and testing images, respectively.

• Hazy: collected from the RESIDE-6k (Qin et al., 2020) dataset which has mixed indoor
and outdoor images with 6000 images for training and 1000 images for testing.

• JPEG-compressing: the training dataset has 3440 images collected from DIV2K (Agusts-
son & Timofte, 2017) and Flickr2K (Timofte et al., 2017). The testing dataset contains 29
images from LIVE1 (Sheikh, 2005). Moreover, all LQ images are synthetic data with a
JPEG quality factor of 10.

• Low-light: collected from the LOL (Wei et al., 2018) dataset containing 485 images for
training and 15 images for testing.

• Noisy: the training dataset is the same as that in JPEG-compressing but all LQ images
are generated by adding Gaussian noise with noise level 50. The testing images are from
CBSD68 (Martin et al., 2001) and also added that Gaussian noise.

• Raindrop: collected from the RainDrop (Qian et al., 2018) dataset containing 861 images
for training and 58 images for testing.

• Rainy: collected from the Rain100H (Yang et al., 2017) dataset containing 1800 images for
training and 100 images for testing.

• Shadowed: collection from the SRD (Qu et al., 2017) dataset containing 2680 images for
training and 408 images for testing.

• Snowy: collected from the Snow100K-L (Liu et al., 2018) dataset. Since the original dataset
is too large (100K images), we only use a subset which contains 1872 images for training
and 601 images for testing.

• Inpainting: we use CelebaHQ as the training dataset and divide 100 images with 100 thin
masks from RePaint (Lugmayr et al., 2022) for testing.

We also provide several visual examples for each task for a better understanding of the 10 degrada-
tions and datasets, as shown in Figure 10.

B IMPLEMENTATION DETAILS AND MORE ANALYSIS

B.1 IMPLEMENTATION DETAILS

The base CLIP model uses ViT-B-32 as the backbone for its image encoder, with weights pretrained
on the LAION-2B dataset (Schuhmann et al., 2022). Built upon it, we fine-tune the DA-CLIP on
the mixed degradation dataset with a batch size of 3 136 (784 × 4) and learning rate 3 × 10−5.
In preprocessing, all inputs are normalized in the range [0, 1] and resized to 224 × 224 with bicu-
bic interpolation. We train the DA-CLIP model on four NVIDIA A100 GPUs for 50 epochs, in
approximately 3 hours. For the restoration model, we use a batch size of 16 and randomly crop
images to 256 × 256 for data augmentation. The initial learning rate is 2 × 10−4. We use the
AdamW (Loshchilov & Hutter, 2017) optimizer (β1 = 0.9, β1 = 0.99) with cosine decay for a total
of 700K iterations. All training is done using one A100 GPU for about 5 days.

B.2 ADDITIONAL ANALYSIS OF DA-CLIP

We provide the degradation classification results of three strategies: 1) retraining CLIP on our
dataset; 2) fine-tuning CLIP from pretrained weights; and 3) adding a controller but without zero-
initializing its dense layers. The prompt is set to “a [degradation type] photo” for all models. The
results are reported in Table 4. Obviously, CLIP with finetuning significantly improves the results of
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Blurry Hazy JPEG Low-light Noisy

Raindrop Rainy Shadowed Snowy Inpainting

Figure 10: Example images with 10 image restoration tasks. For each task, the first row is the
corrupted input and the second row is the result produced by our unified image restoration model.

Table 4: Accuracies of the degradation classification. The average accuracy for each method is
provided in the last column. ‘DA-CLIP w/o Zero’ means adding a controller without zero-initialising
its dense layers.

Model Blurry Hazy JPEG Low-light Noisy Raindrop Rainy Shadowed Snowy Inpainting Average

OpenAI CLIP 80.3 72.9 20.7 13.3 1.5 1.7 80 29.9 27 0 26.7
Retrain CLIP 65.3 97.8 65.5 100 100 86.2 99 94.6 88 100 89.6
CLIP + finetune 95.6 100 100 100 100 100 100 100 100 100 99.6
DA-CLIP w/o Zero 90.1 99 100 100 97.1 96.5 100 99.7 99 100 98.1
DA-CLIP (Ours) 91.6 100 100 100 100 100 100 100 100 100 99.2

direct retraining, demonstrating the effectiveness of large-scale vision-language model pretraining.
Note that although fine-tuning CLIP achieves slightly better performance on blurry classification
than DA-CLIP, it is not able to predict HQ content embeddings from the LQ image input, which
leads to limited effects on downstream restoration models. Moreover, initializing dense layers to
zero can further improve the accuracy of all datasets without adding additional costs.

Table 5: Evaluating unified models on the Rain100L dataset for OOD analysis.

Method Distortion Perceptual

PSNR↑ SSIM↑ LPIPS↓ FID↓
AirNet 30.07 0.935 0.114 45.56
PromptIR 32.77 0.950 0.081 43.31
IR-SDE 30.13 0.904 0.098 35.05
Ours 36.61 0.967 0.025 11.98
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Table 6: Ablation experiments of applying DA-CLIP to other MSE-based methods on unified image
restoration. PromptIR is built upon Restormer but with additional degradation prompt modules.

Method PSNR↑ SSIM↑ LPIPS↓ FID↓
NAFNet 26.34 0.847 0.159 55.68
+ Degradation embedding 27.02 0.856 0.146 48.27
+ Degradation and Content embedding 27.22 0.861 0.145 47.94
Restormer 26.43 0.850 0.157 54.03
PromptIR (Restormer + degradation) 27.14 0.859 0.147 48.26
PromptIR + Content embedding 27.26 0.861 0.145 47.75

Table 7: Results of integrating the DA-CLIP into NAFNet for degradation-specific tasks.

Method Distortion Perceptual

PSNR↑ SSIM↑ LPIPS↓ FID↓
NAFNet 31.49 0.903 0.087 31.05
NAFNet+DA-CLIP 31.68 0.907 0.086 31.02

(a) Deraining results on the Rain100H dataset.

Method Distortion Perceptual

PSNR↑ SSIM↑ LPIPS↓ FID↓
NAFNet 23.09 0.839 0.122 57.45
NAFNet+DA-CLIP 23.72 0.844 0.116 50.69

(b) Low-light enhancement on the LOL dataset.

B.3 EXPERIMENTS ON OUT-OF-DISTRIBUTION (OOD) DEGRADATION

To evaluate our model’s generalization capability, we apply our model on an additional light rain
dataset Rain100L Yang et al. (2017). Since our mixed-degradation dataset only contains heavy rain
images (from the Rain100H dataset), Rain100L is an out-of-distribution dataset with a relatively
low-level degradation. Table 5 summarises the results. It is observed that our method performs
surprisingly well on this unseen dataset and surpasses all other unified approaches by a significant
margin. In addition, we also provide some real-world visual examples in Figure 17, showing that
our model seems to generalize well compared to the AirNet and PrompIR baselines.

B.4 IMPROVING MSE-BASED METHOD WITH DA-CLIP

It is worth noting that our DA-CLIP can not only benefit the diffusion-based image restoration
approach but also facilitate standard MSE-based model learning. Table 6 provides two ablation
experiments on NAFNet (Chen et al., 2022) and Restormer (Zamir et al., 2022). Note that Promp-
tIR is built upon Restormer but with additional degradation prompt modules. As can be seen, the
degradation context is useful for both methods, and adding additional content embedding can further
improve their performance.

B.5 TRAINING CURVES ON SINGLE DEGRADATION TASKS

To further illustrate the effectiveness of our method, we compare the training curves between the
baseline model IR-SDE (Luo et al., 2023a) and that with our DA-CLIP embeddings on four dif-
ferent degradation-specific image restoration tasks: image deraining, low-light enhancement, image
deblurring, and image dehazing. The results are shown in Figure 11, from which we can see the
training with our DA-CLIP obviously performs better than the baseline model.
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Figure 11: Ablation studies on the degradation-specific image restoration task.
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B.6 ANALYSIS ABOUT THE MODEL COMPLEXITY

We have shown the effectiveness of applying our DA-CLIP to various image restoration models
and tasks. However, it is worth acknowledging one potential limitation: the model complexity is
also increased along with the DA-CLIP inference and with additional prompt modules and cross-
attention layers. The comparison of model complexities is shown in Table 8. DA-CLIP significantly
increases the memory requirements compared to the baseline models (both NAFNet and IR-SDE).
The test-time computational cost (FLOPs and runtime) is however virtually unaffected.

B.7 ANALYSIS OF PATCH SIZES

Intuitively, large patch sizes always contain more semantic information that might be important for
guiding image restoration. We explore this property by training our model with two different patch
sizes on the unified image restoration task. As shown in Figure 12, increasing the patch size from
128× 128 to 256× 256 improves the training process, which is consistent with our conjecture.

Table 8: Comparison of the number of parameters, model computational efficiency, and inference
time. The flops and inference time are computed on face inpainting images of size 256× 256. Note
that MAXIM is implemented with the JAX GPU version.

METHOD MAXIM PROMPTIR NAFNET NAFNET + DA-CLIP IR-SDE IR-SDE + DA-CLIP

#PARAM 14.1M 33M 67.8M 86.1M + 125.2M 36.2M 48.9M + 125.2M
FLOPS 216G 158G 63G 65G + 0.5G 117G 118G + 0.5G
RUNTIME 2.9S 0.1S 0.08S 0.08S 4.2S 4.53S + 0.06S

C ADDITION EXPERIMENTAL RESULTS

In this section, we provide more details and additional experimental results.

C.1 DETAILED QUANTITATIVE RESULTS FOR UNIFIED IMAGE RESTORATION
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Figure 12: Comparison of training
curves with different patch sizes.

We provide some examples to show the degradation predic-
tion on specific images with different corruptions in Figure 13.
In Section 5.2 we have reported the average results and radar
figures for different metrics. Here we also provide a more de-
tailed comparison between our method with other approaches
for unified image restoration. The results on four metrics are
shown in Table 9, Table 10, Table 11, and Table 12. Ad-
ditionally, we also provide a detailed comparison between
NAFNet (Chen et al., 2022) and its variant (with DA-CLIP) in
all tables, which illustrates the potential of applying our DA-
CLIP to other general image restoration frameworks.

C.2 ADDITIONAL VISUAL RESULTS

The additional visual results for unified image restoration are
shown in Figure 14, Figure 16. Figure 15 shows the compari-
son with Real-ESRGAN and StableSR on a compressed image
and a blurry image. Figure 17 also illustrates some examples of testing our method on real-world im-
ages. We basically compare with PromptIR (Potlapalli et al., 2023) and IR-SDE (Luo et al., 2023a)
but also add the results generated from AirNet (Li et al., 2022a).

D LIMITATION ON MIXED DEGRADATIONS

Since the mixed degradation dataset contains a single degradation label for each image, our current
model has not been trained to restore multiple degradations in the same scene. For example, the
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raindrop image in Figure 8 contains a shadow area, but our model only removes the raindrop degra-
dation. Also, due to this limitation, this paper can’t well-explore and justify the effectiveness of
linguistic components based on mixed degradations.

In future work, we are very interested in 1) creating practical models that are able to process real-
world degradations and more complex degradations; 2) exploring other pretrained VLM backbones
for more robust visual representations/embeddings; 3) exploring more interesting works for the
linguistic side (from text encoder) such as instruction-based image restoration.
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Blurry Image

a park with two 
benches and trees

Blurry Noisy Rainy Hazy

Degradation Prediction (%)

CLIP DA-CLIP

84.2
98.5

4.4 7.5 3.9

Rainy Image

many lions walking 
in the grass together

Blurry Noisy Rainy Hazy

Degradation Prediction (%)

CLIP DA-CLIP

40.8

99.9

12.7

37.2

9.3

Noisy Image

a small chipmunt
standing on a rock

Blurry Noisy Rainy Hazy

Degradation Prediction (%)

CLIP DA-CLIP

55.3

99.8

8.2 17.4 19.1

Hazy Image

people walking down a 
street with traffic cones

Blurry Noisy Rainy Hazy

Degradation Prediction (%)

CLIP DA-CLIP

20.5

99.8

3 7.2

69.3

Figure 13: Comparison of CLIP and DA-CLIP for image degradation prediction. The captions above
the corrupted images are generated using BLIP (Li et al., 2022b) with corresponding clean images.

Table 9: Comparison of our method with other unified image restoration approaches on PSNR.
Model Blurry Hazy JPEG Low-light Noisy Raindrop Rainy Shadowed Snowy Inpainting Average

NAFNet 26.12 24.05 26.81 22.16 27.16 30.67 27.32 24.16 25.94 29.03 26.34
NAFNet+DA-CLIP 26.40 26.39 27.13 23.09 27.43 31.08 28.23 25.80 26.64 30.01 27.22
Restormer 26.34 23.75 26.90 22.17 27.25 30.85 27.91 23.33 25.98 29.88 26.43
AirNet 26.25 23.56 26.98 14.24 27.51 30.68 28.45 23.48 24.87 30.15 25.62
PromptIR 26.50 25.19 26.95 23.14 27.56 31.35 29.24 24.06 27.23 30.22 27.14
IR-SDE 24.13 17.44 24.21 16.07 24.82 28.49 26.64 22.18 24.70 27.56 23.64
Ours 27.03 29.53 23.70 22.09 24.36 30.81 29.41 27.27 26.83 28.94 27.01

Table 10: Comparison of our method with other unified image restoration approaches on SSIM.
Model Blurry Hazy JPEG Low-light Noisy Raindrop Rainy Shadowed Snowy Inpainting Average

NAFNet 0.804 0.926 0.780 0.809 0.768 0.924 0.848 0.839 0.869 0.901 0.847
NAFNet+DA-CLIP 0.816 0.948 0.798 0.823 0.777 0.928 0.869 0.849 0.880 0.914 0.861
Restormer 0.811 0.915 0.781 0.815 0.762 0.928 0.862 0.836 0.877 0.912 0.850
AirNet 0.805 0.916 0.783 0.781 0.769 0.926 0.867 0.832 0.846 0.911 0.844
PromptIR 0.815 0.933 0.784 0.829 0.774 0.931 0.876 0.842 0.887 0.918 0.859
IR-SDE 0.730 0.832 0.615 0.719 0.640 0.822 0.808 0.667 0.828 0.876 0.754
Ours 0.810 0.931 0.532 0.796 0.579 0.882 0.854 0.811 0.854 0.894 0.794

Table 11: Comparison of our method with other unified image restoration approaches on LPIPS.
Model Blurry Hazy JPEG Low-light Noisy Raindrop Rainy Shadowed Snowy Inpainting Average

NAFNet 0.284 0.043 0.303 0.158 0.216 0.082 0.180 0.138 0.096 0.085 0.159
NAFNet+DA-CLIP 0.261 0.034 0.284 0.140 0.218 0.083 0.146 0.135 0.083 0.071 0.145

Restormer 0.282 0.054 0.300 0.156 0.215 0.083 0.170 0.145 0.095 0.072 0.157
AirNet 0.279 0.063 0.302 0.321 0.264 0.095 0.163 0.145 0.112 0.071 0.182
PromptIR 0.267 0.051 0.269 0.140 0.230 0.078 0.147 0.143 0.082 0.068 0.147
IR-SDE 0.198 0.168 0.246 0.185 0.232 0.113 0.142 0.223 0.107 0.065 0.167
Ours 0.140 0.037 0.317 0.114 0.272 0.068 0.085 0.118 0.072 0.047 0.127

Table 12: Comparison of our method with other unified image restoration approaches on FID.
Model Blurry Hazy JPEG Low-light Noisy Raindrop Rainy Shadowed Snowy Inpainting Average

NAFNet 42.99 15.73 71.88 73.94 82.08 56.43 86.35 47.32 35.76 44.32 55.68
NAFNet+DA-CLIP 36.36 11.80 68.60 71.80 79.07 43.34 66.50 37.86 29.19 34.93 47.94

Restormer 39.08 15.34 72.68 78.22 87.14 50.97 78.16 48.33 33.45 36.96 54.03
AirNet 41.23 21.91 78.56 154.2 93.89 52.71 72.07 64.13 36.99 32.93 64.86
PromptIR 36.5 10.85 73.02 67.15 84.51 44.48 61.88 43.24 28.29 32.69 48.26
IR-SDE 29.79 23.16 61.85 66.42 79.38 50.22 63.07 50.71 34.63 32.61 49.18
Ours 14.13 5.66 42.05 52.23 64.71 38.91 52.78 25.48 27.26 25.73 34.89
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HQ Image PromptIR IR-SDE Ours

Blurry Input 

Hazy Input 

JPEG Input 

Low-light Input 

Noisy Input 

HQ Image

PromptIR IR-SDE Ours

AirNet

Figure 14: Comparison of our method with other approaches on the unified image restoration.

LQ Image Real-ESRGAN StableSR Ours

Figure 15: Comparison of our method with Real-ESRGAN and StableSR.
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Raindrop Input 

Rainy Input 

Shadowed Input 

Snowy Input 

Inpainting Input HQ Image PromptIR IR-SDE Ours

Figure 16: Comparison of our method with other approaches on the unified image restoration.

Real-world LQ PromptIRAirNet Ours

Figure 17: Comparison of our method with other approaches on real-world images.
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