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Abstract
Graph transformers extend global self-attention
to graph-structured data, achieving notable suc-
cess in graph learning. Recently, random walk
structural encoding (RWSE) has been found to
further enhance their predictive power by encod-
ing both structural and positional information into
the edge representation. However, RWSE can-
not always distinguish between edges that belong
to different local graph patterns, which reduces
its ability to capture the full structural complex-
ity of graphs. This work introduces Simple Path
Structural Encoding (SPSE), a novel method that
utilizes simple path counts for edge encoding. We
show theoretically and experimentally that SPSE
overcomes the limitations of RWSE, providing
a richer representation of graph structures, par-
ticularly for capturing local cyclic patterns. To
make SPSE computationally tractable, we pro-
pose an efficient approximate algorithm for sim-
ple path counting. SPSE demonstrates significant
performance improvements over RWSE on vari-
ous benchmarks, including molecular and long-
range graph datasets, achieving statistically signif-
icant gains in discriminative tasks. These results
pose SPSE as a powerful edge encoding alter-
native for enhancing the expressivity of graph
transformers.

1. Introduction
Graphs are pervasive across diverse domains, representing
complex relationships in areas such as social networks (Otte
& Rousseau, 2002), molecular structures (Quinn et al.,
2017), and citation graphs (Radicchi et al., 2011). Recent ad-
vances in graph neural networks (GNNs) have driven signif-
icant progress in learning from graph-structured data (Kipf
& Welling, 2017; Veličković et al., 2018; Bodnar et al.,
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2022; Lachi et al., 2024; Ferrini et al., 2024; Duta & Liò,
2024), yet these models often face challenges in capturing
long-range dependencies and structural patterns due to their
reliance on localized message passing (Alon & Yahav, 2021;
Topping et al., 2022).

Inspired by their success in vision and sequence learning
tasks (Vaswani, 2017; Dosovitskiy et al., 2021), transform-
ers have been extended to graph learning problems (Yun
et al., 2019; Dwivedi & Bresson, 2020; Ying et al., 2021;
Kreuzer et al., 2021). Unlike traditional GNNs, graph trans-
formers leverage global self-attention, allowing each node
to attend to all others within a graph, regardless of dis-
tance. This flexibility overcomes the limitations of message-
passing approaches but introduces new challenges, particu-
larly in designing suitable positional and structural encod-
ings that capture the inherent irregularities of graphs.

For directed acyclic graphs (DAGs), positional encod-
ings (PEs) based on partial orderings can be directly ap-
plied (Dong et al., 2022; Luo et al., 2024b; Hwang et al.,
2024). However, for general undirected graphs, success-
ful PEs often rely on eigendecompositions of the graph
Laplacian, drawing inspiration from sinusoidal encodings in
sequence transformers (Dwivedi & Bresson, 2020; Mialon
et al., 2021). These approaches encode node-level informa-
tion but fail to capture the full structural complexity of edge
patterns in node neighborhoods.

To address this limitation, several graph transformer archi-
tectures incorporate initial message-passing steps to encode
local substructures (Wu et al., 2021; Mialon et al., 2021;
Chen et al., 2022). While effective, these methods focus
solely on node representations and do not exploit the poten-
tial of injecting pairwise structural encodings directly into
the self-attention mechanism. Recent studies have explored
structural edge encodings in pure transformer architectures,
based for instance on Laplacian eigenvectors, heat kernels,
or shortest path distances (Kreuzer et al., 2021; Ying et al.,
2021; Chen et al., 2023). Despite their utility, these encod-
ings are limited in expressivity, particularly for capturing
local cyclic patterns or higher-order substructures.

A promising alternative is random walk structural encod-
ing (RWSE), which encodes richer structural information
by considering random walk probabilities as edge features.
RWSE has shown substantial improvements in the perfor-
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mance of state-of-the-art graph transformers (Menegaux
et al., 2023; Ma et al., 2023). However, RWSE struggles
to differentiate between distinct graph structures in certain
cases. Meanwhile, parallel research on message-passing
GNNs has demonstrated the benefits of simple paths (or self-
avoiding walks) in enhancing model expressivity beyond
the 1-Weisfeiler-Leman (WL) isomorphism test (Michel
et al., 2023; Graziani et al., 2024). These findings moti-
vate the exploration of simple paths as a structural encoding
mechanism in graph transformers.

In this work, we introduce Simple Path Structural En-
coding (SPSE), a novel method for structural edge encod-
ing that replaces RWSE in graph transformers. SPSE en-
codes graph structure by counting simple paths of varying
lengths between node pairs, capturing richer structural infor-
mation than random walks. To address the computational
challenges encountered when exact simple path counting
is unfeasible, we propose an efficient algorithm based on
successive DAG decompositions using depth-first search
(DFS) and breadth-first search (BFS). This approach avoids
the exponential memory costs of path enumeration, enabling
scalability to long path lengths. 1

We validate SPSE on extensive benchmarks, including
molecular datasets from Benchmarking GNNs (Dwivedi
et al., 2023), Long-Range Graph Benchmarks (Dwivedi
et al., 2022), and Large-Scale Graph Regression Bench-
marks (Hu et al., 2021). SPSE consistently outperforms
RWSE in graph-level and node-level tasks, demonstrat-
ing significant improvements in molecular and long-range
datasets. We also characterize limit cases of the algorithm,
and identify situations in which the performance might be
more sensitive to approximate path counts.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces key concepts and notations. Section 3
analyzes the limitations of RWSE and motivates SPSE. The
proposed path-counting algorithm and encoding method
are detailed in Section 4. Finally, experimental results and
related works are discussed in Sections 5 and 6, respectively.

2. Preliminaries
2.1. Graph Theory

Let G = (V, E ,X) be a graph, where V is the set of nodes,
E ⊆ V × V is the set of edges, and X ∈ R|V|×d represents
the node features of dimension d. The adjacency matrix
A ∈ {0, 1}|V|×|V| is a square matrix that represents the
connectivity of the graph, i.e. Aij is one if there is an edge
between nodes i and j, and zero otherwise. The diago-
nal degree matrix D ∈ R|V|×|V| is a square matrix where

1The Python implementation of the algorithm is available on
the project’s Github page.

the diagonal element Di,i represents the degree of node i.
Formally, Di,i =

∑
j Ai,j and Di,j = 0 for i ̸= j.

Definition 2.1 (Walk). Given a graph G, a walk is a fi-
nite sequence of nodes v0, v1, . . . , vm, where each consec-
utive pair of nodes (vi, vi+1) is connected by an edge, i.e.,
(vi, vi+1) ∈ E . The number of edges in a walk is referred to
as the walk length.

Definition 2.2 (Simple Path). A simple path (here indiffer-
ently called path), is a walk in which all nodes are distinct.
The number of edges in a simple path is called the simple
path length (or path length). Paths themselves constitute
graphs called path graphs. The distance between two nodes
is the length of the shortest path between these two nodes.

Definition 2.3 (Cycle). A cycle is a walk where all nodes
are distinct, except for the first and last ones which are
identical. A graph composed of a single cycle is a cycle
graph.

Definition 2.4 (Random Walk Matrix). Given a graph G
and k ∈ N∗, the k-hop random walk matrix Pk ∈ R|V|×|V|

gives the landing probabilities of random walks of length
k between all pairs of nodes. Its closed-form expression is
Pk = (D−1A)k.

Definition 2.5 (Simple Path Matrix). Similarly, we refer to
the k-hop simple path matrix Sk ∈ N|V|×|V| as the matrix
where the (i, j)-th entry, (Sk)ij , is the number of simple
paths of length k from node i to node j.

Unlike Pk, Sk does not have a closed-form solution, and
computing it is computationally expensive (Vassilevska &
Williams, 2009). In the following, we focus on the proper-
ties of pairs of nodes (i, j) ∈ V × V through different edge
encoding methodologies. To facilitate the comparison with
the encoding of another pair of nodes (i′, j′) in a second
graph G′, we introduce the following equivalence relation
for k ≥ 1:

(i, j)G
k
=RW (i′, j′)G

′
⇐⇒ (Pk)ij = (P ′

k)i′j′ ,

where P ′
k is the k-hop random walk matrix of graph G′.

Note that this does not require G′ to have the same number
of nodes as G. This can be generalized as:

(i, j)G =RW (i′, j′)G
′
⇐⇒ ∀k ∈ N∗, (i, j)G

k
=RW (i′, j′)G

′
.

The same equivalence relations can be defined for simple
paths (writing k

=SP and =SP) by substituting Pk and P ′
k with

Sk and S′
k.

2.2. RWSE encoding in Graph Transformers

Pure graph transformers, which do not use any MPNN
layer, typically encode structural and positional informa-
tion directly in the self-attention layer. To compute the
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RWSE matrix ERW, all k-hop random walk matrices up to
a maximum walk length K are concatenated into a matrix
P = [P1, · · · , PK ] ∈ [0, 1]|V|×|V|×K , which is then en-
coded through a shallow neural network ϕ0 that maps K to
a (usually larger) dimension d (Menegaux et al., 2023; Ma
et al., 2023): ERW = ϕ0(P ) ∈ R|V|×|V|×d. ERW both acts
as a relative positional encoding, since it contains the short-
est path distance between nodes, and as a structural edge
encoding, since walks encode information about the visited
sub-structures. As a standard positional encoding, it biases
the pair-wise alignment between nodes given by the atten-
tion matrix. Very generally, the resulting self-attention layer
can be written as follows, where the precise implementation
of ϕ1 and ϕ2 varies among different methods:

aij = ϕ1(W
Qxi,W

Kxj , (ERW)ij) (1)

αij =
aij∑
k aik

(2)

yi =
∑
j

αijϕ2(W
V xj , (ERW)ij) (3)

with xi and xj the features of nodes i and j, WQ, WK and
WV the query, key and value matrices, and yi the output
from the self-attention layer for node i.

3. Theoretical Properties of RWSE and SPSE
In this section, we highlight the limitations of RWSE in dis-
tinguishing different graph structures, as it can assign iden-
tical transition probabilities to edges in distinct topologies,
potentially leading to suboptimal performance. Conversely,
we show that SPSE naturally captures cycle-related infor-
mation. In particular, SPSE enables cycle counting, which
is crucial in applications such as molecular chemistry (e.g.,
identifying functional groups like aromatic rings) (May &
Steinbeck, 2014; Agúndez et al., 2023), social network anal-
ysis (e.g., detecting communities) (Radicchi et al., 2004;
Dhilber & Bhavani, 2020), and circuit design (e.g., analyz-
ing feedback loops) (Horowitz et al., 1989).

3.1. Limitations of RWSE for Edge Encoding

Random walk probabilities possess the great advantage of
being computable in closed form. However, their use intro-
duces certain ambiguities, as illustrated in Figure 1. In these
two examples, GA and GC are cycle graphs, GB and GD are
path graphs, and yet the following two relations hold (see
Appendix D for a graphical proof up to a depth of 5):

(0, 1)GA =RW (0, 1)GB ,

(0, 1)GC =RW (0, 1)GD .

Although the edges belong to clearly different graphs,
RWSE assigns them the same transition probabilities in
the cycle and path graphs. These examples are two special

Figure 1. RWSE encodes identically edges from very distinct
graphs which are separated by SPSE (see the tree decomposi-
tions in Appendix D)

cases of the following result which links RWSE edge en-
codings in even-length cycle graphs and linear graphs (all
proofs can be found in Appendix C):

Proposition 1. Let G = (V, E) be an even-length cycle
graph, i.e. |V| = 2n for some n ∈ N∗, and G′ = (V ′, E ′) a
path graph such that |V ′| = 2n + 1. Then given any pair
of nodes (i, j) in G, there exists a pair of nodes (i′, j′) in G′
such that (i, j)G =RW (i′, j′)G

′
.

Each pair of nodes in an even-length cycle graph is thus
equivalent, under RWSE encoding, to another pair of nodes
in a linear graph (note that i and j need not be adjacent). In
other words, random walks transition probabilities cannot
be used to distinguish between even-length cycles and paths
when considering single node pairs. On the other end, it is
easy to show that this does not apply to SPSE encoding (see
Figure 1). This result illustrates how random walk-based
structural encoding may fail to capture critical structural
differences between node pairs, hence possibly leading to
suboptimal performances of the overall graph transformer
model.

It is also possible to prove a more general result about the
ambiguities of RWSE by leveraging the fact that random
walks measure probabilities rather than absolute counts. In
particular, the following proposition can be easily proven
by induction by considering central symmetries around des-
tination node j.

Proposition 2. Let G = (V, E) be a graph and (i, j) ∈ V ×
V a pair of nodes in G. Then there exists a non-isomorphic
graph G′ = (V ′, E ′) and a pair of nodes (i′, j′) ∈ V ′ × V ′

such that (i, j)G =RW (i′, j′)G
′
, i.e. (i, j) and (i′, j′) are

equivalent under RWSE encoding.

The RWSE encoding of a pair of nodes is therefore never
unique, and cannot be used to identify a graph. Of course
this is also obviously true for SPSE encoding. However,
proving this result for adjacent nodes, in the cases of simple
paths, still requires preserving the set of paths that connect
them. This hints at the fact that the information contained
in simple path edge encodings may be used to distinguish
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certain local graph structures, as we discuss in the next
section.

3.2. SPSE through the Prism of Cycle Counting

The relation between path and cycle counting has been
well studied (Perepechko & Voropaev, 2009; Graziani et al.,
2024). The following result, which was introduced by
Perepechko & Voropaev (2009), connects SPSE encoding
with cycle counting for adjacent nodes:

Proposition 3. Let (i, j) be two adjacent nodes in a graph
G = (V, E), i.e. (i, j) ∈ E , and Sk the k-hop simple path
matrix of G for any k ∈ N∗, such that (Sk)ij = mk ∈ N.
Then for k ≥ 2, there are exactly mk cycles of length k + 1
in G that admit (i, j) as an edge.

The case of k = 1 simply corresponds to the number of
parallel edges between nodes i and j. Note that this is not
the same as giving the number of cycles that possess i and
j as vertices. Two illustrations of this result are presented
in Figure 2. Here, (S1)01 = (S5)01 = 1 unambiguously
defines the edge (0, 1) as belonging to a six-atom cycle.
In a second example, SPSE uniquely encodes the double
carbon-oxygen bond of any carboxylic acid group. Note
that Proposition 3 however does not hold if (i, j) /∈ E , and
that no equivalent result exists for RWSE since the landing
probabilities can be made arbitrarily low by the addition of
new edges to a cycle’s nodes.

This analysis of structural encodings through the lens of
cycles therefore showcases structures for which SPSE is
provably more informative than RWSE encoding.

Finally, while the results presented here focus on edge rep-
resentations, we refer to Appendix B for a discussion on the
expressivity of SPSE regarding graph isomorphism.

Figure 2. SPSE edge encoding of adjacent nodes characterizes the
cycles to which the edge belongs. Thus bonds in the 6-atom cycles
of (A) and (B) are encoded identically (they both belong to a single
such cycle), and so are the (C=O) bonds of (C) and (D).

Algorithm 1 Count paths between all pairs of nodes (sim-
plified)

1: Parameters: Proportion of root nodes R, maximum
length K, maximum DFS depth DDFS, maximum trial
number N

2: Input: Undirected graph G = (V, E)
3: Output: Path count matrix M ∈ N|V|×|V|×K

4: M ← 0|V|×|V|×K {Initialize count matrix}
5: NODES ← DRAWNODES(R, V) {Select R× |V| nodes

from V}
6: for each v in NODES do
7: DAGS ← DAGDECOMPOSE(G, v, DDFS, N )

{Retrieve list of node permutations starting with v}
8: for each DAG in DAGS do
9: M ← UPDATE(M , DAG) {Update total path

count}
10: end for
11: end for
12: Return: M

4. Simple Path Structural Encoding
It has been shown that the composition of MPNN layers
on paths is more expressive than the 1-WL test (Michel
et al., 2023; Graziani et al., 2024). However, due to the
combinatorial complexity of the problem, enumerating all
paths beyond short path lengths becomes impractical. Re-
sults from Section 3 indicate that counting distinct paths
between nodes, while requiring significantly less memory,
still possesses theoretical advantages over random walk
probabilities as an edge structural encoding method. This
approach, however, introduces two challenges. First, while
existing path-counting algorithms efficiently handle short
paths (Perepechko & Voropaev, 2009; Giscard et al., 2019),
certain graph topologies and path lengths necessitate approx-
imate methods. Second, since the number of paths between
two nodes can grow exponentially (bounded by (|V|−2)!

(|V|−k−1)!

for length-k paths in a complete graph), an appropriate en-
coding function is required. This section addresses both
challenges.

4.1. Simple Path Counting

The SPSE encoding can accommodate any exact or approxi-
mate path counting method, although the former are usually
restricted to sparse graphs or short path lengths. On the
other hand, approximate path counting methods are required
when the density of the considered graphs prevents the use
of exact methods.

The approximate method followed here relies on the extrac-
tion of node orderings from an input undirected graph. Any
such ordering can be used to turn the graph into a DAG,
which allows to count paths by computing powers of the re-
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Algorithm 2 DAGDECOMPOSE: Decomposition of an in-
put graph into multiple DAGs

Parameters: Maximum DFS depth DDFS, maximum trial
number N
Input: Graph G = (V, E), root node r, diameter DMAX

Output: List of node orderings Π
Initialize Π← EmptyList
for dDFS = 0 to DDFS do

for n = 1 to N do
Initialize π ← EmptyList
while π ̸= V do

for d = 1 to DMAX do
if d < dDFS then

π ← DFS(r, G, π) {Start with dDFS−1 DFS
steps}

else if d = dDFS then
π ← PARTIALBFS(r, G, π)

else
π ← BFS(r, G, π) {Continue with as many
BFS steps as possible}

end if
end for

end while
Π← ADD(Π, π) {Append π to Π}

end for
end for
Return: Π

sulting adjacency matrix. For paths of length K, this process
incurs a computational complexity of O(K|V|3). Different
DAG decompositions of the input undirected graph allow
the exploration of different paths, leading to increasingly
more accurate path counts. We summarize the overall proce-
dure in Algorithm 1. The detailed version of this algorithm
can be found in Appendix E. It consists in updating run-
ning path counts for all pairs of nodes and path length k, by
comparing the counts yielded by each DAG with the stored
values, and then storing the maximum of the two. The DAG
mining function is presented in Algorithm 2. Starting from
a root node, it decomposes a graph into a tree by combining
DFS and BFS: a DFS search is initiated at a given root node,
updating a list which is incremented with each newly visited
node. After it reaches a distance DDFS from the root node,
the search switches to BFS until it cannot proceed further,
and the whole process is repeated until all nodes are visited.
A DAG can be obtained from the node ordering by directing
edges towards nodes of higher indices. DFS allows long
path discoveries but cannot simultaneously discover more
than one path between nodes, while BFS alone will typically
miss long paths, hence their use in combination. We add a
partial BFS step between the two, which randomly explores
a subset of the child nodes, thus allowing to travel through
otherwise inaccessible paths (see Figure 3 for an illustra-

Figure 3. Discovering the two paths of length 3 between nodes 0
and 1 in this Circular Skip Link graph requires a partial BFS step
in either 0 or 1 (not all child nodes are explored), followed by a
BFS step. Nodes that are discovered concurrently are given an
arbitrary order, allowing to travel back in the graph.

tion). Additional parameters include a repetition number
N which accounts for random effects, such as the direc-
tion taken by the DFS, and a parameter R controlling the
proportion of root nodes. The computational cost is dom-
inated by the powers of the adjacency matrix which must
be computed for each DAG, for a maximal complexity of
O(KRDDFSN |V|3). The additional factor RDDFSN can be
of the order of tens to hundreds depending on the input
graph, which makes SPSE calculation significantly more
expensive than RWSE. This needs however to be computed
only once as a pre-processing step, and it is also much less
than the total number of possible DAG decompositions 2|E|,
highlighting the effectiveness of the tree decomposition ap-
proach. We discuss the choice of hyperparameters and their
importance regarding path counts in Section 5.3 and provide
actual values in Appendix A.

4.2. Path Count Encoding

Compositions of logarithm functions are used to map the
obtained path count matrix S = [S1, · · · , SK ] to a manage-
able value range for subsequent neural networks, as total
counts can grow very large. Using superscript to denote the
composition of a function with itself, we use the following
mapping f for a total count x:

f : x 7→ αgn(x) + β, (4)

with g : x 7→ ln(1 + x), and α, β and n being hyper-
parameters to be adjusted for different graph collections.
Normalized path counts f(S) can then be used in place of
the random walk matrix P as input to the edge encoding
network of graph transformer models, yielding the SPSE
matrix ESP which replaces ERW in equations 1 and 3.
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5. Experiments
We first validate Proposition 3 experimentally through a syn-
thetic experiment (Section 5.1), and demonstrate the empiri-
cal superiority of SPSE on real-world datasets (Section 5.2).
We then present an ablation study on the algorithm parame-
ters (Section 5.3) and discuss limitations (Section 5.4).

5.1. Cycle Counting Synthetic Experiment

Synthetic Dataset. To validate Proposition 3, we design a
synthetic dataset consisting of 12,000 graphs. Each graph
is generated by randomly adding cycles of lengths between
3 and 8 until the total count for each cycle length reaches
a value between 0 and 14. This process results in graphs
with an average of 149 nodes and 190 edges. The dataset is
split into training (10,000 graphs), validation (1,000 graphs),
and test (1,000 graphs) sets. The objective is to determine
the number of cycles for each of the six cycle lengths. We
frame this as six simultaneous multiclass classification tasks
and evaluate performance using mean accuracy. Examples
of the generated graphs are provided in Appendix F.

Models. We build upon two state-of-the-art graph trans-
former models that use RWSE as an edge encoding method:
GRIT (Ma et al., 2023) and CSA (Menegaux et al., 2023).
SPSE can seamlessly replace RWSE in these models by
substituting the encoding matrix ESP, which captures path
counts, for ERW in equations 1 and 3. To evaluate per-
formance on the cycle counting task, we train these mod-
els using three hyperparameter configurations adopted
from (Menegaux et al., 2023). These correspond to the
setups used for ZINC (config #1), PATTERN (config #2),
and CIFAR10 (config #3), covering a range of model com-
plexities from 40 to 280 gigaflops. This provides a compre-
hensive assessment of the impact of the two edge encoding
methods across diverse settings.

Results. The test accuracy for both model architectures
across the three training configurations is reported in Fig-
ure 4, along with standard deviations computed over 10 runs
with different random seeds.

In all but one case, SPSE encoding achieves significantly
higher cycle counting accuracy than RWSE. All models
learn to count cycles almost perfectly under the third train-
ing configuration, which suggests that deep architectures can
compensate for expressivity limitations in the edge encoding
matrix (see Appendix F for details on configurations). How-
ever, SPSE still performs significantly better than RWSE for
CSA in this setting.

These results empirically validate the superior ability of
simple paths to characterize cycles when used as an edge
encoding method in graph transformers.

Figure 4. Cycle counting accuracies for three training configura-
tions of CSA and GRIT with either RWSE or SPSE edge encoding.

5.2. Real-World Benchmarks

Datasets. We conduct experiments on graph datasets from
three distinct benchmarks, covering both node- and graph-
level tasks. These include ZINC, CLUSTER, PATTERN,
MNIST, and CIFAR10 from Benchmarking GNNs (Dwivedi
et al., 2023), Peptides-functional and Peptides-structural
from the Long-Range Graph Benchmark (Dwivedi et al.,
2022), and the 3.7M-sample PCQM4Mv2 dataset from the
Large-scale Graph Regression Benchmark (Hu et al., 2021).
We shall see in Section 5.3 how constraints imposed by
graph complexity and dataset sizes impact the path count
precision in molecular datasets (ZINC, the two Peptides &
PCQM4Mv2), image superpixel (MNIST & CIFAR10) and
Stochastic Block Model (SBM) (PATTERN & CLUSTER)
benchmarks, justifying a differenciated treatment.

Experimental Setup. As before we replace RWSE with
SPSE in GRIT and CSA. We also explore adding SPSE
to the well-known GraphGPS model (Rampášek et al.,
2022), in which case the edge encoding is restricted to
the elements of E , and is only used to produce node-level
positional encodings in the MPNN layer. In all cases, for
better result robustness, we retrain the original model and
the SPSE version on ten random seeds (one seed for the large
PCQM4Mv2) using the released training configurations,
with two exceptions: the unstable CSA learning rate for
ZINC is reduced by a factor 2, and configuration files are
added to train CSA on Peptides.

It is important to emphasize that no hyperparameter tun-
ing is performed. This decision ensures a fair and unbi-
ased comparison, isolating the contribution of SPSE as a
drop-in replacement for RWSE, and demonstrating its effec-
tiveness across different architectures without the need for
task-specific adjustments.

Note that replacing walks by path count is done at no addi-
tional cost as the number of trainable parameters remains
unchanged. Two-sided Student’s t-tests are conducted to
assess the significance of the obtained results. Finally, we
compare with the following GNN methods: GCN (Kipf &
Welling, 2017), GIN (Xu et al., 2019), GAT (Veličković
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Table 1. Test results on all eight benchmarks. GPS, CSA & GRIT w/ and w/o SPSE were re-trained on 10 random seeds (hence variations
from seminal works) on all datasets (one run for PCQM4Mv2). Underline indicates a difference between a baseline and the SPSE model
version, and * is used for significant gaps based on a two-sided t-test (p-value ≤ 0.05). Highlighted are best, second, and third best scores.
†GPS+GPSE was not retrained and is therefore treated separately.

Molecular SBM Superpixel

Model ZINC Peptides-func Peptides-struct PCQM4Mv2 PATTERN CLUSTER MNIST CIFAR10

MAE ↓ AP ↑ MAE ↓ MAE ↓ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑
GCN 0.367± 0.011 − − 0.1379 71.892± 0.334 68.498± 0.976 90.705± 0.218 55.710± 0.381
GIN 0.526± 0.051 − − 0.1195 85.387± 0.136 64.716± 1.553 96.485± 0.252 55.255± 1.527
GAT 0.384± 0.007 − − − 78.271± 0.186 70.587± 0.447 95.535± 0.205 64.223± 0.455
GINE − 0.5498± 0.0079 0.3547± 0.0045 − − − − −
GatedGCN 0.282± 0.015 − − − 85.568± 0.088 73.840± 0.326 97.340± 0.143 67.312± 0.311
GIN-AK+ 0.080± 0.001 − − − 86.850± 0.057 − − 72.190± 0.130

SAN (+RWSE) 0.139± 0.006 0.6439± 0.0075 0.2545± 0.0012 − 86.581± 0.037 76.691± 0.65 − −
Graphormer 0.122± 0.006 − − 0.0864 − − − −
EGT 0.108± 0.009 − − − 86.821± 0.020 79.232± 0.348 98.173± 0.087 68.702± 0.409
GraphViT 0.073± 0.001 0.6970± 0.0080 0.2475± 0.0015 − − − 97.422± 0.110 73.961± 0.330
Exphormer − 0.6527± 0.0043 0.2481± 0.0007 − 86.742± 0.015 78.071± 0.037 98.550± 0.039 74.696± 0.125
Drew − 0.7150± 0.0044 0.2536± 0.0015 − − − − −
GPS + GPSE† 0.065± 0.003 0.6688± 0.0151 0.2464± 0.0025 − − − 98.08± 0.13 72.31± 0.25

SPSE used in MPNN for node representation
GPS 0.070±0.003 0.6601± 0.0061 0.2509± 0.0017 0.0942 86.688±0.073 77.969±0.161 98.064±0.157 72.097±0.475
GPS+ SPSE (ours) 0.068±0.003 0.6608± 0.0063 0.2506± 0.0010 0.0934 86.834±0.025* 78.440±0.177* 98.105±0.158 72.114±0.462
RW/SPSE used as edge feature in self-attention layers
CSA-RWSE 0.069±0.003 0.6513± 0.0061 0.2486± 0.0012 0.0918 87.008±0.062 79.071±0.120 98.127±0.123 73.885±0.348
CSA-SPSE (ours) 0.061±0.003* 0.6605± 0.0096* 0.2482± 0.0019 0.0911 87.064±0.052* 78.940±0.132 98.269±0.078* 73.897±0.524
GRIT-RWSE 0.065±0.005 0.6803±0.0085 0.2480± 0.0025 0.0838 87.229±0.056 79.730±0.189 98.231±0.197 76.246±0.954
GRIT-SPSE (ours) 0.059±0.001* 0.6945±0.0113* 0.2449±0.0018* 0.0831 87.235±0.040 79.571±0.122 98.294±0.147 77.022±0.430*

et al., 2018), GatedGCN (Bresson & Laurent, 2017) and
GIN-AK+ (Zhao et al., 2022), along with the graph trans-
formers: SAN (Kreuzer et al., 2021), Graphormer (Ying
et al., 2021), EGT (Hussain et al., 2022), GraphViT (He
et al., 2023), Exphormer (Shirzad et al., 2023), Drew (Gut-
teridge et al., 2023) and GPSE (Cantürk et al., 2024). Re-
sults are reported in Table 1.

Results and Discussion Replacing RWSE with SPSE im-
proves performance in 21 out of 24 cases (underlined in
Table 1), with variations depending on the benchmark and
model. The most notable gains are observed for CSA and
GRIT on molecular graphs, where SPSE achieves statisti-
cally significant improvements in 5 out of 6 cases (marked
with ”*”). Improvements are also evident on superpixel
benchmarks, with two cases showing statistically significant
differences, on both CSA and GRIT. These results indicate
that leveraging the full structural encoding matrix in self-
attention layers, rather than restricting it to E as done in
GPS, is an effective strategy for enhancing performance.
The limited improvement for GPS is however also likely
due to the constraint of leaving the total number of param-
eters unchanged. In practice, this amounts to reducing the
dimensionality of existing edge embeddings when using
SPSE, limiting its potential benefit. This explanation is fur-
ther supported by the significant improvements observed
on SBM benchmarks, where GPS does not incorporate any

edge encoding. In contrast, pure graph transformers do not
benefit from SPSE on CLUSTER. A possible explanation is
the increased difficulty of accurately counting paths in the
densely connected SBM graphs, leading to underestimated
counts. Further details on these limitations are provided in
Section 5.4.

5.3. Path Count Sensitivity to Hyperparameters

In this section, we examine how the number of paths dis-
covered by Algorithm 1 is affected by variations in hyper-
parameters across different benchmarks. Those parameters
are the proportion of root nodes R, the maximum DFS
depth DDFS and the number of trials N (path length K is
fixed to walk lengths). ZINC, PATTERN, and MNIST are
used as representative benchmarks for molecular graphs,
SBM, and superpixels, respectively. We measure the aver-
age proportion of discovered paths relative to a canonical
configuration (reported in Appendix A) and the computa-
tion time per sample while varying a single hyperparameter.
Results are reported in Figure 5, with path count proportions
as solid lines (left y-axis) and computation time as dashed
lines (right y-axis). The main parameter controlling the path
count precision for ZINC and other molecular datasets is
the root node proportion R which can be set to its maximum
value (R = 1) due to its low computational cost. In contrast,
DFS depth and the number of trials have little to no impact
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Figure 5. Proportion of discovered paths and computation time per sample when varying one hyperparameter at a time, across ZINC,
PATTERN, and MNIST datasets. Solid lines (left y-axis) represent the proportion of discovered paths, while dashed lines (right y-axis)
indicate computation time per graph sample.

on path counts and can be kept at moderate or low values.
MNIST benefits almost equally from increases in all three
hyperparameters, though adjusting DDFS offers the lowest
computational overhead. Notably, the trade-off setting of
N = 2, imposed by the large size of the dataset, results
in approximately 40% fewer discovered paths compared to
N = 8, potentially leading to suboptimal learning accuracy.
For the PATTERN dataset, we prioritize increasing N over
other hyperparameters, as it provides the most computation-
ally efficient way to improve path discovery. In this case,
however, we expect a non-negligible fraction of paths to be
missed due to the highly connected nature of SBM graphs,
which sets a limit on the number of discoverable paths (see
Section 5.4 for further discussion).

5.4. Limitations

In the proposed algorithm, the path count between two nodes
is updated by comparing the value provided by each new
DAG with the total currently stored in memory. The latter
is then replaced by the maximum of the two values. This
approach is necessary since paths are not enumerated be-
cause of memory constraints. The obtained counts therefore
constitute lower bounds on the exact number of paths (see
line 16 of Algorithm 3 in Appendix E). Failure cases can
however arise because individual paths are not distinguished.
For instance, consider the input graph illustrated in Figure 6.
The total number of paths of length 4 between nodes 0 and
1 is two (blue and green). The only directed graphs that
would allow to discover these paths simultaneously are not
acyclic: our algorithm can simply count them one at a time.

This limitation is especially true in high-density graphs, such
as the CLUSTER dataset where our method does not yield
any significant improvement. This suggests that there may
exist cases where inaccurate path counts are detrimental to
the overall performance, and where it might be preferable to
trade longer path lengths for exact counts on shorter paths.

Figure 6. Discovering simultaneously the two paths of length 4
between nodes 0 and 1 requires the directed graph decomposition
on the right, which violates the acyclic property.

6. Related Work
Graph Transformers. Graph transformers are a class of
models designed to process graph-structured data by lever-
aging self-attention, which provides a graph-wide receptive
field (Vaswani, 2017; Ying et al., 2021), thereby avoiding
common limitations of message-passing GNNs (Topping
et al., 2022). Despite their advantages, graph transformers
have not yet become the dominant architecture in graph
learning, primarily due to the lack of unified structural
and positional encodings that generalize well across di-
verse graph tasks (Rampášek et al., 2022). This is evident
from the continued success of hybrid approaches that inte-
grate message-passing with global self-attention (Wu et al.,
2021; Rampášek et al., 2022; He et al., 2023; Choi et al.,
2024), highlighting ongoing opportunities for architectural
improvements. Promising research directions include: more
flexible spectral attention mechanisms (Bo et al., 2023),
models that mitigate the quadratic memory footprint of self-
attention (Shirzad et al., 2023), and hierarchical encodings
that enhance structural representations (Luo et al., 2024a).
Expressivity of Path-Based MPNNs. The expressivity of
message-passing neural networks (MPNNs) on paths has
been studied in relation to the WL isomorphism test (Michel
et al., 2023; Graziani et al., 2024). Notably, Graziani et al.
(2024) demonstrated that iteratively updating node features
via message-passing along paths originating from these
nodes is strictly more expressive than the 1-WL test. How-

8



Simple Path Structural Encoding for Graph Transformers

ever, these works consider only short path lengths, limiting
their applicability to more complex graph structures.
Counting Paths and Cycles in Graphs. The problem of
counting paths and cycles in graphs has been extensively
studied over the past decades (Johnson, 1975; Alon et al.,
1997; Flum & Grohe, 2004). Perepechko & Voropaev (2009)
derived an explicit formula for counting paths of length up
to 6 between two nodes, while Giscard et al. (2019) pro-
posed an algorithm for counting paths of any length based
on enumerating connected induced subgraphs. However,
these methods become impractical for the large graphs and
long path lengths considered in our work, necessitating the
use of efficient approximate counting methods.

7. Conclusion
This work introduced Simple Path Structural Encoding
(SPSE), a novel structural encoding method for graph trans-
formers that leverages path counts instead of random walk
probabilities. By providing a more structurally informa-
tive edge encoding, SPSE improves performance across
various graph learning benchmarks. Our theoretical and
experimental study shows that SPSE mitigates the limita-
tions of random walk-based encodings while maintaining
computational feasibility through an efficient approxima-
tion algorithm. While promising, SPSE’s applicability to
extremely large-scale graphs and its interaction with dif-
ferent transformer architectures would require further ex-
ploration. In particular, SPSE bears particularly promising
synergies with hierarchical methods, which would allow effi-
cient path mining at higher hierarchy levels while capturing
valuable long-range structural information. Future research
directions may also include optimizing its computational
efficiency and extending its applicability to broader domains
such as knowledge graphs and large social networks.
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ommendation systems, and scientific knowledge extraction.
However, as with any machine learning model, the deploy-
ment of SPSE-based architectures should be approached
with considerations for fairness, interpretability, and robust-
ness, particularly in high-stakes applications.
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scarselli, and Gärtner, T. The expressive power of path-
based graph neural networks. In Forty-first International
Conference on Machine Learning, 2024.

Gutteridge, B., Dong, X., Bronstein, M. M., and Di Gio-
vanni, F. Drew: Dynamically rewired message pass-
ing with delay. In International Conference on Machine
Learning, pp. 12252–12267. PMLR, 2023.

He, X., Hooi, B., Laurent, T., Perold, A., LeCun, Y., and
Bresson, X. A generalization of vit/mlp-mixer to graphs.
In International conference on machine learning, pp.
12724–12745. PMLR, 2023.

Horowitz, P., Hill, W., and Robinson, I. The art of electron-
ics, volume 2. Cambridge university press Cambridge,
1989.

Hu, W., Fey, M., Ren, H., Nakata, M., Dong, Y., and
Leskovec, J. Ogb-lsc: A large-scale challenge for ma-
chine learning on graphs. In Proceedings of the Neural
Information Processing Systems Track on Datasets and
Benchmarks 1, NeurIPS Datasets and Benchmarks, 2021.

Hussain, M. S., Zaki, M. J., and Subramanian, D. Global
self-attention as a replacement for graph convolution. In
Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 655–665,
2022.

Hwang, D., Kim, H., Kim, S., and Shin, K. Flower-
former: Empowering neural architecture encoding using
a flow-aware graph transformer. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6128–6137, 2024.

Johnson, D. B. Finding all the elementary circuits of a
directed graph. SIAM Journal on Computing, 4(1):77–84,
1975.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In 5th Interna-
tional Conference on Learning Representations. OpenRe-
view.net, 2017.

Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., and
Tossou, P. Rethinking graph transformers with spectral
attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Lachi, V., Ferrini, F., Longa, A., Lepri, B., and Passerini,
A. A simple and expressive graph neural network based
method for structural link representation. In ICML 2024
Workshop on Geometry-grounded Representation Learn-
ing and Generative Modeling, 2024.

Luo, Y., Li, H., Shi, L., and Wu, X.-M. Enhancing graph
transformers with hierarchical distance structural encod-
ing. Advances in Neural Information Processing Systems,
2024a.

10



Simple Path Structural Encoding for Graph Transformers

Luo, Y., Thost, V., and Shi, L. Transformers over directed
acyclic graphs. Advances in Neural Information Process-
ing Systems, 36, 2024b.

Ma, L., Lin, C., Lim, D., Romero-Soriano, A., Dokania,
P. K., Coates, M., Torr, P., and Lim, S.-N. Graph in-
ductive biases in transformers without message passing.
In International Conference on Machine Learning, pp.
23321–23337. PMLR, 2023.

May, J. W. and Steinbeck, C. Efficient ring perception for the
chemistry development kit. Journal of Cheminformatics,
6:1–12, 2014.

Menegaux, R., Jehanno, E., Selosse, M., and Mairal, J.
Self-attention in colors: Another take on encoding graph
structure in transformers. Trans. Mach. Learn. Res., 2023.

Mialon, G., Chen, D., Selosse, M., and Mairal, J. Graphit:
Encoding graph structure in transformers. arXiv preprint
arXiv:2106.05667, 2021.

Michel, G., Nikolentzos, G., Lutzeyer, J. F., and Vazirgian-
nis, M. Path neural networks: Expressive and accurate
graph neural networks. In International Conference on
Machine Learning, pp. 24737–24755. PMLR, 2023.

Otte, E. and Rousseau, R. Social network analysis: a pow-
erful strategy, also for the information sciences. Journal
of information Science, 28(6):441–453, 2002.

Perepechko, S. and Voropaev, A. The number of fixed
length cycles in an undirected graph. explicit formulae
in case of small lengths. Mathematical Modeling and
Computational Physics (MMCP2009), 148, 2009.

Quinn, R. A., Nothias, L.-F., Vining, O., Meehan, M., Es-
quenazi, E., and Dorrestein, P. C. Molecular network-
ing as a drug discovery, drug metabolism, and precision
medicine strategy. Trends in pharmacological sciences,
38(2):143–154, 2017.

Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., and
Parisi, D. Defining and identifying communities in net-
works. Proceedings of the national academy of sciences,
101(9):2658–2663, 2004.

Radicchi, F., Fortunato, S., and Vespignani, A. Citation net-
works. Models of science dynamics: Encounters between
complexity theory and information sciences, pp. 233–257,
2011.
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Table 2. Statistic, path counting hyperparameters and total counting time per dataset with the Python implementation of the algorithm.

Dataset ZINC PATTERN CLUSTER MNIST CIFAR10 Peptides PCQM4Mv2

Dataset Statistics
# of graphs 12,000 14,000 12,000 60,000 70,000 15,535 3,746,620
Avg. # of nodes per sample 23.2 118.9 117.2 70.6 117.6 150.9 14.1
Avg. # of edges per sample 24.9 3,039.3 2,150.9 564.5 941.1 307.3 14.6
Avg. density 0.10 0.43 0.36 0.23 0.14 0.03 0.16

Path count
R (# of root nodes, % of |V|) 100% 40% 40% 55% 55% 100% 100%
K (max length) 20 16 16 17 17 23 15
DDFS (max DFS depth) 6 2 2 11 11 4 6
N (# of trials per depth) 1 7 7 2 2 1 1
Time (hr) 1 60 39 34 80 48 80

Model training
α 0.5 0.2 0.2 0.2 0.2 0.2 0.5
β 0 -0.2 -0.2 -0.2 -0.2 -0.2 0
n 1 3 3 3 3 2 1

A. Additional Path Count Statistics and Training Hyperparameters
Typical hyperparameter values for path counts with the respective computing duration are reported in Table 2. The
hyperparameter search was conducted on a reduced pool of graphs and root nodes to optimize the trade-off between
exhaustivity and duration. The reported figures should therefore not be viewed as optimal, but rather give an indication of
how they affect the path count duration. The latter ranges from under one hour for ZINC to a bit more than three days for
CIFAR10 and the large PCQM4Mv2 dataset which contains 3.7M graphs. Once computed, path counts are stored and used
for model training at no additional cost.
Path count encoding parameters α, β and n. In the absence of clear heuristics regarding the effects of parameters α, β
and n of Equation (4), we report in Table 2 the values that led to the best results for each dataset. Among those, n primarily
controls the compression of the dynamic range of path counts, while both α and n contribute to the adjustment of the output
range of function f in Equation (4). Unsurprisingly, denser datasets call for a higher n, a lower α, or a combination of both.

B. Expressivity of SPSE encoding
We provide here a discussion about the expressivity of the proposed SPSE encoding in light of findings from previous
works. A reasoning similar to the one followed for Path-WL (Graziani et al., 2024) can be used to show that an iterative
node coloring algorithm based on global attention with SPSE is more expressive than 1-WL. We note also that the results
regarding the expressivity of GRIT remain valid when SPSE replaces RWSE (called RRWP therein) as the chosen structural
encoding method, except for the case of Proposition 3.1 (b) which requires access to transition probabilities.

However, no previous study allows the comparison of SPSE and RWSE expressivity. Contrary to WL- / Path-trees used
in Graziani et al. (2024) and Michel et al. (2023), SPSE and RWSE aggregate information over simple paths and walks
without enumerating them, which prevents one from using the strategy of the proof of Theorem 3.3 of Michel et al. (2023)
to conclude. We leave the task of proving whether both encodings can be compared for future work.

C. Proofs
C.1. Proof of Proposition 1

Proposition. Let G = (V, E) be an even-length cycle graph, i.e. |V| = 2n for some n ∈ N∗, and G′ = (V ′, E ′) a path
graph such that |V ′| = 2n+ 1. Then given any pair of nodes (i, j) in G, there exists a pair of nodes (i′, j′) in G′ such that
(i, j)G =RW (i′, j′)G

′
.
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Proof. The proof is done by induction by considering landing probabilities of walks of length k and k + 1 for any given k
in N∗. To do that, we use the following notations:

pk(i, j) = (Pk)ij

where Pk is the k-hop random walk matrix of G, and (Pk)ij is the random walk probability of length k between nodes i and
j. We also take advantage of the symmetries of the circular graph G to denote as pk(j) the k-hop walk probability between
any two nodes distant of j ≤ n. As G′ is a linear graph with an odd number of nodes, we also use the notation

p′k(i, j) = (P ′
k)ij ,

with P ′
k the k-hop random walk matrix of G′, but use this time node indices to represent the distance from the central node

of the graph. Hence p′k(0, n) is the k-hop walk probability between the central node and any of the two extremity nodes.
Similarly, for all 1 ≤ j ≤ n, p′k(j) refers to k-hop walks originating from the central node and ending on one of the two
nodes distant of j.

The first part of the proof consists in showing that, for all 1 ≤ j < n and all k ∈ N∗, p′k(j) = pk(j), and p′k(n) =
1
2pk(n).

The initialization, up to k = j, is straightforward as all nodes have exactly two neighbors, except from the extremity nodes
in G′ which have one. Suppose that the previous statement holds for k ≥ 1. Then we have:

p′k+1(j) = p′k(j − 1)× 1

2
+ p′k(j + 1)× 1

2
= pk+1(j) if j < n− 1,

p′k+1(n− 1) = p′k(n− 2)× 1

2
+ p′k(n)

= pk(n− 2)× 1

2
+ pk(n)×

1

2
= pk+1(n− 1),

p′k+1(n) = p′k(n− 1)× 1

2

= (2× pk(n− 1)× 1

2
)× 1

2

=
1

2
pk+1(n).

At this point, equivalent random walk edge encodings have been found in G′ for any pair of nodes of G distant of less than n
from each other. The last part of the proof consists in showing that pk(n) = p′k(n, 0) for all k ≥ 1, or equivalently, from the
previous result, that p′k(n, 0) = 2p′k(n).

This is again done by induction, by proving the following statement for all i, j ∈ N2, k ∈ N∗ such that 0 ≤ i < j ≤ n:

p′k(i, j) = p′k(j, i) if j < n,

p′k(i, n) =
1

2
p′k(n, i).

As before, the initialization up to the distance between i and j is direct as all nodes have exactly two neighbors, except n
which has one. Suppose now that the statement holds for some k ≤ 1. Then, if j < n:

p′k+1(i, j) = p′1(i, i+ 1)p′k(i+ 1, j) + p′1(i, i− 1)p′k(i− 1, j)

= p′k(j, i+ 1)p′1(i+ 1, i) + p′k(j, i− 1)p′1(i− 1, i)

= p′k+1(j, i),

13
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and

p′k+1(i, n) = p′k(i, n− 1)p′1(n− 1, n)

=
1

2
× p′1(n, n− 1)p′k(n− 1, i)

=
1

2
× p′k+1(n, i),

which concludes the proof.

C.2. Proof of Proposition 2

Proposition. Let G = (V, E) be a graph and (i, j) ∈ V×V a pair of nodes in G. Then there exists a non-isomorphic graph
G′ = (V ′, E ′) and a pair of nodes (i′, j′) ∈ V ′ × V ′ such that (i, j)G =RW (i′, j′)G

′
, i.e. (i, j) and (i′, j′) are equivalent

under RWSE encoding.

Proof. We proceed by induction to show that given an edge (i, j) in a graph G, there always exists a non-isomorphic graph
G′ with an edge (i′, j′) such that (i, j)G =RW (i′, j′)G

′
. Without loss of generality, we take i = i′ = 0 and j = j′ = 1,

and denote probabilities in G′ with a prime superscript. We write pij = (P1)ij , p′i′j′ = (P ′
1)i′j′ with Pk and P ′

k the k-hop
random walk matrices of G and G′. Finally, we also write, ∀k ∈ N, pk(j) = (Pk)0j and p′k(j

′) = (P ′
k)0j′ .

The proof relies on the introduction of a graph G′ as the result of a central symmetry of G around node 1. Concretely, each
node i (respectively j) originally in G possesses a symmetric node i′ (respectively j′) in G′ such that:

∀i, j ∈ G, i ̸= 1, p′i′j′ = p′ij = pij (5)

∀j ∈ N1 ∩ G, p′1j = p′1j′ =
1

2
p1j , (6)

where N1 is the neighborhood of node 1 in G′, N1 ∩ G is its restriction to G, and 1′ = 1.

The initialization is straightforward as, for such G′ and for any k lesser or equal to the shortest path distance between 0 and
1, it holds true that p′k(1) = pk(1). Suppose now that for a given k, we have:

∀l ≤ k, p′l(1) = pl(1). (7)

Let p∗k(i) designate the probability to travel from 0 to i in k steps in G without passing through 1, p′∗k (i) the similar
probability in G′, and let p̂k(i) and p̂′k(i) be respectively the probabilities to travel to i in G and G′ while visiting 1 at least
once. It is then possible to write p′k+1(1) as follows:

p′k+1(1) =
∑
i∈N1

p′∗k (i)p
′
i1︸ ︷︷ ︸

1⃝ Walks that do not
go through 1

+
∑
i∈N1

p̂′k(i)p
′
i1︸ ︷︷ ︸

2⃝ Walks that travel
through 1 at least once

(8)

The first term rewrites simply: ∑
i∈N1

p′∗k (i)p
′
i1 =

∑
i∈N1∩G

p′∗k (i)p
′
i1 (9)

=
∑

i∈N1∩G
p∗k(i)pi1 (10)

For the second term, we introduceW∗l
i→j as the set of random walks of length l between nodes i and j that do not go through

1. Thus, an element w ofW∗l
i→j is a multiset of l nodes such that w = (w1, . . . , wl) with w1 = i and wl = j. We may now

14
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rewrite 2⃝, and in particular each p̂′k(i) in the sum as follows:

p̂′k(i) =
∑

l≤k−1

∑
j∈N1

∑
w∈W∗k−(l+1)

j→i

p′l(1)p
′
1j

∏
m>1

p′wm−1wm
(11)

= 2
∑

l≤k−1

∑
j∈N1∩G

∑
w∈W∗k−(l+1)

j→i

pl(1)
p1j
2

∏
m>1

pwm−1wm (12)

= p̂k(i), (13)

where equations 5, 6 and 7 are used for (11)→ (12). Putting everything back together, we have:

p′k+1(1) =
∑

i∈N1∩G
p∗k(i)pi1 +

∑
i∈N1∩G

p̂k(i)pi1 (14)

= pk+1(1), (15)

which concludes the proof.

C.3. Proof of Proposition 3

Proposition. Let (i, j) be two adjacent nodes in a graph G = (V, E), i.e. (i, j) ∈ E , and Sk the k-hop simple path matrix
of G for any k ∈ N∗, such that (Sk)ij = mk ∈ N. Then for k ≥ 2, there are exactly mk cycles of length k + 1 in G that
admit (i, j) as an edge.

Proof. This can be proved directly by noting that each cycle of length k + 1 on which the edge (i, j) lies is a walk of k + 2
nodes of the form i, ...j, i where only the first node is repeated. The restriction of the latter to its k + 1 first nodes is itself
a path of length k between i and j, which therefore increments (Sk)ij . Conversely, all paths counted in (Sk)ij can be
completed by the edge ji to form a cycle of length k + 1, which proves the equality.

D. Tree Decompositions
The formal proof of the equivalence of the RWSE encodings in circular and linear graphs is given in Appendix C.1. Here we
give a graphical sketch of the proof for the two examples considered in Figure 1. The tree decompositions of the graphs
in Figure 1 are presented in Figure 7 for walks starting in node 0 and a maximum depth of 5. As nodes only have one or
two neighbors, colors are used to represent the walk probabilities toward child nodes. Edges (0, 1) have the same random
walk probabilities in (A) and (B) (Figure 7, top) on one hand, and in (C) and (D) (Figure 7, bottom) on the other hand,
despite belonging to very different graphs. It is straightforward to extend these results to any depth, hence verifying that
(0, 1)A =RW (0, 1)B , and (0, 1)C =RW (0, 1)D.

E. Full Path Counting Algorithm
We present in Algorithm 3 the detailed version of Algorithm 1. Once a list of node permutations is obtained from the
DAGDECOMPOSE function, rows and columns of the adjacency matrix are first permuted according to each new node
ordering, which then allows to retain only the elements that are above the diagonal (all edges are directed towards nodes of
higher index). Subsequently, k-hop path counts are easily obtained by computing powers of the resulting nilpotent matrix Ã,
after which rows and columns are permuted back to the original ordering. The transpose of the resulting matrix Ak yields
the opposite paths and is then added to Ak before updating the running k-hop path count matrix Mk. If G is instead directed,
this step is skipped and only Ak is used to update Mk.

F. Synthetic Experiment
Figure 8 shows three instances of randomly generated graphs for experiments in Section 5.1. These graphs possess an
average of 149 nodes and 190 edges. We also detail the three configurations used for the synthetic experiments in Table 3.
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Figure 7. Tree decompositions for the graphs in Figure 1 for walks rooted at node 0, up to a maximum depth of 5. Colors denote different
probabilities to reach a node at a given depth level k: black lines are associated with a probability of 0.5k, red lines 0.5k−1, and green
lines 0.5k−2.
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Algorithm 3 Count paths between all pairs of nodes
1: Parameters: Proportion of root nodes R, maximum length K, maximum DFS depth DDFS, maximum trial number N
2: Input: Undirected graph G = (V, E), adjacency matrix A
3: Output: Path count matrix M ∈ N|V|×|V|×K

4: M1, . . . ,MK ← 0|V|×|V| {Initialize count matrices}
5: for i = 1 to R× |V| do
6: ri ← SELECTROOTNODE(G, i)
7: Π← DAGDECOMPOSE(G, ri, DDFS, N ) {Retrieve list of node permutations starting with ri}
8: for each πj in Π do
9: Ã← REORDER(A, πj) {Permute rows and columns according to πj}

10: Ã← TRIUP(Ã) {Keep elements above the diagonal, fill the rest with 0}
11: k ← 1
12: Ãk ← Ã
13: while k ≤ K and Ãk ̸= 0|V|×|V| do
14: Ãk ← Ãk × Ã
15: Ak ← REORDER(Ãk, π−1

j )
16: Mk ← max(Mk, Ak +A⊤

k ) {Add opposite paths and store new maximum counts}
17: k ← k + 1
18: end while
19: end for
20: end for
21: Return: M1, . . . ,MK

Figure 8. Examples of synthetic graphs generated for the cycle counting experiment.

Table 3. Model configurations used for the synthetic experiments.

Configuration # 1 # 2 # 3

Transformer layers 3 6 10
Self-attention heads 4 4 8
Hidden dimension 52 64 64
Learning rate 10−3 5× 10−4 5× 10−4

Epochs 100 300 400
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