
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

MerKury: Adaptive Resource Allocation to Enhance the
Kubernetes Performance for Large-Scale Clusters

Anonymous Author(s)

ABSTRACT
As a prevalent paradigm of modern web applications, cloud com-

puting has experienced a surge in adoption. The deployment of vast

and various workloads encapsulated within containers has become

ubiquitous across cloud platforms, imposing substantial demands

on the supporting infrastructure. However, Kubernetes (k8s), the

de-facto standard for container orchestration, struggles with low

scheduling throughput and high latency in large-scale clusters. The

primary challenges are identified as excessive loads of read requests

and resource contention among co-located components.

In response to these challenges, in this paper, we presentMerKury,

a lightweight framework to enhance the Kubernetes performance

for large-scale clusters. It employs a dual strategy: first, it prepro-

cesses specific requests to alleviate unnecessary load, and second,

it introduces an adaptive resource allocation algorithm to miti-

gate resource contention. Evaluations under different scenarios

of varying cluster scale have demonstrated that MerKury notably

augments cluster scheduling throughput up to 16.4× and reduces

request latency by up to 39.3%, outperforming vanilla Kubernetes

and baseline resource allocation methods.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

KEYWORDS
resource allocation, Kubernetes, large-scale

ACM Reference Format:
Anonymous Author(s). 2024. MerKury: Adaptive Resource Allocation to

Enhance the Kubernetes Performance for Large-Scale Clusters. In Proceed-
ings of The Web Conference 2025 (WWW ’25). ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Cloud computing has witnessed exponential growth, establishing

itself as a preeminent computing paradigm for web applications.

The proliferation of diverse workloads, including microservices

[6, 29], batch processing jobs [8, 23], and Function as a Service (FaaS)

[30, 34], has led to a significant expansion in the scale of nodes and

containers on cloud platforms. This, in turn, exerts considerable

pressure on the underlying infrastructure.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW ’25, April 28 - May 02, 2025, Sydney, Australia
© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Due to unavailability of the cluster, etcd GET latency
increased drastically. Lines with different colors represent
different types of requests, among which the P99 latency of
GET pod (the light brown line) exceeded one minute.

Kubernetes (k8s), the industry’s de facto standard for container

orchestration, is recognized as a pivotal part of cloud infrastructure

[16]. However, it exhibits limitations in scaling and encounters

multi-dimensional constraints. For instance, a cluster is restricted

from surpassing 5,000 nodes, and the pod count per node is capped

at 110 [18]. In large-scale clusters, Kubernetes performance de-

grades severely when dealing with an overwhelming influx of

requests. Initially, the request latency escalates. The API server

experiences prolonged response times [7, 27], and the scheduler

exhibits diminished throughput during pod scheduling operations

[7, 35]. Moreover, cluster availability is compromised. As depicted in

Fig. 1, in a cluster with 2,000 nodes and 60,000 pods, an unexpected

network outage triggered a surge in pod reconnection requests.

This surge overwhelmed the control plane’s capacity, precipitating

repeated crashes and restarts due to OOM (Out-Of-Memory) issues,

leading to the unavailability of the entire cluster.

To tackle Kubernetes’ scalability issues and facilitate the unified

management of large-scale workloads, two main strategies have

emerged. Multi-cluster strategies utilize cluster federation tech-

nologies [1] to manage multiple clusters as a hyperscale entity [13],

while single-cluster strategies improve cluster capacity through

optimizing core components [5, 10, 35] and mechanisms [7, 36].

However, the management layer introduced by multi-cluster strate-

gies can cause additional complexity and resource overheads [24].

Moreover, most studies cater to specific scenarios, such as far edge

nodes [36], and change the Kubernetes codebase, which may hinder

their broader application.

In this paper, we introduce MerKury, a general and lightweight

framework designed to enhance the Kubernetes performance for

large-scale clusters. Motivated by the inefficiencies in read request

processing and the resource contention among components co-

located on the master node, MerKury preprocesses requests to

alleviate unnecessary load, and dynamically adjusts the resource al-

location and traffic control parameters of control plane components

to mitigate resource contention. We seamlessly integrate MerKury

as a non-intrusive plugin, requiring no alterations to Kubernetes

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, April 28 - May 02, 2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Etcd

Cache

Client

Send
Request

Retrieve
Data

API Server

Return
Response①

②

②

③

(a)

Etcd

Client

API Server

①

②

Send
Request

Update
Data

Return
Response③

Cache

(b)

Controller
Manager
Cache

Etcd

Client

API Server

①

②

Send
Request

Update
Data

Return
Response

③

Cache ④

Notify

Perform
Action⑤

⑥

(c)

Scheduler

Cache

Etcd

Client

API Server

①

②/⑤

Send
Request

Write/Update
Pod Spec

Return
Response

③

Cache ④

Notify

Schedule Pod

⑥Kubelet

Notify

⑦
Start Pod

⑧ Update
Pod Status

⑨

(d)

Figure 2: Kubernetes request processingworkflows of (a) read
requests, (b) simple write requests without state reconcilia-
tion, (c) write requests involving the controller, and (d) pod
creation or update requests.

codebase. Our comprehensive evaluation across various cluster

sizes and request volumes has demonstrated MerKury’s substantial

performance gains. Notably, it outperforms vanilla Kubernetes and

baseline resource allocation strategies by enhancing scheduling

throughput by up to 16.4 times and reducing request latency by

up to 39.3%. Additionally, the lightweight design ensures minimal

resource and time overhead, with negligible impact on business

workloads.

The contributions of this paper are threefold. Firstly, we ana-

lyze typical Kubernetes requests and introduce streamlined pre-

processing methods to alleviate unnecessary load on control plane

components. Secondly, we develop a queuing model for request pro-

cessing and design an algorithm for the adaptive resource allocation

and traffic control parameters tuning, which significantly mitigates

resource contention. Lastly, our non-intrusive implementation of

MerKury has been rigorously tested and demonstrated superior

performance compared to vanilla Kubernetes and other resource

allocation strategies. The code of MerKury is available on GitHub
1
.

2 BACKGROUND AND MOTIVATION
2.1 Kubernetes Request Processing Flow
In Kubernetes, control plane components–the API server, scheduler,

controller manager, and etcd–collaborate to process requests initi-

ated by users and the system. We categorize them into four types

based on the components they interact with. Read requests primar-

ily engage the API server, with etcd sometimes participating. Simple

write requests, which do not require state reconciliation, involve

both the API server and etcd. Stateful resources writes addition-

ally incorporate the controller manager. Lastly, pod creations and

updates involve a coordinated effort between the API server, etcd,

scheduler, and the kubelet on worker nodes. The distinct processing

workflows are illustrated in Fig. 2.

2.2 Problems
While control plane components are adept at maintaining robust

operations in small to medium-sized clusters, their performance in

large-scale environments is notably diminished. Our tests, detailed

in § 5, quantify the performance degradation, revealing a significant

rise request latency, especially for read requests, and a maximum

38.5% drop in scheduling throughput as the cluster size grows from

1,000 to 5,000 nodes as shown in Table 1. Monitoring and analyzing

1
https://anonymous.4open.science/r/merkury-www-C673

Table 1: Performance of vanilla Kubernetes (k8s-static).

Number of nodes Average latency of P99 latency of Scheduling
all requests (ms) read requests (ms) throughput (pod/s)

1,000 45.2 1200.1 42.0

2,000 100.3 3418.7 43.6

3,000 129.9 8252.9 36.4

4,000 115.9 7244.0 31.0

5,000 137.1 9141.2 26.8

cluster metrics, we have identified two key performance detractors.

2.2.1 Excessive Loads of Read Requests. Read requests, including

GET and LIST operations, are pivotal to Kubernetes performance.

However, suboptimal configurations can lead to excessive loads.

Typically, the API server can source data from the local cache or

etcd, with the latter introducing a much higher load due to overhead

of data transmission and the absence of filtering mechanisms. In

extreme scenarios, a LIST request can generate a load magnitudes

higher when data is retrieved from etcd instead of the local cache.

2.2.2 Resource Contention Among Co-located Components. On Ku-

bernetes master nodes, concurrent operation of multiple control

plane components can lead to resource contention, especially under

heavy load. CPU contention can cause performance degradation

and latency. Memory contention can lead to OOM errors and com-

ponent crashes, impacting control plane availability. The default

Kubernetes configuration does not consider resource allocation,

and in a high-availability setup, the arbitrary placement of master

components can concentrate them on a single node, exacerbating

resource contention and performance decline.

3 RELATEDWORK
3.1 Kubernetes Optimization
Literature on Kubernetes optimization focus on enhancing the

control plane’s scalability and reliability, as well as the data plane’s

efficiency. For the control plane, KOLE [36] improves scalability

through MQTT messaging, while Gödel [35] increases scheduling

throughput with a parallel framework. Tools like Sieve [32] and

Acto [11] bolster reliability by detecting issues in controllers and

operators. On the data plane, AHPA [37] conserves pod resources

and maintains business stability, while Optum [25] improves the

overall resource utilization.

MerKury distinguishes itself by enhancing the control plane in

general purposewithout altering the Kubernetes codebase, ensuring

broad applicability and ease of deployment.

3.2 Resource Allocation
Resource allocation is critical in cloud computing, influencing fair-

ness, cost, and performance. Karma [33] uses a credit-based algo-

rithm for equitable sharing, while StepConf [34] automates resource

configuration for cost-effective serverless functions. Queuing the-

ory is prevalent in formulating allocation problems [4, 12, 21], and

heuristic algorithms are favored in solutions for their effectiveness

in dynamic cloud scenarios [2–4].

MerKury distinguishes itself by introducing an innovative queu-

ing model with dynamic CPU-concurrency mapping, modelling

2

https://anonymous.4open.science/r/merkury-www-C673

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

MerKury WWW ’25, April 28 - May 02, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Load Fetcher
(§ 4.3)

Recommender
(§ 4.4)

Updater (§ 4.5)

Request Wrapper
(§ 4.2)

Prometheus
Worker Node 1

Worker Node n

…

Data Plane

Heavy
Requests

(e.g. LIST
all pods)

Lighter Requests
(LIST pods
limit=500)

Control Plane

Master Node 1

…

Master Node m

Metrics

MerKury

Load and
Mapping
Metrics

concurrency

CPU utilization

t

Component load

M
ap

pi
ng

 L
ea

rn
in

g
Lo

ad
 P

re
di

ct
io

n

M
ap

pi
ng

 a
nd

 L
oa

d
Update Rules

Update Resource
Allocation and Traffic

Control Parameters

Recommendation

Synchronous Requests Flow

Asynchronous Data Flow

Other/MerKury components collection/
MerKury component Physical node

API server Controller manager Scheduler Etcd

CPU 2500m 1500m 1600m 2400m

Memory 4500M 2900M 4000M 4600M

Concurrency 600 - - -

Queue length 50 - - -

Preprocessing Rules

User

Figure 3: MerKury’s architecture highlighting the main com-
ponents in yellow. The data flow is centered on optimizing
resource allocation and traffic control, while the request flow
includes preprocessing and optimization implementation.

request handling more precisely. In addition, it utilizes readily avail-

able metrics and accounts for component dependencies, balancing

between the simplicity and precision of problem formulation. More-

over, the heuristic algorithm offers an efficient solution.

4 MERKURY DESIGN
This section introduces the design of MerKury. We first present the

design principles and overview the architecture, and subsequent

sections elaborates on its four main components.

4.1 System Overview
Understanding the foundational design principles of MerKury is

crucial before delving into its details. MerKury is characterized by

its broad applicability, setting it apart from previous systems that

were tailored to special use cases [35, 36]. It is designed for general

scenarios and integrates seamlessly with Kubernetes. Furthermore,

MerKury is engineered for efficiency and lightweightness, en-
hancing cluster performance with acceptable resource and time

cost, ensuring it does not become a burden on the system.

Fig. 3 illustrates MerKury’s architecture. Requests from users

and the data plane are first directed to the request wrapper (§ 4.2),
which preprocesses them in real time to alleviate excessive load.

For each control plane component, the load fetcher (§ 4.3) re-

trieves load and mapping metrics from Prometheus to evaluate its

load and update its CPU-concurrency mapping. For each master

node, the recommender (§ 4.4) periodically creates recommen-

dations for CPU allocation and traffic control parameters based

Cache

API Server
②

Cache

API Server
Etcd

①

Local processing
Filtered data

Network overhead
Unfiltered data

LIST pods on node-01
No resourceVersion resourceVersion=0

LIST all pods (2000 pods in total)

OOM crash
Time

Memory
Usage

③

④Node Capacity

Time

Memory
Usage

⑤

⑥

Node Capacity

No crash

No limit 4 requests with limit=500

③ CPU seconds needed for LIST 2000 pods
④ Memory usage of 2000 pods ⑤ CPU seconds needed for LIST 500 pods ⑥ Memory usage of 500 pods
① Retrieve data from etcd ② Retrieve data from local cache

Figure 4: Preprocessing Rules. The left panel shows that by
setting resourceVersion=0, local data filtering in the API
server eliminates the network overhead. The right panel
depicts the segmentation of large LIST requests into smaller
chunks, averting potential out-of-memory issues.

on data from the load fetcher. The updater (§ 4.5) translates valid
recommendations into executable requests sent to the control plane,

implementing recommendations and master instance placement.

4.2 Request Wrapper
As highlighted in § 2.2.1, read requests are pivotal to Kubernetes

performance, and their misconfiguration can impose a significant

burden. The request wrapper is designed to tackle this issue by

implementing request preprocessing rules, depicted in Fig. 4.

Minimize Etcd Access for Read Requests. Although etcd

maintains the latest object data, its access can be onerous due

to network latency and its lack of in-built filtering capabilities.

The resourceVersion parameter is the determinant, whose ab-

sence triggers a data retrieval from etcd. To minimize etcd access,

MerKury automatically appends resourceVersion=0 to read re-

quests missing this parameter, avoiding direct etcd queries and

leveraging the API server’s local cache instead.

Cap the Size of Objects Returned by Read Requests. LIST
operations in large-scale clusters can generate massive responses,

whose large data volumes can severely impact the cluster’s perfor-

mance and availability, particularly under heavy load. To mitigate

this, MerKury caps requests at limit=500, breaking down heavy

requests into lighter ones to keep data volume manageable and

curb excessive memory use.

The request wrapper applies these rules to external requests in

real-time, thus preserving the integrity of internal control plane

operations and avoiding unintended disruptions.

4.3 Load Fetcher
The load fetcher acquires and processes load metrics and mapping

metrics vital for the recommender.

4.3.1 Load Metrics. Load metrics, reflecting resource consumption

and request intensity such as CPU, memory utilization, and RPS,

are crucial for performance modelling. Unlike Kubernetes VPA [19],

which focuses solely on resource usage, or previous studies [2, 21]

utilizing complex metrics that requires extensive efforts to obtain,

MerKury’s load fetcher prioritizes easily accessible metrics. It bal-

ances model accuracy with development simplicity by selecting

load metrics including incremental indicators (processed requests,

CPU time slices, allocated memory) and status indicators (queuing

requests, CPU and memory utilization, CPU throttling percentage).

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, April 28 - May 02, 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

0 50 100 150 200 250 300
Request Concurrency

0

2

4

6

8

10

12

C
PU

 U
til

iz
at

io
n

y=max(x,12) (theoretical mapping)
average CPU utilization

Figure 5: CPU-concurrency mapping comparison between
theoretical (M/M/cmodel) and actual API server performance.
Data from repeated stress tests for LIST configmaps requests.

4.3.2 Mapping Metrics. previous studies [4, 22] often use basic

queuing models such as M/M/1 and M/M/c [31] to model the sys-

tem performance. These models assume a linear relationship that

does not reflect the complex reality of CPU-concurrency mapping.

To capture the mapping accurately, we have conducted a series

of stress test using wrk to simulate different load conditions on

an API server with a 12-core CPU. The results, shown in Fig. 5,

revealed that the mapping is nonlinear and dynamic. Therefore,
the load fetcher periodically aggregates recent (concurrency, CPU

utilization) data points and derives the mapping 𝑓 (𝑥) through in-

terpolation. Mapping metrics are collected solely for the API server

due to the unavailability of other components’ concurrency metrics.

4.4 Recommender
The recommender provides recommendations for resource alloca-

tion and traffic control parameters to alleviate resource contention.

4.4.1 Queuing Model. We model the request processing of a con-

trol plane component as a queuing system where CPU cores act

as servers and requests as customers. Requests alternate between

queuing and execution states. The queuing state incurs memory

load𝑚𝑞 to store requests and their context, while the execution

phase involves CPU load 𝑐 for processing and memory load𝑚𝑒 for

intermediate data storage. Within a time frame Δ𝑡 , 𝑛𝑟 requests with

load ®𝐿 = (𝑚𝑞, 𝑐,𝑚𝑒) arrive. The component’s CPU allocation is 𝑐∗,
with maximum concurrency 𝑓 ∗ and queue length 𝑞∗.

The system can be characterized by a birth-death process as

shown in Fig. 6. When there are 𝑛 requests in the system, the

arrival rate 𝜆𝑛 and service rate and 𝜇𝑛 are:

𝜆𝑛 = 𝜆 (0 ≤ 𝑛 < 𝑓 ∗ + 𝑞∗),

𝜇𝑛 =

{
min (𝑐∗, 𝑓 (𝑛)) 𝜇, (1 ≤ 𝑛 < 𝑓 ∗)
min (𝑐∗, 𝑓 (𝑓 ∗)) 𝜇. (𝑓 ∗ ≤ 𝑛 ≤ 𝑓 ∗ + 𝑞∗)

(1)

Here, 𝜆 = 𝑛𝑟 /Δ𝑡 is the average inter-arrival time inverse, and

𝜇 = 𝑐/𝑛𝑟 is the average request processing time inverse.

In the steady state when the service rate exceeds the arrival rate,

the probability distribution {𝑝𝑛} is derived by solving flow balance

equations [31]. The distribution allows us to calculate performance

0 1 𝑓𝑓∗ 𝑓𝑓∗ + 1

𝜆𝜆𝜆𝜆 𝜆𝜆 𝜆𝜆𝜆𝜆

min 𝑐𝑐∗, 𝑓𝑓 1 𝜇𝜇 min 𝑐𝑐∗, 𝑓𝑓 𝑓𝑓∗ 𝜇𝜇 min 𝑐𝑐∗, 𝑓𝑓 𝑓𝑓∗ 𝜇𝜇

… …

min 𝑐𝑐∗, 𝑓𝑓 2 𝜇𝜇

𝑓𝑓∗ + 𝑞𝑞∗

𝜆𝜆

min 𝑐𝑐∗, 𝑓𝑓 𝑓𝑓∗ 𝜇𝜇 min 𝑐𝑐∗, 𝑓𝑓 𝑓𝑓∗ 𝜇𝜇

Figure 6: Rate transition diagram for the birth-death process.

metrics such as the expected numbers of total 𝐿, queued 𝐿𝑞 , and

executing 𝐿𝑒 requests. Using Little’s Law, we determine the average

request latency𝑊 , queuing𝑊𝑞 and execution time𝑊𝑒 .

In the unsteady state when the arrival rate exceeds the service

rate, the unprocessed CPU load, denoted as 𝑙 , is estimated as:

𝑙 = max (0, 𝑐 − 𝜇Δ𝑡) = max

(
0, 𝑐 − min

(
𝑐∗, 𝑓 (𝑓 ∗)

)
Δ𝑡

)
. (2)

Regardless of the steadiness, memory usage can be estimated as

follows, taking into account the baseline memory consumption𝑚0:

𝑚 =𝑚0 +
𝐿𝑞𝑚𝑞

𝑛𝑟
+ 𝐿𝑒𝑚𝑒

𝑛𝑟
. (3)

4.4.2 Problem Formalization and Solution. With the queuingmodel

established, it is intuitive to formalize the problem as minimizing

the weighted average request latency �̄� . However, this formaliza-

tion has overlooked important factors including differences and

dependencies among components, and steady-state conditions.

Components Classification and Dependencies.We catego-

rize components into three groups based on their SLOs [17].

Group A: API Server and Etcd. The goal is to minimize their

weighted average request latency.

Group B: Scheduler.The aim is tomaximize the scheduling through-

put, 𝑆 , calculated over the last time frame for 𝑛𝑟 pods with total

CPU load 𝑐 , and 𝑛𝑞 pending pods:

𝑆 = min

(
𝑛𝑞

Δ𝑡
,
𝑐∗𝑛𝑟
𝑐

)
. (4)

Group C: Controller Manager. The target is to allocate sufficient

CPU for prompt state reconciliation of objects in the work queue.

If the predicted CPU load for the next time frame is 𝑐′, the CPU
allocation for the controller manager is given by:

𝑐∗ = max

(
1,
𝑤𝐶

�̄�

)
𝑐′ . (5)

Here,𝑤𝐶 and �̄� represent allocation weights discussed in § 4.4.3.

As shown in Fig. 2, there are dependencies among components.

For instance, more CPU allocation for scheduler and controller

manager may not only speed up their RPS, but also increase the

load for API server and etcd. For group A components, requests

are from outside 𝑛𝑟,𝑜 , group B 𝑛𝑟,𝐵 , and group C 𝑛𝑟,𝐶 . Based on the

CPU allocation for groups B 𝑐∗
𝐵
and C 𝑐∗

𝐶
, for the next time frame,

the requests originating from these groups should be calibrated as:

𝑛′𝑟,𝐵 =
𝑆Δ𝑡

𝑛𝑟,𝐵
𝑛𝑟,𝐵, 𝑛′𝑟,𝐶 =

𝑐∗
𝐶

𝑐𝐶
𝑛𝑟,𝐶 . (6)

Steady-state Conditions and Constraints. The scheduler op-
erates asynchronously, processing pod scheduling requests without

requiring immediate responses, making the steady-state concept

inapplicable. For other components, the steady-state condition is

the service rate exceeding the arrival rate:

min

(
𝑐∗, 𝑓 (𝑓 ∗)

) 𝑛𝑟
𝑐

>
𝑛𝑟

Δ𝑡
=⇒ min

(
𝑐∗, 𝑓 (𝑓 ∗)

)
>

𝑐

Δ𝑡
. (7)

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

MerKury WWW ’25, April 28 - May 02, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

There are universal constraints that apply regardless of steady-

state conditions. Specifically, the total allocated CPU resources must

not surpass the master node’s capacity, and the cluster’s availability

must meet the Service Level Objective (SLO):∑︁
𝑐∗ ≤ 𝐶, 1 − 𝑝reject ≥ 𝑃 . (8)

Here,𝐶 represent the total CPU resources of the master node, 𝑝reject
denote the probability of a request being rejected, and 𝑃 is the

minimum availability threshold.

Steady State Problem. The objectives in the steady state are

to maximize scheduling throughput and minimize the weighted

average latency for group A components, formalized as:

min 𝑤𝐴�̄� +𝑤𝐵
1

𝑆 + 1

,

s.t. (7)(8).
(9)

Here,𝑤𝐴 and𝑤𝐵 are the weights assigned to balance the optimiza-

tion objectives for different components.

To solve (9), one can employ standard optimization techniques

such as evolutionary algorithms. Rather than resorting to a brute

force approach that exhaustively searches the entire solution space,

we seek heuristic algorithms to improve the efficiency.

To maximize scheduling throughput, under the constraint (7), 𝑐∗

should be maximized within the limit of 𝑛𝑞𝑐/𝑛𝑟Δ𝑡 according to (4).

Minimizing latency is more complex and requires an analysis of

the monotonicity of𝑊 with respect to 𝑐∗, 𝑓 ∗, and 𝑞∗. Theoretical
proofs indicate that: 1○𝑊 decreases as 𝑐∗ increases; 2○ the mono-

tonicity between𝑊 and 𝑓 ∗ is inconclusive, but 𝐿 increases with

respect to 𝑓 ∗ if increasing 𝑓 ∗ does not enhance the service rate;
3○ the monotonicity between𝑊 and 𝑞∗ is inconclusive, but 𝑝reject
decreases with 𝑞∗, while 𝐿, 𝐿𝑒 , and 𝐿𝑞 increase with 𝑞∗. Based on

these conclusions, the allocation method for parameters (𝑐∗, 𝑓 ∗, 𝑞∗)
is derived. Initially, 𝑐∗ should be maximized within the limit of

max 𝑓 (𝑥) to avoid allocation waste. After determining 𝑐∗, identify
the intersection points where 𝑓 (𝑥) = 𝑐∗ and select the smallest x-

coordinate as 𝑓 ∗ to ensure full CPU utilization without increasing

𝐿. Finally, under the constraint of cluster’s availability, choose the

smallest 𝑞∗ to mitigate memory pressure.

Unsteady State Problem. The steady-state condition may be

violated in two scenarios. These scenarios can occur simultaneously

and can have a detrimental impact on components, with the severity

increasing as the time to process the remaining CPU load lengthens.

The first scenario, termed global-unsteady state, occurs when the

CPU allocation is insufficient for immediate request processing. In

the global-unsteady state, the objective is to minimize the adverse

effects on components other than the scheduler, and to balance the

negative impacts among them, preventing any single component

from becoming a severe bottleneck that could affect the overall

performance and availability of the cluster. Thus, the optimization

problem in the global unsteady state is formulated as:

min

∑︁
𝑖

𝑙𝑖 ,

s.t. 𝑡 = 𝑙𝑖/𝑐∗𝑖 , (8).

(10)

Here, 𝑡 represents the time required to process the remaining CPU

load. According to (2), 𝑙 decreases with 𝑐∗, and hence the objective

is achieved when

∑𝑛
𝑖=1

𝑐∗
𝑖

= 𝐶 . Therefore, the solution for (10)

Start

Query latest load and mapping
metrics

Predict load metrics for the
next time frame

Identify idle components

Make recommendations for
idle components

Yes

No

No

Calibrate load for group A
component

Globally unsteady?

Identify local unsteady
components

Yes

Make recommendations for
local unsteady components

Solve the optimization problem
in steady state

Solve the optimization problem
in the global unsteady state

Estimate memory usage of the
master node

∑𝑖𝑖𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 ≥ 𝑀𝑀?

End
No

Alert “high risk
of OOM”

Yes

∑𝑖𝑖 𝑐𝑐𝑐𝑖𝑖/Δ𝑡𝑡 ≥ 𝛽𝛽𝛽𝛽 ?

Figure 7: Flow chart of the recommendation algorithm.

is 𝑐∗
𝑖
=

𝑐′𝑖𝐶∑
𝑖 𝑐

′
𝑖

, i.e. CPU resources are allocated proportionally to

the calibrated CPU load of each component. For traffic control

parameters, the selection of 𝑓 ∗ is the same as in the steady state,

while 𝑞∗ = 𝐿𝑞 to accommodate all requests.

The second scenario, termed local-unsteady state, is character-
ized by the insufficient maximum CPU utilization even when suffi-

cient CPU resources are allocated, as shown in Fig. 5. In the local-

unsteady state, 𝑐∗ > max 𝑓 (𝑥) could result in waste. However, given
the dynamic nature of 𝑓 (𝑥), a component might utilize CPU more

than max 𝑓 (𝑥) and potentially return to a steady state. Therefore,

when there are sufficient allocatable CPU resources, we adopt an

optimistic strategy. This strategy allocates 𝑐/Δ𝑡 CPU resources to

meet the steady-state conditions regardless of max 𝑓 (𝑥).

4.4.3 Recommender’s Workflow. The recommender operates peri-

odically, following the workflow depicted in Fig. 7.

Each cycle consists of the following steps: 1○ Data Collection.
The recommender first queries the latest load and mapping metrics

from load fetchers. 2○ Idle Components Identification. For group A

components, an idle status is assigned if there is not any processed

or queuing requests. For other components, it is considered idle

if there is no request or the component does not hold the master

lease. 3○ Idle Components Recommendation. Let 𝑐req denote the CPU
request in the configuration, and 𝑐

utl
the most recent utilization.

The allocated resources are determined as 𝑐∗ = max(𝑐req, 𝑐utl). 4○
Load Prediction. The recommender forecasts the load metrics for the

next time frame using historical data. If the total CPU load within a

time unit

∑
𝑖 𝑐

′
𝑖
/Δ𝑡 does not reach the threshold 𝛽𝐶 , indicating low

likelihood of resource contention, the recommender will wait until

the next period. Otherwise, it will proceed to the next steps. 5○ Load
Calibration. For group A components, the recommender calibrates

the load using (6) with 𝑆 = 0 to eliminate the scheduler’s impact. 6○
Steady State Check and Recommendation. After calibration, recom-

mender assesses the total CPU load of busy components against the

allocatable CPU resources. If the CPU load is greater, the node is in a

global-unsteady state and the recommender solves (10). Otherwise,

the recommender identifies local-unsteady components. It first pro-

vides recommendation for local-unsteady components, and then for

steady ones. 7○ Memory Usage Estimation. After recommendation,

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, April 28 - May 02, 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

the recommender estimates each busy component’s memory usage

using (3) and compares the total against available. If the available

is insufficient, it will alert high risk of OOM, prompting scaling up

memory to prevent potential outages.

Weight Adjustment Mechanism. A CPU throttling-based

weight adjustment mechanism is proposed to enhance the robust-

ness of the recommendation algorithm, given that discrepancies

due to metrics inaccuracies and model deviations are inevitable.

During intervals between consecutive recommendation cycles,

CPU throttling percentages 𝜏 of busy components are gathered to

assess the efficacy of the previous recommendations. Ideally, these

percentages should exhibit minimal variance. Deviations from this

ideal trigger the following corrective actions:

1○ Bottleneck Mitigation. Components with 𝜏 ≥ 𝛼ℎ are flagged as

bottlenecks, whereas thosewith𝜏 ≤ 𝛼𝑙 are deemed over-provisioned.

To swiftly mitigate bottlenecks, over-provisioned components allo-

cate a fraction of their CPU, 𝜃𝑐∗, to the bottlenecks, weighted by 𝜏 ,

ensuring a more equitable distribution.

2○Weight Adjustment. To enhance the precision of the recom-

mendation algorithm, the weights of bottleneck components are

augmented, thereby prioritizing them for a larger allocation in

subsequent cycles, which helps to counteract potential imbalances.

This weight adjustment mechanism acts as a dynamic feedback

loop, responding in real-time to the system’s performance fluctua-

tions and ensuring that resource allocation remains optimally tuned

amidst variability and unpredictability.

4.5 Updater
Upon receiving a recommendation, the updater performs a prelimi-

nary validation against a set of established update rules:

1○ Alignment with Kubernetes API Specifications. The rec-
ommendation must conform to API stipulations, including that

resource allocation limits must not fall below the requested values,

and that the maximum concurrency and queue length are positive.

2○ Consistency in Resource Allocation. To avert unforeseen

repercussions, the updater mandates that the proposed resource

allocation should not significantly differ from the previous one,

quantified as |𝑐∗ − 𝑐∗
last

| ≤ 𝑣𝐶 , where 𝑣 is an adjustable parameter.

Should the recommendation pass these evaluations, the updater

converts them into actionable requests. For resource allocation

adjustments, it implements vertical pod autoscaling by dispatch-

ing PATCH requests to update the pods’ resource limits. For traffic

control parameters, the updater circumvents the necessity for pod

restarts by utilizing the API Priority and Fairness (APF) mechanism

[14]. It then fine-tunes the traffic control by issuing PATCH requests
to adjust the APF object parameters.

Moreover, in clusters with multiple master nodes, the updater

supports tailored master instance placement, enabling users to des-

ignate nodes for the controller manager and scheduler master in-

stances. By default, MerKury distributes these master instances

across distinct nodes to reduce resource contention. The updater

enforces this placement by evicting conflicting pods from inap-

propriate nodes, and it only does so under low load conditions to

prevent performance fluctuations during component redeployment.

Master Node 1

Master Node 2

Master Node 3

Etcd Node

Control Plane
Prometheus

Node
Worker Node

KWOK Node

Data Plane

Request
Wrapper

Load Balancer
Node

Load Fetcher

Recommender

Updater

Recommender
NodeStress Test

Node

Metrics

Load and Mapping Metrics

Synchronous Requests FlowAsynchronous Data Flow Nodes collection

MerKury component Physical nodePhysical node with MerKury component(s)

Figure 8: Topology of the experiment environment.

5 EVALUATION
MerKury is implemented with 250 lines of Lua and 5,500 lines of

Python code. It leverages Openresty [28] as a load balancer, employ-

ing Lua scripts for the request wrapper. Other components operate

as standalone processes, interfacing with Kubernetes clusters via

the Kubernetes API. MerKury’s flexible deployment requires only

accessible master node IPs and a prepared kubeconfig file.

We employ an ARMA model [26] for load metric prediction. We

develop a customized evolutionary algorithm to efficiently solve

(9) and (10). Specifically, the CPU granularity is proportional to

the remaining CPU
2
, controlling the size of search space and the

solution time within the threshold.

5.1 Environment
We constructed a cluster with high availability across three mas-

ter nodes and an external high-performance etcd node to mitigate

etcd’s I/O bottleneck. It governed a worker node with several busi-

ness containers and numerous nodes simulated by KWOK [20].

MerKury components were deployed on dedicated nodes outside

of the cluster. All nodes operated within the same LAN to minimize

network latency. The setup’s topology is shown in Fig. 8, with node

and software configurations detailed in Table 2.

5.2 Experiment Settings
5.2.1 Scenarios and Datasets. We have crafted two scenarios using

a synthesized dataset to simulate large-scale Kubernetes workloads.

Normal-Intensity Scenario. This scenario assesses the clus-

ter’s request processing capabilities. A stress test program runs for

10 minutes, generating a mix of CRUD requests, excluding pod cre-

ations and deletions. The simulation concludes with the termination

of the stress test program.

Heavy-Intensity Scenario. This scenario evaluates both re-

quest processing and scheduling performance. It uses the same

setup as the normal scenario but adds pod creation and deletion

simulations using clusterloader2 [15]. Pods are divided into satura-

tion and latency categories, with the former representing large-scale

2
remain CPU = total CPU - total CPU load / time.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

MerKury WWW ’25, April 28 - May 02, 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Configuration for MerKury evaluation.

(a) Node configuration

Node CPU Memory OS

Master Nodes

Intel(R) Xeon(R)

E5-2630 v3, 12 cores 30GB CentOS 7.9

Load Balancer Node E5-2630 v3, 8 cores 28GB CentOS 7.9

Etcd/Prometheus Node Gold 6430, 128 cores 256GB Ubuntu 22.04

Worker Node Platinum 8160, 96 cores 128GB Ubuntu 18.04

KWOK/Recommender/Stress Test Node Silver 4210R, 40 cores 128GB Ubuntu 18.04

(b) Software configuration

Software Version Software Version

Kubernetes 1.27.6 Prometheus 2.42.0

Openresty 1.21.4 KWOK 0.4.0

MySQL 8.0.35 Redis 4.0.14

Nginx 1.7.9 Python 3.10.13

Go 1.21.5 Lua 5.1.4

deployments and the latter simulating lightweight containers. The

simulation is successful if all pods are running before the timeout.

Datasets. In the absence of public datasets on Kubernetes API

call frequencies in large-scale clusters, we synthesize a dataset.

The frequency of Kubernetes API calls and the number of pods to

schedule increase linearly with the number of simulated nodes.

5.2.2 Baselines. We compare MerKury against several baselines

in both scenarios.

Vanilla Kubernetes. This group includes k8s-native with

default core component arguments, and k8s-static, which applies
static argument optimization to enhance etcd storage and increase

max concurrency for other components.

P99 Baseline. Based on the P99 algorithm from Kubernetes

VPA, we implement the p99 baseline, modified to scale the CPU

usage at the 99th percentile over the last 10 minutes by 1.2 times as

the maximum usage.

OtherHeuristics.We implement three common resource alloca-

tionmethods: tsp using the ARMAmodel for CPU usage prediction,

weighted allocating CPU resources based on component load, and

evo-alg, an evolutionary algorithm minimizing weighted average

request latency.

5.2.3 Metrics. In both scenarios, we measure MerKury’s perfor-

mance against baselines using Average Latency of All Requests (LAR)
and P99 Latency of Read Requests (LRR) during the stress test, rep-
resenting overall request processing capability. In heavy-intensity

scenarios, we also consider the average Scheduling Throughput of
Saturation Pods (STSP), P99 Startup Latency of Latency Pods (SLLP),
and the cluster’s Node Capacity (maximum number of simulated

nodes that a simulation succeeds).

For micro-benchmarks, we evaluate MerKury’s overhead by

measuring the average and P99 CPU and memory usage of its

processes, and the average and P99 time for recommendations

and updates. Additionally, we analyze the performance impacts on

business workloads, including MySQL, Redis, and Nginx.

5.3 Results and Discussions
5.3.1 Comparing with Baselines. We conducted simulations with

𝑁 ranging from 1,000 to 10,000 in normal-intensity scenarios, and

increased the number of fake nodes in heavy-intensity scenarios

until failure occurred or the count reached 10,000. The performance

is illustrated in Fig. 9 and 10, respectively.

In normal-intensity scenarios, MerKury significantly outper-

forms baselines in request latency, with minimal differences among

the baselines themselves. This disparity is attributed to the limited

number of busy components in such scenarios, primarily the API

2000 4000 6000 8000 10000
Number of nodes (normal-intensity)

30

40

50

60

70

80

Av
er

ag
e

LA
R

 (m
s)

2000 4000 6000 8000 10000
Number of nodes (normal-intensity)

2000

4000

6000

8000

10000

P9
9

LR
R

 (m
s)

k8s-native k8s-static p99 tsp weighted evo-alg MerKury

2000 4000 6000 8000 10000
Number of nodes (heavy-intensity)

40

60

80

100

120

140

Av
er

ag
e

LA
R

 (m
s)

2000 4000 6000 8000 10000
Number of nodes (heavy-intensity)

2000

4000

6000

8000

10000

12000

P9
9

LR
R

 (m
s)

Figure 9: Request latency.

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
Number of nodes

0

25

50

75

100

125

150

175

Av
er

ag
e

ST
SP

 (p
od

/s
)

k8s-native
k8s-static

p99
tsp

weighted
evo-alg

MerKury

2000 4000 6000 8000 10000
Number of nodes

1000

2000

3000

4000

5000

6000

7000

P9
9

SL
LP

 (m
s)

k8s-native
k8s-static

p99
tsp

weighted
evo-alg

MerKury

Figure 10: Scheduling performance.

server and controller manager, where resource contention is less

of an issue, and thus, MerKury’s request preprocessing provides a

distinct advantage.

In heavy-intensity scenarios, MerKury achieves a node capacity

of 9,000, outpacing k8s-native by 4.5 times. It surpasses all base-

lines in request latency and scheduling performance. The p99 and

evo-alg baselines come closest to MerKury, with p99 providing

stable API server load and lower latency, but failing to adjust effec-

tively to the fluctuating scheduler load. evo-alg matches MerKury

in scheduling but not in API server latency due to ignoring compo-

nent dependencies, causing frequent master instance switches of

the scheduler and controller-manager.

Overall, MerKury delivers substantial performance improve-

ments, reducing average latency by 5.63% to 39.32% and P99 read

latency by 15.82% to 57.73%. Its scheduling throughput is 1.14 to

16.43 times higher when managing numerous pods, and startup

latency for urgent pods is reduced by up to 82.24%.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, April 28 - May 02, 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

LAR LRR
Latency metrics (normal-intensity)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

re
du

ct
io

n

LAR LRR
Latency metrics (heavy-intensity)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

re
du

ct
io

n

rec rec+mip MerKury

STSP Node capacity
Scheduling performance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

im
pr

ov
em

en
t

Figure 11: Average improvements of MerKury and its abla-
tion alternatives compared with k8s-static.

Table 3: Resource cost and update time of MerKury.

Scenario
Resource cost Time cost

Average/P99 Average/P99 Average/P99

CPU usage (core) memory usage (MB) update time (s)

Normal-intensity 0.01/0.14 162.55/163.59 0.23/0.57

Heavy-intensity 0.04/0.85 179.53/180.96 0.24/0.41

2000 4000 6000 8000 10000
Number of nodes (normal-intensity)

0

5

10

15

Ti
m

e
fo

r r
ec

om
m

en
da

tio
n

(s
)

Average (evo-alg) P99 (evo-alg) Average (MerKury) P99 (MerKury)

2000 4000 6000 8000 10000
Number of nodes (heavy-intensity)

0

10

20

30

40

50

Ti
m

e
fo

r r
ec

om
m

en
da

tio
n

(s
)

Figure 12: Recommendation time comparison.

5.3.2 Ablation Study. After proving the effectiveness of MerKury,

we examine its three main components—recommendation algo-

rithm, master instance placement, and request wrapper—to assess

their individual contributions to performance.

We introduce two ablation versions of MerKury: rec+mip (with-

out the request wrapper) and rec (further disabling master instance

placement). Results for these versions are shown in Fig. 11.

The ablation study confirms the collective impact of all three

components. In normal-intensity scenarios, the request wrapper

significantly reduces unnecessary read request loads, particularly

contributing to 73.97% of the average LAR reduction. Under heavy

load, the recommendation algorithm andmaster instance placement

play more critical roles, with contributions up to 87.7% for latency

metrics and 75% for node capacity growth, respectively.

5.3.3 Micro-benchmarks. In micro-benchmarks, we evaluate the

cost of MerKury and its impact on business workloads.

MerKury overhead. A monitoring thread in MerKury continu-

ously tracks its CPU and memory usage, with time consumption

for each recommendation and update recorded in logs.

As shown in Table 3, the CPU usage in normal-intensity scenar-

ios is minimal, with the recommendation algorithm infrequently

invoked. In heavy-intensity scenarios, the CPU and memory us-

age increase but remain within acceptable limits, with the average

update time well under half a second.

Comparing the recommendation time of MerKury with evo-alg,
as shown in Fig. 12, MerKury’s average and P99 times are signifi-

cantly lower, with the longest times generally within the 10-second

0 2000 4000 6000 8000 10000
Number of nodes (normal-intensity)

0.8

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 m
et

ric
s

fo
r M

yS
Q

L

TPS (k8s-static) P95 latency (k8s-static) TPS (MerKury) P95 latency (MerKury)

0 1000 2000 3000 4000 5000 6000
Number of nodes (heavy-intensity)

0.8

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 m
et

ric
s

fo
r M

yS
Q

L

0 2000 4000 6000 8000 10000
Number of nodes (normal-intensity)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 m
et

ric
s

fo
r N

gi
nx

RPS (k8s-static) RPS (MerKury)

0 1000 2000 3000 4000 5000 6000
Number of nodes (heavy-intensity)

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 m
et

ric
s

fo
r N

gi
nx

0 2000 4000 6000 8000 10000
Number of nodes (normal-intensity)

0.90

0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

 m
et

ric
s

fo
r R

ed
is

SET RPS (k8s-static) GET RPS (k8s-static) SET RPS (MerKury) GET RPS (MerKury)

0 1000 2000 3000 4000 5000 6000
Number of nodes (heavy-intensity)

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 m
et

ric
s

fo
r R

ed
is

Figure 13: Impact on business workloads (top: MySQL;middle:
Nginx; bottom: Redis) compared with k8s-static.

threshold, highlighting the efficiency of its customized evolutionary

algorithm with adaptive CPU granularity.

Impact on business workloads. During stress tests, we also
assess the performance of business workloads to determine any

potential negative impact of MerKury. As depicted in Fig. 13, busi-

ness workload performance degrades with increasing cluster load

and node count. However, the difference between MerKury and

k8s-static is negligible, indicating that MerKury has minimal neg-

ative impact on business workloads, with performance degradation

primarily due to cluster scale and load.

6 CONCLUSION
In this paper we presented MerKury, a lightweight framework de-

veloped to enhance the Kubernetes performance for large-scale

clusters. To address the critical issues of read request load and

resource contention, we introduced a request wrapper for pre-

processing requests and a recommendation algorithm alongside a

master instance placement mechanism to optimize resource allo-

cation. Comprehensive experiments have demonstrated that the

framework significantly improved both request processing and

scheduling throughput, showcasing its ability to bolster Kuber-

netes performance without adding substantial overhead.

In future endeavors, we intend to enhance MerKury’s predictive

capabilities using deep learning techniques, thereby refining its

adaptability in the ever-changing landscape of cloud environments.

REFERENCES
[1] M.R.M. Assis and L.F. Bittencourt. 2016. A survey on cloud federation architec-

tures: Identifying functional and non-functional properties. Journal of Network
and Computer Applications 72 (2016), 51–71.

[2] Liang Bao, Chase Wu, Xiaoxuan Bu, Nana Ren, and Mengqing Shen. 2019. Perfor-

mance Modeling and Workflow Scheduling of Microservice-Based Applications

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

MerKury WWW ’25, April 28 - May 02, 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

in Clouds. IEEE Transactions on Parallel and Distributed Systems 30, 9 (2019),

2114–2129.

[3] Romil Bhardwaj, Kirthevasan Kandasamy, Asim Biswal, Wenshuo Guo, Ben-

jamin Hindman, Joseph Gonzalez, Michael Jordan, and Ion Stoica. 2023. Cilantro:

Performance-Aware Resource Allocation for General Objectives via Online Feed-

back. In 17th USENIX Symposium onOperating Systems Design and Implementation
(OSDI 23). USENIX Association, Boston, MA, 623–643.

[4] Zhicheng Cai and Rajkumar Buyya. 2022. Inverse Queuing Model-Based Feed-

back Control for Elastic Container Provisioning of Web Systems in Kubernetes.

IEEE Trans. Comput. 71, 2 (2022), 337–348.
[5] Xingyu Chen. 2019. Performance optimization of etcd in web scale data sce-

nario. https://www.cncf.io/blog/2019/05/09/performance-optimization-of-etcd-

in-web-scale-data-scenario

[6] Ka-Ho Chow, Umesh Deshpande, Veera Deenadayalan, Sangeetha Seshadri,

and Ling Liu. 2024. Atlas: Hybrid Cloud Migration Advisor for Interactive

Microservices. In Proceedings of the Nineteenth European Conference on Computer
Systems (Athens, Greece) (EuroSys ’24). Association for Computing Machinery,

New York, NY, USA, 870–887.

[7] Alibaba Cloud Native Community. 2019. How Does Alibaba Ensure the Perfor-

mance of System Components in a 10,000-node Kubernetes Cluster? https:

//www.alibabacloud.com/blog/how-does-alibaba-ensure-the-performance-of-

system-components-in-a-10000-node-kubernetes-cluster_595469

[8] Jiangfei Duan, Ziang Song, Xupeng Miao, Xiaoli Xi, Dahua Lin, Harry Xu, Minjia

Zhang, and Zhihao Jia. 2024. Parcae: Proactive, Liveput-Optimized DNN Training

on Preemptible Instances. In 21st USENIX Symposium on Networked Systems
Design and Implementation (NSDI 24). USENIX Association, Santa Clara, CA,

1121–1139.

[9] Pinterest Engineering. 2021. Scaling Kubernetes with Assurance at Pinter-

est. https://medium.com/pinterest-engineering/scaling-kubernetes-with-

assurance-at-pinterest-a23f821168da?fileGuid=prJWDc8Hk9cjRkvJ

[10] Yihui Feng, Zhi Liu, Yunjian Zhao, Tatiana Jin, Yidi Wu, Yang Zhang, James

Cheng, Chao Li, and Tao Guan. 2021. Scaling Large Production Clusters with Par-

titioned Synchronization. In 2021 USENIX Annual Technical Conference (USENIX
ATC 21). USENIX Association, 81–97.

[11] Jiawei Tyler Gu, Xudong Sun, Wentao Zhang, Yuxuan Jiang, Chen Wang, Man-

dana Vaziri, Owolabi Legunsen, and Tianyin Xu. 2023. Acto: Automatic End-

to-End Testing for Operation Correctness of Cloud System Management. In

Proceedings of the 29th Symposium on Operating Systems Principles (Koblenz,
Germany) (SOSP ’23). Association for Computing Machinery, New York, NY,

USA, 96–112.

[12] Dejun Jiang, Guillaume Pierre, and Chi-Hung Chi. 2010. Autonomous resource

provisioning for multi-service web applications. In Proceedings of the 19th Inter-
national Conference on World Wide Web (Raleigh, North Carolina, USA) (WWW
’10). Association for Computing Machinery, New York, NY, USA, 471–480.

[13] Karmada. 2022. Test Report on Karmada’s Support for 100 Large-Scale Clusters.

https://karmada.io/blog/2022/10/26/test-report/

[14] Kubernetes. 2024. API Priority and Fairness. https://kubernetes.io/docs/

concepts/cluster-administration/flow-control/

[15] Kubernetes. 2024. Clusterloader 2. https://github.com/kubernetes/perf-tests/

tree/master/clusterloader2

[16] Kubernetes. 2024. Kubernetes – Production-Grade Container Orchestration.

https://kubernetes.io/

[17] Kubernetes. 2024. Kubernetes scalability and performance SLIs/SLOs. https:

//github.com/kubernetes/community/blob/master/sig-scalability/slos/slos.md

[18] Kubernetes. 2024. Kubernetes Scalability thresholds. https:

//github.com/kubernetes/community/blob/master/sig-scalability/configs-

and-limits/thresholds.md

[19] Kubernetes. 2024. Vertical Pod Autoscaler. https://github.com/kubernetes/

autoscaler/blob/master/vertical-pod-autoscaler/README.md

[20] KWOK. 2024. KWOK (Kubernetes WithOut Kubelet). https://kwok.sigs.k8s.io/

[21] Yamin Lei, Zhicheng Cai, Xiaoping Li, and Rajkumar Buyya. 2022. State Space

Model and Queuing Network Based Cloud Resource Provisioning for Meshed

Web Systems. IEEE Transactions on Parallel and Distributed Systems 33, 12 (2022),
3787–3799.

[22] Yamin Lei, Zhicheng Cai, Hang Wu, and Rajkumar Buyya. 2020. Cloud Resource

Provisioning and Bottleneck Eliminating for Meshed Web Systems. In 2020 IEEE
13th International Conference on Cloud Computing (CLOUD). 512–516. https:

//doi.org/10.1109/CLOUD49709.2020.00076

[23] Baolin Li, Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, Karen Gettings, and

Devesh Tiwari. 2021. RIBBON: cost-effective and qos-aware deep learning model

inference using a diverse pool of cloud computing instances. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (St. Louis, Missouri) (SC ’21). Association for Computing Machinery,

New York, NY, USA, Article 24, 13 pages.

[24] Xiaoping Liang. 2018. The refined operation of JD.com’s large-scale Kubernetes

cluster. https://dbaplus.cn/news-141-2139-1.html

[25] Chengzhi Lu, Huanle Xu, Kejiang Ye, Guoyao Xu, Liping Zhang, Guodong Yang,

and Chengzhong Xu. 2023. Understanding and OptimizingWorkloads for Unified

Resource Management in Large Cloud Platforms. In Proceedings of the Eighteenth
European Conference on Computer Systems (Rome, Italy) (EuroSys ’23). Association
for Computing Machinery, New York, NY, USA, 416–432.

[26] Spyros Makridakis and Michele Hibon. 1997. ARMAmodels and the Box–Jenkins

methodology. Journal of forecasting 16, 3 (1997), 147–163.

[27] OpenAI. 2021. Scaling Kubernetes to 7,500 nodes. https://openai.com/research/

scaling-kubernetes-to-7500-nodes

[28] Openresty. 2024. Openresty is a dynamic web platform based on NGINX and

LuaJIT. https://openresty.org/en/

[29] Vighnesh Sachidananda and Anirudh Sivaraman. 2024. Erlang: Application-

Aware Autoscaling for Cloud Microservices. In Proceedings of the Nineteenth
European Conference on Computer Systems (Athens, Greece) (EuroSys ’24). Asso-
ciation for Computing Machinery, New York, NY, USA, 888–923.

[30] Alireza Sahraei, Soteris Demetriou, Amirali Sobhgol, Haoran Zhang, Abhigna

Nagaraja, Neeraj Pathak, Girish Joshi, Carla Souza, Bo Huang, Wyatt Cook,

Andrii Golovei, Pradeep Venkat, Andrew Mcfague, Dimitrios Skarlatos, Vipul

Patel, Ravinder Thind, Ernesto Gonzalez, Yun Jin, and Chunqiang Tang. 2023.

XFaaS: Hyperscale and Low Cost Serverless Functions at Meta. In Proceedings of
the 29th Symposium on Operating Systems Principles (Koblenz, Germany) (SOSP
’23). Association for Computing Machinery, New York, NY, USA, 231–246.

[31] John F Shortle, James M Thompson, Donald Gross, and Carl M Harris. 2018.

Fundamentals of queueing theory. Vol. 399. John Wiley & Sons.

[32] Xudong Sun, Wenqing Luo, Jiawei Tyler Gu, Aishwarya Ganesan, Ramnatthan

Alagappan, Michael Gasch, Lalith Suresh, and Tianyin Xu. 2022. Automatic Reli-

ability Testing For Cluster Management Controllers. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22). USENIX Association,

Carlsbad, CA, 143–159.

[33] Midhul Vuppalapati, Giannis Fikioris, Rachit Agarwal, Asaf Cidon, Anurag Khan-

delwal, and Éva Tardos. 2023. Karma: Resource Allocation for Dynamic Demands.

In 17th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 23). USENIX Association, Boston, MA, 645–662.

[34] Zhaojie Wen, Yishuo Wang, and Fangming Liu. 2022. StepConf: SLO-Aware

Dynamic Resource Configuration for Serverless Function Workflows. In IEEE
INFOCOM 2022 - IEEE Conference on Computer Communications. 1868–1877.

[35] Wu Xiang, Yakun Li, Yuquan Ren, Fan Jiang, Chaohui Xin, Varun Gupta, Chao

Xiang, Xinyi Song, Meng Liu, Bing Li, Kaiyang Shao, Chen Xu, Wei Shao, Yuqi

Fu, WilsonWang, Cong Xu, Wei Xu, Caixue Lin, Rui Shi, and Yuming Liang. 2023.

Gödel: Unified Large-Scale Resource Management and Scheduling at ByteDance.

In Proceedings of the 2023 ACM Symposium on Cloud Computing (Santa Cruz, CA,

USA) (SoCC ’23). Association for Computing Machinery, New York, NY, USA,

308–323.

[36] Jie Zhang, Chen Jin, YuQi Huang, Li Yi, Yu Ding, and Fei Guo. 2022. KOLE: break-

ing the scalability barrier for managing far edge nodes in cloud. In Proceedings of
the 13th Symposium on Cloud Computing (San Francisco, California) (SoCC ’22).
Association for Computing Machinery, New York, NY, USA, 196–209.

[37] Zhiqiang Zhou, Chaoli Zhang, Lingna Ma, Jing Gu, Huajie Qian, Qingsong

Wen, Liang Sun, Peng Li, and Zhimin Tang. 2023. AHPA: Adaptive Horizontal

Pod Autoscaling Systems on Alibaba Cloud Container Service for Kubernetes.

Proceedings of the AAAI Conference on Artificial Intelligence 37, 13 (Sep. 2023),
15621–15629.

A SYSTEM DETAILS
A.1 Queuing Model Details
We adopt the following assumptions for queuing model construc-

tion to simplify the modeling so that the queuing model can be char-

acterized as a birth-death process: 1○ The CPU-concurrency map-

ping for each component is invariant across different request types,

with precedence given to mappings derived from the load fetcher.

2○ In scenarios where multiple requests are concurrently executed,

each request is allocated an equitable share of CPU resources. 3○
The inter-arrival time of requests adheres to an exponential distri-

bution with rate 𝑛𝑟 /Δ𝑡 . 4○ The execution time conforms to an expo-

nential distribution with rate CPU Utilization/Request CPU Load.

In the steady state, the rate of transitions away from a state

equals the rate of transitions into that state, leading to the global

9

https://www.cncf.io/blog/2019/05/09/performance-optimization-of-etcd-in-web-scale-data-scenario
https://www.cncf.io/blog/2019/05/09/performance-optimization-of-etcd-in-web-scale-data-scenario
https://www.alibabacloud.com/blog/how-does-alibaba-ensure-the-performance-of-system-components-in-a-10000-node-kubernetes-cluster_595469
https://www.alibabacloud.com/blog/how-does-alibaba-ensure-the-performance-of-system-components-in-a-10000-node-kubernetes-cluster_595469
https://www.alibabacloud.com/blog/how-does-alibaba-ensure-the-performance-of-system-components-in-a-10000-node-kubernetes-cluster_595469
https://medium.com/pinterest-engineering/scaling-kubernetes-with-assurance-at-pinterest-a23f821168da?fileGuid=prJWDc8Hk9cjRkvJ
https://medium.com/pinterest-engineering/scaling-kubernetes-with-assurance-at-pinterest-a23f821168da?fileGuid=prJWDc8Hk9cjRkvJ
https://karmada.io/blog/2022/10/26/test-report/
https://kubernetes.io/docs/concepts/cluster-administration/flow-control/
https://kubernetes.io/docs/concepts/cluster-administration/flow-control/
https://github.com/kubernetes/perf-tests/tree/master/clusterloader2
https://github.com/kubernetes/perf-tests/tree/master/clusterloader2
https://kubernetes.io/
https://github.com/kubernetes/community/blob/master/sig-scalability/slos/slos.md
https://github.com/kubernetes/community/blob/master/sig-scalability/slos/slos.md
https://github.com/kubernetes/community/blob/master/sig-scalability/configs-and-limits/thresholds.md
https://github.com/kubernetes/community/blob/master/sig-scalability/configs-and-limits/thresholds.md
https://github.com/kubernetes/community/blob/master/sig-scalability/configs-and-limits/thresholds.md
https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/README.md
https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/README.md
https://kwok.sigs.k8s.io/
https://doi.org/10.1109/CLOUD49709.2020.00076
https://doi.org/10.1109/CLOUD49709.2020.00076
https://dbaplus.cn/news-141-2139-1.html
https://openai.com/research/scaling-kubernetes-to-7500-nodes
https://openai.com/research/scaling-kubernetes-to-7500-nodes
https://openresty.org/en/

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, April 28 - May 02, 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

balance equations:
𝑝0𝜆0 = 𝑝1𝜇1,

𝑝 𝑓 ∗+𝑞∗−1
𝜆𝑓 ∗+𝑞∗−1

= 𝑝 𝑓 ∗+𝑞∗𝜇𝑓 ∗+𝑞∗ ,

𝑝𝑛−1𝜆𝑛−1 + 𝑝𝑛+1𝜇𝑛+1 = 𝑝𝑛 (𝜆𝑛 + 𝜇𝑛).(1 ≤ 𝑛 < 𝑓 ∗ + 𝑞∗)
(11)

Given that the sum of probabilities must equal 1, we integrate

this constraint into the global balance equations to solve for the

probability distribution {𝑝𝑛} as:

𝑝𝑛 = 𝑝0

𝑛∏
𝑖=1

𝜆𝑖−1

𝜇𝑖
(1 ≤ 𝑛 ≤ 𝑓 ∗ + 𝑞∗),

𝑝0 =
©­«1 +

𝑓 ∗+𝑞∗∑︁
𝑛=1

𝑛∏
𝑖=1

𝜆𝑖−1

𝜇𝑖

ª®¬
−1

.

(12)

The expected values for 𝐿, 𝐿𝑞 and 𝐿𝑒 are derived as:

𝐿 =

𝑓 ∗+𝑞∗∑︁
𝑛=1

𝑛𝑝𝑛, 𝐿𝑞 =

𝑓 ∗+𝑞∗∑︁
𝑛=𝑓 ∗+1

(𝑛 − 𝑓 ∗)𝑝𝑛,

𝐿𝑒 = 𝐿 − 𝐿𝑞 =

𝑓 ∗∑︁
𝑛=1

𝑛𝑝𝑛 +
𝑓 ∗+𝑞∗∑︁
𝑛=𝑓 ∗+1

𝑓 ∗𝑝𝑛 .

(13)

Considering the finite capacity of the queuing system, from the

servers’ perspective, the effective arrival rate 𝜆
eff

= 𝜆(1 − 𝑝reject).
Employing Little’s Law,𝑊 ,𝑊𝑞 and𝑊𝑒 are calculated accordingly:

𝑊 = 𝐿/𝜆
eff
, 𝑊𝑞 = 𝐿𝑞/𝜆eff, 𝑊𝑒 = 𝐿𝑒/𝜆eff . (14)

In the unsteady state, where the server operates at full capacity,

the average number of executing requests, 𝐿𝑒 , is estimated to be

𝑓 ∗. Concurrently, 𝐿𝑞 is deduced from the number of requests that

correspond to the unprocessed CPU load:

𝐿𝑞 = 𝑙𝑛𝑟 /𝑐. (15)

A.2 Monotonicity Discussions
The subsequent discussions presume that the queuing system has

reached a steady state. For the sake of brevity, we define 𝑎𝑛 =∏𝑛
𝑖=1

𝜆𝑖−1/𝜇𝑖 .

Theorem A.1. The average latency𝑊 exhibits a monotonic de-
crease with the CPU allocation 𝑐∗ for 𝑐∗ ≤ max 𝑓 (𝑥), with max 𝑓 (𝑥)
representing the peak CPU utilization.

Proof. Let 0 < 𝑐∗
1
< 𝑐∗

2
≤ max 𝑓 (𝑥), and denoteP = 𝑝0 (𝑐∗

1
)/𝑝0 (𝑐∗

2
),

A𝑛 = 𝑎𝑛 (𝑐∗
1
)/𝑎𝑛 (𝑐∗

2
). The relationship is given by:

𝑝𝑛 (𝑐∗
1
)

𝑝𝑛 (𝑐∗
2
) =

𝑎𝑛 (𝑐∗
1
)𝑝0 (𝑐∗

1
)

𝑎𝑛 (𝑐∗
2
)𝑝0 (𝑐∗

2
) = PA𝑛,

A𝑛

A𝑛−1

=
𝜇𝑛 (𝑐∗

2
)

𝜇𝑛 (𝑐∗
1
) . (16)

To prove the above theorem is equivalent to proving that𝑊 (𝑐∗
1
) >

𝑊 (𝑐∗
2
).

Initially, we discuss the probability distribution. In accordance

with Equation (1), the service rate 𝜇𝑛 increases monotonically with

𝑐∗ for 𝑐∗ ≤ max 𝑓 (𝑥). Given that the arrival rate 𝜆𝑛 is indepen-

dent of 𝑐∗, it follows that 𝑎𝑛 decreases monotonically with 𝑐∗.
Consequently, the probability of the system being idle 𝑝0 esca-

lates with 𝑐∗. We identify 𝑥1 as the smallest x-coordinate where

the curves 𝑦 = 𝑓 (min(𝑥, 𝑓 ∗)) and 𝑦 = 𝑐∗
1
as 𝑥1 intersect. For

𝑛 ≤ ⌊𝑥1⌋, 𝜇𝑛 (𝑐∗
1
) = 𝜇𝑛 (𝑐∗

2
), thus A𝑛 = 1. Since P < 1, it is

clear that 𝑝𝑛 (𝑐∗
1
) < 𝑝𝑛 (𝑐∗

2
). For 𝑛 ≥ ⌈𝑥1⌉, 𝜇𝑛 (𝑐∗

1
) < 𝜇𝑛 (𝑐∗

2
), and

therefore A𝑛/A𝑛−1 > 1, indicating an increase in 𝐴𝑛 with 𝑛.

Given that

∑𝑓 ∗+𝑞∗
𝑛=0

𝑝𝑛 (𝑐∗
1
) = ∑𝑓 ∗+𝑞∗

𝑛=0
𝑝𝑛 (𝑐∗

2
) = 1, there exists 𝑛1 ∈

[⌈𝑥1⌉, 𝑓 ∗ + 𝑞∗) such that A𝑛1
≤ 1/P ≤ A𝑛1+1. For 𝑛 ≤ 𝑛1,

𝑝𝑛 (𝑐∗
1
) < 𝑝𝑛 (𝑐∗

2
); whereas for 𝑛 ≥ 𝑛1 + 1, 𝑝𝑛 (𝑐∗

1
) > 𝑝𝑛 (𝑐∗

2
). Hence

𝑝reject (𝑐∗1) > 𝑝reject (𝑐∗2). Additionally, the following equation holds:

𝑛1∑︁
𝑛=0

𝑝𝑛 (𝑐∗2) − 𝑝𝑛 (𝑐∗1) =
𝑓 ∗+𝑞∗∑︁
𝑛=𝑛1+1

𝑝𝑛 (𝑐∗1) − 𝑝𝑛 (𝑐∗2). (17)

Subsequently, we discuss the monotonicity of the average num-

ber of requests in the system, 𝐿, with respect to 𝑐∗.The calculation
is as follows:

𝐿(𝑐∗
1
) − 𝐿(𝑐∗

2
) =

𝑓 ∗+𝑞∗∑︁
𝑛=1

𝑛
(
𝑝𝑛 (𝑐∗1) − 𝑝𝑛 (𝑐∗2)

)
= −

𝑛1∑︁
𝑛=0

𝑛
(
𝑝𝑛 (𝑐∗2) − 𝑝𝑛 (𝑐∗1)

)
+

𝑓 ∗+𝑞∗∑︁
𝑛=𝑛1+1

𝑛
(
𝑝𝑛 (𝑐∗1) − 𝑝𝑛 (𝑐∗2)

)
> − 𝑛1

𝑛1∑︁
𝑛=0

𝑝𝑛 (𝑐∗2) − 𝑝𝑛 (𝑐∗1)+

(𝑛1 + 1)
𝑓 ∗+𝑞∗∑︁
𝑛=𝑛1+1

𝑝𝑛 (𝑐∗1) − 𝑝𝑛 (𝑐∗2)

=

𝑛1∑︁
𝑛=0

𝑝𝑛 (𝑐∗2) − 𝑝𝑛 (𝑐∗1) > 0.

(18)

Thus, 𝐿 decreases monotonically with 𝑐∗. Since𝑊 = 𝐿/𝜆(1 −
𝑝reject) and 𝑝reject (𝑐∗1) > 𝑝reject (𝑐∗2), it follows that𝑊 (𝑐∗

1
) >𝑊 (𝑐∗

2
).
□

Theorem A.2. The average request number 𝐿 increases monotoni-
cally with respect to the maximum concurrency 𝑓 ∗ if increasing 𝑓 ∗

does not enhance the service rate.

Proof. Given that 𝑓 ∗ is a natural number, the proof hinges on

proving 𝐿(𝑓 ∗) < 𝐿(𝑓 ∗+1), under the condition that min(𝑐∗, 𝑓 (𝑓 ∗))
is greater than or equal tomin(𝑐∗, 𝑓 (𝑓 ∗+1)). We proceed to examine

the scenarios separately.

When min(𝑐∗, 𝑓 (𝑓 ∗)) > min(𝑐∗, 𝑓 (𝑓 ∗ + 1)), the relationships

between 𝜇𝑛 and 𝑎𝑛 for 𝑓 ∗ and 𝑓 ∗ + 1 are:

𝜇𝑛 (𝑓 ∗) = 𝜇𝑛 (𝑓 ∗ + 1) 𝑎𝑛 (𝑓 ∗) = 𝑎𝑛 (𝑓 ∗ + 1) (1 ≤ 𝑛 ≤ 𝑓 ∗),
𝜇𝑛 (𝑓 ∗) > 𝜇𝑛 (𝑓 ∗ + 1) 𝑎𝑛 (𝑓 ∗) < 𝑎𝑛 (𝑓 ∗ + 1) (𝑛 ≥ 𝑓 ∗ + 1).

(19)

According to Equation (12), it is inferred that 𝑝0 (𝑓 ∗) > 𝑝0 (𝑓 ∗ + 1).
Drawing parallels to the discussions on the probability distribution

for varying 𝑐∗, there exists 𝑛1 ∈ [𝑓 ∗, 𝑓 ∗ + 𝑞∗] such that for 0 ≤ 𝑛 ≤
𝑛1, 𝑝𝑛 (𝑓 ∗) > 𝑝𝑛 (𝑓 ∗ + 1); and for 𝑛 ≥ 𝑛1 + 1, 𝑝𝑛 (𝑓 ∗) ≤ 𝑝𝑛 (𝑓 ∗ + 1).
Considering that the sum of probabilities equals one, we derive that

𝑛1∑︁
𝑛=0

𝑝𝑛 (𝑓 ∗) − 𝑝𝑛 (𝑓 ∗ + 1) =
𝑓 ∗+𝑞∗+1∑︁
𝑛=𝑛1+1

𝑝𝑛 (𝑓 ∗ + 1) − 𝑝𝑛 (𝑓 ∗). (20)

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

MerKury WWW ’25, April 28 - May 02, 2025, Sydney, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Subsequently, we compare 𝐿(𝑓 ∗) and 𝐿(𝑓 ∗+1) through subtraction:

𝐿(𝑓 ∗) − 𝐿(𝑓 ∗ + 1) =
𝑓 ∗+𝑞∗∑︁
𝑛=1

𝑛𝑝𝑛 (𝑓 ∗) −
𝑓 ∗+𝑞∗+1∑︁
𝑛=1

𝑛𝑝𝑛 (𝑓 ∗ + 1)

=

𝑛1∑︁
𝑛=0

𝑛(𝑝𝑛 (𝑓 ∗) − 𝑝𝑛 (𝑓 ∗ + 1))−

𝑓 ∗+𝑞∗+1∑︁
𝑛=𝑛1+1

𝑛(𝑝𝑛 (𝑓 ∗ + 1) − 𝑝𝑛 (𝑓 ∗))

<𝑛1

𝑛1∑︁
𝑛=0

𝑝𝑛 (𝑓 ∗) − 𝑝𝑛 (𝑓 ∗ + 1)−

(𝑛1 + 1)
𝑓 ∗+𝑞∗+1∑︁
𝑛=𝑛1+1

𝑝𝑛 (𝑓 ∗ + 1) − 𝑝𝑛 (𝑓 ∗)

= −
𝑛1∑︁
𝑛=0

𝑝𝑛 (𝑓 ∗) − 𝑝𝑛 (𝑓 ∗ + 1) < 0.

(21)

When min(𝑐∗, 𝑓 (𝑓 ∗)) > min(𝑐∗, 𝑓 (𝑓 ∗ + 1)), altering the max-

imum concurrency from 𝑓 ∗ to 𝑓 ∗ + 1 introduces no change for

𝜇𝑛 and 𝑎𝑛 but increases the number of terms in the summation

of Equation (12). Consequently, 𝑝0 (𝑓 ∗ + 1) < 𝑝0 (𝑓 ∗). Let Δ𝑝0 =

𝑝0 (𝑓 ∗) − 𝑝0 (𝑓 ∗ + 1), and given the sum of probabilities is unit, it

follows that

𝑝 𝑓 ∗+𝑞∗+1
(𝑓 ∗ + 1) =

𝑓 ∗+𝑞∗∑︁
𝑛=0

𝑝𝑛 (𝑓 ∗) − 𝑝𝑛 (𝑓 ∗ + 1)

=
©­«1 +

𝑓 ∗+𝑞∗∑︁
𝑛=1

𝑎𝑛
ª®¬Δ𝑝0 .

(22)

We then compare 𝐿(𝑓 ∗) and 𝐿(𝑓 ∗ + 1) via subtraction:

𝐿(𝑓 ∗) − 𝐿(𝑓 ∗ + 1) =
𝑓 ∗+𝑞∗∑︁
𝑛=1

𝑛
(
𝑝𝑛 (𝑓 ∗) − 𝑝𝑛 (𝑓 ∗ + 1)

)
−

(𝑓 ∗ + 𝑞∗ + 1)𝑝 𝑓 ∗+𝑞∗+1
(𝑓 ∗ + 1)

<Δ𝑝0 (𝑓 ∗ + 𝑞∗ + 1)
𝑓 ∗+𝑞∗∑︁
𝑛=1

𝑎𝑛−

Δ𝑝0 (𝑓 ∗ + 𝑞∗ + 1) ©­«1 +
𝑓 ∗+𝑞∗∑︁
𝑛=1

𝑎𝑛
ª®¬

= − Δ𝑝0 (𝑓 ∗ + 𝑞∗ + 1) < 0.

(23)

Hence, 𝐿(𝑓 ∗) < 𝐿(𝑓 ∗ + 1) for min(𝑐∗, 𝑓 (𝑓 ∗)) ≥ min(𝑐∗, 𝑓 (𝑓 ∗ +
1)). □

Theorem A.3. Regarding the maximum queue length 𝑞∗, the prob-
ability of request rejection, 𝑝reject, decreases monotonically. Concur-
rently, the average number of requests in the system 𝐿, the average
number in the queue 𝐿𝑞 , and the average number in execution 𝐿𝑒 , all
increase monotonically.

Proof. Similar to 𝑓 ∗, 𝑞∗ is a natural number, and the proof of

monotonicity for a function 𝑔(𝑞∗) with respect to 𝑞∗ is equivalent
to comparing 𝑔(𝑞∗) with 𝑔(𝑞∗ + 1).

Adjusting 𝑞∗ does not affect 𝜆𝑛 , 𝜇𝑛 , or 𝑎𝑛 , but it does increase the
number of terms in the summation for calculating 𝑝0. Given that 𝜆𝑛
and 𝜇𝑛 are non-negative, 𝑝0 decreases monotonically with 𝑞∗. In the
expression for 𝑝𝑛 , only 𝑝0 depends on 𝑞∗, hence 𝑝𝑛 also decreases

monotonically with 𝑞∗. Let Δ𝑝0 = 𝑝0 (𝑞∗) − 𝑝0 (𝑞∗ + 1), it follows
that 𝑝𝑛 (𝑞∗) − 𝑝𝑛 (𝑞∗ + 1) = Δ𝑝0𝑎𝑛 for 𝑛 ≤ 𝑓 ∗ + 𝑞∗. Considering the
sum of probabilities is unity, we have

𝑝 𝑓 ∗+𝑞∗+1
(𝑞∗ + 1) = Δ𝑝0

©­«1 +
𝑓 ∗+𝑞∗∑︁
𝑛=1

𝑎𝑛
ª®¬ . (24)

We compare 𝑝reject (𝑞∗) and 𝑝reject (𝑞∗ + 1) via subtraction,

𝑝reject (𝑞∗) − 𝑝reject (𝑞∗ + 1)
=𝑎𝑓 ∗+𝑞∗𝑝0 (𝑞∗) − 𝑎𝑓 ∗+𝑞∗+1

𝑝0 (𝑞∗ + 1)

=𝑎𝑓 ∗+𝑞∗

(
𝑝0 (𝑞∗) −

𝜆𝑓 ∗+𝑞∗

𝜇𝑓 ∗+𝑞∗+1

𝑝0 (𝑞∗ + 1)
)
.

(25)

Given the system is in steady state, 0 <
𝜆𝑓 ∗+𝑞∗
𝜇𝑓 ∗+𝑞∗+1

< 1. Since 𝑝0 (𝑞∗) >
𝑝0 (𝑞∗ + 1), it follows that 𝑝reject (𝑞∗) > 𝑝reject (𝑞∗ + 1).

Subsequently, we compare 𝐿, 𝐿𝑞 , and 𝐿𝑒 using the same method:

𝐿(𝑞∗) − 𝐿(𝑞∗ + 1) =
𝑓 ∗+𝑞∗∑︁
𝑛=1

𝑛(𝑝𝑛 (𝑞∗) − 𝑝𝑛 (𝑞∗ + 1))−

(𝑓 ∗ + 𝑞∗ + 1)𝑝 𝑓 ∗+𝑞∗+1
(𝑞∗ + 1)

=Δ𝑝0

𝑓 ∗+𝑞∗∑︁
𝑛=1

𝑛𝑎𝑛−

Δ𝑝0 (𝑓 ∗ + 𝑞∗ + 1) ©­«1 +
𝑓 ∗+𝑞∗∑︁
𝑛=1

𝑎𝑛
ª®¬

< − Δ𝑝0 (𝑓 ∗ + 𝑞∗ + 1) < 0,

(26)

𝐿𝑞 (𝑞∗) − 𝐿𝑞 (𝑞∗ + 1) =Δ𝑝0

𝑓 ∗+𝑞∗∑︁
𝑛=𝑓 ∗+1

(𝑛 − 𝑓 ∗)𝑎𝑛−

Δ𝑝0 (𝑞∗ + 1) ©­«1 +
𝑓 ∗+𝑞∗∑︁
𝑛=1

𝑎𝑛
ª®¬

<Δ𝑝0 (𝑞∗ + 1)
𝑓 ∗+𝑞∗∑︁
𝑛=𝑓 ∗+1

𝑎𝑛−

Δ𝑝0 (𝑞∗ + 1) ©­«1 +
𝑓 ∗+𝑞∗∑︁
𝑛=1

𝑎𝑛
ª®¬

< − Δ𝑝0 (𝑞∗ + 1) < 0,

(27)

𝐿𝑒 (𝑞∗) − 𝐿𝑒 (𝑞∗ + 1) =Δ𝑝0

©­«
𝑓 ∗∑︁
𝑛=1

𝑛𝑎𝑛 + 𝑓 ∗
𝑓 ∗+𝑞∗∑︁
𝑛=𝑓 ∗+1

𝑎𝑛
ª®¬−

𝑓 ∗𝑝 𝑓 ∗+𝑞∗+1
(𝑞∗ + 1)

<Δ𝑝0 𝑓
∗
𝑓 ∗+𝑞∗∑︁
𝑛=1

𝑎𝑛 − Δ𝑝0 𝑓
∗ ©­«1 +

𝑓 ∗+𝑞∗∑︁
𝑛=1

𝑎𝑛
ª®¬

< − Δ𝑝0 𝑓
∗ < 0.

(28)

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’25, April 28 - May 02, 2025, Sydney, Australia Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Therefore, 𝐿, 𝐿𝑞 , and 𝐿𝑒 increase monotonically with respect to

𝑞∗. □

A.3 Traffic Control Parameters Updating
For traffic control parameters recommendation, instead of chang-

ing arguments that require pod restart, the updater adopts the

API priority and fairness (APF) mechanism in which requests are

classified into multiple priority groups and each group occupies dif-

ferent seats. Specifically, the maximum concurrency of the API

server is set as 𝐹 which is large enough (e.g. 3,000), and then

a PriorityLevelConfiguration (PLC) object named "merkury-

empty" is created in the cluster. "Merkury-empty" doesn’t match any

request and it becomes a "placeholder". The more "seats" it occupies,

the lower the effective maximum concurrency of the API server.

Therefore, the updater changes 𝑓 ∗ by sending PATCH requests to up-
date the nominalConcurrencyShares value of "merkury-empty".

For𝑞∗ changes, it sends PATCH requests to update queueLengthLimit
values of Kubernetes’ default PLCs.

It is important to acknowledge that the APF mechanism, which

incorporates multiple queues, diverges somewhat from the idealized

single-queue model we have formulated. Nonetheless, the efficacy

of the traffic control parameter recommendation strategy has been

validated. Moreover, considering that only the API server possesses

configurable traffic control parameters, the recommender confines

its traffic control parameter recommendations to the API server,

with the updater making corresponding updates exclusively to the

API server’s traffic control parameters.

B EXPERIMENT ADDENDUM
B.1 Detailed Settings
Parameter Settings. The minimum availability 𝑃 is set at 99.9%.

The CPU resource contention threshold 𝛽 is 0.7. Initial weight

parameters are uniformly set to 1, incrementing to 𝑤 ′ = 𝑤 + 1

during adjustments. For group A components, bottleneck and over-

allocation thresholds are 𝛼ℎ = 0.6 and 𝛼𝑙 = 0.3; other components

use 0.7 and 0.4, respectively. The reallocation fraction 𝜃 is 0.1, and

the maximum allocation deviation fraction 𝑣 is 0.2. The recommen-

dation time threshold 𝑇 is capped at 10 seconds. The recommenda-

tion period Δ𝑡 is set to 1 minute, balancing the collection of valid

incremental metrics with timely recommendation updates.

For the evolution algorithm, the population size is established

at 1,000, with a maximum of 100 generations. The probabilities

for selection, crossover, and mutation are set at 0.2, 0.8, and 0.05,

respectively. Within the early stopping strategy, if the variation

in fitness values over 10 successive generations does not exceed

0.01, the algorithm is deemed to have converged, prompting the

optimizer to terminate.

Heavy-Intensity Scenario. In heavy-intensity scenario, clus-

terloader2 is used to simulate pod creations and deletions. Specifi-

cally, pods are categorized into saturation pods and latency pods.

Saturation pods are managed by deployments with 3,000 replicas

to simulate large-scale workloads deployed on a large number of

nodes, while latency pods are controlled by deployments with only

one replica to simulate lightweight containers. Pod creation and

deletion start simultaneously with the stress test program. In a

Table 4: Argument optimizations for baselines except for
k8s-native.

Component Arguments

etcd –quota-backend-bytes=8589934592

API server

–max-requests-inflight=2000
–max-mutating-requests-inflight=1000

controller manager

–kube-api-qps=200
–kube-api-burst=300

scheduler

–kube-api-qps=200
–kube-api-burst=400

simulation with 𝑁 simulated nodes, 30𝑁 saturation pods are cre-

ated in their entirety first, and once they are all running or until

a saturation timeout of 100 minutes is reached, the creation for 𝑁

latency pods starts at a rate of RPS equal to 5. Once all the latency

pods are running or until a latency timeout of 15 minutes from the

dispatch of the last latency pod creation request is reached, all the

pods are finally deleted. The simulation ends with the finish of both

the stress test program and the pod creation and deletion process.

The simulation fails when any timeout is reached.

Datasets. To simulate a mix of CRUD requests using the stress

test program, we synthesize a dataset in which there are 18 types

of common objects, and the fraction of calls with different verbs

are estimated as

PUT : DELETE : PATCH : POST : LIST : GET = 1 : 1 : 2 : 4 : 6 : 8,

based on the Pinterest’s statistics [9]. For the same verb, the frac-

tions of calls with different objects are equal to each other. Besides,

it is assumed that the frequency grows linearly with the fake node

number. For example, when there are 1,000 simulated nodes, the

RPS of PUT endpoint requests is set to 1, and accordingly when

there are 2,000 simulated nodes, the RPS of POST secret requests

equals 8.

Static Arguments Optimization. During the evaluation of

vanilla Kubernetes, we have found that the default parameters of

control plane components are suboptimal in large-scale clusters.

Specifically, the etcd storage is insufficient and the concurrency

of other components are severely constrained. Therefore, for base-

lines except for k8s-native, we have applied static arguments

optimization as shown in table 4.

12

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Kubernetes Request Processing Flow
	2.2 Problems

	3 Related Work
	3.1 Kubernetes Optimization
	3.2 Resource Allocation

	4 MerKury Design
	4.1 System Overview
	4.2 Request Wrapper
	4.3 Load Fetcher
	4.4 Recommender
	4.5 Updater

	5 Evaluation
	5.1 Environment
	5.2 Experiment Settings
	5.3 Results and Discussions

	6 Conclusion
	References
	A System Details
	A.1 Queuing Model Details
	A.2 Monotonicity Discussions
	A.3 Traffic Control Parameters Updating

	B Experiment Addendum
	B.1 Detailed Settings

