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Quantitative evaluation of tissue images is crucial for computational 
pathology (CPath) tasks, requiring the objective characterization of 
histopathological entities from whole-slide images (WSIs). The high 
resolution of WSIs and the variability of morphological features present 
significant challenges, complicating the large-scale annotation of data for 
high-performance applications. To address this challenge, current efforts 
have proposed the use of pretrained image encoders through transfer 
learning from natural image datasets or self-supervised learning on publicly 
available histopathology datasets, but have not been extensively developed 
and evaluated across diverse tissue types at scale. We introduce UNI, a 
general-purpose self-supervised model for pathology, pretrained using 
more than 100 million images from over 100,000 diagnostic H&E-stained 
WSIs (>77 TB of data) across 20 major tissue types. The model was evaluated 
on 34 representative CPath tasks of varying diagnostic difficulty. In addition 
to outperforming previous state-of-the-art models, we demonstrate 
new modeling capabilities in CPath such as resolution-agnostic tissue 
classification, slide classification using few-shot class prototypes, and 
disease subtyping generalization in classifying up to 108 cancer types in the 
OncoTree classification system. UNI advances unsupervised representation 
learning at scale in CPath in terms of both pretraining data and downstream 
evaluation, enabling data-efficient artificial intelligence models that can 
generalize and transfer to a wide range of diagnostically challenging tasks 
and clinical workflows in anatomic pathology.

The clinical practice of pathology involves performing a large range 
of tasks: from tumor detection and subtyping to grading and staging, 
and, given the thousands of possible diagnoses, a pathologist must 
be adept at solving an incredibly diverse group of problems, often 
simultaneously1–4. Contemporary computational pathology (CPath) has 

expanded this array even further by enabling prediction of molecular 
alterations5,6, prognostication7–9, and therapeutic response predic-
tion10, among other applications11–14. With a vast array of tasks, training 
models from scratch has practical limitations due to challenges in 
gathering pathologist annotations, building large histology collections 
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TCGA nonsmall cell lung carcinoma subset (TCGA-NSCLC)79 are com-
monly used to benchmark pretrained encoders using weakly super-
vised multiple instance learning (MIL) algorithms15,37,40,80, they source  
tissue slides only from a single organ and are often used for predict-
ing binary disease states81, which is not reflective of the broader array 
of disease entities seen in real-world anatomic pathology practice. 
Instead, we assess the generalization capabilities of UNI across diverse 
tissue types and disease categories by constructing a large-scale, hier-
archical, and rare cancer classification task for CPath that follows the 
OncoTree cancer classification system77. Using in-house BWH slides, 
we defined a dataset that comprises 5,564 WSIs from 43 cancer types 
further subdivided into 108 OncoTree codes, with at least 20 WSIs 
per OncoTree code. A total of 90 out of the 108 cancer types are  
designated as rare cancers as defined by the RARECARE project82 
and the National Cancer Institute’s Surveillance, Epidemiology, and  
End Results (NCI-SEER) Program. The dataset forms the basis of two 
tasks that vary in diagnostic difficulty: 43-class OncoTree cancer type 
classification (OT-43), and 108-class OncoTree code classification 
(OT-108) (Fig. 2a and Supplementary Table 4). The goal of these large 
multi-class classification task is not necessarily clinical utility but to 
assess the capabilities of the foundation model and richness of the 
feature representations in comparison with other models. To assess 
scaling trends, we also pretrain UNI across varying data scales, with 
Mass-100K subsetted to create Mass-22K (16 million images, 21,444 
WSIs) and Mass-1K (1 million images, 1,404 WSIs). We also assess model 
scale by ablating UNI using two different ViT architecture sizes: ViT-Base 
(or ViT-B) and ViT-Large (or ViT-L). Last, we also assess the impact  
of self-supervised learning algorithm choice, compared also  
against MoCoV3 (ref. 24). For weakly supervised slide classification, we 
follow the conventional paradigm of first pre-extracting patch-level 
features from tissue-containing patches in the WSI using a pretrained 
encoder, followed by training an attention-based MIL (ABMIL) algo-
rithm83. To reflect the label complexity challenges of these tasks, we 
report top-K accuracy (K = 1, 3, 5) as well as weighted F1 score and 
area under the receiver operating characteristic curve (AUROC) per-
formance. Additional details regarding the OT-43 and OT-108 tasks, 
experimental setup, implementation details and performance are 
provided in Methods, Supplementary Tables 1–11 and Supplementary 
Tables 12–18, respectively.

Overall, we demonstrate model and data scaling capabilities of 
self-supervised models in UNI, with the scaling trend for UNI on OT-43 
and OT-108 shown in Fig. 2c,e. On OT-43 and OT-108, we observe a +4.2% 
performance increase (P < 0.001, two-sided paired permutation test) in 
top-1 accuracy when scaling UNI using VIT-L from Mass-1K to Mass-22K, 
and a similar +3.5% performance increase (P < 0.001) on OT-108. From 
Mass-22K to Mass-100K, performance increases further: +3.7% and 
+3.0% on OT-43 and OT-108, respectively (P < 0.001). Similar trends are 
observed using VIT-B, with performance plateauing from Mass-22K to 
Mass-100K (Supplementary Tables 13 and 16). Supplementary Tables 14 
and 17 show the impact of data diversity and pretraining length, with 
monotonic improvement from 50,000 to 125,000 training iterations 
on both tasks. Overall, these scaling trends align with findings observed 
in many ViT models applied to natural images21,31,75, in which the perfor-
mance of larger ViT variants improves as the pretraining dataset grows. 
Exploring other self-supervised learning algorithms, we also trained 
MoCoV3 (ref. 24) (using ViT-L and ResNet-50 backbones) on Mass-1K, 
which performed worse against DINOv2 (Supplementary Table 18). To 
scale performance with increasing model and data size, the choice of 
algorithms and their hyper-parameters is also important in developing 
CPath foundation models.

We compare UNI using ViT-L pretrained on Mass-100K to publicly 
available pretrained encoders used in CPath, on OT-43 and OT-108 
tasks: ResNet-50 (ref. 84) pretrained on ImageNet-1K; CTransPath37 
pretrained on TCGA and PAIP (Pathology AI Platform)85; and REMEDIS38 
pretrained on TCGA. We observe that UNI outperforms all baselines 

for single diseases, and acquiring data for rare diseases. These factors 
have led to the reliance on transfer learning techniques in CPath, which 
have proven effective in tasks such as metastasis detection15, mutation 
prediction16,17, prostate cancer grading18 and outcome prediction9,19,20.

The transfer learning, generalization and scaling capabilities of 
self-supervised (or pretrained) models are dependent on the size 
and diversity of the training data21–23. In general computer vision, the 
development and evaluation of many fundamental self-supervised 
models24–27 are based on the ImageNet Large Scale Visual Recogni-
tion Challenge28,29 and other large datasets30–32. Such models have 
also been described as ‘foundation models’ due to their ability to 
adapt to a wide range of downstream tasks when pretrained on mas-
sive amounts of data33,34. In CPath, The Cancer Genome Atlas (TCGA; 
~29,000 formalin-fixed paraffin-embedded and frozen H&E whole-slide 
images (WSIs), 32 cancer types)35 similarly serves as the basis for many 
self-supervised models36–46 along with other histology datasets47–53, 
with a number of prior works demonstrating great progress in learning 
meaningful representations of histology tissue for clinical pathology 
tasks37,38,54–66. However, current pretrained models for CPath remain 
constrained by the limited size and diversity of pretraining data, given 
that the TCGA comprises mostly primary cancer histology slides,  
and by the limited evaluation of generalization performance across 
diverse tissue types, and many pan-cancer analyses and popular clinical 
tasks in CPath are also based on annotated histology regions of inter-
est (ROIs) and slides from TCGA6,9,16,17,61,67–74. Addressing these limita-
tions is critical in the broader development of foundation models in  
CPath that can generalize and transfer to real-world clinical settings 
with widespread applications.

In this work we build upon these prior efforts by introducing a 
general-purpose, self-supervised vision encoder for pathology, UNI, 
a large vision transformer (ViT-Large or ViT-L)75 pretrained on one of 
the largest histology slide collections created for self-supervised learn-
ing, termed ‘Mass-100K’. Mass-100K is a pretraining dataset that con-
sists of more than 100 million tissue patches from 100,426 diagnostic 
H&E WSIs across 20 major tissue types collected from Massachusetts  
General Hospital (MGH) and Brigham and Women’s Hospital (BWH), 
as well as the Genotype–Tissue Expression (GTEx) consortium76, and 
provides a rich source of information for learning objective charac-
terizations of histopathologic biomarkers (Fig. 1a and Supplementary 
Tables 1–3). In the pretraining stage, we use a self-supervised learn-
ing approach called DINOv2 (ref. 22), which has been shown to yield 
strong, off-the-shelf representations for downstream tasks without the  
need for further fine-tuning with labeled data (Fig. 1b). We demonstrate 
the versatility of UNI on diverse machine learning settings in CPath, 
including ROI-level classification, segmentation and image retrieval, 
and slide-level weakly supervised learning (Fig. 1c). In total, we assess 
UNI on 34 clinical tasks across anatomic pathology and a range of diag-
nostic difficulty, such as nuclear segmentation, primary and metastatic 
cancer detection, cancer grading and sub typing, biomarker screening 
and molecular subtyping, organ transplant assessment, and several 
pan-cancer classification tasks that include subtyping to 108 cancer 
types in the OncoTree cancer classification system77 (Figs. 1d and 2a). 
In addition to outperforming previous state-of-the-art models such as 
CTransPath37 and REMEDIS38, we also demonstrate capabilities such 
as resolution-agnostic tissue classification and few-shot class proto-
types for prompt-based slide classification (Fig. 2d), highlighting the 
potential of UNI as a foundation model for the further development of 
artificial intelligence (AI) models in anatomic pathology.

Results
Pretraining scaling laws in CPath
A pivotal characteristic of foundation models lies in their capability 
to deliver improved downstream performance on various tasks when 
trained on larger datasets. Although datasets such as CAMELYON16 
(Cancer Metastases in Lymph Nodes Challenge 2016 (ref. 78) and the 
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by a wide margin. On OT-43, UNI achieves a top-5 accuracy of 93.8% 
and an AUROC of 0.976, outperforming the next best-performing 
model (REMEDIS) by +6.3% and +0.022 on these respective metrics 

(both P < 0.001) (Fig. 2b and Supplementary Table 12). On OT-108 we 
observe a similar margin of performance increase, +10.8% and +0.020 
(P < 0.001), respectively, over REMEDIS (Fig. 2c and Supplementary 
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a, Slide distribution of Mass-100K, a large-scale and diverse pretraining dataset 
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objective118 and a self-distillation objective25. c, UNI generally outperforms other 
pretrained encoders across 34 clinical tasks in anatomical pathology (average 
performance of the 8 SegPath tasks reported). d, The evaluation tasks consist of 
ROI-level classification, segmentation, retrieval and prototyping, and slide-level 
classification tasks. Further details are given in Methods. class., classification; 
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Table 15). Overall, we find that UNI is able to classify rare cancers in 
OT-43 and OT-108 with wide margins of performance improvement 
over all pretrained encoders.

Weakly supervised slide classification
Furthermore, we investigate UNI’s capabilities across a diverse 
range of 15 slide-level classification tasks, which include breast 
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Fig. 2 | Slide-level tasks for OT-43 and OT-108, and slide-level task performance. 
a, Organ and OncoTree code distribution for the slide-level OT-43 and OT-108 
classification tasks. All comparisons with UNI are evaluated on 43-way cancer 
type classification and 108-way OncoTree code classification tasks with OT-43 
and OT-108, respectively. Further details regarding data distribution are 
provided in Supplementary Table 4. Gen., genitalia; GI, gastrointestinal.  
b,d, Comparison of macro-averaged AUROC of UNI and other pretrained 
encoders for OT-43 (b) and OT-108 (d) (n = 1,620 slides each). c,e, Top-1 accuracy 
of UNI across different pretraining data scales (Mass-1K, Mass-22K, Mass-100K) for 
OT-43 (c) and OT-108 (e) (n = 1,620 slides each). f, Supervised performance of UNI 
and its comparisons across 15 weakly supervised slide-level classification tasks. 
Dashed lines represent the average performance of each model across all tasks. 

All data are given as balanced accuracy, except for ISUP grading, which is given as 
quadratic weighted Cohen’s κ. Error bars represent 95% confidence intervals and 
the centers correspond to computed values of each metric as specified above. 
Detailed results for all tasks are provided in Supplementary Tables 12–35. Ext., 
external test set. g–j, Few-shot slide-level performance with K ∈ {1, 2, 4, 8, 16, 32} 
slides per class reported for four tasks. g, RCC subtyping (train, TCGA; test, 
CPTAC-DHMC; n = 872 slides). h, BRCA fine-grained subtyping (BRACS, n = 87 
slides). i, Brain tumor coarse-grained subtyping (EBRAINS, n = 573 slides). j, 
ISUP grading (PANDA, n = 954 slides). Boxes indicate quartile values of model 
performance (n = 5 runs), and whiskers extend to data points within 1.5-fold the 
interquartile range. Few-shot results for all tasks are given in Extended Data Fig. 1.
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cancer metastasis detection (CAMELYON16)78, International Society of  
Urological Pathology (ISUP) grading in prostate cancer (Prostate Cancer 
Grade Assessment, PANDA)18, cardiac transplant assessment (in-house 
BWH slides)86, and brain tumor subtyping (EBRAINS; representing 30 
rare cancers defined by the RARECARE project), among others. Similar 
to OT-43 and OT-108 evaluation, we compare the pre-extracted fea-
tures from UNI with that of other pretrained encoders using ABMIL83. 
Given that CTransPath and REMEDIS were trained using almost all TCGA 
slides, the reported performance of these models on TCGA tasks may be 
contaminated with data leakage and thus unfairly inflated. Additional 
details regarding slide tasks, experimental setup, and performance are 
provided in Methods, Supplementary Tables 19–21 and Supplementary 
Tables 22–35, respectively.

Across all 15 slide-level tasks, UNI consistently outperforms other 
pretrained encoders (average performance increases of +26.4% over 
ResNet-50, +8.3% over CTransPath, and +10.0% over REMEDIS), with 
greater improvements observed on tasks classifying rare cancer types 
or characterized by higher diagnostic complexity (Fig. 2f). On prostate 
ISUP grading (PANDA), UNI achieves a quadratic weighted Cohen’s κ  
of 0.946, outperforming the next best-performing model (REMEDIS) by 
+0.014 (P < 0.05) (Supplementary Table 29). On hierarchical classifica-
tion tasks (which also involve rare disease categories) such as glioma 
biomarker prediction (2-class IDH1 mutation prediction and 5-class 
histomolecular subtyping using TCGA87,88 and EBRAINS89) and brain 
tumor subtyping (12-class coarse-grained and 30-class fine-grained 
brain tumor subtyping using EBRAINS), UNI outperforms the next 
best-performing model (either CTransPath or REMEDIS), by +2.0% 
(P = 0.076), +6.4% (P = 0.001), +19.6% (P < 0.001) and +16.1% (P < 0.001) 
(Supplementary Tables 31–34). Similar to OT-43 and OT-108, we find 
that UNI has the largest impact on the evaluation of brain tumor sub-
typing tasks, which involve only rare cancer types.

On comparison of existing leaderboards, we find that ABMIL with 
UNI features outperforms many sophisticated MIL architectures. On 
breast cancer metastasis detection (CAMELYON16), ABMIL with UNI 
outperforms all state-of-the-art MIL methods on this task (Supple-
mentary Table 36), and is one of the few MIL results that outperforms 
the human pathologist performance (AUROC of 0.966) without time 
constraints in the original challenge78. On tasks with detailed com-
parisons such as prostate ISUP grading (PANDA) and cellular-mediated 
allograft rejection (BWH-EMB), ABMIL with UNI outperforms methods  
such as WholeSIGHT90 and CRANE86 (Supplementary Tables 37 and 38).  
Although many of these comparisons are not equivalent due to  
the use of ResNet-50 with ImageNet transfer (ResNet-50IN) features, 
we note that their proposed MIL architectures are often motivated 
and developed specifically for solving these challenging tasks. Our 
comparisons highlight the strength of having a better-pretrained 
encoder versus MIL architecture.

Data contamination is a concern in foundation models trained 
on large collections of public datasets91–95. Although labels may not 
be explicitly leaked into the model during self-supervised training, 
models pretrained on the evaluated test set may exhibit optimisti-
cally biased performance, observed in other CPath studies96. We addi-
tionally compare UNI against CTransPath and REMEDIS on TCGA test 
sets from the nonsmall cell lung cancer (NSCLC) subtyping, renal cell  
carcinoma (RCC) subtyping, glioma IDH1 mutation prediction and gli-
oma histomolecular subtyping tasks, observing performance decreases 
when comparing the in-domain versus out-of-domain performance. On 
NSCLC subtyping, REMEDIS outperforms UNI on TCGA evaluation 
(97.3% versus 94.7%), but underperforms on CPTAC (Clinical Proteomic 
Tumor Analysis Consortium) evaluation (79.0% versus 96.3%) (Supple-
mentary Table 23). On glioma IDH1 mutation prediction, CTransPath 
and REMEDIS outperform UNI on TCGA evaluation (89.1% and 81.9% 
versus 80.8%), but underperform on EBRAINS evaluation (83.6% and 
79.2% versus 85.6%) (Supplementary Tables 31 and 32). We emphasize 
that data contamination exists only in how the models are used, not 

in the models themselves, which have been shown to transfer well in 
settings independent of TCGA38,59,97. Given that many CPath studies  
use the TCGA for studying diverse cancer types, UNI is more flexible 
than CTransPath and REMEDIS in developing pathology AI models on 
public histology datasets and benchmarks.

Label efficiency of few-shot slide classification
We additionally evaluate UNI in few-shot MIL across all slide-level tasks. 
Few-shot learning is an evaluation scheme that studies the generaliza-
tion capabilities of models on new tasks (C classes) given a limited 
number of examples (K training samples per class, also called supports 
or shots). For all pretrained encoders, we trained an ABMIL model with 
K ∈ {1, 2, 4, 8, 16, 32} training examples per class, where K is limited to 
32 due to small support sizes in rare disease categories. Given that the 
performance can fluctuate depending on which K examples are chosen 
for each class, we repeat experiments over five runs with C × K training 
examples randomly sampled each time. Additional details regard-
ing few-shot MIL experimentation and performance are provided in 
Methods and Extended Data Fig. 1.

UNI generally outperforms other pretrained encoders and with 
superior label efficiency across all tasks, especially in classifying rare 
diseases (Fig. 2g–j and Extended Data Fig. 1). When comparing the 
4-shot performance of UNI with that of other encoders (using the 
median performance), the next best-performing encoder needs up 
to eightfold as many training examples per class to reach the same 
4-shot performance of UNI. On prostate ISUP grading (PANDA), UNI is 
consistently twice as label efficient across all few-shot settings (Fig. 2j). 
On challenging rare cancer subtyping tasks such as fine-grained brain 
tumor subtyping (EBRAINS), the 4-shot performance of UNI outper-
forms other encoders by a large margin, matched only by the 32-shot 
performance of REMEDIS (Fig. 2i). Overall, our comprehensive evalu-
ation of slide classification tasks demonstrates UNI’s potential as a 
foundational model that can be used in histopathology workflows that 
screen for rare and underrepresented diseases.

Supervised ROI classification in linear classifiers
In addition to slide-level tasks, we also assess UNI on a diverse range of  
11 ROI-level tasks, which include colorectal tissue and polyp classifi-
cation (CRC-100K-NONORM98, HunCRC99, UniToPatho100), prostate 
adeno carcinoma (PRAD) tissue classification (Automated Gleason 
Grading Challenge 2022 (AGGC)101), pan-cancer tumor-immune lympho-
cyte detection (TCGA-TILS67), 32-class pan-cancer tissue classification 
(TCGA Uniform Tumor68), and others. For evaluation and compari-
sons, we perform logistic regression and K-nearest neighbors (KNN) on 
top of the pre-extracted features of each encoder, a common practice 
referred to as linear probing and KNN probing, which measure discrimi-
native performance and the representation quality of pre-extracted  
features, respectively23. We evaluate all tasks using balanced accuracy, 
with PRAD tissue classification evaluated using weighted F1 score101. 
Additional details regarding ROI tasks, experimental setup and per-
formance are provided in Methods and Supplementary Tables 39–60.

Across all 11 ROI-level tasks, UNI outperforms nearly all baselines 
on all tasks, with average performance increases of +18.8%, +7.58% and 
+5.75% on linear probing for ResNet-50, CTransPath and REMEDIS, 
respectively (Fig. 3a). On KNN probing, UNI similarly outperforms 
ResNet-50, CTransPath and REMEDIS with average performance 
increases of +15.6%, +8.6% and +9.4%. We find larger gains on challeng-
ing tasks such as PRAD tissue classification (in weighted F1 score, +0.131, 
P < 0.001; +0.020, P < 0.001; +0.027, P < 0.001) and esophageal carci-
noma subtyping (+25.3%, P < 0.001; +10.1%, P < 0.001; +5.5%, P < 0.001) 
compared with the other three pretrained encoders, respectively. 
Figure 3b shows the UNI predictions on prostate cancer grading, in 
which a simple linear classifier trained with pre-extracted UNI features 
can achieve high agreement with pathologist annotations (Extended 
Data Fig. 2). On 32-class pan-cancer tissue classification (19 out of  
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Fig. 3 | ROI-level tasks. a, Supervised linear probe performance of UNI and 
its comparisons across 11 ROI-level classification tasks. All results are given 
as balanced accuracy except for PRAD tissue classification, which is given as 
weighted F1 score. Dashed lines represent the average performance of each model 
across all tasks. Error bars represent 95% confidence intervals and the centers 
correspond to computed values of each metric as specified above. Detailed results 
for all tasks are provided in Supplementary Tables 39–60. b, Examples of UNI on 
ROI classification for PRAD tissue classification in AGGC. Left: ground-truth ROI-
level labels overlaid on the WSI. Right: predicted patch labels. ROIs are enlarged 
for better visualization, with further comparisons shown in Extended Data Fig. 2.  
c, ROI retrieval performance of UNI on PRAD tissue classification (AGGC, 
n = 345,021 ROIs). We report Recall@K for K ∈ {1, 3, 5} and the mean recall, with 
error bars representing 95% confidence intervals and the centers corresponding 

to computed values of each metric. d, Supervised KNN probe performance of 
UNI across various image resolutions (res., in pixels) in BRCA subtyping in BACH 
(n = 80 ROIs). Retrieval performance for all tasks is provided in Extended Data 
Fig. 3 and Supplementary Tables 63–68. e, Multi-head self-attention (MHSA) 
heatmap visualization of UNI across different image resolutions (in pixels) in 
BACH. Each colored square represents a 16 × 16 pixel patch token encoded by UNI, 
with heatmap color corresponding to the attention weight of that patch token 
to the global [CLS] (that is, classification) token of the penultimate layer in UNI. 
Top and bottom, respectively: visualizations for the invasive- and normal-labeled 
images, with further visualizations and interpretations provided in Extended Data 
Figs. 4–6. Scale bars: b, ground truth and prediction, 2 mm; prediction(1) and 
prediction(2), 200 µm; insets, 30 µm; e, ROI image, 32 µm; 2242, 64 pixels; 4482, 
128 pixels; 8962, 256 pixels; 1,3442, 384 pixels.
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32 of which are rare cancers), UNI achieves the highest overall balanced 
accuracy and AUROC of 65.7% and 0.975, respectively, outperforming 
the next best-performing model (REMEDIS) by +4.7% and +0.017 (both 
P < 0.001).

We also compare UNI’s performance against that on the official 
leaderboards. For tumor-immune lymphocyte detection, compared 
with the best model in the ChampKit benchmark, which reports an 
AUROC of 0.974 and a false-negative rate (FNR) of 0.246, UNI has an 
AUROC of 0.978 and an FNR of 0.193 (without stain normalization) 
(Supplementary Table 61). For breast cancer metastasis detection 
(CAMELYON17-WILDS leaderboard), compared with the best model 
to date, which has accuracies of 95.2% and 96.5% on the out-of-domain 
validation and test sets, UNI reaches 97.4% and 98.3%, respectively 
(Supplementary Table 62). We note that many of these comparisons 
are end-to-end fine-tuned with transfer learning from natural images 
(and not from pathology). Although not equivalent in experimentation 
to UNI, these comparisons highlight the versatility of UNI given that 
out-of-the-box evaluation using linear classifiers is competitive with 
state-of-the-art techniques using end-to-end fine-tuning.

ROI retrieval
In addition to using representations in UNI to build task-specific classi-
fiers, representations can also be used for image retrieval. Retrieval is 
similar to KNN in that we evaluate how well a query image can retrieve 
other images of the same class, given that visually similar images should 
be closer in representation space than visually distinct images. Differ-
ent to KNN evaluation, we consider the accuracy of retrieval, that is, 
Acc@K for K ∈ {1, 3, 5}, in which the retrieval is successful if a correctly 
labeled image is within the top-K retrieved images, and MVAcc@5, 
which uses the majority vote of the top-5 retrieved images. We evalu-
ate histology image retrieval on six ROI-level tasks (tasks with at least 
5 classes). Additional details regarding ROI retrieval experimentation 
and performance are provided in Methods, Extended Data Fig. 3 and 
Supplementary Tables 63–68.

UNI outperforms other encoders on all tasks, demonstrating 
superior retrieval performance across diverse settings. On PRAD tis-
sue classification (AGGC), UNI outperforms the next best-performing 
encoders (REMEDIS) by +4% and +3.3% on Acc@1 and MVAcc@5, respec-
tively (both P < 0.001) (Fig. 2c). On colorectal cancer (CRC) tissue clas-
sification (CRC-100K), the gap between the top performing encoders 
is relatively smaller (by +3.1%, P < 0.001 and +0.01%, P = 0.188, respec-
tively, compared with REMEDIS), presumably because the different 
tissue types have very distinct morphology, as shown by the relatively 
high classification performance in linear probing. On the more chal-
lenging 32-class pan-cancer tissue classification task, which contains 
many rare cancer types, UNI outperforms the second-best performing 
encoder (REMEDIS) by a large margin of +4.6% for Acc@1 and +4.1% for 
MVAcc@5 (both P < 0.001).

Robustness to high image resolution
Although visual recognition models are commonly evaluated on resized 
224 × 224 pixel (2242 pixel) images, image resizing changes the microns 
per pixel (mpp) and may alter the interpretation of morphological 
features such as cellular atypia. We study how feature quality in UNI 
is affected at varying resolutions in breast invasive carcinoma (BRCA) 
subtyping (Grand Challenge on Breast Cancer Histology images, BACH) 
(2242 pixels at 2.88 mpp to 1,3442 pixels at 0.48 mpp) and CRC polyp 
classification (UniToPatho) (2242 pixels at 3.60 mpp to 1,7922 pixels at 
0.45 mpp) with linear and KNN probing. Additional details regarding 
multiple resolution experimentation and performance are provided 
in Methods, Extended Data Fig. 4 and Supplementary Tables 45, 46, 
51 and 52.

On both tasks we demonstrate the robustness of UNI to different 
image resolutions, as well as biases introduced into image resizing for 
high-resolution ROI tasks. When scaling the image resolutions used 

for evaluation, we observe that other encoders have worse perfor-
mance degradation, with KNN performance decreases of −18.8% in 
CTransPath and −32.5% in REMEDIS on BRCA subtyping (2242 pixels  
versus 1,3442 pixels), compared with −6.3% in UNI. In CRC polyp clas-
sification, although other encoders do not have significant perfor-
mance decreases (2242 pixels versus 1,7922 pixels), UNI increases by 
+5.1% via KNN probe. Figure 2e and Extended Data Figs. 5 and 6 show 
how UNI highlights finer-grained visual features when evaluating 
high-resolution images. In CRC polyp classification, resizing to 2242 pix-
els obscures important fine-grained details localizing the crypts that 
are otherwise detected at high resolution by UNI. These observations 
suggest that UNI can encode semantically meaningful representations 
agnostic to most image resolutions, which can be valuable in CPath 
tasks known to be optimal at different image magnifications.

ROI cell type segmentation
We assess UNI on the largest, public ROI-level segmentation dataset, 
SegPath102, a dataset for segmenting eight major cell types in tumor 
tissue: epithelial cells, smooth muscle cells, red blood cells, endothe-
lial cells, leukocytes, lymphocytes, plasma cells, and myeloid cells. All 
pretrained encoders are fine-tuned end-to-end using Mask2Former103, 
a flexible framework commonly used for evaluating the off-the-shelf 
performance of pretrained encoders22,104. Given that the SegPath data-
set divides the cell types into separate dense prediction tasks (eight 
tasks in total), each encoder is individually fine-tuned per cell type, 
with the dice score used as the primary evaluation metric. Additional 
details regarding segmentation tasks and performance are provided 
in Methods and Supplementary Table 69.

Although hierarchical vision backbones such as Swin transformers 
(CTransPath) and convolutional neural networks (CNNs; ResNet-50 and 
REMEDIS) have well-known advantages over vision transformers (UNI) 
for segmentation, we observe that UNI still outperforms all compari-
sons on a majority of cell types in SegPath. On individual segmenta-
tion tasks for the epithelial, smooth muscle and red blood cell types, 
UNI achieves dice scores of 0.827, 0.690 and 0.803, respectively, out-
performing the next best-performing encoder (REMEDIS) by +0.003 
(P = 0.164), +0.016 (P < 0.001) and +0.008 (P = 0.001), respectively. 
Across all eight cell types in SegPath, UNI achieves the overall perfor-
mance with an average dice score of 0.721, outperforming ResNet-50 
(0.696), CTransPath (0.695) and REMEDIS (0.716). Extended Data 
Fig. 7 shows segmentation visualizations for all cell types by UNI and 
other encoders, with all comparisons performing well in matching the 
ground truth segmentation. Overall, we find that UNI can outperform 
state-of-the-art CNNs and hierarchical vision models on segmentation 
tasks, extending its versatility in less conventional settings.

Few-shot ROI classification with class prototypes
Similar to slide-level classification, we also assess the label efficiency 
of UNI on ROI-level tasks. We evaluate all pretrained encoders using 
the nonparametric SimpleShot framework105, a strong baseline in the 
few-shot classification literature that proposes averaging extracted 
feature vectors of each class as the support examples in K = 1 nearest 
neighbors (or nearest centroid) classification106. These averaged fea-
ture vectors can also be viewed as ‘class prototypes’, a set of one-shot 
exemplars that are unique in representing semantic information such 
as class labels (for example, lung adenocarcinoma (LUAD) versus lung 
squamous cell carcinoma (LUSC) morphologies). At test time, unseen 
test examples are assigned the label of the nearest class prototype via 
Euclidean distance (Fig. 4a). For all pretrained encoders, we evaluate 
their pre-extracted features using SimpleShot with K ∈ {1, 2, 4, 8, …, 256} 
training examples per class for a majority of tasks, with experiments 
repeated over 1,000 runs where C × K training examples are randomly 
sampled for each run. Additional details regarding few-shot ROI experi-
mentation and performances are provided in Methods and Extended 
Data Fig. 8.
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Fig. 4 | Few-shot ROI- and slide-level prototyping. a, Prototypical few-shot 
ROI classification via SimpleShot. A class prototype is constructed by averaging 
the extracted features from ROIs of the same class. For a test ROI, SimpleShot 
assigns the class of the most similar class prototype (smallest Euclidean distance) 
as the predicted ROI label. b, Prototypical few-shot slide classification via MI-
SimpleShot. Using a pre-computed set of ROI-level class prototypes (sharing the 
same class labels as the slide), MI-SimpleShot predicts the slide label using the 
class prototype with the highest average similarity of top-K patches queried from 
the WSI. The similarity heatmap visualizes the similarity between the ground-
truth class prototype and each patch in the WSI. c–e, Few-shot ROI classification 
performance via SimpleShot on three tasks, with boxes indicating quartiles 
of model performance (n = 1,000 runs) and whiskers extending to data points 
within 1.5-fold the interquartile range. c, Pan-cancer tissue classification (TCGA, 

n = 55,360 ROIs). d, CRC polyp classification (UniToPatho, n = 2,399 ROIs).  
e, PRAD tissue classification (AGGC, n = 345,021 ROIs). Few-shot ROI 
performances for all tasks are provided in Extended Data Fig. 8. f,g, Few-shot 
slide classification performance and similarity heatmaps via MI-SimpleShot 
for NSCLC subtyping (train, TCGA; test, CPTAC; n = 1,091 slides) (f) and RCC 
subtyping (train, TCGA; test, CPTAC-DHMC; n = 872 slides) (g). In both tasks, 
using pre-extracted features from UNI, we compare MI-SimpleShot in the same 
few-shot settings as ABMIL (boxes indicate quartile values of model performance 
with n = 5 runs and whiskers extend to data points within 1.5-fold the interquartile 
range), and visualize similarity heatmaps and the top-5 similar patches (indicated 
in red bounding boxes) for a LUSC (f) and CCRCC (g) slide. Scale bars: WSI, 2 mm; 
top-5 retrieved patches, 56 µm. Further details, comparisons and visualizations 
are provided in Methods and Extended Data Figs. 8–10.
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Across various tasks and evaluation settings, we find that UNI is 
a strong few-shot learner and is much more label efficient than other 
pretrained encoders. When comparing the median 8-shot perfor-
mance of UNI with that of other encoders, UNI consistently exceeds 
the 128-shot and 256-shot performance of the next best-performing 
encoder on many tasks (Fig. 4c–e and Extended Data Fig. 8). We note 
that the variance in 1- and 2-shot performances for all encoders can 
be high due to the choice of ROIs randomly selected as prototypes, 
potentially affected by H&E stain variability. However, given that the 
number of support examples increases in forming the class prototypes, 
we observe a monotonic decrease in variance of few-shot performance 
runs (0.32–1.59% standard deviation across tasks in UNI’s 256-shot per-
formance), which demonstrates performance stability in permuting 
training examples to average as class prototypes in SimpleShot. Still, 
we observe that the lowest few-shot performance of UNI can some-
times exceed the maximum few-shot performance reported across 
1,000 runs of other encoders. In pan-cancer tissue classification, the 
lowest-performing run for UNI in 2-shot, 8-shot and 32-shot evalu-
ation outperforms the best possible run for ResNet-50, CTransPath 
and REMEDIS, respectively. These findings demonstrate the superior 
label efficiency and representation quality of UNI, given that averag-
ing the extracted features from only a few ROIs can create effective 
class prototypes.

Prompt-based slide classification using class prototypes
Although weakly supervised learning via MIL has shifted slide-level 
classification such that ROI annotations are no longer required81, 
accessing and curating histology slide collections may still exist as 
barriers for clinical tasks that address rare and underrepresented dis-
eases. From observing the strong retrieval performance and few-shot 
capabilities in UNI, we re-visit the problem of few-shot slide classifica-
tion using class prototypes. Similar to textual prompting55, we used 
the class prototypes from SimpleShot also as 'prompts' for majority 
voting on the top-K retrieved patches (top-K pooling), which we call 
multiple instance SimpleShot (MI-SimpleShot) (Fig. 4b). We evaluate 
MI-SimpleShot on the same folds as trained ABMIL models in few-shot 
slide classification, with prototypes created using annotated ROIs (from 
training slides) from the pan-cancer tissue classification task68. We 
also compare MI-SimpleShot using other pretrained encoders, as well 
as the MIL baseline for UNI. We also develop similarity heatmaps that 
show the normalized Euclidean distances of all patches in a slide with 
respect to the class prototype of the ground-truth label, with patholo-
gist annotations of tissue regions that match the slide label outlined in 
blue. Additional details regarding MI-SimpleShot experimentation and 
performance are provided in Methods, Extended Data Figs. 9 and 10  
and Supplementary Tables 70 and 71.

Using only a few annotated ROI examples per class as prototypes, 
we demonstrate the potential of applying UNI with MI-SimpleShot as a 
simple but highly efficient system for slide-level disease subtyping and 
detection. On NSCLC and RCC subtyping (trained on TCGA and tested 
on external cohorts), MI-SimpleShot with top-5 pooling achieves better 
performance than ABMIL when using 1, 2 and 4 training slides per class 
for creating prototypes, and achieves similar performance to ABMIL 
when using more slides (Fig. 4f,g). Using similarity heatmaps, we also 
observe that retrieved patches of UNI (corresponding to the slide label) 
have strong agreement with pathologist annotations, as observed in the 
right-hand side of Fig. 4f,g for LUSC and clear cell renal cell carcinoma 
(CCRCC) slides. We believe that the effectiveness of MI-SimpleShot can 
be attributed to not requiring trainable parameters (ABMIL models may 
still over- and under-fit in few-shot settings) and the strong representa-
tion quality of UNI features for ROI retrieval. Although other pretrained 
encoders can be used for learning prototypes in MI-SimpleShot, UNI 
is potentially less sensitive to H&E staining variability. This is seen 
in the high standard deviation of one-shot performances for RCC 
subtyping (both in ABMIL in Extended Data Fig. 1 and MI-SimpleShot 

in Extended Data Fig. 9), with only one site used for learning a class 
prototype in MI-SimpleShot. This is also underscored in SimpleShot 
evaluation of breast metastasis detection (CAMELYON17-WILDS), given 
that CTransPath and REMEDIS have larger performance disparities than 
UNI between the two out-of-domain hospital test cohorts (accuracy 
differences of 12.3% and 12.8% versus 5.1%, respectively), alluding to 
the potential effects of H&E stain intensity skewing retrieval perfor-
mance (Supplementary Table 42). In Extended Data Fig. 10 we observe 
instances of incorrect retrieval performance with respect to the pre-
dicted label and the pathologist annotations. Overall, our evaluation 
of UNI via MI-SimpleShot showcases how visual-centric foundation 
models with strong retrieval capabilities may enable applications in 
anatomic pathology.

Discussion
In this study, we demonstrate the versatility of UNI, a general-purpose, 
self-supervised model pretrained on one of the largest histology slide 
collections (for self-supervised learning) to date in CPath. We curated 
Mass-100K, a pretraining dataset containing more than 100 million 
tissue patches from 100,426 WSIs across 20 major organ types, includ-
ing normal tissue, cancerous tissue and other pathologies. Using the 
DINOv2 self-supervised learning approach (demonstrated to scale 
to large datasets)22, we developed and validated a ViT-L (pretrained 
on Mass-100K) that consistently outperforms other histopathology 
image encoders. Depending on the task, although CTransPath and 
REMEDIS may achieve similar performances, our findings suggest 
that these encoders have limitations with regard to retrieval capabili-
ties, label efficiency and potential biases to H&E staining intensity in 
out-of-domain evaluation.

As a visual-centric foundation model that may enable versatile 
clinical applications in CPath, several challenges emerged in devel-
oping UNI with regard to how factors such as model and data scal-
ing would affect transfer performance. Although many empirical 
studies explore these components to achieve good generalization of 
natural images, many solutions may not be translatable due to differ-
ences between pathology and natural images. For example, although 
MoCoV3 has a lower but still competitive performance against DINOv2 
on ImageNet, the same training configurations mirrored for develop-
ing a ViT-L on Mass-1K demonstrate large gaps in performance on 
OT-108. Following our study, we note several other studies that have 
recently emerged in training on larger histology slide datasets and 
collections107–109. Distinct from prior and recent works, our study is 
unique in providing unique insights into scaling laws and transfer learn-
ing capabilities of self-supervised models in CPath. Although model 
and data scale are important components for building visual-centric 
self-supervised learning, we find that the self-supervised learning 
(SSL) algorithm choice is the most impactful, with MoCoV3 (ViT-L on 
Mass-1K) under-performing not only against its DINOv2 counterpart, 
but also against CTransPath and REMEDIS. Increasing model scale 
(ViT-B to ViT-L) and data scale (Mass-1K and Mass-100K) does reflect 
performance increase, but note that performances of UNI ablations 
on OT-43 and OT-108 are relatively close and have consistent improve-
ment over CTransPath and REMEDIS, which suggests that competitive 
pretrained encoders can still be developed with smaller models and less 
data. In tandem with the many clinical applications demonstrated by 
UNI, we believe that our testing of the aforementioned factors would 
guide CPath practitioners in developing their own foundation models 
using private in-house slide collections.

With regard to the wide range of clinical tasks to which UNI can 
be applied, compared with other encoders, we find that UNI excels in 
classifying rare and underrepresented diseases, such as the 90 out of 
108 rare cancer types in the OT-108 benchmark, the 30 rare brain tumor 
diagnoses in the EBRAINS Digital Tumor Atlas, and the 19 out of 32 can-
cer subtypes in pan-cancer tissue classification sourced from TCGA. On 
these tasks and others, UNI demonstrates consistent and significant 
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performance increases over the next best-performing encoder (REMEDIS  
or CTransPath). We hypothesize that UNI’s performance is attributed 
to the strong representation quality of the pre-extracted features, as 
seen in few-shot ROI and slide classification using class prototypes. 
In weakly supervised paradigms in which rare cancer types are infre-
quent and underrepresented in current slide datasets, MI-SimpleShot 
using UNI shows that annotating four slides per class can outperform 
task-specific MIL algorithms. Overall, we believe that UNI and other 
visual-centric foundation models that are being developed can be 
transformative in enabling creative clinical applications that would 
ordinarily require orders of magnitude more data.

On comparison with public leaderboards, we believe that UNI 
also presents an important shift from task-specific model develop-
ment to generalist AI models110 in CPath. Beyond the 34 clinical tasks 
evaluated in this study, UNI evaluated out of the box is competitive 
when compared with published results of other works, outperforming 
leading models that are often trained end-to-end or that use carefully 
designed training recipes implemented for solving these specific 
public challenges. Altogether, our findings highlight the strength of 
having a better-pretrained encoder versus developing task-specific 
models that target narrow clinical problems, which we hope would 
shift research directions in CPath toward the development of gener-
alist AI models that would have greater performance and flexibility 
in targeting diverse clinical applications in pathology. Following the 
conventional nomenclature of self-supervised models in computer 
vision22,75, labels such as ‘foundation model’ may create misleading 
expectations.

Our study has several limitations. Based on the ViT-L architec-
ture, UNI lacks vision-specific biases for solving dense prediction 
tasks in CPath, and we note that performance increases for cell type 
segmentation in SegPath are not as drastic as observed in other tasks. 
We envision further improvement as better recipes emerge for adapt-
ing ViT architectures for segmentation tasks111. Our study also does 
not evaluate the best-performing ViT-Giant architecture in DINOv2, 
an even larger model that would likely translate well in CPath but 
demands more computational resources for pretraining. Although 
our study organizes the largest collection of clinical tasks for evalu-
ating pretrained models in CPath (to our knowledge), other clinical 
tasks, such as those in cytopathology or hematopathology, are not 
represented in our analyses. Due to the breadth of our evaluation and 
small (or missing) validation sets for certain tasks, hyper-parameters 
were fixed, which follows other works in CPath25,37,40,112,113. Further 
hyper-parameter tuning and other training recipes may be likely to 
improve results further; however, our evaluation protocol was imple-
mented for ranking the representation quality of pretrained encoder 
backbones. In developing UNI, although Mass-100K was developed 
intentionally to not overlap significantly with most public histology 
collections, biases such as data contamination and image acquisition 
shift should be further studied if the same model is re-used across 
many applications, especially if it were to have a disparate impact on 
diverse populations114. UNI is a unimodal model for CPath, meaning 
that multimodal capabilities such as cross-modal retrieval and visual 
question answering remain out of scope, which we explore in concur-
rent work115,116. Last, UNI is also only a ROI-level model for CPath, with 
the majority of clinical tasks in pathology performed at the slide or 
patient level. Future work will focus on using UNI as the building block 
for slide-level self-supervised models117 and general slide-level pathol-
ogy AI development in anatomic pathology.
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Methods
Large-scale visual pretraining
Mass General Brigham institutional review board approved the ret-
rospective analysis of internal pathology images and corresponding 
reports used in this study. All internal digital data, including WSIs, 
pathology reports and electronic medical records were de-identified 
before computational analysis and model development. Patients were 
not directly involved or recruited for the study. Informed consent 
was waived for the retrospective analysis of archival pathology slides. 
In developing and evaluating self-supervised models in CPath, an 
important and relatively under-discussed challenge is the difficulty 
in developing large-scale models that can also be used for evaluation 
on public histology datasets. For natural images, ImageNet-1K is an 
integral dataset for the model development and evaluation lifecycle 
of self-supervised learning methods. Specifically, models are first 
pretrained on the training set of ImageNet-1K and then evaluated 
with fine-tuning and linear probe performance on the validation set 
(treated as the test set), reported as a community-accepted ‘goodness 
of fit’113,119, with further evaluation of generalization performance via 
other downstream tasks such as fine-grained classification and activity 
video recognition. Although such off-the-shelf self-supervised learning 
methods can readily be adapted to CPath, we note that there is consid-
erably less public data for pretraining in CPath than natural images and 
that pretraining on large, public collections of histology slides also 
restricts their adaptability to public CPath benchmarks. Specifically, 
the development of many self-supervised pathology models has been 
limited to pretraining on TCGA35, one of the largest and most diverse 
public histology datasets for CPath, with many models opting to use the 
entire TCGA collection to realize data scaling benefits in self-supervised 
learning37,38,117. However, their applicability to public CPath benchmarks 
may be restricted to transductive inference37,40,41,44,46,57,117, given that 
many popular clinical tasks in CPath are also derived from TCGA (for 
example, pan-cancer analyses6,9,16,17,61,67–74) and thus extensive evaluation 
of out-of-domain, generalization performance is limited. Although 
datasets such as CAMELYON78,120 and PANDA18 can be used to evaluate 
TCGA-pretrained models, we note that these datasets are limited to 
single tissue types with limited disease categories.

Dataset curation for Mass-100K. To overcome this limitation, we 
developed Mass-100K, a large-scale and diverse pretraining data-
set consisting of in-house histology slides from MGH and BWH, and 
external histology slides from the GTEx consortium. Following natural 
image datasets, we also created three partitions of Mass-100K that 
vary in size to evaluate the data scaling laws, an empirical observation 
found in natural language and image foundation models that scaling 
of dataset size would also increase model performance21–23,75. Analo-
gous to ImageNet-22K and ImageNet-1K, we developed the Mass-22K 
dataset, which contains 16,059,454 histology image patches sampled 
from 21,444 diagnostic formalin-fixed paraffin-embedded (FFPE) H&E 
WSIs across 20 major tissue types consisting mostly of cancer tissue, 
as well as its subset, Mass-1K (1,064,615 images, 1,404 WSIs). All his-
tology slides in Mass-22K and Mass-1K were collected from BWH, and 
scanned using an Aperio GT450 scanner or a Hamamatsu S210 scanner. 
To make the image dataset sizes approximately equivalent to that of 
ImageNet-22K and ImageNet-1K, we sample approximately 800 image 
patches from histology tissue regions of each WSI, with image resolu-
tions of 256 × 256 pixels at ×20 magnification. For slide preprocessing, 
we adapted the WSI preprocessing in the CLAM (clustering-constrained 
attention-based multiple-instance learning) toolbox15, which performs 
tissue segmentation at a low resolution via binary thresholding of 
the saturation channel in RGB → HSV color space; median blurring, 
morphological closing and filtering of contours below a minimum 
area to smooth tissue contours and remove artifacts; and patch  
coordinate extraction of non-overlapping 256 × 256 tissue patches  
in the segmented tissue regions of each WSI at ×20 magnification.  

The distribution of major tissue types in Mass-22K and Mass-1K are 
given in Supplementary Tables 2 and 3, respectively

Inspired by even larger natural image datasets such as LVD-142M22 
and JFT-300M30, we developed Mass-100K, which combines Mass-22K 
with further in-house FFPE H&E histology slide collections (includ-
ing renal and cardiac transplant tissue) and GTEx76, which consists 
of 24,782 noncancerous, human autopsy WSIs. Additional in-house 
slides were collected from both BWH and MGH, and scanned using an 
Aperio GT450 scanner or a Hamamatsu S210 scanner. We purposefully 
excluded other public histology slide collections such as TCGA, CPTAC 
and PAIP for the external evaluation of UNI. Altogether, Mass-100K 
includes 100,426 histology slides, with the distribution of major tissue 
types given in Supplementary Table 1. Following the slide preprocess-
ing protocol reported above, sampling approximately 800 histology 
tissue patches per WSI in Mass-100K yielded 75,832,905 images at 
256 × 256 pixels at ×20 magnification. For high-resolution fine-tuning in 
DINOv2, we sampled an additional 24,297,995 images at 512 × 512 pixels 
at ×20 magnificatin, which altogether yielded 100,130,900 images for 
pretraining in Mass-100K.

Network architecture and pretraining protocol. For large-scale visual 
pretraining on Mass-100K we used DINOv222, a state-of-the-art 
self-supervised learning method based on student–teacher knowledge 
distillation for pretraining large ViT architectures. DINOv2 is an exten-
sion of two previous methods, DINO25 and iBOT118, and uses two main 
loss objectives: self-distillation loss (that is, alignment loss in Fig. 1b) 
and masked image modeling loss (that is, reconstruction loss in Fig. 1b), 
to achieve state-of-the-art results in linear probe accuracy. DINOv2 
also demonstrates capabilities in understanding the semantic layout 
of histopathology images when pretrained using knowledge distilla-
tion117. Self-distillation, introduced in BYOL27 for CNN pretraining and 
DINO25 for ViT pretraining, minimizes the predictive categorical dis-
tributions from the teacher (UNI Teacher in Fig. 1b) and student net-
work (UNI in Fig. 1b) obtained from two augmented views of the same 
image by minimizing their cross-entropy loss. The teacher is updated 
as an exponential moving average of previous iterations of the student. 
Masked image modeling using an online tokenizer, introduced in 
iBOT118, involves strategically masking specific regions in an input 
image and training the model to predict the masked regions based on 
the remaining contextual information. This approach captures 
high-level visual features and context, inspired by masked language 
modeling in BERT121. Specifically, we denote two augmented views of 
an input image x as u and v, which are subsequently randomly masked. 
The masked images of u and v are represented as ̂u and ̂v, respectively. 
While u and v are propagated through the teacher network, the student 
network receives ̂u and ̂v  as inputs. For the self-distillation objective, 
we compute cross-entropy loss between the [CLS] (that is, classifica-
tion) token from the teacher network and the [CLS] token from the 
student network. For the masked image modeling objective, DINOv2 
uses the output of the masked tokens from the student network to 
predict the patch tokens from the teacher network, where the teacher 
network can be regarded as an online tokenizer. We used DINOv2 
because an important property for pretrained vision models in histo-
pathology is linear probe performance, given that these models are 
often used as frozen feature extractors for pre-extracting patch fea-
tures in weakly supervised slide-level tasks. Although other ViT-based 
self-supervised methods have demonstrated superior fine-tuning 
performance21,122, their linear probe performance is not comparable, 
and note that full fine-tuning in ROI-level and slide-level tasks is not 
always feasible due to cost in collecting annotations.

For smaller-scale visual pretraining on Mass-1K and Mass-22K 
we used iBOT, which has the same loss objectives introduced above 
for DINOv2. We note that iBOT and DINOv2 are overlapping methods 
that exist in the same family of ViT pretraining techniques, given that 
both methods extend the original DINO method (which introduced 
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student–teacher knowledge distillation for ViTs), with iBOT extend-
ing DINO via the introduction of an online tokenizer component for 
masked image modeling, and DINOv2 extending iBOT via the intro-
duction of additional modifications, thereby improving training 
stability and efficiency for larger ViT architectures. These six modi-
fications can be summarized as follows: untying of the head weights 
between the above loss objectives instead of tying these objectives as 
performed in iBOT118; Sinkhorn–Knopp centering instead of teacher 
softmax-centering performed in iBOT118; KoLeo regularization to 
improve token diversity123; high-resolution fine-tuning toward the 
end of pretraining124; an improved code implementation that imple-
ments FlashAttention125, fully sharded data-parallel training and an 
efficient stochastic depth; and an improved pretraining recipe of the 
ViT-Large architecture on large-scale datasets. Last, although iBOT and 
DINOv2 use the same two loss objectives, the training recipes of these 
methods were developed for different data scales: iBOT was developed 
for ViT-Base and ViT-Large models on ImageNet-1K and ImageNet-22K, 
while DINOv2 was developed for ViT-Large and ViT-Giant models on 
LVD-142M, which is a dataset of 142 million curated natural images. 
To leverage the improved training recipe for ViT-Large on large-scale 
datasets in DINOv2 while also making comparisons fair to iBOT-trained 
ViT-Base models, we excluded the first two modifications of DINOv2 
that modified the iBOT loss objective (untying of head weights and use 
of Sinkhorn–Knopp centering), as outlined in Supplementary Table 5. 
High-resolution fine-tuning was also conducted on the last 12,500 
iterations of pretraining (out of 125,000 iterations in total).

Evaluation setting
Comparisons and baselines. For slide- and ROI-level evaluation, 
we compare UNI against three pretrained encoders commonly used 
in the CPath community. For comparison to models with ImageNet 
Transfer, we compare against a ResNet-5084 pretrained on ImageNet28 
(truncated after the third residual block, 8,543,296 parameters), which 
is a commonly used baseline in many slide-level tasks15,20. For com-
parison to the current state-of-the-art encoders, we compare against 
CTransPath37, which is a Swin transformer126 using the ‘tiny’ configu-
ration with a window size of 14 (Swin-T/14, 28,289,038 parameters) 
pretrained mostly on the TCGA via MoCoV3 (ref. 24), and REMEDIS38, 
a ResNet-152 × 2 (232,230,016 parameters) initialized with the ‘Big 
Transfer’-medium protocol127 on ImageNet-22K and then pretrained 
with SimCLR26. Regarding data distributions, CTransPath was pre-
trained using 29,753 WSIs across 25 anatomic sites in TCGA (including 
both FFPE and frozen tissue slides) and 2,457 WSIs from PAIP85 across six 
anatomic sites, with 15,580,262 tissue patches and 32,120 WSIs used for 
pretraining altogether. REMEDIS was pretrained with a random sample 
of ~50 million patches from 29,018 WSIs also across 25 anatomic sites 
in TCGA. For self-supervised learning, CTransPath was trained using 
the MoCoV3 (ref. 24) algorithm for 100 epochs, with ~1.56 × 109 (or 
1.56 billion) images seen during pretraining, and REMEDIS was trained 
using the SimCLR algorithm for a maximum of 1,000 epochs, with 
upwards of ~50 × 109 (or 50 billion) images seen during pretraining. In 
our implementation of these pretrained encoders, we use the truncated 
ResNet-50 implementation provided by CLAM15, and use the official 
model checkpoints for CTransPath and REMEDIS. The image embed-
dings outputted by these models are 1,024, 768 and 4,096, respectively. 
Similar to ResNet-50 and other ResNet models in which the penultimate 
feature layer before the classification head is a grid-like feature map of 
[1 × 7 × 7 × 4,096]-dimensions, we apply a two-dimensional (2D) adap-
tive average pooling layer to output a single [1 × 4,096]-dimensional 
image embedding. For all images used in ROI tasks and extracted 
patches for MIL in slide tasks, across all models, all feature extraction 
operations are performed on resized 224 × 224 images at ×20 magni-
fication. We note that the Swin-T/14 architecture used by CTransPath 
has constraints in which it can take only image dimensions in which 
the length is divisible by 224. We also note that although CTransPath 

was pretrained on ×10 magnification, it demonstrates state-of-the-art 
performance at ×20 magnification55,59,128. All pretrained encoders use 
ImageNet mean and standard deviation parameters for image nor-
malization (including UNI). To compare against transfer learning 
from a general pathology task, we also trained a ViT-L/16 architecture 
(initialized with ImageNet-22K transfer) end-to-end on the 32-class 
pan-cancer tissue classification task in TCGA. In several benchmarking 
tasks, we note that this ablation study performed worse than UNI, even 
on in-domain tasks such as pan-cancer tumor-immune lymphocyte 
detection in TCGA (Supplementary Table 72).

Last, we note that although many slide and ROI tasks are created 
using annotated data from the TCGA, CTransPath and REMEDIS were 
also trained using almost all slides in the TCGA, which can result in 
information leakage that inflates the performance of these models on 
TCGA benchmarks. When possible, we report evaluation on external 
cohorts outside of TCGA for all tasks. This may not be possible for 
all tasks, given that the official train–validation–test folds may all be 
developed using TCGA.

Weakly supervised slide classification. Training and evaluation 
for weakly supervised slide classification tasks follow the con-
ventional two-stage MIL paradigm consisting of pre-extraction of 
ROI-level features as instances from non-overlapping tissue patches 
of segmented tissue regions of the WSI, and the learning of a trainable 
permutation-invariant pooling operator that aggregates patch-level (or 
instance) features into a single slide-level (or bag) feature. For slide pre-
processing, we use the same WSI preprocessing pipeline as described 
in the dataset curation section, which uses the CLAM toolbox15, with 
additional patch feature extraction using a pretrained encoder per-
formed on the patched coordinates. Images are resized down to 
224 × 224 pixels and normalized using ImageNet mean and standard 
deviation parameters. As a quality control, we performed the additional 
following steps: first, for slides with under- or over-segmented tissue 
masks, we adjusted the segmentation parameters in CLAM (threshold 
value and downsample level) to segment only tissue regions; second, 
we removed slides that were nonH&E and nonFFPE; and third, for 
slides that did not have a downsample level equivalent to ×20 mag-
nification in their WSI pyramidal format, we patched the tissue into 
non-overlapping 512 × 512 pixel tissue patches at ×40 magnification 
and then later resized these images to 224 × 224 pixels during feature 
extraction. Pre-extracted features for all pretrained encoders used 
the same set of patch coordinates for feature extraction of each WSI.

For comparison of pre-extracted features of pretrained encoders 
in weakly supervised learning, we used the ABMIL algorithm83 across all 
tasks, which is a canonical weakly supervised baseline in slide classifica-
tion tasks. We use the two-layer gated variant of the ABMIL architecture 
with all input embeddings mapped to an embedding dimension of 
512 in the first fully connected layer, followed by hidden dimensions 
of 384 in the following intermediate layers. For regularization, we use 
dropout with P = 0.10 applied to the input embeddings and P = 0.25 
after each intermediate layer in the network. Aside from the first fully 
connected layer, which is dependent on the embedding dimension 
of the pre-extracted features, all comparisons used the same ABMIL 
model configuration. We trained all ABMIL models using the AdamW 
optimizer129 with a cosine learning rate scheduler, a learning rate of 
1 × 10−4, cross-entropy loss, and a maximum of 20 epochs. We addition-
ally performed early stopping on the validation loss if a validation fold 
was available. For all slide classification tasks, we case-stratified and 
label-stratified the slide dataset into train–validation–test folds, or 
used official folds if available. Given that CTransPath and REMEDIS  
were pretrained using all slides in TCGA, we considered TCGA  
slide tasks in which additional external evaluation was possible (for 
example, NSCLC subtyping was included due to availability of LUAD 
and LUSC slides in CPTAC, whereas BRCA subtyping was excluded). 
For glioma IDH1 mutation prediction and histomolecular subtyping, 
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train–validation–test folds were additionally site-stratified to mitigate 
potential batch effects.

Linear and K-nearest neighbors probe evaluation in ROI classifica-
tion. For ROI-level classification tasks, we follow previous works that 
use logistic regression (linear) probing and KNN probing130 to evaluate, 
respectively, discriminative transfer performance and the representa-
tion quality of pre-extracted feature embeddings on downstream 
tasks23. For linear probing, following the practice recommended by 
the self-supervised learning community, we fix the ℓ2 regularization 
coefficient λ to 100

MC
, where M is the embedding dimension and C is the 

number of classes, and use the L-BFGS solver131 with a maximum of 
1,000 iterations113. KNN probing is an additional evaluation technique 
advocated by the self-supervision community for measuring repre-
sentation quality of pre-extracted features25,132,133. In comparison with 
linear probing, KNN probing is nonparametric (aside from the choice 
of K), given that it classifies unseen test examples based on only their 
feature similarity to labeled training examples (for example, similar 
examples in representation space should also be visually similar and 
share the same class label). We use the KNN implementation from 
Scikit-Learn134, trained using K = 20 and Euclidean distance as the dis-
tance metric, following observed stability of this evaluation setup of 
other self-supervision works25. For all ROI tasks, we approximately 
case-stratified and label-stratified datasets into train–test folds or used 
official folds if available.

For all tasks, we resize images to 224 × 224 pixels (or 448 × 448 pixels  
if available) and normalize using ImageNet mean and standard devia-
tion parameters. Additionally, we note that many ROI datasets consist 
of images with high image resolutions, with image resizing to a fixed 
224 × 224 pixels or 448 × 448 pixels resolution also changing the image 
magnification and mpp. For example, resizing ROIs in the CRC polyp 
classification task in UniToPatho (ROIs having an original image resolu-
tion of 1,812 × 1,812 pixels at 0.45 mpp) to 224 × 224 pixels would change 
the magnification to 3.6 mpp. For CRC polyp classification as well as 
BRCA subtyping (BACH), we carry out evaluations using resized image 
resolutions of {2242 pixels, 4482 pixels, 8962 pixels, 1,7922 pixels} and 
{2242 pixels, 4482 pixels, 8962 pixels, 1,3442 pixels}, with multiples of 
224 chosen due to constraints with CTransPath. To pre-extract features 
from high-resolution images, for ViTs such as the plain ViT-large archi-
tecture in UNI and the hierarchical Swin transformer-T architecture in 
CTransPath, the forward passes of these architectures are not modified, 
and interpolation of positional embeddings is performed to have the 
same sequence length as patch tokens in the ROI. To illustrate, in the 
patch embedding layer of our ViT-Large architecture in UNI that has a 
patch token size of 16 × 16, a 224 × 224 pixel image would be converted 
into a [14 × 14 × D]-dimension 2D grid of patch embeddings using a 2D 
convolutional layer (kernel and stride size of 16, three incoming chan-
nels from RGB-input image inputs and D-dimension outgoing channels 
set as a hyper-parameter for feature embedding length), followed by 
flattening and transposing (now a [196 × D]-dimension sequence of 
patch embeddings), which can now be used in transformer attention 
(called ‘patchifying’). For a 1,792 × 1,792 pixel image in CRC polyp clas-
sification, patchifying this image using the same patch embedding 
layer would result in a [112 × 112 × D] → [12,544 × D]-dimension sequence 
of patch embeddings. Feeding this sequence into the forward pass of 
transformer attention, although computationally expensive, is still 
tractable via memory-efficient implementations such as FlashAttention 
or MemEffAttention. For positional embedding interpolation, we used 
the implementation provided in DINO25. For multi-head self-attention 
(MHSA) visualization, we visualize the weights from the last attention 
layer using the notebook implementation provided by the HIPT code-
base117, which we note is applicable only for plain VIT architectures.

ROI retrieval. To assess the quality of embeddings produced by dif-
ferent encoders for content-based image retrieval of histopathology 

images, we use ROI-level classification datasets, in which the goal is 
to retrieve similar images (that is, images with the same class label) to 
a given query image. For each benchmark, we first embed all images 
into a low-dimensional feature representation using the pretrained 
encoders. We treat each image in the test set as a query. Each query 
image is compared with each image from the ROI-level classification 
training set, which serves as a database of candidates (keys). Note that 
no supervised learning takes place in these experiments and the class 
labels are used only for evaluation purposes (that is, to assess whether 
retrieved images share the same class label as the query). We first 
center the database of keys by subtracting their Euclidean centroid 
from each embedding followed by ℓ2 normalization of each key to unit 
length. For each new query, we apply the same shift and normalization 
steps and then measure it against each key in the database via the ℓ2 
distance metric, where lower distance is interpreted as higher similar-
ity. The retrieved images are sorted by their similarity scores and their 
corresponding class labels are used to evaluate the success of a given 
retrieval using Acc@K for K ∈ 1, 3, 5 and MVAcc@5, which are described 
in Evaluation metrics.

ROI-level cell type segmentation. For training and evaluation of 
ROI-level cell type segmentation tasks, we follow previous works in 
using Mask2Former, which is a flexible framework commonly used for 
evaluating off-the-shelf performance of pretrained vision encoders103.  
In the case of the ViT architecture, which is nonhierarchical, we addi-
tionally use the ViT-Adapter framework alongside the Mask2Former 
head111. For both ViT-Adapter and Mask2Former, we use the same 
hyper-parameters used for ADE20k semantic segmentation. Specifi-
cally, we use the AdamW129 optimizer along with a step learning rate 
schedule. The initial learning rate was set to 0.0001 and a weight decay 
of 0.05 was applied. To adjust the learning rate specifically for the 
backbone, we apply a learning rate multiplier of 0.1. Additionally, we 
decay the learning rate by a factor of 10 at 0.9 and 0.95 fractions of the 
total number of training steps. For all backbones, we fine-tune the full 
model for 50 epochs with a batch size of 16. The model’s performance 
on the validation set is evaluated every 5 epochs, and the optimal model 
based on validation performance is saved for testing. To augment 
the data, we use the large-scale jittering (LSJ) augmentation135, with 
a random scale sampled from a range of 0.5–2.0, followed by a fixed 
size crop to 896 × 896 pixels to accommodate the size constraints of 
CTransPath. At inference time, we resize the image dimensions to their 
nearest multiples of 224.

Few-shot ROI classification and prototype learning. For few-shot 
classification, we follow previous works using the SimpleShot frame-
work to evaluate the few-shot learning performance of prototypical 
representations of self-supervised models105,136. Prototypical (or pro-
totype) learning is a longstanding task in the few-shot learning commu-
nity106,137,138, and it has also been posed (in many related forms) in CPath 
as well43,139–142. In contrast with traditional few-shot learners based on 
meta-learning, SimpleShot and related works demonstrate that strong 
feature representations combined with specific transformations and 
simple classifiers can reach state-of-the-art performance on few-shot 
tasks105,136,143. SimpleShot is similar to nearest neighbors classification, 
in which the training set (called ‘supports’ in few-shot learning litera-
ture) is drawn from C classes (‘ways’) with K examples per class (‘shots’) 
for predicting unseen images in the test set (‘queries’). Instead of near-
est neighbors, SimpleShot uses a nearest-centroid approach based on 
ProtoNet106, in which the average feature vector (centroid) for each 
class is used as a prototypical ‘one-shot’ example for labeling the query 
set via distance similarity. As noted, these averaged feature vectors 
can also be viewed as ‘class prototypes’, a set of one-shot representa-
tive examples that are unique in representing semantic information 
such as class labels (for example, LUAD versus LUSC morphologies). 
Given that SimpleShot is a simple and surprisingly strong baseline 
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in the few-shot learning community and popularized in evaluating 
self-supervised models136, we adopt this baseline in evaluating UNI 
and its comparisons in few-shot ROI classification tasks. We follow the 
recommendations in SimpleShot that suggest centering (subtracting 
the mean computed on the support set) and ℓ2 normalizing the support 
set before computing the class prototypes, with the query set also 
transformed (also centered using the mean of the support set) before 
nearest centroids classification.

Conventional few-shot learners on natural image classification 
tasks are evaluated by drawing 10,000 C-way, K-shot episodes from the 
training set with 15 query images per class as the test set. For equiva-
lent comparison with metrics in linear and KNN probing, we instead 
draw 1,000 C-way, K-shot episodes but use all images in the test set 
per episode. Due to the relatively larger number of training examples 
available in ROI tasks than that of slide tasks, we vary the number of  
labeled examples per class from K ∈ {1, 2, 4, 8, 16, 32, …256} or  
the maximum number of labeled examples available for a given class.  
To compare with linear and KNN probing that use all training examples,  
we also evaluate SimpleShot by averaging all training examples per 
class, which we denote as ‘1-NN’ in Supplementary Tables 40–60.

Prompt-based slide classification using multiple instance Simple-
Shot. To evaluate the quality of extracted representations serving as the 
class prototype for slide classification tasks, we adapt class prototypes 
from SimpleShot (described above) as ‘prompts’ (similar to the use of 
textual prompts in zero-shot classification55), which we describe as 
MI-SimpleShot. As described in the main text, we use two slide-level 
datasets (NSCLC and RCC subtyping datasets), which have matching 
ROI training examples from datasets that can be used as the support 
set. In brief, we use the annotated LUAD and LUSC ROIs from the TCGA 
Uniform Tumor dataset for NSCLC subtyping, and annotated CCRCC, 
papillary renal cell carcinoma (PRCC) and chromophobe renal cell 
carcinoma (CHRCC) ROIs from the TCGA Uniform Tumor dataset for 
RCC subtyping. The TCGA Uniform Tumor dataset (described further 
in Methods) consists of 271,170 256 × 256 pixel ROIs at around 0.5 mpp 
of 32 cancer types annotated and extracted from 8,736 H&E FFPE diag-
nostic histopathology WSIs. We note that the number of annotated 
ROIs per slide ranges from 10 to 70 examples in the TCGA-LUAD, -LUSC, 
-CCRCC, -PRCC and -CHRCC cohorts. For each class, we first embed 
ROIs in the support set into a low-dimensional feature representation 
using the pretrained encoders, followed by average pooling of all ROI 
features in the class. The average-pooled feature representations are 
considered as the class prototypes, which are used as prompts for 
labeling the top-K ROIs for each slide in the query set via normalized 
Euclidean distance similarity. The slide-level prediction is then made 
by majority voting of the top-K ROI predictions. For each benchmark, 
we evaluate MI-SimpleShot with both top-5 average pooling and top-
50 average pooling and on {1, 2, 4, 8, 16, 32} training slides per class, 
similar to our evaluation in few-shot slide classification using the same 
five folds as the trained ABMIL models, with prototypes created from 
the annotated ROIs in the same training slides. We note little perfor-
mance change in considering the average scores of the top-5 and top-
50 patches per class prototype. To compare with the performance 
that uses all training slides with ROI annotations, we also evaluate 
MI-SimpleShot by averaging all training ROI feature representations per 
class, with results detailed in Supplementary Tables 70 and 71. To create 
similarity heatmaps, we visualize the normalized Euclidean distances of 
all patches in a slide with respect to the ground-truth class prototype.

Evaluation metrics. We report balanced accuracy, weighted F1 score, 
and AUROC for classification tasks. Balanced accuracy is computed by 
taking the unweighted average of the recall of each class, which takes 
into account class imbalance in the evaluation set. Weighted F1 score is 
computed by averaging the F1 score (the harmonic mean of precision 
and recall) of each class, weighted by the size of its respective support 

set. AUROC is the area under the receiver operating characteristic 
curve plotting true-positive rate against the false-positive rate as the 
classification threshold is varied. Additionally, we compute quadratic 
weighted Cohen’s κ (inter-annotator agreement between two sets of 
labels, for example, ground truth and predictions) which we perform 
for ISUP grading (PANDA), and top-K accuracy for K ∈ {1, 3, 5} (for a given 
test sample, a sample is scored correctly if the ground-truth label is 
among the top-K labels predicted) for OT-43 and OT-108. For retrieval, 
we consider Acc@K for K ∈ {1, 3, 5}, which represent the standard top-K 
accuracy scores in retrieving images with the same class label as the 
query. Specifically, a retrieval is considered successful if at least one 
image among the top-K retrieved images has the same class label as 
the query. We also report MVAcc@5, which, compared with Acc@5, 
more strictly requires that the majority vote of the top-5 retrieved 
images be in the same class as the query for retrieval to be considered 
successful. For segmentation, we report the Dice score (same defini-
tion as the F1 score), the precision and recall, macro averaged across 
all images and classes.

Statistical analysis. For all semi- and fully supervised experiments, 
we estimate 95% confidence intervals for the model performance with 
nonparametric bootstrapping using 1,000 bootstrap replicates. For 
statistical significance, we use a two-sided paired permutation test with 
1,000 permutations to assess observed differences in the performance 
of the two models. For all few-shot settings, we report results using box 
plots that indicate quartile values of model performance (n = 5 runs) 
with whiskers extending to data points within 1.5-fold the interquartile 
range. For ROI-level few-shot classification, for each C-way, K-shot 
setting, we randomly sample K training examples per C classes with 
1,000 repeated experiments (called ‘episodes’ or ‘runs’) evaluated on 
the entire test set. For slide-level few-shot classification, we follow the 
same setting as above but with the number of runs limited to 5 due to 
small support sizes in rare disease categories.

Tasks, datasets and comparisons to leaderboard
In this section we outline the data preprocessing, number of samples  
per class, train–validation–test folds and other details per dataset  
(which may also span multiple tasks). We also add context and com-
parisons of our results to existing leaderboards and baselines of 
other studies when possible, and note that comparisons may not 
always be equivalent due to differences in hyper-parameters, splits 
and pre-extracted features (many existing baselines may not use 
histopathology-specific pretrained encoders). In comparing against 
leaderboards and in comparisons, we adopt the metrics used in public 
evaluation, elaborated further in the table captions.

OncoTree cancer classification based on in-house BWH data  
(43 cancer types, 108 OncoTree codes). As described in the main text, 
OncoTree cancer classification is a large-scale hierarchical classifica-
tion task for CPath that follows the OncoTree (OT) cancer classification 
system77. This task was devised to assess the generalization capabilities 
of pretrained models in classifying diverse disease categories and tissue 
types. Using in-house BWH slides, we defined a dataset consisting of 
5,564 WSIs from 43 cancer types further subdivided into 108 OncoTree 
codes, with at least 20 WSIs per OncoTree code. The dataset forms the 
basis of two tasks that vary in diagnostic difficulty: 43-class cancer 
type classification (OT-43) and 108-class OncoTree code classifica-
tion (OT-108). Due to the small support sizes for several OncoTree 
codes in OT-108, all ABMIL models were trained using train–test folds 
and without early stopping. For training and evaluation, we approxi-
mately label-stratified the dataset into 71:29 train–test folds (a ratio of 
3,944:1,620 slides) using the same folds for OT-43 and OT-108, with 15 
slides used per OncoTree code in the test set and a minimum of 5 slides 
used per OncoTree code in the training set. The hierarchical classifica-
tion of the coarse- and fine-grained task is reported in Supplementary 
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Table 4. Except for bladder urothelial carcinoma (BLCA), invasive ductal 
carcinoma (IDC), invasive lobular carcinoma (ILC), colon adenocarci-
noma (COAD), rectum adenocarcinoma (READ), uterine endometrioid 
carcinoma (UEC), stomach adenocarcinoma (STAD), head and neck 
squamous cell carcinoma (HNSC), diffuse large B cell lymphoma not 
otherwise specified (DLBCLNOS), melanoma (MEL), LUAD, LUSC, 
pancreatic adenocarcinoma (PAAD), PRAD, cutaneous squamous 
cell carcinoma (CSCC), small-cell lung cancer (SCLC), adenocarci-
noma of the gastroesophageal junction (GEJ) and chronic lymphocytic  
leukemia/small lymphocytic lymphoma (CLLSLL), cancer types in 
this task are rare cancers designated by the RARECARE project82 and 
the National Cancer Institute’s Surveillance, Epidemiology and End 
Results (NCI-SEER) Program. We note that slides in the training fold 
of OT-43 and OT-108 were included in OP-1K and OP-22K pretraining, 
with the test set held out from these pretraining sources (following 
practices in ImageNet).

Due to storage limitations in repeatedly extracting features for 
all non-overlapping tissue patches per WSI for all pretrained models 
(including intermediate checkpoints), we sampled 200 representative 
patches per WSI for feature extraction. To select these patches, we 
first extracted ResNet-50IN features, followed by clustering144, used 
previously in other works such as WSISA145, DeepAttnMISL146,147, and 
others148. We note that these works are inspired by visual bag-of-words 
(vBOW)149,150, which has been adapted to pathology for formulating 
high-resolution ROIs and WSIs as smaller but representative collec-
tions of tissue patches via clustering applied to deep features151,152, with 
downstream applications such as MIL145–148 and retrieval69,153. For all 
pretrained encoders, we extract features from the same sampled col-
lection of patches. Although additional computational steps were taken 
to derive these sampled patches, we note that this does not fall under 
transductive inference, given that the entire test set (all WSI samples) 
is never made visible to any learning component (clustering is fitted 
per WSI, with ‘samples’ defined at the slide level instead of the patch 
level). To validate this approach as having comparable performance 
using features for all tissue patches per WSI, we compare the perfor-
mance of sampled versus full features of UNI, CTransPath, REMEDIS 
and ResNet-50IN, which we also report in Supplementary Tables 12 and 
15. We observe not only marginal performance decrease when using 
sampled features (maximum decrease of −0.9% in top-1 accuracy, 
−0.007 in AUROC), but also performance increases for many models. 
For REMEDIS we observe that the performance of ABMIL models col-
lapses when using full features, with top-1 accuracy performances of 
4.0% and 11.8%, respectively, on OT-43 and OT-108 (compared with 
59.3% and 41.2%, respectively, with sampled features). We hypoth-
esize that these performance increases are due to the difficult nature 
of OT-43 and OT-108, with patch sampling reducing the input data 
complexity for ABMIL (for example, instead of finding diagnostically 
relevant features in a bag of 10,000+ patches, only 200 representative 
patches are considered).

Breast metastasis detection based on CAMELYON16 (2 classes). 
The breast metastasis detection task from the Cancer Metastases in 
Lymph Nodes Challenge 2016 (CAMELYON16) consists of 400 H&E FFPE 
histopathology WSIs of sentinel lymph node from Radboud University 
Medical Center and the University Medical Center Utrecht for meta-
stasis detection78. We removed one mislabeled slide from the test set, 
resulting in 399 slides (239 normal, 160 metastasis). For training and 
evaluation we used the official train–test folds and label-stratified the 
training set into 90:10 train–validation, resulting in 61:7:32 train–valida-
tion–test folds (243:27:129 slides). In addition to internal comparisons, 
we also compare our results with the leaderboard taken at the time of 
the challenge, provide a chronological timeline of best-performing 
models reported in recent peer-reviewed literature, and add context to 
the comparison of state-of-the-art methods in Supplementary Table 36. 
We note that comparisons with UNI may not be equivalent, with many 

proposed methods using ResNet-50IN features and also more sophis-
ticated MIL architectures.

NSCLC subtyping based on TCGA and CPTAC (LUAD versus LUSC, 
2 classes). The NSCLC subtyping task consists of NSCLC H&E FFPE 
diagnostic histopathology WSIs sourced from TCGA and CPTAC for 
classifying two subtypes: primary LUAD and LUSC cases79,154,155. For 
quality control, in TCGA we excluded slides with missing or incorrect 
metadata, which resulted in 1,041 slides (529 LUAD and 512 LUSC). In 
CPTAC we excluded slides that were frozen tissue, nontumor tissue or 
were not labeled as having acceptable tumor segments, which resulted 
in 1,091 slides (578 LUAD and 513 LUSC). For training and evaluation, 
we label-stratified the TCGA-NSCLC cohort into 80:10:10 train–valida-
tion–test folds (848:97:98 slides), with external evaluation using the 
held-out CPTAC cohort.

RCC subtyping based on DHMC (CCRCC versus PRCC versus 
CHRCC versus ROCY versus Benign, 5 classes). The RCC subtyping  
task consists of 563 RCC H&E FFPE diagnostic histopathology WSIs  
(485 resections and 78 biopsies) from the Dartmouth-Hitchcock  
Medical Center (DHMC) for classifying five subtypes: primary CCRCC, 
344 slides), PRCC (101 slides) and CHRCC (23 slides), renal oncocyto-
mas (ROCY, 66 slides) and benign cases (29 slides)156. For training and  
evaluation of both tasks, we used a modified configuration of the 
train–validation–test folds with a 70:4:26 ratio (393:23:147 slides), 
with eight CHRCC cases moved from the test to the train fold due to  
CHRCC being absent in the train fold.

RCC subtyping based on TCGA, DHMC and CPTAC (CCRCC versus 
PRCC versus CHRCC, 3 classes). The RCC subtyping task consists 
of 1,794 RCC H&E FFPE diagnostic histopathology WSIs from TCGA, 
DHMC and CPTAC for classifying three subtypes: primary CCRCC, PRCC 
and CHRCC156–160. For quality control, in TCGA we excluded slides with 
missing low-resolution downsamples, which resulted in 922 slides (519 
CCRCC, 294 PRCC and 109 CHRCC). In the DHMC set we filtered out 
oncocytomas in the previously described DHMC-Kidney cohort, which 
resulted in 468 slides (344 CCRCC, 101 PRCC and 23 CHRCC). In CPTAC 
we excluded slides that were frozen tissue, nontumor tissue or were not 
labeled as having acceptable tumor segments, which resulted in 404 
slides (404 CCRCC). For training and evaluation, we label-stratified 
the TCGA-NSCLC cohort into 80:10:10 train–validation–test folds 
(736:89:97 slides), with external evaluation on the held-out DHMC 
and CPTAC cohorts. Given that CPTAC includes only CCRCC cases, we 
combined DHMC and CPTAC into a single evaluation cohort.

CRC screening based on HunCRC (4 classes). The CRC screening 
task consists of 200 H&E FFPE diagnostic histopathology WSIs of 
colorectal biopsies from the Hungarian Colorectal Cancer Screening 
(HunCRC) dataset from Semmelweis University99. In this dataset we 
defined a 4-way coarse-grained subtyping task using the categories of 
negative (10 slides), non-neoplastic lesion (38 slides), CRC (46 slides), 
and adenoma (106 slides), in which the ground-truth label was set by 
the study’s pathologist. For training and evaluation we label-stratified 
the HunCRC slide dataset into 50:25:25 train–validation–test folds 
(158:21:21 slides).

BRCA coarse- and fine-grained subtyping based on BRACS (3 and 
7 classes). The BRCA coarse- and fine-grained subtyping tasks consist 
of 547 breast carcinoma H&E slides from 187 patients sourced from the 
Breast Carcinoma Subtyping (BRCA) task sourced from IRCCS Fon-
dazione Pascale, The Institute for High-Performance Computing and 
Networking (ICAR) of the National Research Council (CNR), and IBM 
Research-Zurich161. In this dataset we defined a 3-way coarse-grained 
subtyping task using the ‘benign tumor’, ‘atypical tumor’ and ‘malignant 
tumor’ labels. Furthermore, we define a 7-way fine-grained subtyping 
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task that subtypes benign tumors as ‘normal’, ‘pathological benign’, 
‘usual ductal hyperplasia’, atypical tumors as ‘flat epithelial atypia’ 
and ‘atypical ductal hyperplasia’, and malignant tumors as ‘ductal 
carcinoma in situ’ and ‘invasive carcinoma’. The hierarchical classifica-
tion of the coarse- and fine-grained tasks is reported in Supplementary 
Table 19. For training and evaluation of both tasks, we used the official 
train–validation–test folds with a 72:12:16 ratio (395:65:87 slides), using 
the same folds for both coarse- and fine-grained tasks.

Glioma IDH1 mutation prediction and histomolecular subtyping 
based on TCGA and EBRAINS (2 and 5 classes). The glioma IDH1 
mutation prediction and histomolecular subtyping task consists of 
1,996 H&E FFPE diagnostic histopathology WSIs from cases of glioblas-
toma, astrocytoma and oligodendroglioma with molecular status from 
the TCGA and the EBRAINS Digital Tumor Atlas87–89. We first defined a 
5-way glioma histomolecular subtyping task with the following labels: 
IDH1-mutant astrocytomas (257 slides), IDH1-mutant glioblastomas  
(93 slides), IDH1-mutant and 1p/19q codeleted oligodendro gliomas 
(408 slides), IDH1-wild-type glioblastomas (1,094 slides), and 
IDH1-wild-type astrocytomas (144 slides). Additionally, we defined a 
simpler 2-way task that predicts only IDH1 status: IDH1-wild-type (1,238 
slides) and IDH1-mutant (756 slides). All brain tumors in these tasks are 
designated as rare cancers by the RARECARE project and the NCI-SEER 
program. The hierarchical classification of the coarse- and fine-grained 
tasks is reported in Supplementary Table 21. For training and evaluation 
of both tasks, we approximately label-stratified the TCGA-GBMLGG 
(TCGA Glioblastoma lower-grade glioma) dataset into a train–valida-
tion–test fold with a 47:22:31 ratio (525:243:355 slides), with external 
evaluation using the held-out EBRAINS cohort (873 slides), using the 
same folds for both coarse- and fine-grained tasks.

Brain tumor coarse- and fine-grained subtyping based on EBRAINS 
(12 and 30 classes). The brain tumor coarse- and fine-grained sub-
typing tasks consists of 2,319 H&E FFPE diagnostic histopathology  
WSIs from the EBRAINS Digital Tumor Atlas sourced from the  
University of Vienna89. With an original dataset size of 3,114 slides, 
we defined a 30-way fine-grained brain tumor subtyping task lim-
ited to diagnostic labels that have at least 30 slides: IDH1-wildtype 
glioblastoma (474 slides), pilocytic astrocytoma (173 slides), menin-
gothelial meningioma (104 slides), pituitary adenoma (99 slides), 
IDH1-mutant and 1p/19q codeleted anaplastic oligodendroglioma 
(91 slides), ganglioglioma (88 slides), hemangioblastoma (88 slides), 
adamantinomatous craniopharyngioma (85 slides), IDH1-mutant and 
1p/19q codeleted oligodendroglioma (85 slides), atypical meningioma 
(83 slides), schwannoma (81 slides), IDH1-mutant diffuse astrocytoma 
(70 slides), transitional meningioma (68 slides), diffuse large B cell 
lymphoma of the central nervous system (CNS) (59 slides), gliosar-
coma (59 slides), fibrous meningioma (57 slides), anaplastic epend-
ymoma (50 slides), IDH1-wild-type anaplastic astrocytoma (47 slides), 
metastatic tumors (47 slides), DH1-mutant anaplastic astrocytoma (47 
slides), ependymoma (46 slides), anaplastic meningioma (46 slides), 
secretory meningioma (41 slides), lipoma (38 slides), hemangioperi-
cytoma (34 slides), IDH1-mutant glioblastoma (34 slides), non-WNT/
Non-SHH medulloblastoma (32 slides), Langerhans cell histiocytosis 
(32 slides), angiomatous meningioma (31 slides), and hemangioma 
(30 slides). From the same 2,319 slide dataset in the fine-grained task, 
we also defined a 12-way coarse-grained brain tumor subtyping task 
that groups the above labels into the following categories: adult-type 
diffuse gliomas (837 slides), meningiomas (430 slides), mesenchymal, 
non-meningothelial tumors involving the CNS (190 slides), tumors 
of the sellar region (184 slides), circumscribed astrocytic gliomas 
(173 slides), ependymal tumors (96 slides), hematolymphoid tumors 
involving the CNS (91 slides), glioneuronal and neuronal tumors (88 
slides), cranial and paraspinal nerve tumors (81 slides), pediatric-type 
diffuse low-grade gliomas (70 slides), metastatic tumors (47 slides), 

and embryonal tumors (32 slides). All brain tumors in these tasks are 
designated as rare cancers by the RARECARE project and the NCI-SEER 
program. The hierarchical classification of the coarse- and fine-grained 
tasks is reported in Supplementary Table 20. For training and evalu-
ation of both tasks, we approximately label-stratified the dataset into 
a train–validation–test fold with a 50:25:25 ratio (1,151:595:573 slides), 
using the same folds for both coarse- and fine-grained tasks.

Prostate ISUP grading based on PANDA (6 classes). The ISUP grading 
task is derived from the PANDA challenge, which consists of 10,616 pros-
tate cancer core needle biopsies of prostate cancer sourced from the 
Radboud University Medical Center and the Karolinska Institute18,162. 
Each slide is assigned an ISUP score that defines prostate cancer grade 
(6-class grading task). For quality control, we follow prior work90 in 
excluding slides that were erroneously annotated (https://www. 
kaggle.com/competitions/prostate-cancer-grade-assessment/ 
discussion/169230) or had noisy labels (https://www.kaggle.com/
competitions/prostate-cancer-grade-assessment/discussion/169230), 
which resulted in 9,555 slides (2,603 G0, 2,399 G1, 1,209 G2, 1,118 G3, 
1,124 G4, 1,102 G5). For training and evaluation, we label-stratified 
PANDA into 80:10:10 train–validation–test folds (7,647:954:954 
slides). In addition to internal comparisons, we also re-evaluate our 
results using the same splits of public MIL baselines of recent work90. 
In evaluation with public baselines, we adopt the evaluation strategy in 
WholeSIGHT90 of also evaluating the Karolinska and Radboud cohorts 
separately. Supplementary Table 30 reports the performance of UNI 
and its internal comparisons with the public splits, with Supplementary 
Table 37 reporting our results against the public MIL baselines. We also 
note the same caveat from the CAMELYON description in this task, given 
that comparisons with public MIL performances may not be equivalent 
due to using ResNet-50IN features, but note that these baselines also 
adopt more sophisticated MIL architectures.

Endomyocardial assessment based on in-house BWH data  
(2 classes). The BWH-EMB dataset consists of 5,021 H&E FFPE histo-
pathology WSIs from 1,688 in-house endomyocardial biopsies 
(EMBs) collected from BWH for cellular-mediated allograft rejection 
(ACR) (2,444 ACR, 2,577 others)86. For training and evaluation, we 
case- and label-stratified the dataset into train–validation–test folds 
(3,547:484:900 slides, 1,192:164:332 patients), with evaluation per-
formed at the patient level. In addition to internal comparisons, we also 
compare our results with the CRANE86 results (which shares the same 
splits) (Extended Data Fig. 8). We also note the same caveat from the 
CAMELYON description in this task, given that comparison with UNI 
may not be equivalent due to CRANE using ResNet-50IN features, but 
note that this baseline also uses multi-task learning with other clinical 
endpoints for EMB assessment.

CRC tissue classification based on CRC-100K (9 classes). The CRC 
tissue classification task is based on the CRC-100K dataset, which con-
sists of 107,180 224 × 224 pixel ROIs at 0.5 mpp annotated and extracted 
from H&E FFPE diagnostic histopathology WSIs of 136 colorectal ade-
nocarcinoma samples from the National Center for Tumor Diseases 
(NCT) biobank and the University Medical Center Mannheim (UMM) 
pathology archive98. ROIs were labeled with the following 9 classes: 
adipose (11,745 ROIs), background (11,413 ROIs), debris (11,851 ROIs), 
lymphocyte (12,191 ROIs), mucus (9,931 ROIs), smooth muscle (14,128 
ROIs), normal colon mucosa (9,504 ROIs), cancer-associated stroma 
(10,867 ROIs) and colorectal adenocarcinoma epithelium (15,550 
ROIs). For training and evaluation we used the official case-stratified 
train–test folds (100,000:7,180 ROIs), with the training fold con-
structed from 100,000 ROIs (86 WSIs) from the NCT biobank and 
UMM pathology archive (referred to as ‘NCT-CRC-HE-100K’), and the 
test fold constructed from 7,180 ROIs (50 WSIs) from the NCT biobank 
(referred to as ‘CRC-VAL-HE-7K’). Additionally, we use the version of 
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NCT-CRC-HE-100K without stain normalization. We use the same folds 
for linear probe, KNN and SimpleShot evaluation. We evaluate this 
dataset on ROIs of 224 × 224 pixels at 0.5 mpp.

Breast metastasis detection based on CAMELYON17-WILDS  
(2 classes). The breast metastasis detection task is based on  
the patch-based variant of the CAMELYON17 dataset120 (called 
PatchCAMELYON or ‘PCAM’)163, with folds created by WILDS164 for test-
ing the models’ robustness under distribution shift. The dataset con-
sists of 417,894 96 × 96 pixel histopathology ROIs at ~0.92–1.00 mpp 
extracted from WSIs of breast cancer metastases in lymph nodes sec-
tions, obtained from the CAMELYON17 challenge120. The ROI label refers 
to whether the patch contains tumor. For training and evaluation, we 
used the official train–validation–test folds provided by WILDS. The 
training set contains 302,436 patches from three hospitals, and the 
model is evaluated on two out-of-distribution (OD) datasets contain-
ing 34,904 patches (ValOD) and 80,554 patches (TestOD) collected from 
two other hospitals, respectively. We bilinearly upsampled all images 
to 224 × 224 pixels for equivalent comparisons with CTransPath. In 
addition to internal comparisons, we also compare our results with 
the public leaderboard on the WILDS benchmark (https://wilds.stan-
ford.edu/leaderboard/), which we report in Supplementary Table 62. 
The in-domain validation fold was not combined with the training set 
or used for hyper-parameter tuning. We note that comparisons with 
public results may not be equivalent to our evaluation, because many 
methods are end-to-end fine-tuned with transfer learning from natural 
images (and not from pathology).

CRC tissue classification based on HunCRC (9 classes). The CRC 
tissue classification task is based on the HunCRC dataset, which 
consists of 101,398 512 × 512 pixel ROIs at 0.48 mpp, annotated and 
extracted from the same 200 H&E FFPE diagnostic histopathology 
WSIs of colorectal biopsies also described in the slide-level task99. ROIs 
were labeled with the following nine classes: adenocarcinoma (4,315 
ROIs), high-grade dysplasia (2,281 ROIs), low-grade dysplasia (55,787 
ROIs), inflammation (763 ROIs), tumor necrosis (365 ROIs), suspicious 
for invasion (570 ROIs), resection edge (534 ROIs), technical artifacts 
(3,470 ROIs), and normal (31,323 ROIs). For training and evaluation 
we case-stratified and approximately label-stratified the dataset into 
train–test folds (151:49 cases, 76,753:22,655 ROIs) for use in linear probe, 
KNN and SimpleShot evaluation. We evaluate this dataset on resized 
ROIs of 448 × 448 pixels at 0.55 mpp.

BRCA subtyping based on BACH (4 classes). The BRCA subtyping 
task is based on the Breast Carcinoma Subtyping (BACH) dataset, 
which consists of 400 2,048 × 1,536 pixel ROIs at 0.42 mpp, annotated  
and extracted from H&E FFPE diagnostic histopathology WSIs of  
breast carcinoma samples from the International Conference on  
Image Analysis and Recognition (ICIAR) 2018 grand challenge on breast 
cancer histology images (BACH)165. ROIs were labeled with the following 
four classes: normal (100 ROIs), benign (100 ROIs), in situ carcinoma 
(100 ROIs) and invasive carcinoma (100 ROIs). For training and evalu-
ation we label-stratified the dataset into train–test folds (320:80 ROIs) 
for use in linear probe, KNN and SimpleShot evaluation. Addition-
ally, we evaluate this dataset across the following center-cropped and 
resized image resolutions: 224 × 224 pixels at 2.88 mpp, 448 × 448 pix-
els at 1.44 mpp, 896 × 896 pixels at 0.72 mpp and 1,344 × 1,344 pixels 
at 0.48 mpp.

CCRCC tissue classification based on TCGA and HEL (3 classes). 
The CCRCC tissue classification task consists of 52,713 256 × 256 pixel 
and 300 × 300 pixel ROIs at approximately 0.25 mpp, annotated and 
extracted from H&E FFPE diagnostic histopathology WSIs of CCRCC 
samples from TCGA (502 samples) and Helsinki University Hospital 
(HEL) (64 samples)166. ROIs were labeled with the following six classes: 

cancer (13,057 ROIs), normal (8,652 ROIs), stroma (5,460 ROIs), red 
blood cells (996 ROIs), empty background (16,026 ROIs), and other 
textures (8,522 ROIs). For this task we considered only the cancer, 
normal and stroma labels due to label imbalance when stratifying 
by data source and ambiguities in the ‘other’ category. We used ROIs 
from TCGA (21,095 ROIs) and HEL (6,074 ROIs) as the train and test 
cohorts, respectively (train–test fold with a ratio of 21,095:6,074), 
which we used for linear probe, KNN and SimpleShot evaluation. We 
evaluate this dataset on resized ROIs of 224 × 224 pixels at approxi-
mately 0.29 mpp.

PRAD tissue classification based on AGGC (5 classes). The PRAD 
tissue classification task is based on the Automated Gleason Grading 
Challenge 2022 (AGGC) from the National University Hospital and 
Agency of Science, Technology and Research (A*STAR) in Singapore101. 
It consists of 203 WSIs obtained from prostatectomies (105 training, 
45 testing) and biopsies (37 training, 16 testing) digitized using an  
Akoya Biosciences scanner at ×20 magnification at 0.5 mpp. Each  
slide includes partial pixel-level annotations delineating different  
Gleason patterns and stromal regions. From the original WSIs and  
annotations we built a ROI dataset consisting of 1,125,640 non- 
overlapping 256 × 256 pixel ROIs (train–test fold with a ratio of 
780,619:345,021), which we used for linear probe, KNN and SimpleShot 
evaluation. ROIs with more than one Gleason pattern were assigned 
the most aggressive grade. We evaluate this dataset on resized ROIs  
of 224 × 224 pixels at approximately 0.57 mpp.

ESCA tissue classification based on UKK, WNS, TCGA and CHA  
(11 classes). The ESCA (esophageal carcinoma) tissue classification 
task consists of 367,229 256 × 256 pixel ROIs at 0.78 mpp, annotated 
and extracted from 320 H&E FFPE diagnostic histopathology WSIs of 
esophageal adenocarcinoma and adenocarcinoma of the esophagogas-
tric junction from four sources: University Hospital Cologne (UKK, 22 
slides), Landesklinikum Wiener Neustadt (WNS, 62 slides), TCGA (22 
slides) and the University Hospital Berlin–Charité (CHA, 214 slides)167. 
ROIs were labeled with the following 11 classes: adventitia (71,131 ROIs), 
lamina propria mucosae (2,173 ROIs), muscularis mucosae (2,951 ROIs), 
muscularis propria (83,358 ROIs), regression tissue (56,490 ROIs), 
mucosa gastric (44,416 ROIs), muscosa esophagus (18,561 ROIs), sub-
mucosa (22,117 ROIs), submucosal glands (1,516 ROIs), tumor (63,863 
ROIs) and ulceration (753 ROIs). For training and evaluation we com-
bined UKK, WNS and TCGA into one training cohort (189,142 ROIs) and 
used CHA as a test cohort (178,187 ROIs), with a train–test fold ratio of 
51:49, which we then used for linear probe, KNN and SimpleShot evalu-
ation. We evaluate this dataset on resized ROIs of 224 × 224 pixels at 
approximately 0.89 mpp.

CRC polyp classification based on UniToPatho (6 classes). The CRC 
polyp classification task is based on the UniToPatho dataset, which 
consists of 9,536 1,812 × 1,812 pixel ROIs at 0.44 mpp, annotated and 
extracted from 292 H&E FFPE diagnostic histopathology WSIs of colo-
rectal polyp samples from the University of Turin100. ROIs were labeled 
with the following six classes: normal (950 ROIs), hyperplastic polyp 
(545 ROIs), tubular adenoma with high-grade dysplasia (454 ROIs), 
tubular adenoma with low-grade dysplasia (3,618 ROIs), tubulo-villous 
adenoma with high-grade dysplasia (916 ROIs), and tubulo-villous ade-
noma with low-grade dysplasia (2,186 ROIs). For training and evaluation 
we used the official train–test folds (6,270:2,399 ROIs). We evaluate this 
dataset across the following resized image resolutions: 224 × 224 pixels 
at 3.60 mpp, 448 × 448 pixels at 1.80 mpp, 896 × 896 pixels at 0.90 mpp, 
and 1,792 × 1,792 pixels at 0.45 mpp.

CRC MSI screening based on TCGA CRC-MSI (2 classes). The 
CRC microsatellite instability (MSI) prediction task is based on the 
TCGA CRC-MSI dataset, which consists of 51,918 512 × 512 pixel ROIs 
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at approxi mately 0.5 mpp, extracted from H&E FFPE diagnostic his-
topathology WSIs of colorectal adenocarcinoma samples annotated 
and extracted from TCGA and also pre-normalized using Macenko nor-
malization6. ROIs were labeled with the following two classes according 
to the patient-level label of the sample: microsatellite instable (15,002 
ROIs) and microsatellite stable (36,916 ROIs). For training and evalua-
tion, we used the official train–test folds (19,557:32,361 ROIs) in linear 
probe, KNN, and SimpleShot evaluation. We evaluate this dataset on 
resized ROIs of 448 × 448 pixels at 0.57 mpp.

Pan-cancer tissue classification based on TCGA Uniform Tumor (32 
classes). The pan-cancer tissue classification task is based on the TCGA 
Uniform Tumor dataset, which consists of 271,170 256 × 256 pixel ROIs 
at around 0.5 mpp of 32 cancer types annotated and extracted from 
8,736 H&E FFPE diagnostic histopathology WSIs in TCGA68. Images were 
labeled with the following 32 classes: adrenocortical carcinoma (ACC) 
(4,980 ROIs), bladder urothelial carcinoma (BLCA) (9,990 ROIs), brain 
lower-grade glioma (LGG) (23,530 ROIs), BRCA (23,690 ROIs), cervical 
squamous cell carcinoma and endocervical adenocarcinoma (CESC) 
(6,270 ROIs), cholangiocarcinoma (CHOL) (900 ROIs), COAD (8,150 
ROIs), ESCA (3,380 ROIs), glioblastoma multiforme (GBM) (23,740 
ROIs), HNSC (11,790 ROIs), kidney chromophobe (KICH) (2,460 ROIs), 
kidney renal clear cell carcinoma (KIRC) (11,650 ROIs), kidney renal 
papillary cell carcinoma (KIRP) (6,790 ROIs), liver hepatocellular car-
cinoma (LIHC) (8,370 ROIs), LUAD (16,460 ROIs), LUSC (16,560 ROIs), 
lymphoid neoplasm diffuse large B cell lymphoma (DLBC) (840 ROIs), 
mesothelioma (MESO) (2,090 ROIs), ovarian serous cystadenocar-
cinoma (OV) (2,520 ROIs), PAAD (4,090 ROIs), pheochromocytoma 
and paraganglioma (PCPG) (1,350 ROIs), PRAD (9,810 ROIs), 23) READ 
(1,880 ROIs), sarcoma (SARC) (13,480 ROIs), skin cutaneous melanoma 
(SKCM) (10,060 ROIs), STAD (9,670 ROIs), testicular germ cell tumor 
(TGCT) (6,010 ROIs), thymoma (THYM) (3,600 ROIs), thyroid carci-
noma (THCA) (11,360 ROIs), uterine carcinosarcoma (UCS) (2,120 ROIs), 
uterine corpus endometrial carcinoma (UCEC) (12,480 ROIs), and uveal 
melanoma (UVM) (1,640 ROIs). Except for BLCA, BRCA, COAD, HNSC, 
LUAD, LUSC, PAAD, PRAD, READ, SKCM, STAD, THCA and UCEC, all 
other cancer types in this task are designated as rare cancers by the 
RARECARE project and the NCI-SEER program. For training and evalu-
ation we case-stratified and approximately label-stratified the dataset 
into train–test folds (216,350:55,360 ROIs), for use in linear probe, KNN 
and SimpleShot evaluation. We evaluate this dataset on resized ROIs 
of 224 × 224 pixels at approximately 0.57 mpp. To mitigate potential 
biases from site-specific H&E staining variability in TCGA168, we used 
Macenko normalization169 to normalize all ROIs.

Pan-cancer TIL detection based on TCGA-TILS (2 classes). The 
tumor-immune lymphocyte (TIL) detection task is based on the 
TCGA-TILs dataset, which consists of 304,097 100 × 100 pixel histo-
pathology ROIs at approximately 0.5 mpp, annotated and extracted 
from H&E FFPE diagnostic histopathology WSIs in TCGA61,67,170. 
ROIs were labeled with the following two classes: TIL-positive (if 
there are at least two TILs present in the image, 54,910 ROIs) and 
TIL-negative (249,187 ROIs). For training and evaluation we used the 
official train–validation–test folds (209,221:38,601:56,275 ROIs)  
and combine the train and validation folds into a single training  
fold. We bilinearly upsampled all images to 224 × 224 pixels 
at 0.20 mpp for equivalent comparisons with CTransPath. To  
mitigate potential biases from site-specific H&E staining variability 
in TCGA, we used Macenko normalization169 to normalize all ROIs. 
In addition to internal comparisons, we also compare our results 
with the ChampKit leaderboard, which we report in Supplementary 
Table 61. We note that comparisons with public results may not be 
equivalent to our evaluation, given that many methods are end-to-end 
fine-tuned with transfer learning from natural images (and not from 
pathology).

Pan-cancer cell type segmentation based on SegPath (8 cell 
types treated as individual tasks). The cell type segmentation 
tasks are derived from the SegPath dataset, which consists of 158,687 
984 × 984 pixel ROIs at 0.22 mpp, annotated and extracted from H&E 
FFPE diagnostic histopathology WSIs of eight major cell types in can-
cer tissue from University of Tokyo Hospital102. Immunofluorescence 
and DAPI nuclear staining were performed on ROIs and used as image 
masks for the following classes: endothelium (10,647 ROIs), epithelium 
(26,509 ROIs), leukocyte (24,805 ROIs), lymphocyte (12,273 ROIs), mye-
loid cell (14,135 ROIs), plasma cell (13,231 ROIs), red blood cell (25,909 
ROIs), and smooth muscle (31,178 ROIs). Each cell type in the dataset 
forms an independent tissue segmentation task with two classes, tis-
sue/cell region and non-tissue/cell region. For training and evaluation 
we used the official train–validation–test split with an approximate 
80:10:10 ratio. Furthermore, we compare our results using the public 
evaluation of this dataset, which we also report in Supplementary 
Table 69. We note that individual model performances are not made 
public in the official dataset, and thus we interpolated the performance 
bound of the best-performing model for each cell type.

Computing hardware and software
We used Python (v3.8.13) and PyTorch171 (v2.0.0, CUDA 11.7) (https://
pytorch.org) for all experiments and analyses in the study (unless speci-
fied), which can be replicated using open-source libraries as outlined 
below. To train UNI via DINOv2, we modify the vision transformer 
implementation maintained by the open-source timm library (v0.9.2) 
from Hugging Face (https://huggingface.co) for the encoder backbone 
and use the original DINOv2 self-supervised learning algorithm (https://
github.com/facebookresearch/dinov2) for pretraining, which used 
4 × 8 80 GB NVIDIA A100 GPU (graphics processing unit) nodes config-
ured for multi-GPU, multi-node training using distributed data-parallel 
(DDP). All other computations for downstream experiments were 
conducted on single 24 GB NVIDIA 3090 GPUs. All WSI processing 
was supported by OpenSlide (v4.3.1), openslide-python (v1.2.0), and 
CLAM (https://github.com/mahmoodlab/CLAM). We use Scikit-learn134 
(v1.2.1) for its implementation of K-nearest neighbors, and the logistic 
regression implementation and SimpleShot implementation provided 
by the LGSSL codebase (https://github.com/mbanani/lgssl). Imple-
mentations of other visual pretrained encoders benchmarked in the 
study are found at the following links: ResNet-50 with ImageNet Trans-
fer (https://github.com/mahmoodlab/CLAM), CTransPath (https://
github.com/Xiyue-Wang/TransPath), and REMEDIS (https://github.
com/google-research/medical-ai-research-foundations). We note 
that REMEDIS requires fulfillment of a data use agreement, which 
can be accessed and submitted at the PhysioNet website (https://
physionet.org/content/medical-ai-research-foundation)172,173. For 
multi-head attention visualization, we used the visualization tools 
provided by the HIPT codebase (https://github.com/mahmoodlab/
HIPT). For training weakly supervised ABMIL models, we adapted 
the training scaffold code from the CLAM codebase (https://github.
com/ mahmoodlab/CLAM). For training semantic segmentation, we 
use the original Mask2Former implementation (https://github.com/
facebookresearch/Mask2Former), which is based on detectron2 (ref. 
174) (v0.6), and required the following older packages for compatibility: 
Python (v3.8) and PyTorch (v1.9.0, CUDA 11.1). For adding ViT-Adapter 
to UNI, we adapt its original implementation (https://github.com/
czczup/ViT-Adapter) in detectron2 to train it using Mask2Former. 
Pillow (v9.3.0) and OpenCV-python were used to perform basic image 
processing tasks. Matplotlib (v3.7.1) and Seaborn (v0.12.2) were used 
to create plots and figures. Use of other miscellaneous Python libraries 
is detailed in the Reporting Summary.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Data availability
TCGA and CPTAC data consisting of whole-slide images and labels can 
be accessed through the NIH genomic data commons (https://portal.
gdc.cancer.gov) and proteomics data commons (https://proteomic.
datacommons.cancer.gov), respectively. GTEx data added to the  
pretraining dataset can be accessed through the GTEx portal (https://www. 
gtexportal.org/home/). CPTAC data consisting of all publicly available 
datasets analyzed in this work can be can accessed in their respective 
data portals: CRC-100K (https://zenodo.org/record/1214456), HunCRC 
ROIs (10.6084/m9.figshare.c.5927795.v1), HunCRC slides (10.7937/
tcia.9cjf-0127), BACH (https://iciar2018-challenge.grand-challenge.
org/Dataset/), TCGA CRC-MSI (https://zenodo.org/record/3832231), 
CCRCC tissue classification (https://zenodo.org/record/7898308), 
TCGA-TILs (https://zenodo.org/record/6604094), TCGA Uniform 
(https://zenodo.org/record/5889558), UniToPatho (https://zenodo.
org/record/4643645), ESCA(https://zenodo.org/record/7548828), 
CAMELYON17-WILDS (https://wilds.stanford.edu/datasets), EBRAINS 
(10.25493/WQ48-ZGX), DHMC (https://bmirds.github.io/Kidney-
Cancer), BRACS (https://bracs.icar.cnr.it), PANDA (https://panda.
grand-challenge.org), SegPath (https://zenodo.org/record/7412731) 
and AGGC (https://zenodo.org/record/6460100). TCGA, CPTAC, Hun-
CRC and TCGA-TILS can also be accessed using The Cancer Imaging  
Archive175. Links for all datasets are also listed in Supplementary 
Table 73. We note that data from AGGC were obtained from a public 
grand challenge (of the same name (https://aggc22.grand-challenge.
org)) with a pending publication101, with permission granted by the 
challenge organizers to present results from this dataset. No internal 
patient data were specifically collected for this study. This study relies 
on retrospective analysis of anonymized whole-slide images. Following 
institution policies, all requests for data collected or curated in-house 
will be evaluated on a case-by-case basis to determine whether the 
data requested and the use case comply with intellectual property or 
patient privacy obligations.

Code availability
Code and model weights for UNI can be accessed for academic research 
purposes at https://github.com/mahmoodlab/UNI. We have docu-
mented all technical deep learning methods and software libraries used 
in the study while ensuring that the paper is accessible to the broader 
clinical and scientific audience.
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Extended Data Fig. 1 | Few-shot slide classification. To study the label efficiency 
of UNI in slide classification, we compare UNI with other pretrained encoders on: 
a. breast metastasis detection in CAMELYON16, b. NSCLC subtyping in CPTAC 
(trained on TCGA) c. RCC subtyping in CPTAC-DHMC (trained on TCGA),  
d. RCC subtyping in DHMC, e. BRCA coarse-grained subtyping in BRACS, f. BRCA 
fine-grained subtyping in BRACS, g. CRC screening in HunCRC, h. Prostate ISUP 
Grading in PANDA, i. glioma IDH1 prediction in EBRAINS (trained on TCGA),  
j. glioma histomolecular subtyping in EBRAINS (trained on TCGA), k. brain tumor 

coarse-grained subtyping in EBRAINS, l. brain tumor fine-grained subtyping in 
EBRAINS, and m. heart transplant assessment in BWH-EMB. The performance 
is measured across different few-shot settings with K ∈ 1, 2, 4, 8, 16, 32 training 
examples used per class. Boxes indicate quartile values of model performance  
(n = 5 runs) and whiskers extend to data points within 1.5 × the interquartile range. 
Overall, we observe that UNI consistently demonstrates superior label efficiency 
over other baselines.
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Extended Data Fig. 2 | Comparing supervised performance on PRAD tissue 
classification in AGCC. Qualitative illustrations comparing UNI to CTransPath, 
REMEDIS, and ResNet-50 (IN) via KNN probing on PRAD tissue classification 

in AGCC. UNI achieves better accuracy (acc.) on all three examples. The 
reported results are based on partial annotations (left-most panel) provided by 
pathologists.
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Extended Data Fig. 3 | ROI retrieval. We evaluate content-based image retrieval 
for ROI-level classes with at least 5 classes, for a. CRC tissue classification in 
CRC-100K, b. CRC tissue classification in HunCRC, c. ESCA subtyping on CHA 
(trained on UKK, WNS and TCGA), d. PRAD tissue classification in AGGC, e. CRC 
polyp classification in UniToPatho, and f. pan-cancer tissue classification in 

TCGA, and. UNI consistently outperforming all pretrained encoders. Error bars 
represent 95% confidence intervals and the center is the computed value of 
the corresponding retrieval metric. Detailed performance metrics are further 
provided in Supplementary Tables 63–68.
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Extended Data Fig. 4 | ROI classification across different image resolutions. 
To assess how image resolution affects performance, we compare UNI and other 
baselines on various resized and center-cropped ROIs for a. BRCA subtyping and 
b. CRC polyp classification tasks. The original image sizes are 2048 × 1536 and 

1812 × 1812 pixels, respectively. All models are evaluated on linear, SimpleShot 
(1-NN), and KNN (20-NN) probe settings. UNI consistently outperforms all 
baselines across all resolutions. The performance metrics are further provided in 
Supplementary Tables 45, 46, 51, 52.
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Extended Data Fig. 5 | Multi-head self-attention (MHSA) heatmap 
visualization of UNI across different image resolutions in BRCA Subtyping 
in BACH. Each colored square represents a 16 × 16 patch token encoded by 
UNI, with heatmap color corresponding to the attention weight of that patch 
token to the global [CLS] token of the penultimate layer in UNI. We show MHSA 
visualizations for resized and center-cropped ROIs at 2242, 4482, 8962, 1,3442 
resolutions for the a. normal, b. benign, c. in situ, and d. invasive classes in BACH. 
In each, the left-most image is the original H&E ROI and the right four images are 

the MHSA visualizations. For comparative purposes, we resize all images within 
the figure to have the same dimension, but note that at higher resolutions, each 
colored square has an original image resolution of 16 × 16 pixels at 0.42 mpp. As 
the resolution increases, the heatmaps demonstrate increasing and increasingly 
fine-grained attention focused on epithelial structures, with relatively lower 
attention on stroma or other background, neither of which are contributory to 
the diagnoses in these ROIs.
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Extended Data Fig. 6 | Multi-head self-attention (MHSA) heatmap 
visualization of UNI across different image resolutions for CRC polyp 
classification in UniToPatho. Each colored square represents a 16 × 16 patch 
token encoded by UNI, with heatmap color corresponding to the attention 
weight of that patch token to the global [CLS] token of the penultimate layer 
in UNI. We show MHSA visualizations for resized and center-cropped ROIs at 
2242, 4482, 8962, 17922 resolutions for a. normal tissue, b. hyperplastic polyp,  
c. tubular adenoma with low-grade dysplasia, d. tubular adenoma with high-
grade dysplasia, e. tubulo-villous adenoma with high-grade dysplasia, and  

f. tubulo-villous adenoma with low-grade dysplasia. In each, the left-most image 
is the original H&E ROI and the right four images are the MHSA visualizations. 
For comparative purposes, we resize all images within the figure to have the 
same dimension, but note that at higher resolutions, each colored square has an 
original image resolution of 16 × 16 pixels at 0.48 mpp. As resolution increases, 
the heatmaps demonstrate increasing and increasingly fine-grained attention 
focused on the crypts, in all cases except the hyperplastic polyp in b, focusing on 
areas a pathologist would use to make the diagnosis.
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Extended Data Fig. 7 | Visualizing segmentation results in SegPath. Using the 
Mask2Former head, we visualize the tissue segmentation of each class in SegPath 
created by all pretrained encoders. Overall, we find that UNI is competitive  

with convolutional and hierarchical models like CTransPath and REMEDIS in 
matching the segmentation masks obtained via immunofluorescence and DAPI 
nuclear staining.
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Extended Data Fig. 8 | Few-shot ROI classification using class prototypes. 
Similar to slide-level classification, we also assess the label efficiency of UNI on 
ROI-level tasks, and observe superior label efficiency of UNI on most tasks except 
CRC tissue classification on HunCRC. We evaluate all pretrained encoders using 
the nonparametric SimpleShot framework for a. CRC tissue classification in 
CRC-100K, b. Breast metastasis detection in CAMELYON17-WILDS, c. RCC tissue 
classification on HEL (trained on TCGA), d. BRCA subtyping in BACH, e. CRC 
tissue classification in HunCRC, f. ESCA subtyping on CHA (UKK+WNS+TCGA),  

g. PRAD tissue classification in AGGC, h. CRC polyp classification in UniToPatho, 
i. CRC MSI screening in TCGA, j. pan-cancer tissue classification in TCGA, and  
k. pan-cancer TIL detection in TCGA. The performance is measured across 
different few-shot settings with K ∈ 1, 2, 4, 8, 16, 32, 64, 128, 256 training examples 
used per class (or support set size). Boxes indicate quartile values of model 
performance (n = 1000 runs) and whiskers extend to data points within 1.5 × the 
interquartile range.
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Extended Data Fig. 9 | Few-shot slide classification using class prototypes. 
We adapt the SimpleShot framework for slide-level classification, called ‘MI-
SimpleShot’. ROI class prototypes are constructed by averaging the pre-extracted 
ROI features for each class using the ‘TCGA Uniform Tumor’ dataset, which we 
use as ‘prompts’ for assigning the slide-level label. We assess and compare the 
few-shot performance of all pretrained encoders on NSCLC subtyping (a) and 
RCC subtyping task (b), using the same runs (n = 5) in the few-shot setting for 
ABMIL for K ∈ 1, 2, 4, 8, 16, 32 training examples used per class. We compare 
performance of top-5 and top-50 pooling of nearest patches in the test set, as well 
as show performance on both the internal test fold in TCGA and external cohort. 

Boxes indicate quartile values of model performance (n = 5 runs) and whiskers 
extend to data points within 1.5 × the interquartile range. Overall, we observe 
that the formed prototypes by UNI can be used to classify slides based on the 
MI-SimpleShot frame- work. a. On NSCLC subtyping, we observe that 2-shot and 
4-shot performance from UNI outperforms the 32-shot performance of all other 
models. b. On RCC subtyping, 1-shot performance of UNI also outperforms the 
32-shot performance of other models. We also observe that MI-SimpleShot can 
be combined with other pretrained encoders as well, but generally require more 
annotated ROIs for creating prototypes.

http://www.nature.com/naturemedicine
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Extended Data Fig. 10 | Comparing 1-shot similarity heatmaps of pretrained 
encoders with class prototype. We compare the similarity heatmaps of all 
pretrained encoders using annotated ROIs from a single slide per class for 
forming class prototypes in MI-SimpleShot (with top-5 pooling) on NSCLC 
subtyping (a) and RCC subtyping task (b), with top visualizing example ROIs 
used for each class, and bottom showing similarity heatmaps. Outlined in blue 
are pathologist annotations of ROIs that match the label of the histology slide. 
Similarity heatmaps are created with respect to the class prototype of the 
correct slide label (indicated in green), with a ✓ indicating a correct prediction 
and ✗ indicating incorrect prediction. Note that since the visualizations are 
created with respect to the ground truth label, the model may retrieve correct 
patches that match pathologist annotations but still misclassify the slide. a. On a 
LUAD slide, we observe strong agreement of the pathologist’s annotations with 
retrieved LUAD patches by UNI. Although retrieved patches by REMEDIS also 

have strong agreement with the pathologist’s annotations, we note that slide was 
misclassified as LUSC, indicating that the top-5 retrieved patches of the LUSC 
prototype was higher than that of the LUAD prototype. Vice versa, ResNet-50IN 
classifies the slide correctly but incorrectly retrieves the correct patches that 
agree with the pathologist’s annotations, indicating that non-LUAD patches in 
the slide were more LUAD-like than the pathologist-annotated LUAD patches 
with respect to the LUAD prototype. The similarity heatmap for CTransPath 
both misclassified the slide and retried incorrect patches. b. On an CCRCC slide, 
we observe strong agreement of the pathologist’s annotations with retrieved 
CCRCC patches by UNI. We observe similar mismatch in predicted class label and 
retrieved patches, in which REMEDIS classifies the slide correctly but retrieves 
the incorrect patches, and CTransPath misclassifies the slide but retrieves the 
correct patches.

http://www.nature.com/naturemedicine
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Data analysis We used Python (version 3.8.13) for all experiments and analyses in the study, which can be replicated using open-source libraries as outlined 
below. For task agnostic pretraining, we used 4x8 80GB NVIDIA A100 GPU nodes configured for multi-GPU, multi-node training using 
distributed data-parallel (DDP) as implemented by the popular open source deep learning framework PyTorch (version 2.0.0, CUDA 11.7) 
(pytorch.org). All downstream experiments were conducted on single 24GB NVIDIA 3090 GPUs. For unimodal pretraining of our visual encoder 
using DINOv2, we modify the vision transformer implementation maintained by the open-source Timm library (version 0.9.2) from Hugging 
Face (huggingface.co) for the encoder backbone and use the original DINOv2 implementation (github.com/facebookresearch/dinov2) for 
training. All WSI processing was supported by OpenSlide (version 4.3.1), openslide-python (version 1.2.0), and CLAM (github.com/
mahmoodlab/CLAM). We use Scikit-learn (version 1.2.1) for its implementation of K-Nearest Neighbors, and the logistic regression 
implementation and SimpleShot implementation provided by the LGSSL codebase (github.com/mbanani/lgssl). Implementations of other 
visual pretrained encoders benchmarked in the study are found at the following links: ResNet-50 with ImageNet Transfer (github.com/
mahmoodlab/CLAM), CTransPath (github.com/Xiyue-Wang/TransPath), and REMEDIS (github.com/google-research/medical-ai-research-
foundations). For multi-head attention visualization, we used the visualization tools provided by the HIPT codebase (github.com/
mahmoodlab/HIPT). For training weakly-supervised ABMIL models, we adapted the training scaffold code from the CLAM codebase 
(github.com/mahmoodlab/CLAM). For training semantic segmentation, we use the original Mask2Former implementation (github.com/
facebookresearch/Mask2Former) which is based on detectron2 (version 0.6). For  ViT-Adatper, we adapt its original implementation 
(github.com/czczup/ViT-Adapter) in detectron2 to train it using Mask2Former. Pillow (version 9.3.0) and OpenCV-python were used to 
perform basic image processing tasks. Matplotlib (version 3.7.1) and Seaborn (version 0.12.2) were used to create plots and figures. 
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added to the pretraining dataset can be accessed through the GTEx portal (https://www.gtexportal.org/home/). For publicly available datasets we can access the 
data and labels at their respective data portals: CRC-100K (https://zenodo.org/record/1214456), HunCRC patches (https://doi.org/10.6084/
m9.figshare.c.5927795.v1), HunCRC slides (https://doi.org/10.7937/tcia.9cjf-0127), BACH (https://iciar2018-challenge.grand-challenge.org/Dataset/), TCGA CRC-
MSI  (https://zenodo.org/record/3832231). CCRCC tissue classification from TCGA (https://zenodo.org/record/7898308#.ZGXM3-xBxAc). TCGA-TILs  (https://
zenodo.org/record/5889558), TCGA Uniform (https://zenodo.org/record/5889558), UniToPatho  (https://zenodo.org/record/4643645), ESCA (https://zenodo.org/
record/7548828#.ZEnMnNLMJH5), EBRAINS (https://doi.org/10.25493/WQ48-ZGX), DHMC Kidney (https://bmirds.github.io/KidneyCancer/), BRACS (https://
www.bracs.icar.cnr.it/), PANDA (https://panda.grand-challenge.org/data/), SegPath (https://zenodo.org/record/7412731), and AGGC (https://zenodo.org/
record/6460100). We obtained permission from the challenge organizers of the AGGC dataset to use this dataset. No internal patient data was specifically collected 
for this study. This study relies on retrospective analysis of anonymized whole slide images. Following institution policies, all requests for data collected or curated 
in-house will be evaluated on a case-by-case basis to determine whether the data requested and the use case comply with intellectual property or patient privacy 
obligations. Data that can be shared would require a formal data transfer agreement. 
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Reporting on sex and gender We did not use gender or sex as a covariate in our experimental analysis at any stage of the study. Though not used, data 
pertaining to sex and gender may have been collected in external data for downstream tasks, which were curated by their 
original investigators. We refer readers to their original source for more detailed descriptions. For in-house data used in our 
OT cancer classification task, we provide the aggregate distribution of self-reported sex as follows: 3080 Female,  2474 Male.
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other socially relevant 
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We did not collect or use any covariates regarding race, ethnicity, and other social groupings at any stage of the study. 

Population characteristics We did not collect or use any covariates pertaining to population characteristics at any stage of the study. 

Recruitment No patient recruitment was necessary for using histology whole slide images retrospectively.  
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Informed consent was waived for analyzing pathology data retrospectively. 
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