
MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for
Visual Reinforcement Learning

Suning Huang * 1 2 Zheyu Zhang * 1 3 Tianhai Liang 1 Yihan Xu 1 Zhehao Kou 1 Chenhao Lu 1 Guowei Xu 1

Zhengrong Xue 1 Huazhe Xu 1

Abstract

Visual deep reinforcement learning (RL) enables
robots to acquire skills from visual input for un-
structured tasks. However, current algorithms suf-
fer from low sample efficiency, limiting their prac-
tical applicability. In this work, we present MEN-
TOR, a method that improves both the architec-
ture and optimization of RL agents. Specifically,
MENTOR replaces the standard multi-layer per-
ceptron (MLP) with a mixture-of-experts (MoE)
backbone and introduces a task-oriented pertur-
bation mechanism. MENTOR outperforms state-
of-the-art methods across three simulation bench-
marks and achieves an average of 83% success
rate on three challenging real-world robotic ma-
nipulation tasks, significantly surpassing the 32%
success rate of the strongest existing model-free
visual RL algorithm. These results underscore
the importance of sample efficiency in advancing
visual RL for real-world robotics. Experimental
videos are available at mentor-vrl.

Peg Insertion Cable Routing Tabletop Golf

Figure 1. MENTOR validation on real-world tasks. We design
three challenging robotic learning tasks where agents are trained
from scratch in the real world. MENTOR demonstrates the most
efficient and robust policies compared to baseline methods.

*Equal contribution 1Tsinghua University 2Stanford Uni-
versity 3University of Illinois Urbana-Champaign. Correspon-
dence to: Suning Huang <suning@stanford.edu>, Zheyu Zhang
<zheyuz5@illinois.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Visual deep reinforcement learning (RL) focuses on agents
that perceive their environment through high-dimensional
image data, closely aligning with robot control scenarios
where vision is the primary modality. Despite substantial
progress in this field (Kostrikov et al., 2020; Yarats et al.,
2021; Schwarzer et al., 2020; Stooke et al., 2021; Laskin
et al., 2020b), these methods still suffer from low sample
efficiency. As a result, most visual RL pipelines have to
be first trained in the simulator and then deployed to the
real world, inevitably leading to the problem of sim-to-real
gap (Zhao et al., 2020; Salvato et al., 2021).

To bypass this difficulty, one approach is to train visual RL
agents from scratch on physical robots, which is known
as real-world RL (Dulac-Arnold et al., 2019; Luo et al.,
2024; Zhu et al., 2020). Given the numerous challenges
of real-world RL, we argue that the fundamental solution
lies not in task-specific tweaks, but in developing substan-
tially more sample-efficient RL algorithms. In this paper,
we introduce MENTOR: Mixture-of-Experts Network with
Task-Oriented perturbation for visual Reinforcement learn-
ing, which significantly boosts the sample efficiency of
visual RL through improvements in both agent network
architecture and optimization.

In terms of architecture, visual RL agents typically use
convolutional neural networks (CNNs) for feature extrac-
tion from high-dimensional images, followed by multi-layer
perceptrons (MLPs) for action output (Yarats et al., 2021;
Zheng et al., 2023; Cetin et al., 2022; Xu et al., 2023).
However, the learning efficiency of standard MLPs is hin-
dered by intrinsic gradient conflicts in challenging robotic
tasks (Yu et al., 2020a; Liu et al., 2023; Zhou et al., 2022;
Liu et al., 2021), where the gradient directions for optimiz-
ing neural parameters across different stages of the task
trajectory or between tasks may conflict. In this work, we
propose to alleviate gradient conflicts by integrating mixture-
of-experts (MoE) architectures (Jacobs et al., 1991; Shazeer
et al., 2017; Masoudnia & Ebrahimpour, 2014) as the back-
bone to the visual RL framework. Intuitively, MoE archi-
tectures can alleviate gradient conflicts due to their ability
to dynamically allocate gradients to specialized experts for

1

https://suninghuang19.github.io/mentor_page/

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

each input through the sparse routing mechanism (Akbari
et al., 2023; Yang et al., 2024).

In terms of optimization, visual RL agents often struggle
with local minima due to the unstructured nature of robotic
tasks. Recent works have shown that periodically perturb-
ing the agent’s weights with random noise can help escape
local minima (Nikishin et al., 2022; Sokar et al., 2023; Xu
et al., 2023; Ji et al., 2024). However, the choice of pertur-
bation candidates (i.e., the network weights used to perturb
the current agent’s weights) has not been thoroughly ex-
plored. Building on this idea, we propose a task-oriented
perturbation mechanism. Instead of sampling from a fixed
distribution, we maintain a heuristically shifted distribution
based on the top-performing agents from the RL history.
The intuition is that the distribution gradually formed by
the weights of previous top-performing agents may accumu-
late task-relevant information, leading to more promising
optimization directions than purely random noise.

Empirically, we find MENTOR outperforms current state-of-
the-art methods (Xu et al., 2023; Yarats et al., 2021; Cetin
et al., 2022; Zheng et al., 2023) across all tested scenar-
ios in DeepMind Control Suite (Tassa et al., 2018), Meta-
World (Yu et al., 2020b), and Adroit (Rajeswaran et al.,
2017). Furthermore, we present three challenging real-
world robotic manipulation tasks, shown in Figure 1: Peg
Insertion – inserting three kinds of pegs into the correspond-
ing sockets; Cable Routing – maneuvering one end of a
rope to make it fit into two non-parallel slots; and Tabletop
Golf – striking a golf ball into the target hole while avoiding
getting stuck into the trap. In these experiments, MEN-
TOR demonstrates significantly higher learning efficiency,
achieving an average success rate of 83%, compared to 32%
for the state-of-the-art counterpart (Xu et al., 2023) within
the same training time. This confirms the effectiveness of
our approach and underscores the importance of improving
sample efficiency for making RL algorithms more practical
in robotics applications.

Our key contributions are threefold. First, we introduce the
MoE architecture to replace the MLP as the agent backbone
in model-free visual RL, improving the agent’s learning
ability to handle complex robotic environments and reduc-
ing gradient conflicts. Second, we propose a task-oriented
perturbation mechanism which samples candidates from a
heuristically updated distribution, making network perturba-
tion a more efficient and targeted optimization process com-
pared to the random parameter exploration used in previous
RL perturbation methods. Third, we achieve state-of-the-art
performance in both simulated environments and three chal-
lenging real-world tasks, highlighting the sample efficiency
and practical value of MENTOR.

2. Preliminary
Mixture-of-Experts (MoE). Mixture-of-experts (MoE),
introduced by Jacobs et al. (1991) and Jordan & Jacobs
(1994), is a framework where specialized model compo-
nents, called experts, handle different tasks or aspects of a
task. A sparse MoE layer comprises multiple experts and
a router. The router predicts a probability distribution over
the experts, activating only the top-k for each input (Shazeer
et al., 2017). With N experts, each being a feed-forward
network (FFN), the MoE output is:

w(i;x) = softmax (topk (h(x)))[i], (1)

FMoE(x) =

N∑
i=1

w(i;x) FFNi(x), (2)

where w(i;x) is the gating function determining the weight
of the i-th expert for input x, h(x) provides logits for expert
selection, and topk (h(x)) selects the top k.

Visual Reinforcement Learning. We employ visual rein-
forcement learning (RL) to train policies for robotic systems,
modeled as a Partially Observable Markov Decision Pro-
cess (POMDP) defined by the tuple (S,O,A, P, r, γ). Here,
S is the true state space, O represents visual observations,
A is the robot’s action space, P : S × A → S defines the
transition dynamics, r(s, a) : S × A → R specifies the
reward, and γ ∈ (0, 1] is the discount factor. The goal is
to learn an optimal policy πθ(at | ot) that maximizes the
expected cumulative reward Eπ [

∑∞
t=0 γ

tr(st, at)].

Dormant-Ratio-based Perturbation in RL. The concept
of dormant neurons, introduced by Sokar et al. (2023), refers
to neurons that have become nearly inactive. It is formally
defined as follows:

Definition 2.1. Consider a fully connected layer l with N l

neurons. Let linearli(x) denote the output of neuron i in
layer l for an input distribution x ∈ I. The score of neuron
i is given by:

sli =
Ex∈I |linearli(x)|

1
N l

∑
k∈l Ex∈I |linearlk(x)|

. (3)

This neuron is considered τ -dormant if its score sli ≤ τ .

Definition 2.2. In layer l, the total number of τ -dormant
neurons is denoted by Dl

τ . The τ -dormant ratio of a neural
network θ is defined as:

βτ =

∑
l∈θ D

l
τ∑

l∈θ N
l
. (4)

As shown by Xu et al. (2023); Ji et al. (2024), the dormant ra-
tio is a key metric in neural network behavior and enhances

2

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

Visual
Observations

Actions

Rewards

Reinforcement
Learning

Policy Update

Collect Top-agent
𝑆top

…

Task-Oriented
Perturbation

⨁

FFN 1 FFN 2 FFN 3 FFN 4 FFN N…

Router
…

Top-𝑘

CNN
Encoder

𝑤2 𝑤4

𝑤3

Agent

𝑁(𝜇𝜃
top

, 𝜎𝜃
top

)

𝑧

Figure 2. Overview. MENTOR uses an MoE backbone with a CNN encoder to process visual inputs. A router selects and weights
the relevant experts based on the inputs to generate the final actions. In addition to regular reinforcement learning updates, periodic
task-oriented perturbations are applied during training by sampling from top-performing agents to adjust the current agent’s weights.

RL efficiency via parameter perturbation. This periodically
resets network weights by interpolating between current
parameters and random initialization (Ash & Adams, 2020;
D’Oro et al., 2022):

θk = αθk−1 + (1− α)ϕ, ϕ ∼ initializer . (5)

Here, α is the perturbation factor, θk−1 and θk are the
weights pre- and post-reset, and ϕ denotes randomly ini-
tialized weights (e.g., Gaussian noise). The value of α
dynamically adjusts as α = clip(1−µβ, αmin, αmax), where
µ is the perturbation rate and β the dormant ratio.

3. Method
In this section, we introduce MENTOR, which includes two
key enhancements to the architecture and optimization of
agents, aimed at improving sample efficiency and overall
performance in visual RL tasks. The first enhancement ad-
dresses the issue of low sample efficiency caused by gradient
conflicts in challenging scenarios, achieved by adopting an
MoE structure in place of the traditional MLP as the agent
backbone, as detailed in Section 3.1. The second enhance-
ment introduces a task-oriented perturbation mechanism
that optimizes the agent’s training through targeted pertur-
bations, effectively balancing exploration and exploitation,
as outlined in Section 3.2. The framework of our method is
illustrated in Figure 2.

3.1. Mixture-of-Experts as the Policy Backbone

In challenging robotic tasks, RL agents often assigned K ≥
2 different tasks or subgoals, each with a loss Li(θ). The
goal is to optimize shared weights θ ∈ Rm by minimizing
the average loss:

θ∗ = arg min
θ∈Rm

{
L0(θ)

∆
=

1

K

K∑
i=1

Li(θ)

}
.

When using shared parameters θ (e.g., MLP), meaning all
parameters must be simultaneously active to function, the
optimization process using gradient descent may compro-
mise individual loss optimization. This issue, known as
conflicting gradients (Yu et al., 2020a; Liu et al., 2021), hin-
ders the agent’s ability to optimize its behavior when facing
complex scenarios effectively.

We propose replacing the MLP with an MoE back-
bone. The MoE, composed of modular experts θMoE =
{θ1, θ2, . . . , θN}, which allows the agent to activate differ-
ent experts via a dynamic routing mechanism flexibly. This
enables gradients dynamically route from different tasks to
specific experts, reducing gradient conflicts. Each expert
is updated using gradients from related tasks, addressing
conflicts effectively. As shown in Figure 2, the MoE agent
uses a CNN encoder to map visual inputs to latent space Z.
The router h computes a probability h(i | z) over experts
for latent z ∈ Z. The top-k experts are selected, and their
outputs ai are combined using softmax weights wi (Equa-
tions 1 and 2). This structure routes inputs to specialized
experts, improving multi-task performance.

To illustrate the important role of dynamic modular expert
learning for RL agents, we conduct a multi-task experi-
ment (MT5) in Meta-World, training an agent (#Experts =
16, k = 4) for five opposing tasks: Open (Door-Open,
Drawer-Open, Window-Open) and Close (Drawer-Close,
Window-Close). Figure 3a shows Open and Close tasks
share some experts but also utilize dedicated ones. To quan-
titatively demonstrate how much the MoE alleviates the gra-
dient conflict issue, we evaluate the cosine similarities (Yu
et al., 2020a) for both MLP and MoE agents in Figure 3b.
The MLP’s gradients show significant conflicts between
opposing tasks, while the MoE model demonstrates higher
gradient compatibility. As a result, there is a performance
gap, with the MLP achieving 100% success in Close tasks

3

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

but only 82% in Open tasks, whereas the MoE achieves
100% success in both task types.

This structural advantage can also be propagated to challeng-
ing single tasks, as the dynamic routing mechanism auto-
matically activates different experts to adjust the agent’s
behavior throughout the task, alleviating the burden on
shared parameters. We illustrate this through training a
same-structure MoE agent on a single, highly challenging
Assembly task from Meta-World (MW). Figure 4 shows
the engagement of the k = 4 most active experts during
task execution, with Expert 15 serving as the shared module
throughout the entire policy execution. The other experts
vary and automatically divide the task into four distinct
stages: Expert 9 handles gripper control for grasping and
releasing; Expert 13 manages arm movement while maneu-
vering the ring; and Expert 14 oversees the assembly process
as the ring approaches its fitting location. More detailed
results about how MoE alleviates gradient conflicts in the
single task are shown in Appendix F.

Algorithm 1 Task-Oriented Perturbation Mechanism
Initialize the set Stop = ∅, perturb interval Tp

for each episode t = 1, 2, . . . do
Execute policy πθt and obtain episode reward Rt and dormant
ratio β
if |Stop| < N then

Add (θt, Rt) to Stop
else

if Rt > min{Ri | (θi, Ri) ∈ Stop} then
Replace (θj , Rj) with (θt, Rt), where j = argminRj

end if
end if
if (Number of steps since last perturb) ≥ Tp then

Compute mean µtop
θ and standard deviation σtop

θ from Stop

Sample perturbation weight ϕ ∼ Φoriented = N (µtop
θ , σtop

θ)
Calculate perturb factor as in Sokar et al. (2023): α =
clip(1− µβ, αmin, αmax)
Update agent weights: θt = αθt + (1− α)ϕ

end if
end for

3.2. Task-oriented Perturbation Mechanism

Neural network perturbation is employed to enhance the
exploration capabilities in RL. Two key factors influence the
effectiveness of this process θk = αθk−1+(1−α)ϕ, ϕ ∼ Φ.
α is the perturbation factor controlling the mix between cur-
rent agent and perturbation candidate weights. ϕ represents
the perturbation candidate sampled from a distribution Φ,
which typically is a fixed Gaussian noiseN (µ, σ). Previous
works (Xu et al., 2023; Ji et al., 2024) have investigated
the use of the dormant ratio to determine α, resulting in im-
proved exploration efficiency (see Section 2). However, the
selection of perturbation candidates has not been thoroughly
examined. In this work, we propose sampling ϕ from a
heuristically updated distribution Φoriented, generated from

past high-performing agents, to provide more task-oriented
candidates that better facilitate optimization.

We define Φoriented as a distribution from which high-
performing agent weights can be sampled. This distribution
is obtained by maintaining a fixed-size set Stop = {(θ,R)},
where (θ,R) represents an agent with weights θ and episode
reward R. The distribution is approximated as Φoriented =
N (µtop

θ , σtop
θ), where µtop

θ and σtop
θ are the mean and stan-

dard deviation of weights in Stop. As shown in Figure 2,
Stop is updated during training: at episode t, if an agent
with weights θt achieves reward Rt exceeding the lowest in
Stop, (θt, Rt) replaces the lowest-reward tuple. This ensures
Φoriented reflects current high-performing agents, improving
perturbation candidates ϕ for subsequent iterations. The
pseudocode is in Algorithm 1.

For illustration, we conduct experiments on the Hopper Hop
task from the DeepMind Control Suite (DMC), compar-
ing task-oriented perturbation approach to leading model-
free visual RL baselines (DrM (Xu et al., 2023) and DrQ-
v2 (Yarats et al., 2021)). Our approach solely replaces
DrM’s perturbation mechanism with task-oriented perturba-
tions. Both our method and DrM outperform DrQ-v2 due to
dormant-ratio-based perturbation, but our method achieves
faster skill acquisition and maintains a lower, smoother
dormant ratio throughout training (Figure 5a and 5b). By
directly testing perturbation candidates as agents in the
task (Figure 5c), we observe that candidates sampled from
Φoriented steadily improve throughout training, sometimes
even surpassing the performance of the agent they perturb.
This demonstrates that Φoriented progressively captures the
optimal weight distribution, rather than simply interpolating
from past agents, leading to more targeted optimization. In
contrast, perturbation candidates from DrM (initialized with
Gaussian noise) consistently yield zero reward, indicating
the lack of task-relevant information.

4. Experiments
In this section, we present a comprehensive empirical eval-
uation of MENTOR. Section 4.1 showcases its effective-
ness on three simulation benchmarks: DeepMind Control
Suite (DMC) (Tassa et al., 2018), Meta-World (MW) (Yu
et al., 2020b), and Adroit (Rajeswaran et al., 2017), which
feature rich visuals and complex dynamics. MENTOR con-
sistently outperforms leading visual RL algorithms. How-
ever, a critical limitation in visual RL research is the over-
reliance on simulated environments, raising concerns about
practical applicability. To bridge this gap, Section 4.2 val-
idates MENTOR on three challenging real-world robotic
tasks, highlighting the importance of real-world testing.

4

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

13 8 4 3 7 0 9 2 6 10 14 15 12 11 5 1

(a)

Drawer
Open

Window
Open

Drawer
Close

Window
Close

0.15

0.05

-0.05

0.10

0.00

-0.10

-0.15

Drawer
Open

Window
Open

Drawer
Close

Window
Close

(b)

Figure 3. MoE in multi-task scenarios. Left: Expert usage intensity distribution of the MoE agent in opposing tasks. Right: Gradient
conflict among opposing tasks for both MLP and MoE agents. The MLP agent frequently encounters gradient conflicts (indicated by
negative cosine similarity) when learning multiple skills, while the MoE agent avoids these conflicts (indicated by positive values). We
also provide a comparison of gradient conflicts for MLP and MoE agents in single-task settings, as detailed in Appendix F.

Grasp ReleaseMove Assemble

Figure 4. MoE in multi-stage scenarios. We present the expert usage intensity during the Assembly task in Meta-World. While Expert
15 remains highly active throughout the entire process, other experts are activated with varying intensity over time, automatically dividing
the task into four distinct stages.

4.1. Simulation Experiments

Baselines: We compare MENTOR against four leading
model-free visual RL methods: DrM (Xu et al., 2023),
ALIX (Cetin et al., 2022), TACO (Zheng et al., 2023), and
DrQ-v2 (Yarats et al., 2021). DrM, ALIX, and TACO all use
DrQ-v2 as their backbone. DrM periodically perturbs the
agent’s weights with random noise based on the proportion
of dormant neurons in the neural network; ALIX adds reg-
ularization to the encoder gradients to mitigate overfitting;
and TACO employs contrastive learning to improve latent
state and action representations.

Experimental Settings: We evaluate MENTOR on a di-
verse set of tasks across three simulation environments with
complex dynamics and even sparse reward. The DMC in-
cludes challenging tasks like Dog Stand, Dog Walk, Manip-
ulator Bring Ball, and Acrobot Swingup (Sparse), focusing

on long-horizon continuous locomotion and manipulation
challenges. The MW environment provides a suite of robotic
tasks including Assembly, Disassemble, Pick Place, Cof-
fee Push (Sparse), Soccer (Sparse), and Hammer (Sparse),
which test the agent’s manipulation abilities and require se-
quential reasoning. The Adroit environment includes com-
plex robotic manipulation tasks such as Door and Hammer,
which involve controlling dexterous hands to interact with
articulated objects. Notably, DMC tasks are evaluated using
episode reward, while tasks in MW and Adroit are assessed
based on success rate. We conducted experiments with four
random seeds on each task, with detailed hyperparameters
and training settings provided in Appendix B.

Results: Figure 6 presents performance comparisons be-
tween MENTOR and the baselines. In the DMC tasks, Dog
Stand and Dog Walk feature high action dimensionality with
a 38-dimensional action space representing joint controls for

5

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

(b)(a) (c)

Figure 5. Validation of task-oriented perturbation on Hopper Hop (a MENTOR, DrM, and DrQ-v2 agent trained on the Hopper
Hop task during the first 1M frames). Our method consistently achieves higher episode rewards with a consistently lower dormant ratio.
(c) shows the episode reward obtained by perturbation candidate ϕ sampled from Φoriented steadily increases and occasionally surpasses
that of the corresponding RL agent (replotted as the light red line), whereas in DrM, the reward remains at zero due to the use of randomly
generated perturbation parameters.

the dog model. These tasks also have complex kinematics
involving intricate joint coordination, muscle dynamics, and
collision handling, making them challenging to optimize.
Our method outperforms the top baseline, achieving approx-
imately 17% and 10% higher episode rewards, respectively.
In the MW tasks, the Hammer (Sparse) task stands out. It
requires a robotic arm to hammer a nail into a wall, with
highly sparse rewards: success yields significantly larger
rewards than merely touching or missing the nail. In fact,
the reward for failure is only one-thousandth of the success
reward, making the task extremely sparse. However, our
task-oriented perturbation effectively captures these sparse
rewards, reducing the required training frames by 70% com-
pared to the best baseline. In the Adroit tasks, our method
achieves nearly 100% success with significantly less train-
ing time, while the most competitive counterpart (DrM)
requires more frames, and other baselines fail to match per-
formance even after 6 million frames. A key highlight is
the Door task, which involves multiple stages of dexter-
ous hand manipulation—grasping, turning, and opening the
door. Leveraging the MoE architecture, our method reduces
training time to achieve over 80% success by approximately
23% compared to the best baseline. In summary, MENTOR
demonstrates superior efficiency and performance compared
to the strongest existing model-free visual RL baselines
across all 12 tasks. For the robustness against disturbances
of agent trained by MENTOR, please see Appendix I.

Ablation Study: We conduct a detailed ablation study to
demonstrate the significance contribution of MoE and Task-
oriented Perturbation separately in Appendix C.

4.2. Real-World Experiments

Our real-world RL experiments evaluate MENTOR on three
key challenges: multi-task learning, multi-stage deformable
object manipulation, and dynamic skill acquisition with

policies trained from scratch in the real world.

Experimental Settings: We use a Franka Panda arm for
execution and RealSense D435 cameras for RGB observa-
tions, capturing both global and local views. Rewards are
based on the absolute distance between current and desired
states. To prevent trajectory overfitting, the end-effector’s
initial position is randomly sampled within a predefined
region at the start of each episode. Tasks are detailed be-
low, with illustrations in Figure 7. Additional details are in
Appendix D.

Peg Insertion: This task mimics assembly-line scenarios
requiring the agent to insert pegs of three shapes (Star, Trian-
gle, Arrow) into corresponding sockets. Simulating contact-
rich interactions in these multi-task settings is highly chal-
lenging, making real-world evaluation essential.

Cable Routing: Manipulating deformable cables presents
significant challenges due to the complexities of modeling
and simulating their physical dynamics, making this task
ideal for direct, model-free visual RL training in real-world
environments. The robot must guide a deformable cable
sequentially into two parallel slots. Since both slots cannot
be filled simultaneously, the agent must perform the task
sequentially, requiring long-horizon, multi-stage planning
to successfully accomplish the task.

Tabletop Golf: In this task, the robot uses a golf club to
strike a ball on a grass-like surface, aiming to land it in a
target hole. An automated reset system retrieves the ball
when it reaches the hole, enters a mock water hazard, or
rolls out of bounds, and randomly repositions it. The agent
must learn to approach the ball, control the club’s striking
force and direction to guide the ball toward the hole while
avoiding obstacles through real-world interaction.

Results: Our policies exhibit strong performance during

6

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

0 5m 10m 15m 20m 25m 30m
0

200

400

600

800

1000
Ep

iso
de

 R
ew

ar
d

DMC Dog Stand

0 5m 10m 15m 20m 25m 30m
0

200

400

600

800
DMC Dog Walk

0 5m 10m 15m 20m 25m 30m
0

200

400

600

800

DMC Manipulator Bring Ball

0 1m 2m 3m 4m 5m 6m
0

100

200

300

400
DMC Acrobot Swingup (Sparse)

0 1m 2m 3m 4m 5m 6m
0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

Adroit Door

0 1m 2m 3m 4m 5m 6m
0%

20%

40%

60%

80%

100%
Adroit Hammer

0 0.4m 0.8m 1.2m 1.6m 2m
0%

20%

40%

60%

80%

100%
MW Assembly

0 0.4m 0.8m 1.2m 1.6m 2m
0%

20%

40%

60%

80%

100%
MW Disassemble

0 0.4m 0.8m 1.2m 1.6m 2m
Number of Frames

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

MW Pick Place

0 0.4m 0.8m 1.2m 1.6m 2m
Number of Frames

0%

20%

40%

60%

80%

100%
MW Coffee Push (Sparse)

0 0.4m 0.8m 1.2m 1.6m 2m
Number of Frames

0%

20%

40%

60%

80%

100% MW Soccer (Sparse)

0 0.4m 0.8m 1.2m 1.6m 2m
Number of Frames

0%

20%

40%

60%

80%

100%
MW Hammer (Sparse)

MENTOR (Ours) DrM DrQ-v2 ALIX TACO

Figure 6. Performance comparisons in simulations. This figure compares the performance of our method to DrM, DrQ-v2, ALIX, and
TACO across 12 tasks with four random seeds in three different benchmarks (DMC, MW, and Adroit). The shaded region indicates
standard deviation in DMC and the range of success rates in MW and Adroit.

evaluation, as shown in Figure 7. In Peg Insertion, the agent
randomly picks a peg and inserts it from varying initial
positions, learning to align the peg with the hole and adjust
the angle for accurate insertion. During one execution, as
the peg nears the hole, we manually disturb by altering the
robot arm’s pose significantly. Despite this interference,
the agent successfully completes the task relying solely on
visual observations. In Cable Routing, the agent learns
to prioritize routing it into the farther slot first, then into
the closer one. This second step requires careful handling
to avoid dislodging the cable from the first slot. During
execution, if the cable is randomly removed from the slot,
the agent can visually detect this issue and re-route it back
into position. In Tabletop Golf, the agent must master two
key skills: striking the ball with the correct direction and
force, and repositioning the club to follow the ball after the
strike. Due to a “water hazard”, the ball cannot be struck
directly toward the target hole from its starting position.
The agent learns to angle its shots to bypass hazards and
guide the ball into the hole, even as the ball’s rolling on the
grass-like surface naturally introduces significant variability.

Ablation Study: We conduct a detailed ablation study to
demonstrate the effectiveness of MENTOR in improving
sample efficiency and performance, as shown in Table 1.

The first two rows reveal that utilizing the pretrained vi-
sual encoder (Lin et al., 2024) instead of a CNN trained

from scratch results in an average performance improve-
ment of 9%. However, no significant performance gain is
observed in simulation benchmarks with this substitution.
This discrepancy may arise from the gap between simulation
and real-world environments, where real scenes offer richer
textures more aligned with the pretraining domain.

Furthermore, the results confirm the effectiveness of our
technical contributions. When the MoE structure is removed
from the agent (i.e., replaced with an MLP, as in MENTOR
w/o MoE), overall performance drops by nearly 30%. Ad-
ditionally, further switching the task-oriented perturbation
mechanism to basic random perturbation (as in DrM) leads
to an additional performance decline of approximately 30%.

5. Related work
Visual Reinforcement Learning. Visual reinforcement
learning (RL), which operates on pixel observations rather
than ground-truth state vectors, faces significant challenges
in decision-making due to the high-dimensional nature of
visual inputs and the difficulty in extracting meaningful fea-
tures for policy optimization (Ma et al., 2022; Choi et al.,
2023; Ma et al., 2022). Despite these challenges, there
has been considerable progress in this area. Methods such
as Hafner et al. (2019; 2020; 2023); Hansen et al. (2022)
improve visual RL by building world models. Other ap-
proaches (Yarats et al., 2021; Kostrikov et al., 2020; Laskin

7

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

Start Execution Disturbance Success!

Figure 7. Real-world experiments (up to down rows: Peg Insertion, Cable Routing, and Tabletop Golf). This set of images illustrates
the execution of the learned visual policy trained using MENTOR. The agent consistently and accurately accomplishes tasks even in the
presence of human disturbances.

Table 1. Comparison of success ratios between MENTOR and ablations with equal training times. Peg Insertion and Cable Routing
are trained for 3 hours, and Tabletop Golf for 2 hours. During evaluation, each subtask in Peg Insertion is rolled out 10 times, while Cable
Routing and Tabletop Golf are rolled out 20 times.

Method
Peg Insertion (Subtasks)

Cable Routing Tabletop Golf
Star Triangle Arrow

MENTOR w/ pretrained encoder 1.0 1.0 1.0 0.9 0.8
MENTOR 1.0 1.0 1.0 0.8 0.7
MENTOR w/o MoE 1.0 0.7 0.6 0.45 0.55
DrM 0.5 0.2 0.1 0.2 0.5

et al., 2020a), use data augmentation to enhance learning
robustness from pixel inputs. Contrastive learning, as in
Laskin et al. (2020b); Zheng et al. (2023), aids in learning
more informative state and action representations. Addi-
tionally, Cetin et al. (2022) applies regularization to prevent
catastrophic self-overfitting, while DrM (Xu et al., 2023)
enhances exploration by periodically perturbing the agent’s
parameters. Despite recent progress, these methods still
suffer from low sample efficiency in complex robotic tasks.
In this paper, we propose enhancing the agent’s learning
capability by replacing the standard MLP backbone with an
MoE architecture. This dynamic expert learning mechanism
helps mitigate gradient conflicts in complex scenarios.

Neural Network Perturbation in RL. Perturbation the-
ory has been explored in machine learning to escape local
minima during gradient descent (Jin et al., 2017; Neelakan-
tan et al., 2015). In deep RL, agents often overfit and lose
expressiveness during training (Song et al., 2019; Zhang
et al., 2018; Schilling, 2021). To address this issue, Sokar

et al. (2023) identified a correlation where improved learn-
ing capability is often accompanied by a decline in the
dormant neural ratio in agent networks. Building on this
insight, Xu et al. (2023); Ji et al. (2024) introduced param-
eter perturbation mechanisms that softly blend randomly
initialized perturbation candidates with the current ones,
aiming to reduce the agent’s dormant ratio and encourage
exploration. However, previous works have not fully ex-
plored the choice of perturbation candidates. In this work,
we uncover the potential of targeted perturbation for more
efficient policy optimization by introducing a simple yet
effective task-oriented perturbation mechanism. This mech-
anism samples perturbation candidates from a time-variant
distribution formed by the top-performing agents collected
throughout RL history.

6. Conclusion
In this paper, we present MENTOR, a state-of-the-art model-
free visual RL framework that achieves superior perfor-
mance in challenging robotic control tasks. MENTOR en-

8

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

hances learning efficiency through two key improvements
in both agent network architecture and optimization. MEN-
TOR consistently outperforms the strongest baselines across
12 tasks in three simulation benchmark environments. Fur-
thermore, we extend our evaluation beyond simulations,
demonstrating the effectiveness of MENTOR in real-world
settings on three challenging robotic manipulation tasks. We
believe MENTOR is a capable visual RL algorithm with
the potential to push the boundaries of RL application in
real-world robotic tasks. While MENTOR has proven effec-
tive, it has been evaluated on single tasks with a single robot
embodiment. Future work could scale our method to handle
hundreds of tasks or diverse robot embodiments, enabling
broader real-world applications.

Impact Statement
This paper presents work whose goal is to advance the field
of Model-free Visual Reinforcement Learning. There are
many potential societal consequences of our work, none
which we feel must be specifically highlighted here.

References
Akbari, H., Kondratyuk, D., Cui, Y., Hornung, R., Wang,

H., and Adam, H. Alternating gradient descent and
mixture-of-experts for integrated multimodal perception.
Advances in Neural Information Processing Systems, 36:
79142–79154, 2023.

Ash, J. and Adams, R. P. On warm-starting neural network
training. Advances in neural information processing
systems, 33:3884–3894, 2020.

Cetin, E., Ball, P. J., Roberts, S., and Celiktutan, O. Stabi-
lizing off-policy deep reinforcement learning from pixels.
arXiv preprint arXiv:2207.00986, 2022.

Chen, Z., Shen, Y., Ding, M., Chen, Z., Zhao, H., Learned-
Miller, E. G., and Gan, C. Mod-squad: Designing
mixtures of experts as modular multi-task learners. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11828–11837, 2023.

Choi, H., Lee, H., Jeong, S., and Min, D. Environment ag-
nostic representation for visual reinforcement learning. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 263–273, 2023.

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.-L., Belle-
mare, M. G., and Courville, A. Sample-efficient rein-
forcement learning by breaking the replay ratio barrier. In
Deep Reinforcement Learning Workshop NeurIPS 2022,
2022.

Dulac-Arnold, G., Mankowitz, D., and Hester, T. Chal-

lenges of real-world reinforcement learning. arXiv
preprint arXiv:1904.12901, 2019.

Fedus, W., Zoph, B., and Shazeer, N. Switch transformers:
Scaling to trillion parameter models with simple and ef-
ficient sparsity. Journal of Machine Learning Research,
23(120):1–39, 2022.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream to
control: Learning behaviors by latent imagination. arXiv
preprint arXiv:1912.01603, 2019.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mas-
tering atari with discrete world models. arXiv preprint
arXiv:2010.02193, 2020.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Mastering
diverse domains through world models. arXiv preprint
arXiv:2301.04104, 2023.

Hansen, N., Wang, X., and Su, H. Temporal difference
learning for model predictive control. arXiv preprint
arXiv:2203.04955, 2022.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E.
Adaptive mixtures of local experts. Neural computation,
3(1):79–87, 1991.

Ji, T., Liang, Y., Zeng, Y., Luo, Y., Xu, G., Guo, J., Zheng,
R., Huang, F., Sun, F., and Xu, H. Ace: Off-policy actor-
critic with causality-aware entropy regularization. arXiv
preprint arXiv:2402.14528, 2024.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jor-
dan, M. I. How to escape saddle points efficiently. In
International conference on machine learning, pp. 1724–
1732. PMLR, 2017.

Jordan, M. I. and Jacobs, R. A. Hierarchical mixtures of
experts and the em algorithm. Neural computation, 6(2):
181–214, 1994.

Kostrikov, I., Yarats, D., and Fergus, R. Image augmentation
is all you need: Regularizing deep reinforcement learning
from pixels. arXiv preprint arXiv:2004.13649, 2020.

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and
Srinivas, A. Reinforcement learning with augmented data.
Advances in neural information processing systems, 33:
19884–19895, 2020a.

Laskin, M., Srinivas, A., and Abbeel, P. Curl: Contrastive
unsupervised representations for reinforcement learning.
In International Conference on Machine Learning, pp.
5639–5650. PMLR, 2020b.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y.,
Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scaling
giant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

9

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

Lin, X., So, J., Mahalingam, S., Liu, F., and Abbeel,
P. Spawnnet: Learning generalizable visuomotor skills
from pre-trained network. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pp.
4781–4787. IEEE, 2024.

Liu, B., Liu, X., Jin, X., Stone, P., and Liu, Q. Conflict-
averse gradient descent for multi-task learning. Advances
in Neural Information Processing Systems, 34:18878–
18890, 2021.

Liu, S., Chen, Z., Liu, Y., Wang, Y., Yang, D., Zhao, Z.,
Zhou, Z., Yi, X., Li, W., Zhang, W., et al. Improving gen-
eralization in visual reinforcement learning via conflict-
aware gradient agreement augmentation. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 23436–23446, 2023.

Luo, J., Hu, Z., Xu, C., Tan, Y. L., Berg, J., Sharma, A.,
Schaal, S., Finn, C., Gupta, A., and Levine, S. Serl: A
software suite for sample-efficient robotic reinforcement
learning. arXiv preprint arXiv:2401.16013, 2024.

Ma, G., Wang, Z., Yuan, Z., Wang, X., Yuan, B., and Tao, D.
A comprehensive survey of data augmentation in visual re-
inforcement learning. arXiv preprint arXiv:2210.04561,
2022.

Masoudnia, S. and Ebrahimpour, R. Mixture of experts:
a literature survey. Artificial Intelligence Review, 42:
275–293, 2014.

Neelakantan, A., Vilnis, L., Le, Q. V., Sutskever, I., Kaiser,
L., Kurach, K., and Martens, J. Adding gradient noise
improves learning for very deep networks. arXiv preprint
arXiv:1511.06807, 2015.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L.,
and Courville, A. The primacy bias in deep reinforce-
ment learning. In International conference on machine
learning, pp. 16828–16847. PMLR, 2022.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schul-
man, J., Todorov, E., and Levine, S. Learning complex
dexterous manipulation with deep reinforcement learning
and demonstrations. arXiv preprint arXiv:1709.10087,
2017.

Salvato, E., Fenu, G., Medvet, E., and Pellegrino, F. A.
Crossing the reality gap: A survey on sim-to-real trans-
ferability of robot controllers in reinforcement learning.
IEEE Access, 9:153171–153187, 2021.

Schilling, M. Avoid overfitting in deep reinforcement
learning: Increasing robustness through decentralized
control. In Artificial Neural Networks and Machine
Learning–ICANN 2021: 30th International Conference
on Artificial Neural Networks, Bratislava, Slovakia,

September 14–17, 2021, Proceedings, Part IV 30, pp.
638–649. Springer, 2021.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D., Courville,
A., and Bachman, P. Data-efficient reinforcement learn-
ing with self-predictive representations. arXiv preprint
arXiv:2007.05929, 2020.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Shen, Y., Zhang, Z., Cao, T., Tan, S., Chen, Z., and Gan, C.
Moduleformer: Learning modular large language models
from uncurated data. arXiv preprint arXiv:2306.04640,
2023.

Sokar, G., Agarwal, R., Castro, P. S., and Evci, U. The dor-
mant neuron phenomenon in deep reinforcement learning.
arXiv preprint arXiv:2302.12902, 2023.

Song, X., Jiang, Y., Tu, S., Du, Y., and Neyshabur, B. Ob-
servational overfitting in reinforcement learning. arXiv
preprint arXiv:1912.02975, 2019.

Stooke, A., Lee, K., Abbeel, P., and Laskin, M. Decoupling
representation learning from reinforcement learning. In
International conference on machine learning, pp. 9870–
9879. PMLR, 2021.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Xu, G., Zheng, R., Liang, Y., Wang, X., Yuan, Z., Ji, T.,
Luo, Y., Liu, X., Yuan, J., Hua, P., et al. Drm: Master-
ing visual reinforcement learning through dormant ratio
minimization. arXiv preprint arXiv:2310.19668, 2023.

Yang, L., Sheng, D., Cai, C., Yang, F., Li, S., Zhang, D.,
and Li, X. Solving token gradient conflict in mixture-of-
experts for large vision-language model. arXiv preprint
arXiv:2406.19905, 2024.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. Mastering
visual continuous control: Improved data-augmented re-
inforcement learning. arXiv preprint arXiv:2107.09645,
2021.

Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K.,
and Finn, C. Gradient surgery for multi-task learning.
Advances in Neural Information Processing Systems, 33:
5824–5836, 2020a.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and eval-
uation for multi-task and meta reinforcement learning.

10

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

In Conference on robot learning, pp. 1094–1100. PMLR,
2020b.

Zhang, C., Vinyals, O., Munos, R., and Bengio, S. A
study on overfitting in deep reinforcement learning. arXiv
preprint arXiv:1804.06893, 2018.

Zhao, W., Queralta, J. P., and Westerlund, T. Sim-to-real
transfer in deep reinforcement learning for robotics: a sur-
vey. In 2020 IEEE symposium series on computational
intelligence (SSCI), pp. 737–744. IEEE, 2020.

Zheng, R., Wang, X., Sun, Y., Ma, S., Zhao, J., Xu, H.,
Daumé III, H., and Huang, F. Taco: Temporal latent
action-driven contrastive loss for visual reinforcement
learning. arXiv preprint arXiv:2306.13229, 2023.

Zhou, S., Zhang, W., Jiang, J., Zhong, W., Gu, J., and
Zhu, W. On the convergence of stochastic multi-
objective gradient manipulation and beyond. Advances
in Neural Information Processing Systems, 35:38103–
38115, 2022.

Zhu, H., Yu, J., Gupta, A., Shah, D., Hartikainen, K., Singh,
A., Kumar, V., and Levine, S. The ingredients of real-
world robotic reinforcement learning. arXiv preprint
arXiv:2004.12570, 2020.

11

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

Appendix

A. Algorithm Details
We illustrate the overview framework of MENTOR in Sec-
tion 3, where we employ two enhancements in terms of
agent structure and optimization: substituting the MLP
backbone with MoE to alleviate gradient conflicts when
learning complex tasks, and implementing a task-oriented
perturbation mechanism to update the agent’s weights in
a more targeted direction by sampling from a distribution
formed by the top-performing agents in training history.
The detailed implementation of task-oriented perturbation
is shown in Algorithm 1, and the implementation of using
MoE as the policy backbone is described as follows:

Algorithm 2 illustrates how MENTOR employs the MoE
architecture as the backbone of its policy network. In ad-
dition to the regular training process, using MoE as the
policy agent requires adding an additional loss to prevent
MoE degradation during training—where a fixed subset of
experts is consistently activated. The MoE layer computes
the output action while simultaneously calculating an aux-
iliary loss for load balancing (Lepikhin et al., 2020; Fedus
et al., 2022). Specifically, we extract the distribution over
experts produced by the router for each input. By averaging
these distributions over a large batch, we obtain an overall
expert distribution, which we aim to keep uniform across
all experts. To achieve this, we introduce an auxiliary loss
term—the negative entropy of the overall expert distribu-
tion (Chen et al., 2023; Shen et al., 2023). This loss reaches
its minimum value of − log(Ne), where Ne is the number
of experts in the MoE, when all experts are equally utilized,
thus preventing degradation. This auxiliary loss is added to
the actor loss and used to update the actor during the RL
process.

Figure 8. Ablation study on the hyperparameter of MoE. We
evaluated MENTORon MW Hammer (Sparse) wit different MoE
settings.

Algorithm 2 Mixture-of-Experts as the Policy Backbone

Require: Batch of visual inputs {xb}Bb=1

Ensure: Final actions {ab}Bb=1, Load balancing loss LLB
Initialize experts {FFN1,FFN2, . . . ,FFNN}
{zb}Bb=1 ← Encoder({xb}Bb=1)
{hb}Bb=1 ← h({zb}Bb=1)
for b = 1 to B do
Eb ← topk(hb, k)
wb(i)← softmax(hb,Eb

)[i], ∀i ∈ Eb
for each i ∈ Eb do
fb,i ← FFNi(zb)

end for
ab ← ActionProjector

(∑
i∈Eb

wb(i) fb,i
)

end for
// Compute load balancing loss
{prb}Bb=1 ← softmax({hb}Bb=1)

p(i)← 1
B

∑B
b=1 prb(i), ∀i

LLB ← −H(p) =
∑N

i=1 p(i) log(p(i))

B. Simulation Experimental Settings
The hyperparameters employed in our experiments are de-
tailed in Table 3. In alignment with previous work, we
predominantly followed the hyperparameters utilized in
DrM (Xu et al., 2023).

For the hyperparameters used in MoE module, Figure 8
shows the ablation study on the number of experts and top k
chosen experts. The results indicate the optimal setting for
the Hammer task is MoE has around 8 experts, performance
remains consistent across 4, 8, and 32 experts as long as
top k = 4. That is, given a proper top k, the performance is
not sensitive to the number of experts.

C. Ablation Study on Key Contributions
We conducted additional ablation studies on four diverse
tasks: Hopper Hop, Disassemble, Coffee-Push (Sparse), and
Hammer (Sparse). These studies aim to decouple the effects
of the MoE architecture and the Task-oriented Perturbation
(TP) mechanism proposed in our paper.

For the experiments, we evaluate four ablated versions of
MENTOR using the same four random seeds as in the origi-
nal experiments, as shown in Figure 9:

• MENTOR: Full model with both MoE and Task-
oriented Perturbation.

• MENTOR w/o TP: Task-oriented Perturbation is re-
placed with random perturbation.

• MENTOR w/o MoE: The policy backbone uses an
MLP architecture instead of MoE.

12

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

0 0.2m 0.4m 0.6m 0.8m 1m
Number of Frames

0

50

100

150

200

250

Ep
iso

de
 R

ew
ar

d
Hopper Hop

0 0.4m 0.8m 1.2m 1.6m 2m
Number of Frames

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

Disassemble

0 0.4m 0.8m 1.2m 1.6m 2m
Number of Frames

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

Coffee Push (Sparse)

0 0.4m 0.8m 1.2m 1.6m 2m
Number of Frames

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

Hammer (Sparse)

MENTOR (Ours) MENTOR_w/o_TP MENTOR_w/o_MoE MENTOR_w/o_TP_MoE

Figure 9. Ablation study on key contributions. This figure shows the experiment result of four ablated versions of MENTOR using the
same four random seeds as in the original experiments, illustrating our Mixture-of-Experts (MoE) and Task-oriented Perturbation (TP) are
both significant to improving performance.

Table 2. Sample efficiency comparison across tasks.

Sample Efficiency (Training Time) Hopper Hop Disassemble Coffee Push Hammer

MENTOR (Ours) 0.6167 0.7056 0.8066 0.7167
MENTOR w/o TP 1 0.8505 0.9481 0.875

MENTOR w/o MoE 0.85 1 1 1

• MENTOR w/o TP MoE: Neither MoE nor Task-
oriented Perturbation is used.

The results, summarized below, demonstrate the individual
contributions of each component:

The overall sample efficiency and performance of MEN-
TOR w/o TP and MENTOR w/o MoE remain lower than
the full MENTOR model. This underscores the comple-
mentary nature of these two components in enhancing the
overall learning efficiency and robustness of MENTOR.

Considering the performance, MENTOR w/o MoE and
MENTOR w/o TP also consistently outperform MEN-
TOR w/o TP MoE, indicating that both the MoE archi-
tecture and Task-oriented Perturbation independently con-
tribute to improved policy learning.

Considering efficiency, the following part shows a quantita-
tive result based on standard training time.

Standard Training Time: Let TMENTOR, TMENTOR w/o MOE,
and TMENTOR w/o TP denote the time required for the three
different methods to reach the same performance (the final
performance of the worst method). The standard training
time Tstandard is defined as the training time for the worst
method to achieve this performance:

Tstandard = max(TMENTOR, TMENTOR w/o MOE, TMENTOR w/o TP)

We define normalized sample efficiency as T∗
Tstandard

(lower is

better).

Table 2 shows the normalized sample efficiency of each
setting. MENTOR (Ours) achieves an average of 22.6%
and 26.1% less training time over the 4 tasks compared with
MENTOR w/o TP and MENTOR w/o MoE.

D. Real-World Experimental Settings
The training and testing videos are available at mentor-vrl.
The hyperparameters for the real-world experiments are the
same as those used in the simulator, as shown in Table 3.
We use 16 experts, with the top 4 experts activated.

D.1. Observation Space

The observation space for all real-world tasks is constructed
from information only provided by several cameras. Each
camera delivers three 84x84x3 images (3-channel RGB,
with a resolution of 84x84), which capture frames from the
beginning, midpoint, and end of the previous action.

For the Peg Insertion and Tabletop Golf tasks, the observa-
tion space is provided by two cameras: a wrist camera and
a side camera. As shown in Figure 10, these two cameras in
Tabletop Golf offer different perspectives. The wrist cam-
era is attached to the robot arm’s wrist, capturing close-up
images of the end-effector, while the side camera provides
a more global view. As previously mentioned, each camera
provides three images, resulting in a total of six 3-channel
84x84 images.

13

https://mentor-vrl.github.io/

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

Table 3. Hyper-parameters used in our experiments.

Parameter Setting

Architecture Features dimension 100 (Dog)
50 (Others)

Hidden dimension 1024
Number of MoE experts 4 or 16 or 32
Activated MoE experts (top-k) 2 or 4
MoE experts hidden dimension 256

Optimization Optimizer Adam
Learning rate 8× 10−5 (DMC)

10−4 (MW & Adroit)
Learning rate of policy network 0.5 lr or lr
Agent update frequency 2
Soft update rate 0.01
MoE load balancing loss weight 0.002

Perturb Minimum perturb factor αmin 0.2
Maximum perturb factor αmax 0.6 (Dog, Coffee Push & Soccer)

0.9 (Others)
Perturb rate αrate 2
Perturb frames 200000
Task-oriented perturb buffer size 10

Replay Buffer Replay buffer capacity 106

Action repeat 2
Seed frames 4000
n-step returns 3
Mini-batch size 256
Discount γ 0.99

Exploration Exploration steps 2000
Linear exploration stddev. clip 0.3
Linear exploration stddev. schedule linear(1.0, 0.1, 2000000) (DMC)

linear(1.0, 0.1, 3000000) (MW & Adroit)
Awaken exploration temperature T 0.1
Target exploitation parameter λ̂ 0.6
Exploitation temperature T ′ 0.02
Exploitation expectile 0.9

In the Cable Routing task, the observation space is con-
structed using three cameras: a side camera for an overview,
and two dedicated cameras for each slot to capture detailed
views of the spatial relationship between the slots and the
cable. This setup results in a total of nine 3-channel 84x84
images.

D.2. Action Space

The policy outputs an end-effector delta pose from the cur-
rent pose tracked by the low-level controller equipped in
robot arm. Typically, the end-effector of a robotic arm has
six degrees of freedom (DOF); however, in our tasks, the
action space is constrained to be fewer. The reason for this

restriction in DOF is specific to our setting: in our case, we
train model-free visual reinforcement learning algorithms
directly in the real-world environment from scratch, without
any initial demonstrations and prior knowledge toward the
tasks. As a result, the exploration process is highly random,
and limiting the degrees of freedom is crucial for safeguard-
ing both the robotic arm and the experimental equipment.
For instance, in the Peg Insertion task, the use of rigid 3D-
printed materials means allowing the end-effector to attempt
insertion at arbitrary angles could easily cause damage. Sim-
ilarly, in the Cable Routing task, an unrestricted end-effector
might collide with the slot, posing a risk to the equipment.

Peg Insertion: The end-effector in this task has four degrees

14

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

Wrist Camera View Side Camera View

Figure 10. Agent’s visual observation example in tabletop golf. MENTOR only uses visual data as policy input. At every step, we
capture and stack the frames at the beginning, midpoint, and end of the actuation process. The images captured from cameras are resized
to a resolution of 84x84 before being input to the agent.

of freedom: x, y, z, and r. Here, x and y represent the
planar coordinates, z represents the height, and r denotes
the rotation around the z-axis. The x, y, and z dimensions
are normalized based on the environment’s size, ranging
from -1 to 1, while r is normalized over a feasible rotation
range of 0.6π.

The action space is a 4-dimensional continuous space
(∆x,∆y,∆z,∆r), where each action updates the end-
effector’s state as:

(x, y, z, r)→
(
x+

∆x

8
, y +

∆y

8
, z +

∆z

10
, r +

∆r

8

)
.

Cable Routing: In this task, the end-effector is constrained
to two degrees of freedom: x and z. The x-axis controls
movement almost perpendicular to the cable, while the z-
axis controls the height. Both dimensions are normalized
based on the environment’s size, with values ranging from
-1 to 1. Although we restrict the action space to two di-
mensions, this task remains extremely challenging for the
RL agent to master, as it requires inserting cable in both
slots sequentially, making it the most time-consuming task
among the three, as shown in Figure 14. The difficulty
stems largely from the structure and parallel configuration
of the two slots: the agent cannot route the cable into both
slots simultaneously and must insert one first. However,
as shown in Figure 11b, without a hook-like structure to
secure the cable in the slot, the cable easily slips out when
the agent attempts to route it into the second slot. This task
therefore requires highly precise movements, forcing the
agent to learn the complex dynamics of soft cables.

The action space is a 2-dimensional continuous space
(∆x,∆z), where each action updates the end-effector’s po-
sition as:

(x, z)→
(
x+

∆x

5
, z +

∆z

5

)
.

Tabletop Golf: The end-effector in this task has three de-
grees of freedom: x, y, and r. Here, x and y represent
the planar coordinates, and r denotes the angle around the
normal vector to the xy plane. The x and y dimensions are
normalized based on the environment’s size, ranging from
-1 to 1, while r is normalized over a feasible rotation range
of 0.5π.

The action space has four dimensions: three spatial dimen-
sions (∆x,∆y,∆r) and a strike dimension, where the val-
ues range from -1 to 1. The end-effector’s state is updated
as:

(x, y, r)→
(
x+

∆x

10
, y +

∆y

10
, r +

∆r

8

)
,

and if strike > 0, the end-effector performs a swing with
strength proportional to the value of strike.

D.3. Reward Design

In this section, we describe the reward functions for the
three real-world robotic tasks used in our work: Peg Inser-
tion, Cable Routing, and Tabletop Golf. The basic principle
behind these functions is to measure the distance between
the current state and the target state. These reward functions
are designed to provide continuous feedback—though they
can be extremely sparse, as seen in Cable Routing—based
on the task’s progress, enabling the agent to learn efficient
strategies to achieve the goal. Notably, we trained two vi-
sual classifiers for the Cable Routing task to determine the
relationship between the cables and the slots for reward cal-
culation. Other positional information is obtained through
feedback from the robot arm or image processing algorithms.
The lower and upper bounds of each dimension in the pose
are normalized to -1 and 1, respectively. The coefficients
used in the reward functions are listed in Table 4.

Peg Insertion: The reward is computed as the negative

15

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

absolute difference between the current robot arm pose and
the target insertion pose, which varies for each peg.

Rpeg =
1

2

((√
2− ∥xg − xc∥

)
· C1 + (2− |∆z|) · C2

+
(π
2
− |θc − θg|

)
· C3 − C4

)

Where:

• xg and xc: Represent the goal position and the current
position of the robot’s end-effector in the x-y plane.

• ∥xg − xc∥: Euclidean distance between the goal and
current positions of the end-effector.

• ∆z: The height difference between the current and
target z positions.

• θc and θg: Current and goal angles of the end-effector,
respectively.

Cable Routing: To provide continuous reward feedback, we
trained a simple CNN classifier to detect whether the cable
is correctly positioned in the slot, awarding full reward when
the cable is in the slot and zero when it is far outside. The
CNN classifier was trained by labeling images to classify
the spatial relationship between the cable and the slot into
several categories, with different rewards assigned based on
the classification. However, when the cable remains in a
particular category without progressing to different stages,
the agent receives constant rewards, making it difficult for
the agent to learn more refined cable manipulation skills.

Rcable =rslot1 + I(rslot1 ≥ 2) · (rslot2 + C5)

Where:

• rslot1 : Reward for the first slot, determined by the po-
sition of the cable relative to the slot. The possible
rewards are:

– Outside the slot: rslot1 = −3
– On the side of the slot: rslot1 = −1
– Above the slot: rslot1 = 1

– Inside the slot: rslot1 = 5

• rslot2 : Reward for the second slot, with more detailed
classifications:

– Outside the slot: rslot2 = −3
– On the side of the slot: rslot2 = −1

– Partially above the slot: rslot2 = 1

– Above the slot and at the edge: rslot2 = 3

– Above the slot and close to the middle: rslot2 = 5

– Partially inside the slot: rslot2 = 10

– Fully inside the slot: rslot2 = 15

• I(rslot1 ≥ 2): Indicator function that activates only if
the cable is inserted correctly in the first slot, allowing
the agent to receive rewards for the second slot.

Tabletop Golf: The reward consists of two components: the
negative absolute distance between the robot arm and the
ball, and the negative absolute distance between the ball and
the target hole. This encourages the agent to learn how to
move the robot arm toward the ball and control the striking
force and direction to guide the ball toward the hole while
avoiding obstacles. Additional rewards include: Rgolf+ =
C6 (if the ball reaches the hole) and Rgolf− = C7 (if the
ball goes out of bounds). In this experiment, we deploy
two cameras at the middle of two adjacent sides of the golf
court. The pixel locations of the ball in both cameras are
used to roughly estimate its location to calculate the reward
function. Despite using an approximate estimation for the
reward, MENTOR still quickly learns to follow the ball and
strike it with the appropriate angle and force, demonstrating
the effectiveness of our proposed method.

Rgolf =(2− ∥pclub − pball∥) · C8 + (2− ∥pball − phole∥) · C9

− I(strike) + (2− |θbest − θcurrent|) · C10

−max (0,pball[y]− pclub[y] + 0.05) · C11

Table 4. Coefficients used in the reward functions over three
real-world robotic tasks.

Symbol Value

C1 16
C2 6
C3 8
C4 17
C5 3
C6 20
C7 5
C8 4
C9 8
C10 2
C11 10

Where:

• pclub and pball: Positions of the robot’s golf club and
the ball, respectively.

16

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

(b)(a) (c)

Figure 11. Blueprints of the self-designed mechanisms for the three real-world robotic manipulation tasks (from left to right: Peg
Insertion, Cable Routing, and Tabletop Golf).

Table 5. Comparison of time efficiency in the simulation task (FPS).

Task Name MENTOR DrM DrQ-v2 ALIX TACO

Hopper 37 55 78 49 23

• phole: Position of the target hole.

• ∥pclub−pball∥: Distance between the club and the ball.

• ∥pball−phole∥: Distance between the ball and the hole.

• θbest and θcurrent: Best calculated angle and current an-
gle of the robot’s arm for optimal striking.

• I(strike): Indicator function that penalizes unnecessary
strikes.

• pball[y] and pclub[y]: The y-axis is the long side of the
golf course. The ball should be hit from the positive
to the negative y-axis, so the club should always be on
the positive y-side of the ball.

D.4. Auto-Reset Mechanisms

One major challenge in real-world RL is the burden of
frequent manual resets during training. To address this,
we designed auto-reset mechanisms to make the training
process more feasible and efficient.

In the Peg Insertion task, the robot arm is set to frequently
switch among different pegs to help the agent acquire multi-
tasking skills. To facilitate this, we design a shelf to hold
spare pegs while the robot arm is handling one. With
the fixed position of the shelf, we pre-programmed a peg-
switching routine, eliminating the need for manual peg re-
placement. After switching, the robot arm automatically
moves the peg to the workspace and randomizes its initial
position for training.

In the Cable Routing task, manual resets are unnecessary,
as the robot arm can auto-reset the cable by simply moving
back to its initial position with added randomness.

In the Tabletop Golf task, we design an auto-collection
mechanism to reset the task. As shown in Figure 11c, the

tabletop golf device has two layers: the top golf court sur-
face and a lower inclined floor. When the ball is hit into
the hole or out of bounds, it rolls down to the corner of the
lower layer, where a light sensor triggers a motor to return
the ball to the court. The variability in the ball’s initial
velocity during reset introduces randomness to its starting
position.

E. Time Efficiency of MENTOR
We run all simulation and real-world experiments on an
Nvidia RTX 3090 GPU and assess the speed of the algo-
rithms compared to baselines. Frames per second (FPS) is
used as the evaluation metric for time efficiency.

For simulation, we use the Hopper Hop task to compare time
efficiency, as shown in Table 5. While MENTOR demon-
strates significant sample efficiency, its time efficiency is
relatively lower. This is primarily due to the implementation
of a plain MoE version in this work, where input feature
vectors are passed to all experts, and only the top-k outputs
are weighted and combined to generate the final output. In
most tasks, the active expert ratio (i.e., top-k/total number of
experts) is equal to or below 25%. More efficient implemen-
tations of MoE could significantly improve time efficiency,
which we leave for future exploration.

We also evaluate time efficiency on three real-world tasks,
as shown in Table 6. In real-world applications, the primary
bottlenecks in improving time efficiency are data collec-
tion efficiency and reset speed. Additionally, the sample
efficiency of the RL algorithm plays a crucial role. If the
algorithm has low sample efficiency, it may take many poor
actions over a long training period, leading to frequent auto-
resets and ultimately lowering the overall FPS.

As a result, MENTOR and DrM achieve similar levels of

17

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

MT3 door-open
drawer-open
window-open

MT4 faucet-close
faucet-open
plate-slide
plate-slide-back

MT5 door-open
drawer-close
drawer-open
window-open
window-close

MT7 button-press-topdown
door-open
drawer-close
drawer-open
peg-insert-side
window-open
window-close

Figure 12. Multi-task performance of MoE on Meta-World Simulator. Evaluation accuracy during training for 3, 4, 5, and 7-task
combinations, highlighting MoE’s advantage over MLP in multitask settings.

Table 6. Comparison of time efficiency in real-world
tasks (FPS).

Task Name MENTOR DrM

Peg Insertion 0.46 0.40
Cable Routing 0.67 0.62
Tabletop Golf 0.52 0.47

efficiency. However, due to its superior learning capability,
MENTOR quickly acquires skills and transitions out of
the initial frequent-reset phase faster than DrM, leading to
slightly better overall time efficiency during training.

We further extend the training process of the DrM baseline
to reach the same performance level as MENTOR in three
real-world experiments with the training time comparison
shown in Figure 14, which demonstrates an average 37% im-
provement in time efficiency for our method. These findings
underscore the importance of each component in achieving
superior results.

F. Mixture-of-Experts Alleviation Gradient
Conflicts in Single Task

In Meta-World, manipulation tasks are associated with com-
pound reward functions that typically include components
such as reaching, grasping, and placing. Conflicts between
these objectives can arise, creating a burden for shared pa-
rameters.

To validate this, we analyze the gradient cosine similarities
for the Assembly task. The Assembly task, as shown in
Figure 4 can naturally be divided into four stages: Grasp,
Move, Assemble, and Release.

stage 1
Grasp

stage 2
Move

stage 3
Assemble

stage 4
Release

stage 1Grasp

stage 2Move

stage 3

Assemble

stage 4
Release

MoE
MLP

Multi-Stage Gradient Cosine Similarity

0.04

0.02

0.00

0.02

0.04

Figure 13. Cosine similarity of multistage in a single task. This
figure shows the cosine similarities of gradients on the correspond-
ing four stages (Grasp, Move, Assemble, and Release) for both
MLP and MoE agents.

Peg Insertion Cable Routing Tabletop Golf
Real-World Tasks

0

1

2

3

4

5

Tr
ai

ni
ng

 E
ffi

cie
nc

y
(h

ou
rs

)

MENTOR
DrM

Figure 14. Time efficiency comparison. This figure compares the
training time required for DrM to reach the performance level of
MENTOR, as shown in Table 1.

To illustrate how Mixture-of-Experts alleviates gradient con-
flicts in a single task, we evaluate the cosine similarities of

18

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

0 2 4 6 8 10 12 14
Expert ID

Ta
sk

 ID

Expert Selection Heatmap

0.2

0.4

0.6

0.8

1.0

Figure 15. Expert utilization on Peg Insertion task. This figure
shows the usage intensity of the 16 experts in MENTOR during
the Peg Insertion task for three different plug shapes.

gradients on the corresponding four stages for both MLP
and MoE agents, as shown in Figure 13. The result show
that the MLP agent experiences gradient conflicts between
grasping and the other stages. This can occur because the
procedure of reaching to grasp objects could increase the
distance between the robot and the target pillar, leading to
competing optimization signals. In contrast, the MoE agent
mitigates these conflicts, achieving consistently positive gra-
dient cosine similarities across all stage pairs. This validates
the ability of the MoE architecture to alleviate the burden of
shared parameters and facilitate more efficient optimization,
even in single-task scenarios.

G. MENTOR in Simulator Multi-Tasking
Process

To further demonstrate the multi-task capabilities of MoE,
we conducted additional multitask learning experiments
on Meta-World. In these experiments, we used four task
combinations, consisting of 3, 4, 5, and 7 tasks, respectively.
Figure 12 shows the evaluation accuracy during training
and the detailed composition of the multi-tasks. In this
experiment, neither MENTOR nor DrM used perturbation,
with the only difference being the use of MoE versus MLP,
indicating the effectiveness of MoE in multi-tasking process.

H. MENTOR in Real-World Multi-Tasking
Process

Figure 15 shows the utilization of experts in the Peg Inser-
tion task for various plug shapes. Each shape is handled
by some specialized experts, which aids in multi-task learn-
ing. This specialization helps mitigate gradient conflict by
directing gradients from different tasks to specific experts,
improving learning efficiency, as discussed in the main text.

Start Execution Disturbance Success!

Figure 16. Random disturbances in simulation. This figure
shows the execution of the learned agent using MENTOR. The
agent consistently accomplishes Assembly task even with the dis-
turbance.

I. Random Disturbances in Simulation
To demonstrate the generalization capabilities of the agents
trained by MENTOR, we have introduced random distur-
bances in the real-world experiments presented in Sec-
tion 4.2. Additionally, we make evaluation of Meta-World
Assembly task with random disturbance. In detail, the train-
ing phase remains unchanged, but during evaluation, we
introduce a random disturbance: after the robot grasps the
ring and moves toward the fitting area, the fitting pillar ran-
domly changes its location (Disturbance). This forces the
robot agent to adjust its trajectory to the new target posi-
tion. Figure 16 shows the agent consistently accomplishes
Assembly task even with the disturbance, showing the poli-
cies learned by MENTOR exhibit strong robustness against
disturbances.

19

