
PIXEL: Physics-Informed Cell Representations
for Fast and Accurate PDE Solvers

Namgyu Kang1 Byeonghyeon Lee1 Youngjoon Hong2 Seok-Bae Yun2 Eunbyung Park1,3∗

1Department of Artificial Intelligence 2Department of Mathematics
3Department of Electrical and Computer Engineering

Sungkyunkwan University
{kangnamgyu27, leebh0102, hongyj, sbyun01, epark}@skku.edu

Abstract

Physics-informed neural networks (PINNs) have recently emerged and succeeded in
various PDEs problems with their mesh-free properties, and unsupervised training.
However, their slower convergence speed and relatively inaccurate solutions often
limit their broader applicability. This paper proposes a new kind of data-driven
PDEs solver, physics-informed cell representations (PIXEL), elegantly combining
classical numerical methods and learning-based approaches. We adopt a grid
structure from the numerical methods to improve accuracy and convergence speed
and overcome the spectral bias presented in PINNs. Moreover, the proposed
method enjoys the same benefits in PINNs, e.g., using the same optimization
frameworks to solve both forward and inverse PDE problems and readily enforcing
PDE constraints with modern automatic differentiation techniques. Project URL:
https://namgyukang.github.io/PIXEL/

1 Introduction

Physics-informed neural networks (PINNs) have recently received significant attention as new
data-driven Partial Differential Equation (PDE) solvers [11]. However, PINNs suffer from slow
convergence rates, and they often fall short of the desired accuracy [3, 16, 17, 19].

In addition, Multi-layer perceptron (MLP) architecture is known to have spectral bias, which priori-
tizes learning low-frequency components. Recent studies have shown that spectral bias [10] indeed
exists in PINN models [8, 18] and this tendency towards smooth function approximation often leads to
failure to accurately capture high-frequency components or singular behaviors in solution functions.

In this paper, we propose physics-informed cell representations (coined as PIXEL), which is jointly
trained with shallow neural networks to improve convergence rates and accuracy. Inspired by classical
numerical solvers that use grid points, we divide solution space into many subspaces and allocate
trainable parameters for each cell. The key motivation of PIXEL is to disentangle the trainable
parameters with respect to the input coordinates. In neural network-only approaches, such as PINNs,
all network parameters are affected by the entire input domain space. Therefore, parameter updates for
specific input coordinates influence the outputs of other input subspaces. On the other hand, each input
coordinate has dedicated trainable parameters updated only for certain input coordinates in PIXEL.
This parameter separation technique has been explored in visual computing domains [2, 5, 12, 13, 9, 1]
and has shown remarkable success in terms of convergence speed of the training procedure.

Furthermore, PIXEL is immuned to spectral bias presented in PINNs. A root cause of the bias is
the shared parameters of neural networks for the entire input space. However, PIXEL, each cell is

∗Corresponding author.

DLDE Workshop in the 36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://namgyukang.github.io/PIXEL/

Figure 1: Overall PIXEL architecture for a PDE solver

only responsible for a small sub-region of the input domain. Therefore, a large difference between
neighboring cell values can better approximate high-frequency components or singular behaviors.

Our proposed model PIXEL uses a differentiable interpolation scheme to implement virtually infinite
resolution grids, and the resulting representations are differentiable with respect to input coordinates.

2 PIXEL

2.1 Physics-informed neural networks

We briefly review physics-informed neural networks (PINNs). Let us begin with the initial-boundary
value problems with PDEs. A general formulation can be written as follows:

Nx,t[u](x, t) = f(x, t), x ∈ Ω, t ∈ [0, T], (1)
u(x, 0) = g(x), x ∈ Ω, (2)
Bx,t[u](x, t) = h(x, t), x ∈ ∂Ω, t ∈ [0, T], (3)

where Nx,t[·] is a linear or non-linear differential operator, Bx,t[·] is also a differential operator for
boundary conditions, and the initial conditions are denoted as u(x, 0) = g(x). u(x, t) represents the
unknown solution function and PINNs use neural networks, uθ(x, t), parameterized by the trainable
model parameters θ, to approximate the solution. Then, neural networks are trained by minimizing
the following loss function.

L(θ) = λresLres(θ) + λicLic(θ) + λbcLbc(θ) + λdataLdata(θ), (4)
where, Lres,Lic,Lbc,Ldata are PDE residual, initial condition, boundary condition, and observational
data loss functions, respectively. λ are weighting factors for each loss term. Each loss term is usually
defined as mean square loss functions over sampled points. For example, a PDE residual loss Lres
over Nres collocation points can be written as,

Lres(θ) =
1

Nres

Nres∑
i=1

|Nx,t[uθ](xi, ti)− f(xi, ti)|2. (5)

2.2 Neural networks and grid representations

The proposed architecture consists of a small neural network and a feature extractor of input coordi-
nates. We approximate solution functions by a neural network f parameterized by θ,

u(x, t) ≈ f(ϕ(x̂, t̂, C); θ), (6)

where C is a grid representation and ϕ is a feature extractor given input coordinates and the grid
representation using an interpolation scheme. Note that both C and θ are model parameters and
updated during the training procedure. The dimension of C is determined by the dimension of the
spatial input domain. For example, if x ∈ Ω ⊂ R then C ∈ Rc×H×W is a three dimensional tensor,
where the channel size c, and H and W are spatial and temporal grid sizes, respectively. x̂ ∈ [1, H]
and t̂ ∈ [1,W] are normalized input coordinates assuming input domain Ω ⊂ R and [0, T] are tightly
bounded by a rectangular grid. If x ∈ Ω ⊂ R2 then C is a four dimensional tensor, and if x ∈ Ω ⊂ R3

then C is a five dimensional tensor 2.
2Without temporal coordinates, e.g., Helmholtz equation, C is three or four dimensional tensors, respectively.

2

2.3 Mesh-agnostic representations through interpolation
In two dimensional grid cases, x ∈ Ω ⊂ R and C ∈ Rc×H×W , the following is a feature extractor.

ϕ(x̂, t̂, C) =
H∑
i=1

W∑
j=1

Cijk(max(0, 1− |x̂− i|))k(max(0, 1− |ŷ − j|)), (7)

where Cij ∈ Rc denotes cell representations at (i, j), and k : [0, 1] → [0, 1] represents a monotoni-
cally increasing smooth function. Given normalized coordinates (x̂, t̂), it looks up neighboring points
(2d+1 points) and computes the weighted sum of the representations according to a predefined kernel
function. It is differentiable w.r.t input coordinates so that we can easily compute partial derivatives
for PDE differential operator N [·] by using automatic differentiation.

To support higher-order gradients, we use a cosine interpolation kernel which is multiple differentiable.
We use, k(x) := 1

2 (1− cos(πx)) because it is everywhere continuous and infinitely differentiable.

2.4 Multigrid representations

Figure 2: Multigrid representations

The more fine-grained grids, the less chance a
grid cell would see the points. It would result in
highly overfitted solutions.

Inspired by recent hierarchical grid representa-
tions [14, 9], we suggest to use multigrid repre-
sentations. We stack up multiple coarse-grained
grid representations and the representations at
each collocation point are computed by sum-
ming up the representations from all grids. With
a slight abuse of notation, a multigrid represen-
tation is defined as four dimensional tensors in
two dimensional grids C ∈ RM×c×H×W . Then
we can reformulate an interpolation function as,

ϕmulti(x̂, t̂, C) =
M∑
i=1

ϕ(x̂+
(i− 1)

M
, t̂+

(i− 1)

M
, Ci), (8)

where Ci ∈ Rc×H×W denotes a grid representation. Multigrid approach was very critical to overall
PIXEL performance. Without this, we observed that PIXEL suffers from serious overfitting issues.

3 Experiments

Figure 3: In the inverse problems, PIXEL shows a faster convergence and more accurate predictions.
The shaded areas show 95% confidence intervals of 5 different runs with different random seeds.

We experimented on 6 various 2D and 3D PDEs by using L-BFGS optimizer. We implemented a
customized CUDA kernel of the triple backward grid sampler that supports high-order gradients [15],
the runtime and the memory capacity were efficiently reduced. Navier-Stokes Eq, [11] shows the result
of the inverse problem, which is the multivariate coefficient simultaneous prediction. Convection Eq,
[3] shows that without sequential training, the original PINNs has failed to find accurate solutions.
Reaction-diffusion Eq, which is also a PDE that the original PINNs have worked poorly [3]. About
Helmholtz Eq, [17] has reported that the original PINN has struggled to find an accurate solution. We
tested both low and high frequency parameters setting. Allen-Cahn Eq is a non-linear second-order
PDE that is known to be challenging to solve using conventional PINNs [17], and a few techniques,
including adaptive re-sampling [20] and weighting algorithms [7, 4, 19], have been proposed. Finally
Burgers Eq, which is non-linear and known to have a singular behavior.

3

Figure 4: For the forward problem, training loss curves and solutions of PDEs: the shaded areas show
80% confidence intervals of 5 different runs with different random seeds (100, 200, 300, 400, 500).

Methods Convection Reaction Allen-Cahn Burgers Helmholtz (2D) Helmholtz (2D) Helmholtz (3D)
diffusion (a1 = 1, a2 = 4) (a1 = a2 = 10) (a1 = a2 = a3 = 7)

PINN (8-40) N/A N/A N/A 5.60e-04 N/A N/A N/A
Sequential training 2.02-e02 1.56e-02 N/A N/A N/A N/A N/A
Learning rate annealing N/A N/A N/A N/A 3.69-e03 N/A N/A
Self-attention N/A N/A 2.10e-02 N/A N/A N/A N/A
Time marching N/A N/A 1.68e-02 N/A N/A N/A N/A
Causal training N/A N/A 1.43e-03 N/A N/A N/A N/A
Causal training N/A N/A 1.39e-04 N/A N/A N/A N/A(modified MLP)

3.02e-01 2.46e-01 9.08e-01 5.77e-03 4.02e-01 1.00 1.00
PINN (ours) (± 3.40e-01) (± 2.25e-01) (± 1.68e-02) (± 1.74e-03) (± 4.88e-01) (± 1.49e-06) (± 7.19e-04)

(best : 2.45e-02) (best : 2.36e-02) (best : 5.23e-01) (best : 3.35e-03) (best : 2.30e-03) (best: 1.00) (best : 1.00)
9.48e-03 1.63e-02 1.77e-02 9.98e-04 8.27e-03 3.05e-01 5.06e-03

PIXEL (16,4,16,16) (± 1.62e-03) (± 2.11e-03) (± 4.67e-03) (± 3.70e-04) (± 1.73e-03) (± 2.38e-01) (± 2.64e-03)
(best : 6.39e-03) (best : 1.33e-02) (best : 9.64e-03) (best : 4.88e-04) (best : 2.71e-03) (best : 7.47e-02) (best : 6.61e-04)

4.69e-03 8.11e-03 1.90e-02 6.20e-04 2.57e-03 4.26e-01 3.06e-01
PIXEL (64,4,16,16) (± 1.25e-03) (± 8.74e-05) (± 8.35e-03) (± 2.09e-04) (± 8.47e-04) (± 3.10e-01) (± 1.84e-01)

(best : 2.41e-03) (best : 7.81e-03) (best : 4.56e-03) (best : 3.85e-04) (best : 1.14e-03) (best : 1.05e-01) (best : 5.54e-02)
6.19e-03 8.26e-03 1.63e-02 7.01e-04 1.19e-03 3.11e-01 1.53e-01

PIXEL (96,4,16,16) (± 3.36e-03) (± 1.18e-03) (± 3.95e-03) (± 3.60e-04) (± 1.45e-04) (± 1.43e-01) (± 6.81e-02)
(best : 3.12e-03) (best : 7.16e-03) (best : 8.86e-03) (best : 3.20e-04) (best : 8.63e-04) (best : 1.70e-01) (best : 1.34e-02)

Table 1: The comparisons to other methods (L2 relative errors). The standard deviation for 5 experi-
ments is shown with the mean in the table. We compared against PINN [11], Sequential training [3],
Learning rate annealing [17], Self-attention [7], Time marching [6], and Causal training [16].

3.1 Results
For the forward problem, In Convection equation, the resulting solution image of PINN was not
correctly updated for the later time domain, t > 0.4. However, PIXEL converged to a high accurate
solution. For Reaction-diffusion equation, PINN showed a constant curve shape after 285 iterations in
the averaged loss curve. Whereas PIXEL showed an exponential decay shape until 10,000 iterations.
In Helmholtz which has the high-frequency components, as we expected, PINN has failed to converge
to an accurate solution due to the spectral bias. In contrast, PIXEL obtained high-accuracy solutions
quickly in 3-dimension as well as 2-dimension. For Allen-Cahn, which is known to be notoriously
difficult, the previous studies have demonstrated that PINNs perform very poorly without additional
training techniques, such as time marching techniques [6] or causal training [16]. However, our
method can obtain accurate solutions without any additional methods.
For the inverse problem, PINN showed fluctuation in the prediction curve due to the random
seed. In contrast, PIXEL showed robustness in predicting regardless of random seed in 3-dimension
Navier-Stokes equation as well as 2-dimension equations. Except for Helmholtz equation which
PINN failed to train, PIXEL showed convergence in a few iterations for PDEs. It was found that
PIXEL achieves better performance than PINN at multivariate coefficient prediction of the inverse
problem in 3-dimension Navier-Stokes equation.

4

Acknowledgments
We are thankful to Junwoo Cho for helpful discussion and contributions. This research was supported
by the Ministry of Science and ICT (MSIT) of Korea, under the National Research Foundation (NRF)
grant (2022R1F1A1064184, 2022R1A4A3033571), Institute of Information and Communication
Technology Planning Evaluation (IITP) grants for the AI Graduate School program (IITP-2019-
0-00421). The research of Seok-Bae Yun was supported by Samsung Science and Technology
Foundation under Project Number SSTF-BA1801-02.

References
[1] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance

fields. In European Conference on Computer Vision (ECCV), 2022.

[2] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 5501–5510, June 2022.

[3] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney.
Characterizing possible failure modes in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34, 2021.

[4] Dehao Liu and Yan Wang. A dual-dimer method for training physics-constrained neural networks
with minimax architecture. Neural Networks, 136:112–125, 2021.

[5] Julien NP Martel, David B Lindell, Connor Z Lin, Eric R Chan, Marco Monteiro, and Gor-
don Wetzstein. Acorn: adaptive coordinate networks for neural scene representation. ACM
Transactions on Graphics (TOG), 40(4):1–13, 2021.

[6] Revanth Mattey and Susanta Ghosh. A novel sequential method to train physics informed neural
networks for allen cahn and cahn hilliard equations. Computer Methods in Applied Mechanics
and Engineering, 390:114474, 2022.

[7] Levi McClenny and Ulisses Braga-Neto. Self-adaptive physics-informed neural networks using a
soft attention mechanism, 2020.

[8] Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. Finite basis physics-informed neural
networks (fbpinns): a scalable domain decomposition approach for solving differential equations,
2021.

[9] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM Transactions on Graphics, 41(4):1–15, jul
2022.

[10] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In International
Conference on Machine Learning, pages 5301–5310. PMLR, 2019.

[11] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

[12] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf: Speeding up neural
radiance fields with thousands of tiny mlps. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 14335–14345, 2021.

[13] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast
convergence for radiance fields reconstruction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 5459–5469, June 2022.

[14] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. Neural geometric level of
detail: Real-time rendering with implicit 3D shapes. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR, pages 11358–11367, 2021.

5

[15] Jingwen Wang, Tymoteusz Bleja, and Lourdes Agapito. Go-surf: Neural feature grid optimiza-
tion for fast, high-fidelity rgb-d surface reconstruction. In 2022 International Conference on 3D
Vision (3DV). IEEE, 2022.

[16] Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality is all you need for
training physics-informed neural networks, 2022.

[17] Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow
pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing,
43(5):A3055–A3081, 2021.

[18] Sifan Wang, Hanwen Wang, and Paris Perdikaris. On the eigenvector bias of fourier feature
networks: From regression to solving multi-scale pdes with physics-informed neural networks.
Computer Methods in Applied Mechanics and Engineering, 384:113938, 2021.

[19] Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural
tangent kernel perspective. Journal of Computational Physics, 449:110768, 2022.

[20] Colby L. Wight and Jia Zhao. Solving allen-cahn and cahn-hilliard equations using the adaptive
physics informed neural networks, 2020.

A Experimental setup and details

PDEs Initial condition Boundary condition Inverse problem
coefficient

Convection ut + βux = 0
u(x, 0) = sinx u(0, t) = u(2π, t) β

x ∈ [0, 2π], t ∈ [0, T]

Reaction ut − νuxx − ρu(1− u) = 0
u(x, 0) = h(x) u(0, t) = u(2π, t) ν

Diffusion x ∈ [0, 2π], t ∈ [0, T]

∆u(x, y, z) + k2u(x, y) = q(x, y, z)

u(x, y, z) = 0,q(x, y, z) = k2 sin (a1πx) sin (a2πy) sin (a2πz)

Helmholtz (3D) −(a1π)
2 sin (a1πx) sin (a2πy) sin (a2πz) ·

(x, y, z) ∈ ∂[−1, 1]2
·

− (a2π)
2 sin (a1πx) sin (a2πy) sin (a2πz)

(x, y) ∈ [−1, 1]2

∆u(x, y) + k2u(x, y) = q(x, y)

u(x, y) = 0,

k

q(x, y) = k2 sin (a1πx) sin (a2πy)

Helmholtz (2D) −(a1π)
2 sin (a1πx) sin (a2πy) ·

(x, y) ∈ ∂[−1, 1]2− (a2π)
2 sin (a1πx) sin (a2πy)

(x, y) ∈ [−1, 1]2

Navier-Stokes (3D)
ut + λ1(uux + vuy) = −px + λ2(uxx+ uyy)

· · λ1, λ2vt + λ1(uvx + vvy) = −py + λ2(vxx+ vyy)

ux + vy = 0

Allen-Cahn
ut − 0.0001uxx + λu3 − 5u = 0

u(x, 0) = x2 cos(πx)
u(t,−1) = u(t, 1)

λ
x ∈ [−1, 1], t ∈ [0, 1], λ = 5 ux(t,−1) = ux(t, 1)

Burgers
ut + uux − νuxx = 0

u(0, x) = − sin(πx) u(t,−1) = u(t, 1) = 0 ν
x ∈ [−1, 1], t ∈ [0, 1]

Table 2: The formulations of various PDEs in our experiments of the forward and the inverse problem.

For all experiments, we used Limited-memory BFGS (L-BFGS) second-order optimization algorithms.
In many cases of training PINNs, it outperforms other first-order optimization algorithms, such as
ADAM or SGD. We set the learning rate to 1.0 and used the strong-wolfe line search algorithm.
In every L-BFGS iteration, we randomly sample collocation points to make the model robust to
the entire input and time domains for training PIXELs. We found that PINNs often have struggled
to converge in this setting, so we initially sampled the collocation points and fixed them, which
has been a common practice in PINNs literature. To compute the accuracy of the approximated
solutions, we used the relative L2 error, defined as ||u−û||2

||u||2 , where û is a predicted solution and u is a
reference solution. We used NVIDIA RTX3090 GPUs and A100 GPUs with 40 GB of memory. For
all experiments, we used 2 hidden layers and 16 hidden dimensions for shallow MLP architecture,
and a hyperbolic tangent activation function (tanh) was used. For coefficients of the loss function, we
used λic = λbc = 1, λdata = 0.

6

Convection equation. A shallow MLP of 2 layers with 16 hidden units was used. The baseline PINN
model was trained with the same number of data points from PIXEL. For the PINN model, we used 3
hidden layers and 50 hidden dimensions following the architecture in [1].

Reaction-diffusion equation. We used the same formulation in [1], and conducted experiments
with the same PDE parameters (ρ = 5, ν = 3). For training PINNs, we used 3 hidden layers and 50
hidden dimensions following the architecture in [1].

2D Helmholtz equation. We used the same formulation in [4]. The source term is given as
q(x, y) = −(a1π)

2u(x, y)− (a2π)
2u(x, y) + k2u(x, y). The analytic solution of this formulation

is known as u(x, y) = sin (a1πx) sin (a2πy). We tested the PDE parameters k = 1, a1 = 1 ,and
a2 = 4. For a more complex setting, we also tested k = 1, a1 = 10 and a2 = 10. For the baseline
PINN model, we used 7 hidden layers and 100 hidden dimensions following the architecture in [4].

3D Helmholtz equation. For 3D Helmholtz equation, the source term with q(x, y, z) =
−(a1π)

2u(x, y, z) − (a2π)
2u(x, y, z) − (a3π)

2u(x, y, z) + k2u(x, y, z) is used. We tested the
complex PDE parameters setting k = 1, a1 = 7, a2 = 7, and a3 = 7. MLP architecture is same as
2D problems.

Allen-Cahn equation. For the baseline PINN model, we used 6 hidden layers and 128 hidden
dimensions following the architecture in [2] In the case of Allen-Cahn, there was a problem that NaN
occurs in PINN when the seed is 400. Unlike PIXEL, PINN excludes seed 400 only in the case of
Allen-Cahn.

Burgers equation. We used the same PDE parameter, ν = 0.01/π in [3]. For the baseline PINN
model, we adopted the same architecture in [3], using 8 hidden layers and 40 hidden dimensions.

3D Navier-Stokes equation In this paper, the same Navier-Stokes equation with the original PINN
paper [11] is used. We used 9 hidden layers and 20 hidden dimensions for the baseline PINN model
to predict the multivariate coefficient in the inverse problem.

A.1 Hyperparameter of experiments

Convection Reaction Helmholtz (3D) Helmholtz (2D) Allen-Cahn Burgers
diffusion

Grid sizes (96, 4, 16, 16) (96, 4, 16, 16) (16, 4, 16, 16) (96, 4, 16, 16) (96, 4, 16, 16) (96, 4, 16, 16)
collocation pts 100,000 100,000 400,000 100,000 100,000 100,000
ic pts 100,000 100,000 N/A N/A 100,000 100,000
bc pts 100,000 100,000 400,000 100,000 N/A 100,000
λres 0.005 0.01 0.01 0.0001 0.1 0.01

Table 3: Experimental details of the forward problems for training PIXELs: (96, 4, 16, 16) means, 96
multigrids, channel size of 4, the spatial grid size of 16, and temporal grid size of 16. # collocation
pts, # ic pts, and # bc pts denote the number of collocation, initial condition, and boundary condition
points, respectively.

Navier-Stokes Convection Reaction Helmholtz Allen-Cahn Burgers
(3D) diffusion (a1 = 1, a2 = 4)

Grid sizes (150, 4, 16, 16) (192, 4, 16, 16) (192, 4, 16, 16) (16, 4, 16, 16) (192, 4, 16, 16) (192, 4, 16, 16)
collocation pts 100,000 100,000 100,000 100,000 100,000 100,000
ic pts 100,000 100,000 100,000 N/A 100,000 100,000
bc pts 100,000 100,000 100,000 100,000 N/A 100,000
λres 1.25 0.005 0.005 0.00001 0.1 0.0005

Table 4: Experimental details of the inverse problems (PIXEL)

Table 3 and Table 4 shows the experimental details for the forward and inverse problems respectively.
Note that all other hyperparameters of the forward problems and the inverse problems are same
explained in main text, including the architecture of PINN, confirming that the proposed method
is not sensitive to hyperparameters. For the inverse problems, The number of data points used for
ground truth data points is 1,000,000 for Navier-Stokes equation, 25,600 for convection equation,
Burger equation, and Reaction-diffusion equation. The Helmholtz equation uses 490,000 and the
Allen-Cahn equation uses 102,912.

7

B Grid size and the number of data points

This section studies the relationship between the amounts of training data points and the grid sizes.
We introduced multigrid representations that inject a smooth prior into the whole framework, which
would reduce the required data points for each training iteration. We demonstrate this with the
convection equation example by varying the number of training data points (collocation and initial
condition) and the number of multigrid representations. We fixed the grid size 16 and the channel
size 4, and varied the number of multigrids from 4 to 64. We reported the L2 relative errors after 500
L-BFGS iterations. As shown in Table 5, our method is robust to the amounts of training data points.
Although we can achieve higher accuracy with more training points, it performs comparably with a
few data regimes.

Multigrid sizes 5,000 (# pts) 10,000 20,000 50,000 100,000
(4, 4, 16, 16) 2.35e-01 2.32e-01 2.25e-01 2.23e-01 2.21e-01
(8, 4, 16, 16) 5.59e-02 4.11e-02 3.10e-02 2.95e-02 3.73e-02
(16, 4, 16, 16) 4.47e-02 2.99e-02 2.51e-02 8.01e-03 1.91e-02
(32, 4, 16, 16) 4.40e-02 2.69e-02 1.13e-02 1.13e-02 8.22e-03

Table 5: Varying the amounts of training points and the number of multigrids (L2 relative errors)

C The visualization of multigrid representations

Figure 5: Visualization of multigrid representations for Burgers and Helmholtz equations (best viewed
zoomed in): The first row shows image plots of each grid representation, and the second row shows
the representations after the interpolation. The final representations are obtained through the sum
of each interpolated cell, followed by an MLP to generate the solution. We used (4,4,64,64) and
(4,4,16,16) multigrid representations for Burgers and Helmholtz, respectively.

We demonstrate the intermediate results in Figure 5. In Burgers example (the first and the second
rows), we used (4,1,64,64) configuration and two layers of MLP with 16 hidden units. As we expect,
each grid show foggy images since the final solution will be the sum of all multigrid representations.
Also, we shifted each grid, which resulted in slightly different images from each other. The final
solution is completed in the last stage by filling up the remaining contents using an MLP. Importantly,
we note that the singular behavior (shock, a thin line in the middle of the solution image) is already
well captured by the grid representations. The role of MLP was to represent the smooth global

8

component in solution function. Therefore, the proposed grid representations and an MLP combine
each other’s strengths to obtain better final solutions.

In Helmholtz example, we used small size grids (4,4,16,16). Thus, we can observe notable differences
after cosine interpolation (grid-like pattern before the interpolation). We also note that the grid
representations already represent complex patterns, and the last MLP stage also refined the solution
by darkening the colors in the solution image.

D Visualizations

Figure 6: Inverse problem of allen-cahn equation

Figure 7: Inverse problem of convection equation

9

Figure 8: Inverse problem of reaction-diffusion equation

Figure 9: Inverse problem of burgers equation

10

Figure 10: Inverse problem of helmholtz equation.

Figure 11: Forward problem of burgers equation

11

Figure 12: Convection equation results of PIXEL, at the 1500 iteration, the final relative L2 error is
2.69e-03

Figure 13: Forward problem of convection equation

Figure 14: Forward problem of reaction-diffusion equation

12

Figure 15: Forward problem of allen-cahn equation.

13

Figure 16: Forward problem of helmholtz equation

14

References
[1] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney.

Characterizing possible failure modes in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34, 2021.

[2] Revanth Mattey and Susanta Ghosh. A novel sequential method to train physics informed neural
networks for allen cahn and cahn hilliard equations. Computer Methods in Applied Mechanics
and Engineering, 390:114474, 2022.

[3] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

[4] Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow
pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing,
43(5):A3055–A3081, 2021.

15

	Introduction
	PIXEL
	Physics-informed neural networks
	Neural networks and grid representations
	Mesh-agnostic representations through interpolation
	Multigrid representations

	Experiments
	Results

	Experimental setup and details
	Hyperparameter of experiments

	Grid size and the number of data points
	The visualization of multigrid representations
	Visualizations

