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Abstract

Large Language Models exhibit logical inconsistency across multi-turn inference
processes, undermining correctness in complex inferential tasks. Challenges arise
from ensuring that outputs align with both factual correctness and human intent.
Approaches like single-agent reflection and multi-agent debate frequently prioritize
consistency, but at the expense of accuracy. To address this problem, we propose
a novel game-theoretic consensus mechanism that enables LLMs to self-check
their outputs during the decoding stage of output generation. Our method models
the decoding process as a multistage Bayesian Decoding Game, where strategic
interactions dynamically converge to a consensus on the most reliable outputs with-
out human feedback or additional training. Remarkably, our game design allows
smaller models to outperform much larger models through game mechanisms (e.g.,
78.1 LLaMA13B vs. 76.6 PaLM540B). As a model-agnostic method, our approach
consistently improves even the latest models, enhancing DeepSeek-7B’s perfor-
mance on MMLU by 12.4%. Our framework effectively balances correctness and
consistency, demonstrating that properly designed game-theoretic mechanisms can
significantly enhance the self-verification capabilities of language models across
various tasks and model architectures.

1 Introduction

Large Language Models (LLMs) have demonstrated extraordinary capabilities in tasks such as factual
question answering, fact-checking, and open-ended text generation [9, [54]. Yet, this remarkable
progress comes at a hidden cost: as generative models grow in complexity and scale, they increasingly
produce outputs that, while seemingly plausible, can be factually incorrect or subtly misleading [46].
This issue, whether caused by the way models are optimized or by unintended hallucinations [4}, 2],
leads to a fundamental challenge: reasoning inconsistency. Models can give contradictory answers to
related questions, which undermines their consistent correctness for coherent inference tasks.

Existing approaches attempt to optimize model outputs through human feedback (e.g., RLHF [17,
16,157, 44]). However, human feedback is limited. It is hard to interpret model behavior [58] and to
evaluate the complex logic in Al-generated content [27]], making it increasingly difficult for humans to
follow and assess the reasoning of advanced models [10,138]]. Recent alternatives exhibit critical flaws:
single-agent reflection produces inconsistent self-verification resulting for incorrect answers due to
confirmation bias [43], 65} 40], while multi-agent debates ultimately lead to collusive reinforcement,
i.e., agents converging on shared errors [20, 64} 41]]. In light of these challenges, we are interested in
the question:
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Figure 1: Illustration of strategic decoding through a Bayesian Decoding Game (BDG) for the
Switzerland capital query (Q.) with candidates (A.), with initial rankings (left) and convergence
dynamics (right) between Generator (solid) and Verifier (dashed). The collusive Nash equilibrium

validates *Zurich’ (incorrect) while rejecting *Bern’ (correct) through game-theoretic interactions
based on choice patterns rather than factual correctness.
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How can we enable LLMs to self-check through strategic interactions that overcome single-agent
inconsistency and multi-agent collusion while surpassing human evaluation limits.ﬂ

Thus, we explore a game-theoretic approach and introduce a Verifier, serving as a proxy for human
judgment to systematically assess generators as outlined in Fig. [T} The motivation for this approach
is threefold: (1) LLMs are increasingly employed to assist in evaluating their own outputs, offering a
more scalable alternative to solely relying on human feedback [1, 157, 44, 49]; (2) the flexibility to
adjust game-theoretic objectives, such as utilities and policies between the generator and verifier,
allows us to analyze latent decoding consistency and legibility as a function [31} 27]; and (3) in
scenarios where human guidance is constrained, structured Al interactions can effectively elicit and
refine latent knowledge, thereby enhancing model correctness, and generation consistency [15,163].

Focus of the paper. Realistically, neither models nor humans can be expected to be perfectly correct.
Thus, our work focuses on achieving consistency through systematic verification through strategic
interaction between LLMs calibrated on correctness and confidence measures. We design a multi-step
Bayesian Decoding Game with complex action spaces that enable generators and verifiers to iteratively
refine their strategies. Through the proposed no-regret optimization, our framework drives agents
toward an equilibrium that ensures both consistency and correctness. Thus, we define reliability
as simultaneous consistency and correctness. Hence, our approach targets two types of outputs
that are challenging for existing methods: (1) Equilibrium-Based Consistencies: Cases where
strategic interactions between agents converge to stable equilibria that reinforce both correctness
and consistency. (2) Game-Emergent Inconsistencies: Subtle errors that are revealed through
game-theoretic dynamics, which may go undetected by human evaluation or standard automated
checks.

We formulate these challenges as a multi-step Bayesian Decoding Game with complex action spaces
(Fig. 2). Here, generators and verifiers engage in strategic interactions: generators sample outputs
based on latent model knowledge, while verifiers assess these outputs. To enhance the efficiency of
this process, we improve upon traditional no-regret optimization through Markovian strategy updates
and o;-separation constraints, enabling faster convergence to optimal equilibrium while maintaining
clear separation between correct and incorrect outputs.

2 A Bayesian Decoding Game (BDG)

While the ability of LLMs to self-check is crucial for reliable applications, existing verification
frameworks lack formal guarantees against collusion. In this section, we develop the theoretical foun-
dations of our BDG, focusing on how it overcomes the fundamental limitations of prior approaches
through game-theoretic principles. We first formalize the decoding process as a signaling game from
scratch, then introduce our key innovation: the o;-Separated Equilibrium, which enforces consistency
self-checking by preventing collusive behaviors that plague existing consensus mechanisms.

!Single-agent reflection and multi-agent debates fail at self-checking, please see Appx
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Figure 2: Overview of the BDG under a signaling game structure. (a) Communication Topologies:
comparing Single-agent Inconsistency with internal contradictions, Multi-agent Collusion that rein-
forces errors, and BDG Strategic Consensus achieving correct convergence through o-separation. (b)
BDG Signalling Tree: Environment (Env) sends private signals to generator (G /1), who generates
candidates (y1, ..., yn) for information transmission. The verifier makes judgments (C/I) without
observing original signals, enabling strategic decoding through Markovian Strategy Update (dashed)
until equilibrium.

2.1 Preliminaries: Modeling LL.M Decoding as a Signaling Game

We first define LLM decoding as a signaling game. This formulation naturally captures the self-check
process where an LLM must both generate content and verify its correctness while maintaining
strategic consistency. The simplest form of a signaling game [25]] can be described as follows: the
generator receives a signal (Correct or Incorrect) and then takes a strategy (choose an answer implied
by the signal from the candidate answer set) to transmit the signal information to the verifier. The
verifier has to make a judgment (Correct or Incorrect) of the signal based on the realized action of
the generator. If the judgment matches the signal, both the generator and verifier receive utility 1,
and otherwise 0; in LLM decoding, the signaling game has been used to fine-tune LLMs to output
the best possible answer(s) under equilibrium. For example, the Equilibrium Consensus Game
(ECG) proposed by [31] is a pioneering work on this problem, but like all existing consensus game
frameworks, it fails to address a fundamental challenge: Collusion in a Nash Equilibrium.

Theorem 1. More than one (mixed) stratengNash Equilibrium exists for this game.

Definition 1. Collusion [0l] in a competitive multi-agent game occurs when two or more agents
cooperate covertly to the disadvantage of others.

Collusion in a Nash Equilibrium (NE). Thm. [T] is both a guarantee and a curse; the existence of an
equilibrium ensures convergence, but the presence of multiple equilibria raises the risk of undesirable
outcomes under collusion, where low-quality output may incorrectly align with successful verification.
The proof and explanation are in Appx.[E.I] This collusion problem directly parallels the failure
modes we observe in multi-agent debate frameworks, where multiple LLMs can converge on incorrect
answers in Appx.[C]

Example. (Fig. [I] Continued) In a signaling game, given the query “What is the capital of
Switzerland?”, one Collusive Nash Equilibrium can be given by a Correct signal, generator
chooses “Zurich”, verifier judges { Correct} signal, generator chooses “Bern”, verifier judges
{Incorrect} which means that the verifier makes judgments only conditioning on the generator’s
choice pattern rather than factual correctness. Under this equilibrium, the more plausible but
incorrect answer (Zurich) is validated while the correct answer (Bern) is rejected.

Algorithmic collusion has been studied quite extensively in literature including [[67} 35, 156]]. To avoid
collusion, BDG enforces a Separating Equilibrium ’condition for improved consistency.

“Mixed strategies refer to a probability distribution over all actions rather than committing to one action.
3A Separating Equilibrium (SE) [3] is a type of Perfect Bayesian Equilibrium (PBE) Appx. @where agents
with different types (signal) choose different strategies in equilibrium.



2.2 An Optimal Equilibrium for Decoding Games

Collusion Avoidance with Separating Equilibrium. To ensure that both the generator distinguishes
between the correct and incorrect signal and the verifier verifies answers correctly, we design the
BDG and convergence algorithm to constrain the equilibrium to be a Separating Equilibrium (SE).

Definition 2. (Decoding Game) The Decoding Game is a variant of the signaling game in §2.1]
and the utility is determined by the preference ordering of each player, O; € Py, i € {G,V},
s € {correct, incorrect}y = S where |Y| is the cardinality of the candidate set Y and P,y is the set
of all permutations of elements in ). The utility can be defined as

1
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Strategies are given by ag(- | z,s) = 7g(s,x) € AQ),av(- | z,y) = wv(r,y) €
A({correct, incorrect}), and a; are actions. The preference ordering O; on ) is determined by
the actions given signal:

ag(yi | ®,8) > ac(yj | z,8) <= ¥ Tc ¥, av(s|zy) >av(s|z,y) <= vy 2

With an incorrect signal, the generator’s strategy just maps to a reverse distribution of the correct
signal and the utility is determined by the ordering resulting from the action distributionﬂ To avoid
collusion, BDG introduces a ;-Separated condition:

Definition 3. (o;-Separated Equilibrium (o;-SE) ) For both the generator and verifier, given constants
oaG,ov, the generator’s equilibrium strategy is said to be og-separated, i € {G,V'} if and only
if ming, ey |lag(y; | @, correct) — ac(y; | x,incorrect)|| > og, whereas for the verifier, we have
miny,, cy ay (correct | x,y;) — av (incorrect | x,y;)|| > ov

Intuition. (Example [2.T] Continued) The o¢-separated constraint enforces that the generator’s
strategies for different signals must maintain an L1 distance of at least o, meaning its action
distributions are distinctly different when receiving different signals. Similarly, oy, -separation
ensures that the verifier’s judgment probabilities maintain a clear quantitative distinction of at
least oy for each candidate. It prevents the formation of arbitrary consensus based on statistical
patterns rather than factual’ correctness.

2.3 BDG Optimization: No-regret Optimization for Equilibrium

No-Regret Optimization. Based on the Decoding Game in we propose two strategy update
schedules to numerically achieve optimal convergence of ¢;-SE in Defi.[2] [3] The multiplicity of
SE leads to convergence to suboptimal outcomes, necessitating the definition of an initial strategy for
(1)
v

each player. This prior is denoted as ay,’ (- | z,y) and ag)(~ | x, s) following [31]].

Through repeated interactions and iterative policy refinement, no-regret learning approximates
equilibria in large games. Our cumulative regret is defined as:

T
1
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where 7 is the optimal hindsight strategy that maximizes this value. Rather than computing regret
at each iteration, 7} is selected based on the time-averaged strategies. In our game, global regret
minimization is achieved by minimizing regret locally within each information set (C' and I signal).

Markovian Strategy Update. The players update their strategy by learning the opponent’s action in
the previous period, which we denote by a Markovian strategy update schedule:

*The Generator G uses a strategy 7 : S x X — A()) so that upon seeing (s, ) it selects a probability
distribution ag (- | z,s) = wa(s,z) € A(Y), the Verifier V uses a strategy 7y : X x Y — A(S) so that
upon seeing (z, y) it selects a distribution av (- | z,y) = wv(z,y) € A({ correct, incorrect })
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where 7;, A\;, i € {G,V'}, 0 are the learning rate and stiffness hyperparameter and consistency bound.
The two strategy update schedules we propose show satisfactory convergence properties, and the
stopping criteria: 1. Consistency: Og = Oy . 2. Collusion Avoidance: satisfy o;-SE in Defi. 3]

Theorem 2. A Markovian update schedule for a Decoding Game converges to an optimal o;-
Separated Equilibrium.

The proof can be found in Appx.[E.2] Under BDG’s utility and the design of the no-regret algorithm,
our method reaches o;-SE 30 times faster than the current state-of-the-art [31] based on Average
Recall update with an accurate correctness alignment between the generator and verifier. Table [5|and
Appx. [H]illustrate the difference in game design between BDG and ECG [31]].

2.4 BDG Analysis: Properties and Behavior

Equilibrium Properties. At ¢;-SE with signal distribution P(correct, incorrect) = (0.5,0.5), we
analyze the separation characteristics induced by our no-regret optimization. According to the
environment, we label the g most preferred candidates as correct, and the rest as incorrect. We denote
the candidate in each group as y; ¢, y; 1, respectively. For candidate set ) with |)| = n where n
mod 2 = 0, we characterize degree of separation between ‘correctness‘ and ‘incorrectness‘ by the
separation score:

lay (correct | ,y5) — ay (correet | , 5 1.1).

At t = 1 this measure quantifies the verifier’s initial separation score between the least correct and
least incorrect candidates under the prior. When this value is small (when the verifier is ambiguous
about the correctness classification), the ambiguity is revealed and sorted through the preference
fluctuation during the strategic interaction with the Markovian update, in contrast to the Average
Recall update shown in Fig. 3|b (right corner). Our separating constraint enforces that the equilibrium
separation score is bounded by the same parameter as in Defi. [3] under a rational assumption, which
is described by the following proposition:

Proposition 1 Under any signal distribution environment such that P(correct, incorrect) = (p, 1 —p)
s.t. p < 1 and the rationality condition that the equilibrium confidence scores is greater than % for
correct candidates and less than % the incorrect candidates, the separation score is also bounded
below by the same parameter in Defi[3]

ay; (correct | x,yy) — ay,(correct | x,yr41) > ov, @)

if and only if the o;-separated condition is enforced. k is the least correct candidate and k + 1 is
the least incorrect candidate in equilibrium, determined by the candidate set cardinality and signal
distribution.

Prop. [T|exemplifies how o;-separated condition (Defi[3)) ensure that, in a binary decision-making
environment, correct and incorrect candidates can be properly segregated. Our Markovian updates
maintain this separation while ensuring convergence, as demonstrated below. However, there is no
such guarantee based on the Average Recall update in Table. [5|and Nash equilibrium of Thm. [T]
More details can be found in Appx.|[E.3] A comparison can be found in Fig. 3]

Reliable Behavior. In this paper, we define reliability as simultaneous consistency and correctness.
The 0;-SE in BDG prevents collusion through strategic separation which ensures reliable behaviors

The normalization is essentially a mapping from opponent’s action space to player herself



of LLMs and agents. In equilibrium, we examine both correctness alignment between the generator
and verifier and collusion prevention:

Intuition. (Intuition2:2]Continued) At equilibrium, reliable behavior emerges from two mecha-
nisms: the strategic separation enforces a strict preference ordering that prevents collusion, while
the reliability measure ensures this preference translates to an optimal balance between strategic
consistency and behavioral reliability.

We analyze policy entropy dynamics between BDG and ECG to understand the equilibrium be-
haviorally. We evaluate convergence through policy entropy H(7) = — > 7(*) log 7 (), which
measures agent strategy uncertainty. This metric captures both convergence efficiency (entropy
reduction rate) and equilibrium stability (final entropy level) for generator and verifier policies. Fig.
shows how BDG achieves reliable separation: the entropy trajectories show rapid stabilization after
initial exploration, validating our game-theoretic framework and theoretical guarantees.

Algorithm 1 BDG: Self-checking Mechanism for LLMs

Input: Query x, Candidate set ), Thresholds o¢, ov, &
Qutput: Optimal ranking of candidates

1: Initialize Generator (LLM¢): > Operates under partial information
2: ag) (y|z, correct) < Prim(y|x, correct) > Sample with correct prompt
3: ag) (y|z, incorrect) < Reverse( PLim(y|z, correct)) > Inverse distribution for incorrect signal
4: Initialize Verifier (LLMy): > Verifying, asymmetric information structure
5: ai,l) (correct|x, y) <— Prum(correct|z, y) > Verify if answer is correct
6: aﬁ,l) (incorrect|z, y) « PLim(incorrect|z, y) > Verify if answer is incorrect
7:  Normalize ai,l) to ensure ai,l) (correct|z, y) + ai,” (incorrect|z, y) = 1
8 t+1
9: while not converged do

10: /* Markovian Update (Eq. 4) - Enhancing mutual information */

11: Generator learns ag) (s|z,y) through anv > Generator aligns with Verifier’s judgment

12: Verifier learns ag) (y|z, s) through anc > Verifier aligns with Generator’s selection

13: /* Strategy Update (Eq. 5-6) - Strategic response under uncertainty */

14 Al (o) = S5, el | as) = 250

15 al™(ylz, s) o exp %“%)V(S“lv;v’():;gr;gcag)(yII,S)

16:  a{tV (slz,y) o exp (%“%)G(y‘?ffﬁﬁigf@“‘W)

17: /* o-Separation Check (Def. 4) - Addressing mutual uncertainty */

18: og-condition <— minyey ||ag+1)(y\x, correct) — ag+1)(y\x, incorrect)|| > o

19: ov-condition < minyey ||a§f+1)(correct|x, y) — aﬁf“)(incorrecdac7 y)|| > ov

20: if o0g-condition and o -condition then > Prevents collusion in Nash Equilibrium

21: /* Preference Alignment (Eq. 2) - Establishing preference orderings */

22: Og - Sort Y by decreasing agﬂ) (y|z, correct)

23: Oy < Sort Y by decreasing agﬁ'l) (correct|z, y)

24: if O = Oy then > Eq. 1 and Thm.2

25: return Candidate ranking based on O¢ > Separating Equilibrium reached

26: end if

27: end if

28: t+t+1
29: end while
30: return Best correct and reliable candidates ranking

Implementation. A model-agnostic implementation is shown in Algm. [[|with all theoretical concepts
introduced earlier: it initializes the generator and verifier with LLM probabilities (2.1, performs
Markovian strategy updates (2.3)), and enforces o-separation conditions (Def. [3)) to prevent collusion.
The preference alignment check corresponds to our utility definition (Eq. [1), ensuring the game
converges to a consensus that represents reliable self-checking rather than arbitrary agreement.



a) BDG: SE. via Markovian Strategy Update

(b) ECG: NE. via Average Recall Update

Figure 3: Convergence dynamics comparison between Separating Equilibrium (SE) and Nash
Equilibrium (NE). We track generator (G, solid lines) and verifier (V, dashed lines) rankings for
10 answer candidates. (a) BDG’s Markovian update achieves rapid convergence to SE within 100
iterations, with clear separation in rankings and consistent alignment between G and V. (b) ECG’s
Average-recall update [31]] converges to NE but exhibits persistent oscillations and ranking ambiguity.
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Figure 4: Left: Policy entropy dynamics of BDG vs ECG. (a) BDG exhibits initial exploration
followed by rapid stabilization, demonstrating efficient convergence to separating equilibrium. (b)
ECG shows continuous entropy decrease without stabilization, reflecting unstable agent interactions
seen in Fig.[3] Right: Performance Comparison. Experts, Non-Experts, and Game-Theoretic
Strategies (BDG and ECG) on time and accuracy. The evaluation is based on a user study (n=183)
where participants classified LLM-generated math solutions under three conditions (baseline, BDG-
guided, ECG-guided), with expertise levels determined by a 150s temporal threshold.

BDG is a game theory-based mechanism that drives LLM self-checking to improve accuracy. Our
model is a deliberate variant of traditional Bayesian/Signaling games, specifically adapted to address
the mutual information between the generator and verifier in LLM contexts. Unlike standard signaling
games where only one agent faces uncertainty about types, in actual LLM context, both the generator
and verifier operate under partial information about the “correctness” of outputs. Furthermore, the
preference orderings in our model capture the iterative dynamics of LLM verification, where incorrect
judgments must be systematically reversed from correct ones. In particular, standard signaling
games assume asymmetric information structure, whereas our formulation requires modeling mutual
uncertainty between generator and verifier while maintaining game-theoretic foundations. This
adaptation allows us to address these challenges of LLM self-check mechanisms that standard
Bayesian game formulations do not fully capture.

3 Experiments

Focus and Setting. We aim to answer the following questions: (1) What design choices enable
decoding games to improve language generation performance? (2) To what extent does our BDG
improve consistency? (3) To what extent does the BDG improve factual validity and reliability?

BDG focuses on improving the consistency and reliability of LLMs. However, consistency and
reliability manifest themselves in various forms across different domains and dimensions, includ-
ing correctness, truthfulness, factuality, valid reasoning, value alignment, among others. We first
assess efficiency and reliability through a multidimensional comparison with another game-theoretic
method [31] and several variants. Then, we evaluate performance on a diverse set of LLMs used
for real-world tasks: MMLU [29], ARC-Easy (E.), -Challenge (C.) [L8]], RACE-High (H.) [37]]. It



Table 1: Comparison of LLMs’ inherent inconsistency (InC.%) and improvements (Imp.%) between
Accuracies of (single-agent) G, (multi-agent) ECG, and (multi-agent) BDG, colored arrows in the
table entries are assigned relative to the G baseline.

Domain  Model G Acc. InC.%(G &V) ECG Acc. Imp. % BDG Acc. Imp. %
MMLU LLaMA-7B 304 69.0%V 39.9 31.3% 40.5 33.2%
LLaMA-13B 41.7 60.6% 45.1 8.1% 46.9 12.5%
ARC.E  LLaMA-TB 68.2 56.1% 715 4.8% 753 104%
) LLaMA-13B 71.2 46.1% 76.4 7.3% 78.1 9.7%
ARC.c.  LLaMA-7B 473 65.9%* 583 232% 596  26.0%
" LLaMA-13B 519 59.1% 614  183% 622  198%
RACE-H LLaMA-7B 46.4 62.0%V 56.4 21.5% 577 24.4%
* LLaMA-13B 47.9 58.8% 62.8 31.1% 60.3 25.9%
Average 50.6 59.7% 500  182% 601  202%
Table 2: Model consistency across different domains. Table 3: Orthogonal enhancements.
Domain  Model G MI SCD D ECG |BDG . BDG
Domain Model zero-shot  few-shot
MMLU ~ LLaMA-7B 304 331 305 404 399 | 405 | |
LLaMA-13B  41.7 41.8 41.7 419 45.1 46.9 = PubMedQA LLaMA-7B 71.45 71.89
S LLaMA-13B 74.00 74.47
AR LLaMA-7B 682 688 69.5 525 715 | 753 3 A
C.E. A35) S MMLUM LLaMA-7B 51.35 52.90
LLaMA-13B 712 715 730 650 764 | 78.1 = - | [LaMA-13B | 3601 5885
ARC.C, LLaMA-7B 473 474 565 427 583 ‘ 59.6 ~ Justice LLaMA-13B | 5227 53.15
LLaMA-7B 464 463 53.1 460 564 | 577 7 Deontology | LLaMA-13B | 5241 53.01
RACE-H. LLaMA-13B 479 484 589 551 62.8 60.3 Utilitarianism | LLaMA-13B 65.35 66.75
Table 4: The reliability across domains with CoT. Table 5: ECG and BDG Comparison.
Domain Model Decoding Methods Game-theoretic ~_ Criteria | ECG | BDG | Thm.
Greedy MI SCD D ECG BDG Strategy ER-update z; ;1 = | last-round belief up- | 2
1 t o F =
Gsvsk | DLMATB 108 147 134 150 | 151 158 @it + ypBria | dMbie = azie
LLaMA-13B 149 225 231 225 | 230 227 Convergence | NE | SE |3
Trathfuloa LLAMATB 3341 3479 3401 3417|3427 3507 _Updue | AverageRecall | Markovian |3
uthfulQA 1 UMA-I3B 33.05 3630 3461 39.05 | 38.63 4001  Complexity | O(n?) | O(nlogn) [ NA

is important to note that BDG is a game-theoretic decoding strategy and not a deliberation/training-
based method like a prover-verifier-game (PVG) [27], or contrastive-objective based generation [42].
Nevertheless, we demonstrate effectiveness through benchmarks in reasoning task: GSM8K [19]],
medical taks: PubMedQA [33]], MMLU-Medical (M.), and ethical scenarios, including justice, virtue,
deontology and utilitarianism in Ethics [28], that BDG yields reliable improvements and demonstrates
synergistic potential across various scenarios.

Action Space in the Game. To define the action space in BDG, the generator selects from a finite
set of candidates ). For multiple-choice tasks, ) directly corresponds to the given options. For
open-ended generative tasks, we construct ) by sampling candidates from the LLM’s distribution
Piim(y | g, correct) using nucleus [30] and top-k [22] sampling methods. This standardized action
space allows BDG and benchmarks to be applied consistently across different types of tasks while
maintaining tractable strategy spaces.

Baselines and Models. For fair comparisons, following the setting and scores [31]], we use LLaMA
models [62] (7B, 13B parameters) with 16-bit inference across all experiments unless otherwise
specified. On multiple-choice datasets, we employ single-agent and multi-agent patterns: Generative
Ranking (G): Ranks candidates by P iy (y | x, correct) following [9, [62]]; Verifying Ranking (D):

Re-weights query-candidate pairs using aS ) (correct | x,y) based on [31]; Self-Contrastive Decoding

(SCD): Utilizes ag) for reweighting candidates [31} |42]]; ECG: Average Recall update with Nash
equilibrium verifier (x, y) by aj,(correct | x,y) [31]; BDG: update query-candidate pairs based on
Markovian Strategy with SE verifier (x, y) by aj, (correct | z,y).

Prompting. Unless otherwise specified, the condition for the Py s corresponds to the standard
zero-shot prompt [31} [29]]. Furthermore, we combine chain-of-thought (CoT) [66], and few-shots
setting [60] as orthogonal analysis.



3.1 Evaluation on Game-Theoretic Designs

Self-searching & Convergence Behavior. We compare searching behaviors of BDG with the most
closely related method, the [31]], in the multiple-choice question answering (MCQA) task [18].
Fig. 3] and [4] provide a visual case study. BDG demonstrates consistent and reliable convergence.
Conversely, exhibits prolonged and inconsistent searching behavior. Despite continuous shifts in
candidate selections, fails to achieve stable convergence with persistent disagreement between
the generator and verifier. Tab. [5|shows the improved convergence properties of the BDG over

Game-emergent Inconsistencies. We quantified the degree of inconsistency during the decoding
stage by analyzing the disagreement percentage between Generative (G) and Verifying Ranking (V).
The game-theoretic and BDG reveal inherent model inconsistencies (InC. ")) following [31]
with a 59.7% disagreement rate between them. In Tab.[I] G and V often yield conflicting results,
indicating significant inherent inconsistencies during the decoding stage of generative models. These
discrepancies can be effectively mitigated by our approach, specifically during the decoding process,
without the need for additional training. Tab. [T|shows that BDG consistently outperforms both G and

, particularly in cases with higher disagreement rates. We achieve superior consistency with
higher correctness with fewer updates in each case Fig.[3]

Human vs. Game-Theoretic Detection We conducted a user study (n=183) evaluating mathematical
assessment under three conditions: unassisted baseline, BDG-guided verification, and -guided
verification. Performance metrics included solution accuracy and completion time, with participants
stratified into expert/non-expert groups based on an empirically determined temporal threshold (150s).

Fig.[@]reveals significant performance disparities between experts and non-experts, quantitatively illus-
trating human evaluation limitations as generation complexity increases. Game-theoretic approaches,
particularly BDG, enhance decoding effectively, maintaining accuracy while closely aligning with
human intent. BDG consistently improves accuracy across non-experts and experts levels and sig-
nificantly reduces sample identification time, outperforming unassisted baseline and across
multiple dimensions. This also suggest its effectiveness in bridging the expertise gap. Additional
results about this finding are provided in Appx.[K]

3.2 Self-Check to Consensus Benchmarking: Across Domains with Smaller Models

With reasoning and comprehension tasks, we show superior performance compared to baselines and
other game-theoretic methods in Tab. [2|due to the efficient alignment of consistency. In a broader
comparison, our zero-shot LLaMA-13B (78.1, ARC-E.) outperforms larger models, PaLM-540B
model (76.6) [14]. With latest DeepSeek-7B, generator is 44.07% on MMLU, BDG achieves 49.52%
over 46.20% with ECG. With more challenging reasoning and multitask understanding tasks, such
as ARC-C, RACE-H, and MMLU, we achieve the best equilibrium decoding with fewer rounds
and higher accuracy. Our LLaMA-13B (46.9, MMLU; 57.7, RACE-H.) outperforms zero-shot
GPT-3-175B (37.7, MMLU) [29], LLaMA-65B (51.6, RACE-H.) [62]], and PaLM-540B (49.1,
RACE-H.) [29].

3.3 Orthogonal Enhancements for Robust Consistency and Consensus

Datasets in Tab. [3] ] involve challenging scenarios to test models’ reasoning abilities. We use these
benchmarks to study whether we can combine our approach with various orthogonal strategies. Based
on game theory, BDG does not conflict with the computationally intensive game mechanism during
training, nor does it conflict with CoT and few-shot variations. BDG shows enhanced performance in
more challenging scenarios in Table 4] establishing a highly novel direction in decoding research.
Furthermore, it achieves broader accuracy and robustness across datasets, underscoring its adaptability
and trustworthiness.

4 Discussion, Limitations, and Conclusion

Game Design over .BDG and share the common goal of aligning generative models with
human intentions to improve output reliability, yet they differ significantly in their game design. BDG
achieves substantial gains with reduced computational overhead. Appx.[G|and [H]explore the distinct
phases and transitions between these frameworks, highlighting BDG’s scalability and its departure
from training-intensive frameworks.

SHow often the answers chosen by the Generator () and Verifier (V)



Robustness and Integrative Potential. BDG achieves consistent performance improvements across
diverse domains, maintaining effectiveness even with lower-quality initial LLM outputs. The frame-
work readily integrates with existing techniques such as self-consistency and CoT prompting, while
offering fast equilibrium convergence and reliable verification.

Limitations. One potential limitation arises from the explicit specification of correctness consistency
branches during the game process, as this alignment is primarily intended to match human intent with
model outputs, similar to game-based approaches [31}27]]. Adding multi-metrics and multiple agents
to achieve game-based deliberation is possible.

Conclusion. We introduced the Bayesian Decoding Game, a game-theoretic framework addressing
limitations of single-agent inconsistency and multi-agent collusion in LLM self-verification. Through
separating equilibrium and Markovian updates, BDG enables smaller models to outperform larger
ones without additional training. Our approach offers a practical advancement towards reliable LLM
systems while demonstrating performance improvements across benchmarks.
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A Reproducibility Statement

We conducted our evaluations using widely recognized benchmarks such as ARC-Easy, ARC-
Challenge, MMLU, and RACE. The experiments were performed using the open-source LLaMA
7B and 13B models. Key aspects of the game, including update policies and initial strategies, are
thoroughly detailed in both the main text and appendix to facilitate accurate replication of the results.
All experiments were conducted on NVIDIA A6000 and A100 GPUs, with runtimes ranging from
0.5 to 6 hours depending on the model size, task, and experimental settings. Further details on the
game-theoretic mechanisms and specific design choices can be found in the methods section and
following pseudocode model-agnoistic implementation.

Algorithm 2 Bayesian Decoding Game (BDG): Self-checking Mechanism for LLMs

Input: Query x, Candidate set ), Thresholds o, oy, 0
Output: Optimal ranking of candidates

1: Initialize Generator (LLM(): > Operates under partial information
2 oW (y|x correct) < Prym(y|z, correct) > Sample with correct prompt
3: ( |, incorrect) < Reverse(PLLm(y|x, correct)) > Inverse distribution for incorrect signal
4: Inltlallze Verifier (LLMy ): > Verifying, asymmetric information structure
5: a§/) (correct|z, y) + Prpm(correct|x, y) > Verify if answer is correct
6 ag}) (incorrect|x, y) < Pipm(incorrect|x, y) > Verify if answer is incorrect
7: Normalize a%,) to ensure ag) (correct|z, y) + ag/) (incorrect|z, y) = 1

8 t+1

9: while not converged do
10: /* Markovian Update (Eq. 4) - Enhancing mutual information */

11: Generator learns ag) (s|x,y) through any > Generator aligns with Verifier’s judgment
12: Verifier learns ag) (y|z, s) through ay g > Verifier aligns with Generator’s selection
13: /* Strategy Update (Eq. 5-6) - Strategic response under uncertainty */
. ® : () s
4 any (@) = % avel | @9) = 555
t+1) a (s|lz,y)+Ac logag T,
155 alt) (yla,s) o exp ( By (olzy) Hrg log o) o >)
t+1 108 (ylz,5)+Av log alf (s,
16: aﬁ/ )(s|a:, y) o< exp ( 2“Nc(y‘$1;2m/t‘;+0)\gvav (slz,y)
17: /* o-Separation Check (Def. 4) - Addressing mutual uncertainty */
18: og-condition <— mingcy ||ag+1)(y|x7 correct) — a(tH (y|x, incorrect)|| > o¢
19: oy-condition <— min, ey ||a$+1)(c0rrect|x, y) — a§/+ )(1ncorrect|x, Y| > ov
20: if o¢-condition and oy, -condition then > Prevents collusion in Nash Equilibrium
21: /* Preference Alignment (Eq. 2) - Establishing preference orderings */
22: O¢ « Sort Y by decreasing agﬂ) (y|x, correct)
23: Oy <+ Sort Y by decreasing agfﬂ) (correct|z, y)
24: if O = Oy then > Eq. 1 and Thm. 2
25: return Candidate ranking based on O¢ > Separating Equilibrium reached
26: end if
27: end if

28: t—1t+1
29: end while
30: return Best correct and reliable candidates ranking

15



B Potential Ethics Risks and Societal Impact

Our Bayesian Decoding Game (BDG) is a novel game-theoretic framework that significantly enhances
both the consistency and reliability of large language model outputs. By framing the decoding process
as a multistage signaling game between a generator and verifier, BDG efficiently aligns model outputs
with human intent while mitigating the trade-off between correctness and reliability. BDG ensures
reliable and robust LLM outputs, offering a scalable, training-free solution to the challenges of
ambiguity and inconsistency in generative models.

With the improvement of generation quality, one can imagine more potent disinformation (e.g.,
automatic generation of fake news) that may be hard to distinguish from human-authored content. It
might be worthwhile to augment current decoding techniques so that the generated outputs will also
be watermarked without compromising their quality. More potential ethics risks and societal impact
are illustrated in Fig. [5]

ﬁ Patient's Description: : Evaluate the integral.
. 3903 — 552 4 4x—
é I've been having persistent abdominal pain | m f <4ZX “‘X: 4x 1) dx
after meals, frequent diarrhea, blood in i !
:

my stool, significant weight loss, fatigue,

. . . Valid:
and occasional fever and joint pain.

1. Simplify: 2x* —5x* +4x -1 1
e a—

=2x-5+ i1
2. Integrate:
Valid:

Crohn's disease. Further tests
(colonoscopy, imaging) and treatment
with anti-inflammatory medications.

41 1
J—(ZX75+7772>4;<:X175x+4ln|x\77+c
XX x

b i 1
Y_m 3. Evaluate: [x* - 5x + 4tnlxl - | = -3+41n(3) -3
x 3

' '
' '
] ]
' '
' '
i i
' '
i i
| @@ | Specious: !
' '
i i
: :
' '
] ]
' '
' '
i i

What is the differential diagnosis based
on the findings in this MRI scan?

-

Specious:
1 id: i
Irritable bowel syndrome. Manage with 2.Integrate: ... = x? —5x+ dlnjx| + e é ‘ Valid: The scan reveals a glioblastoma...
. : 17? 26 “J.
diet changes and stress reduction. 3. Evaluate:[x2 — 5x + 4ln|x| + ;]‘ =4In(3) - aD ‘ Specious: The scan identifies a meningioma...

(a) Decision Making (b) Logical Reasoning (¢) Visual Collaboration
Figure 5: Distinguishing different type of LLM outputs, particularly when human evaluation
may overlook plausible errors. The three panels demonstrate how models can generate both accurate

and reliable, and plausible but misleading responses.
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C Collusion in Single-agent Reflection and Multi-agent Debate

While both single-agent reflection and multi-agent debate approaches have shown promise in en-
hancing LLM outputs, they face fundamental limitations that compromise their reliability. Our
experiments reveal critical insights into these limitations, providing a compelling motivation for our
game-theoretic self-check mechanism. In this case,

The Collusion Problem in Multi-agent Debates. Prior work has demonstrated that multi-agent
debating frameworks can improve reasoning and factual accuracy [20, 26l |60]. However, our
investigations reveal concerning dynamics when scaling these approaches. As shown in Figure [6}
while increasing agent count initially improves accuracy on the MMLU dataset through cross-
verification, this trend reverses beyond a certain threshold. This phenomenon, which we term
“collusive reinforcement,” occurs when multiple agents converge on shared inaccuracies or biases,
creating a false consensus that appears authoritative but remains factually incorrect. Essentially,
agents begin to collude unintentionally by reinforcing each other’s errors through mutual agreement
rather than critical examination, resulting in a deceptive appearance of reliability through consensus.

Agent Accuracy Across 3 Debate Rounds on MMLU Dataset
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Figure 6: Agent Accuracy Across 3 Debate Rounds on MMLU Dataset. The graph shows initial

improvement as agent count increases from 1 to 5, followed by diminishing returns and eventual
decline with further agent additions, demonstrating the emergence of collusive reinforcement.

This collusion effect is particularly evident in factual knowledge tasks where agents lack proper
verification mechanisms. Without a structured way to challenge potentially incorrect consensus,
agents tend to reinforce rather than correct each other’s errors. The computational cost of additional
agents further exacerbates this issue, creating a situation where resources increase while accuracy
plateaus or declines.

The Inconsistency Problem in Single-agent Reflection. Single-agent reflection approaches suffer
from a fundamental limitation: self-corruption. During reflection, LLMs frequently demonstrate
inconsistency in their judgment processes, often agreeing with their previous outputs regardless
of correctness. When a model attempts to verify its own statements, it creates a closed feedback
loop where initial errors are rationalized rather than corrected, forming a self-reinforcing pattern of
confirmation bias. This inherent tendency to justify rather than critically examine its own outputs
renders single-agent reflection unreliable for detecting subtle errors, particularly in complex reasoning
or factual verification tasks. The model essentially becomes trapped in its own reasoning patterns,
unable to escape initial errors even through multiple reflection rounds.

The Need for Structured Strategic Verification. Our GSMS8K experiments (Figure |7)) further
demonstrate that while adding debate rounds initially improves performance, benefits plateau after
approximately three rounds. This indicates that simply increasing computational resources through
more agents or rounds does not address the fundamental verification problem.
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Agents' Accuracy Across Various Rounds on GSM Dataset
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Figure 7: Agents’ Accuracy Across Various Rounds on GSM Dataset. The 3D visualization demon-
strates that performance peaks at specific combinations of agent count and debate rounds (marked by
the red X), beyond which additional resources yield diminishing returns or performance degradation.

These findings highlight the need for a structurally different approach to self-verification. Rather than
relying on consensus-based debate or single-agent reflection, we propose a game-theoretic framework
that explicitly models the verification process as a strategic interaction. By formalizing the self-check
mechanism through Bayesian games, we can overcome the collusion problem inherent in multi-agent
debates and the corruption problem in single-agent reflection, creating a more reliable verification
process that balances correctness and consistency.

Our BDG directly addresses these limitations by enforcing a separating equilibrium condition that
prevents collusive convergence, while maintaining the efficiency benefits of a two-agent system. This
allows for effective self-checking without the resource intensity of large multi-agent systems or the

confirmation bias of single-agent reflection.
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D Game-theoretic Formulation Supplementary

A generative language model (LM) maps input x to output y according to some distribution P (y
x). Here, we do not impose restrictions on the form of input or output, as illustrated in Fig.
Instead, we address a multi-faceted problem involving a question = and a set of answer candidates ),
generated by pre-trained language models on specific tasks. In the first stage, using this candidate set,
we leverage generative LMs in two distinct ways:

Generatively, by supplying as input

1. a prompt z,
2. the set of candidates )/, and

3. a natural language prompt indicating that a correct or incorrect answer is desired. The LM
may be thought of as modeling a distribution Py (y | , incorrect), where the token incorrect
denotes the fact that the model was prompted to generate an incorrect answer.

Verifiably, by supplying as input

1. the same x and
2. apossible candidate answer y € ), together with

3. aprompt indicating that a correctness assessment s € {correct, incorrect} is sought. In this case,
the language model acts as a models a distribution Pp (s | z,y) where s € {correct, incorrect}.

The essence of a signaling game [25] is that one player of certain type (the generator) takes action,
to convey information to another player (the verifier) about her type; in the simplest setup, the final
payoff depends on whether the verifier correctly judges the generator’s type based on the generator’s
signal. Based on this intuition from game theory, [31]] design ECG, without a formal definition of the
game. Thus, for the first time, we provide a comprehensive game-theoretic formulation for generative
model decoding, and propose improvements to address limitations.

Formally, the signaling game’s components can be defined as follows:

1. Players: Generator and Verifier;

2. Choice sets: Generator’s choice set is y € Cg = ), with prompt p randomly drawn from
{Correct, Incorrect}, and the Verifier’s choice set is s € Cyy = {Correct, Incorrect}, based on the
generator’s choice y € V;

3. Payoff Function: ug = uy = L,=4(p, s), where 1 equals 1 if the correctness prompt = matches
the verification result, and 0 otherwise.

We are now ready to state the fundamental concept of this signaling game, a Perfect Bayesian Nash
Equilibrium (PBNE) [13]]. We use the short form Perfect Bayesian Equilibrium (PBE) with the
auxiliary definitions Defi.[4] and[5] for PBE Definition.

Definition (Perfect Bayesian Equilibrium [23]]) A Perfect Bayesian Nash Equilibrium (PBE) is a
pair (s, b) of strategy profile and a set of beliefs such that

1. sis sequentially rational given beliefs b, and
2. bis consistent with s.

Example 1. For generative model decoding, the generator’s belief is given by its perceived
probability distribution, P({ correct, incorrect}) = (p;, 1 — p;), for each y; € Y of the verifier’s
judgment, and with its belief and type, the generator chooses a mixed strategy that maximizes its
utility, i.e., if the generator’s type is correct, then its optimal mixed strategy would be allocating
positive possibility only on y; such that p; > 1 — p; and zero possibility to other y;.

In the decoding game we did not precisely discuss belief is because the signal distribution is a
common prior and has been incorporated into the % multiplier of the strategy update.

Definition 4. (Sequential Rationality)
A player is said to be sequentially rational if and only if, at each information set it is to move, it
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maximizes their expected utility given their beliefs at the information set (and given that he is at the
information set) - even if this information set is precluded by their own strategy.

Definition 5. (Consistency on Path)

Given any (possibly mixed) strategy profile s, an information set is said to be on the path of play if
and only if the information set is reached with positive probability according to s. Given any strategy
profile s and any information set I on the path of play of s, the beliefs of a player at I are said to be
consistent with s if and only if his beliefs are derived using the Bayes rule and s.
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E Proofs of Theorems

E.1 Proof of Theorem 1

Theorem [T More than one (mixed) strategy Nash Equilibrium exists for this game.
Proof of Theorem|[L}

Suppose that the candidate set has 2 options (can be extended to any cardinality |)|), 1, y2, one
equilibrium can be described as: If the environment sends correct/incorrect, the generator generates
the probability distribution (1,0)/(0,1) for (y1,y2) given their belief that verifier probabilistic
judgment, {correct, incorrect}, for y1, y2 is (1,0), (0, 1).

For the verifier, suppose its belief is that the environment chooses the state “correct” or “incorrect,”
and that the generator produces (y1, y2) with probabilities (1, 0) in the correct state and (0, 1) in the
incorrect state. Given this belief, the verifier’s best response is

(1,0), ifit observes yi,
(correct, incorrect) =
(0,1), ifitobserves ys.

Together with the generator’s strategy specified above, these beliefs and actions constitute a perfect
Bayesian equilibrium (PBE) of the game.

A second PBE can be obtained by flipping every 0 and 1 in the strategy profile and in the corresponding
beliefs; that is, the generator swaps the probabilities assigned to (y1, y2) and the verifier swaps the
outputs (1,0) and (0, 1).

E.2 Proof of Theorem 2

Theorem 2] The Markovian update schedule will converge to an o-separated equilibrium of the
Decoding Game.

Proof of Theorem 2.}

We will show that the Markovian update schedule is no-regret for correct generator, and when
generator receives correct signal, she will automatically perform the reversed strategy; then, if the
Markovian update schedule converges to for the correct signal, it automatically satisfies that the
Markovian schedule will converge for the incorrect signal and thus to a o-separated equilibrium our

Decoding Game.
T
1
RegET) = (Z u; (wf,wfﬁ) — U (WE”JTS?))

t=1
and in each ¢, the utility is 1 if the order matches and 0 if not; therefore, if the schedule ensures that
there exists a 7™, such that the period ¢ regret, defined by
reg; = u; (772*,77(3) — Ui (wgt),w(ff) =0fort >T" (8)
Then the asymptotic regret converges to 0, and we will show that the Markovian update schedule
satisfies the condition above, we will show this from generator’s side and the verifier’s proof follows
the same steps.

The proof will follow 2 steps: firstly, we will prove a lemma that shows under Markovian schedule,
once the preference relation between any two candidates, y;, y2, aligns between the generator and
verifier, then they will not diverge.

Lemma 1. VE’ithout loss of generality, we assume ifag )(yl | z,5) > a(GT )(yz | z,s) and ag )(S |
x,y1) > ag,T )(3 | ©,y2), then for all t > T*, under Markovian update, this preference relation stays

invariant.

This lemma is obvious as the update is the exponential of a linear combination with positive coeffi-
cients of two actions, and both exponential and linear combination preserves monotonicity.

For the second step, we will prove a lemma that ensures the Markovian update is a strict contraction
mapping to ensure the preference ordering coincides in finite times.
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Lemma 2. Then there exists a finite round T* such that for all t > T*, generator’s and verifier’s
preference orderings coincide under the Markovian update schedule.

Proof of Theorem El At round ¢ denote g;(y) := ag) (y | x, correct ) and v¢(y) := a%ﬁ) (correct

| z,y) and the normalized verifier action as ;(y)

Fix any pair of candidates ¥, z. Define the log-ratios

g 2) :=In gt(y)
Rt (ya ) 1 Gt (Z)
v 2):=1In @t(y)
Rt (y7 ) 1 ﬁt (Z)

the generator’s update is given by

1 by 1
Geer(y) o€ g1 (4)™ exp (ﬂtR::(y,z)) PO - Y W
2 e o G
SO 1
RY 1 (y,2) = wR](y,2) + §BtRf(y7 z). 9)

the verifier’s update is symmetric (write «}, ] for the verifier’s coefficients)

1
Rii(y,2) = iR (y, 2) + 58RI (y, 2). (10)
Let
Di(y,z) = Ri(y,2) = Ri(y,2)-

be a signed measure of “disagreement” for the pair y, z, if \¢ = Av, ¢ = nv, subtract [I0|from [}
get:

1 1
Dt+1 = <O{t — 2&;) Rtg — (Oé; — 26,5) R;) = CtDt (11)
where )
o 1. _ Ag — 2
Ct 1= O 2Bt_ i+>\G

nat
For unequal )\, 7 one gets two positive weights whose sum is below 1 and the same contraction
argument goes through.

Assume mild regularisation: \g, Ay > % Then 0 < ¢; < 1 for every t and ¢; < 1, then from
we have

t—1

|Di11(y, 2)| = ¢t |Di(y, 2)| = |Di(y, 2)| < ( Ck) |D1(y, 2)] —=0

k=1

Hence for every pair (y, z),
. g L v
A R (y,2) = lim Ry (y, 2),

ie. gigg — gigg for all y, z. Because convergence is by a strict contraction, there exists T}, .

such that forall ¢t > T, .

sign (R (y, 2)) = sign (R} (y, 2))
so the ordering of y versus z is the same for generator and verifier from that round on. Since there
are finitely many pairs, so
T* :=maxTy, . < 00
y#z
and for every ¢t > T the entire rankings are identical. Therefore combing Lemma [1.|and Lemma

[2] we verified condition[8] which shows that Markovian update schedule is indeed no-regret for the
BDG.
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E.3 Proof of Proposition 1

Proposition [T Under any signal distribution environment such that P(correct, incorrect) =
(p,1 — p) sit. p < 1, if the equilibrium confidence scores is conditioned that the correct
candidates are greater than % and the incorrect candidates is less than %, then the separation
score is also bounded below by the same parameter in Defi[3]

ay, (correct | x,y) — aj, (correct | , yx41) > oy (12)

if and only if the o;-separeted condition is satisfied. where k is the least correct candidate and
k + 1 is the least incorrect candidate in equilibrium, determined by the candidate set cardinality
and signal distribution.

Proof of Proposition[I} we first show that the o;-separatedness implies separation score bound.

for any given environment such that the signal distribution is given by P (correct, incorrect = P(p, 1—
p) this proof applies, for simplicity, we will provide the proof only for P(p, 1 — p) = (0.5,0.5), the
only difference will be the index of the least correct and least incorrect candidate.

According to Defi. [3.| the o;-separated condition, in equilibrium, the inequality below is satisfied

|lay, (correct | @, y=) — ay, (incorrect | x,y= )| > ov

and
ay (correct | x,yn) = 1 — aj, (incorrect | z,y=)
thus the inequality becomes

|2 - ay, (correct | z,yn) — 1| > oy

we condition that the equilibrium confidence for correct candidate being greater than % and the

incorrect candidate being less than %, thus we can remove the absolute value and get 2-aj, (correct |

x,y=) — 1 > 0, moreover, for aj, (correct | x,yn 1), we have
1 —2-aj (correct | z,yzn 1) > oy
adding the two inequalities together, divided by 2, we get
ay (correct | x,yn) — aj (correct | z,yn 1) > oy

Conversely, we prove the implication in the opposite direction via contradiction: if, at termination,
the o;—separation condition fails to hold, then the resulting separation score S must satisfy

S < c < oy,
for some constant c strictly smaller than oy, .

We first assume that for all candidates, the correct and incorrect confidence score is bounded above
uniformly by some ¢’ such that ¢/ < oy, which is given by

|at (correct | z, y;) — aj, (incorrect | z,y;)| < o
with the boldfaced rationality condition, we have that
2-ay (correct | x,yn) —1 <o’ 1—2-ay(correct | z,yn 1) <o
adding the two equalities together we have that
2 - ay(correct | x,yn) — 2 - aj,(correct | z,yn 11) < 20’
aj, (correct | x,y%) — -aj,(correct | x,ygﬂ) <o <oy,

which showcases that without enforcing Defi[3] under the boldfaced rationality condition, the
separation could be bounded above by some constant less than oy .
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F Extended Related Work, Discussion, and Distinction

F.1 Related Work

Multi-Agent Debate Systems. Previous work has explored mechanisms where multiple language
model instances “debate” to refine and converge to a final answer [20, [12] [34}[36]. It is possible to
categorize our method as a major variant of this multi-agent debate in which the interaction occurs
within a game-theoretic framework, rather than directly within the language models’ outputs. This
structured signaling game enables BDG to enhance the correctness of outputs without relying on
human feedback, by dynamically optimizing the generation and verification processes. Additionally,
this approach can resolve ambiguity, confusion, and low accuracy caused by inconsistencies, but not
by poor reasoning. Conventional signaling game settings have been successfully deployed for Poker
[7, 18], Stratego [52]], Diplomacy [21} 3}132], and LLM tasks [27}12]. Building on these insights, we
propose a novel signaling game framework between a generator and verifier for systematic LLM
output verification.

Single-Agent Strategies. Top-k sampling [22], nucleus sampling [30]], and typical sampling [47]]
focus on generating high-confidence text but do not address the correctness of the outputs. Candidates
were generated using these methods. Equilibrium-ranking [31]] applies an average-moving strategy
to the initial distribution. In contrast, BDG integrates a multistage signaling game that inherently
balances correctness and consistency during the generation process. BDG can be seamlessly combined
with these strategies to enhance the reliability of generated text. Furthermore, single-agent ranking is
a widely used approach to select the correct output from a set of candidates generated by language
models. [61]] use additional human annotations to train a ranking model for response filtering. [27]]
trains different provers and verifiers for increasing output legibility. Although our work also utilizes
existing language models as verifiers, BDG eliminates the need for additional training and does not
impose specific assumptions on the structure of either the generator or verifier.

F.2 Discussion and limitations

Game Design over ECG. BDG and ECG share the common goal of aligning generative models
with human intentions to improve output reliability, yet they differ significantly in their game design,
achieving substantial gains with reduced computational overhead. While ECG utilizes moving-
average updates to foster consensus, often leading to unstable and fluctuating equilibria, BDG employs
a structured Bayesian framework that drives interactions toward an optimal equilibrium with greater
stability. In contrast, Prover-Verifier Games (PVGs) [27], which contribute to ChatGPT ol [51]],
use a RL-based alignment and focus on adversarial training phases featured by RL and competitive
dynamics. This requires intensive training and causes potential deviations from cooperative strategies.

Robustness and Integrative Potential. BDG achieves consistent performance improvements across
diverse domains, maintaining effectiveness even with lower-quality initial LLM outputs. The frame-
work readily integrates with existing techniques such as self-consistency and chain-of-thought
prompting, while offering fast equilibrium convergence and reliable verification.

Balancing Correctness and Reliability. Reliability [55] tries to give an account of the prover model’s
failure modes and sense-making, whether the reasoning is correct or not. The resulting decoding can
be arbitrarily complex [50]]. In contrast, correctness allows to verify if a given solution is correct,
ignoring how the generator reasoned it to be reliable (consistent with the environment). Consequently,
reliability requires model outputs that are coherent and consistent to human understanding [48]. We
show that it is possible to have both, without sacrificing correctness for reliability [27], and especially
in high-stakes settings reliability is as important as correctness [11].
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G From Training-free Bayesian Decoding Game (BDG) to RL-based
Prover-Verifier Game(PVG)

PVG [27], structured as zero-sum games, encounter substantial challenges that undermine their
efficacy in ensuring reliable outputs. The adversarial nature of zero-sum games inherently prioritizes
winning over mutual consistency, which leads to strategic behavior focused on exploiting the opposing
agent rather than achieving genuine correctness e.g., model collapse. This often results in provers
generating outputs that are optimized to mislead the verifier rather than to align with factual truth,
thus producing equilibria that favor strategic manipulation over accurate assessment. Such dynamics
complicate the training process, requiring extensive tuning and computational resources without
guaranteeing robust, interpretable results. Furthermore, the reliance on reinforcement learning in
these systems falls short of effectively replacing human feedback, as the trained verifier cannot
fully replicate the nuanced judgment required to evaluate complex or ambiguous output. These
limitations fall into the misalignment between training objectives and practical needs, where models
become adept at adversarial optimization but lack the reliability and consistency necessary for real-
world application. However, Bayesian Decoding Game (BDG) can bring the advantages of the
game and bridge the purposes with proper implementations, which bypass the extensive training
and adversarial pitfalls by directly modeling output verification through probabilistic reasoning,
enhancing the interpretability and reliability of the generated content without the dependencies on
Zero-sum competition.

Here, we consider the connections between the PVG and BDG, and before the comparison, we give a
brief introduction of PVG.

We consider a scenario of problems with ground-truth answers (x,y) € X x ), where x denotes a
problem statement and y = y(x) denotes the mapping from the prompt « to ground-truth answer or
set of answers. PVG has set the prover’s type to be drawn from a known distribution, which can be
either honest or sneaky, to produce an answer z condition on the prompt x and type; such that the
honest prover is told to produce correct answers and make sure the verifier recognize the correctness,
whereas the sneaky prover is told to trick the verifier by providing wrong answers that are not easy to
be detected; then, after receiving solution, the verifier verifies the answer based solely on the answer
and prompt, and the output v(z, z) € {0, 1} estimates the correctness of the solution’s answer. The
output of the verifier is either 1(the statement is correct) or O(the statement is incorrect).

More precisely, The game follows the procedure below:

1. The type of prover ¢ is randomly drawn from a known distribution P(t), such that t € {h, s},
where h, s dictates honest and sneaky prover’s type.

2. Given a problem statement, the prover generates proofs by maximizing the payoff func-
tion(utility) of each round myopically, such that

z = argmaxr(v(x, Z), Ti=nLcorrect (337 Z) + ]lt:s(l — Teorrect (337 Z)))

the function r (v, q) satisfies that v(1,1) > r(0,1) > r(1,0) > (0, 01), which corresponds to
the fact that both prover prioritizing generating proofs that match their types (correct answer
for honest and incorrect answer for sneaky), Vv 7(v,1) > r(v,0) and then both want their
answers to be accepted as correct by the verifer Vg r(1,q) > r(0,q).

3. the verifier provides verification v € {0, 1} based solely on the proof = given that the utility is 1
if v(z, 2z) = 1(x, z) and O otherwise
Theoretically, this is a simple Stackleberg game such that an equilibrium exists and before div-
ing into the equilibrium strategy profile, an important definition from [27]] needs to be mentioned.

Definition 6. (Checkability [27|]) Prover 7 from model family H is verifiable to verifier v on
the data distribution Pxy if and only if the prover always generates correct and convincing
solutions, and no sneaky prover from the same model family H can fool the verifier into accepting
incorrect solutions. In mathematical notations, the two properties are given by:

Completeness: Nz € X, Leopreet (2, m(x)) = v(x, w(z)) = 1.

Soundness: Y1’ € H,Vx € X, Leopreer (,7'(x)) =0 = v (x,7'(z)) = 0.
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With definition 6 in hand, the equilibrium strategy profile is given by (the honest prover always
provides checkable and correct proof, the sneaky prover always provides noncheckable and incorrect
proof, the verifier can always verify the correctness of the given proof). For the neural networks to
approximate the equilibrium strategies, [27] utilized a reinforcement learning-based algorithm to
train the prover and the verifier.

RL-based PVG [27] can fit in part into the framework of our training-free BDG framework. As for
the game-theoretic setting, PVG is a zero sum verifier-lead Stackleberg game, the strategy update
schedule must be modified to fit the utility defined in [27]. Moreover, the verifier’s strategy update
cannot be achieved training-free as her utility only depends on the ground truth right/wrong of the
candidate and thus needs to be trained; but on the prover side, both honest and sneaky prover can
update strategies pain-free from the verifier’s trained strategies.

Firstly, we define the strategy for verifier and prover in the same way as in BDG, such that given
the environment signal, the prover generates a probability distribution for a set of answers, and the
verifier always generates a probability distribution of {correct, incorrect} for each of the answers.
Also, we make the same assumption that each player can observe the opponent’s full strategy
profile rather than the realized strategy; then, we are ready to highlight the difference in schedule
update under the Markovian schedule, the condition where v = correct, we will abbreviate that as
correct = C, stays the same, such that because they want to align their strategies with the verifier

b (y | 2, H) = ol (C | 2,y)

(
%bgﬂ)(y | z,C) + Ap logag)(y | m,C,bg))
1/ (npt) + Ap

However, for the sneaky prover, her utility is maximized when the verifier mistakens the correctness
of the problem. Therefore, the optimal update schedule for the sneaky prover is given updating
toward a normal distribution over the preference generated by the probability distribution of verifier’s
strategy. The reason for this update is because, near the correct/incorrectness boundary is where the
verifier tends to make mistakes, such that

al™™(y | 2, H) exp{

IN(y | av) + Aplogal (y | 2,1,0%))
ap ™ (y | 2, 8) o exp { 2 T o) T =

For example, if there are 10 answer candidates, the verifier’s preference from her strategy is given by
Ys = Y7 = Yo > Y5 = Y10 = Y2 > yo > ya = y1 > ys, then N'(y | ay) is given by

Normal Distribution Over N Discrete Answers Indexed by Permutation
0.25
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Probability
o
=
o

=]
=
o
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H From Memoryless Bayesian Decoding Game (BDG) to Moving-average
Equilibrium Consensus Game (ECG)

The moving average update schedule proposed by [31] requires both the generator and the verifier to
keep track of the average strategy of the opponent in addition to the strategy in the last round, while
our Markovian framework allows the players to be memoryless. To better compare ECG with our
update schedule, we provide a general, unifying framework called the History window schedule,
where the player’s belief is given by the average of past history strategies for the period n, and at the
same time, this schedule retains a large part the initial policy for each round with a stiffness parameter
Ai,i € {G,V}. The belief is given by

t

1
by les) =~ Y a5y

T=t—n-+1

L (13)
t+1
WG lay == Y e

T=t—n-+1

Thus the strategy update is given by

(t+1) (1)
ac(t+1)(y|x,8)o<exp{2b (y |z, s) + Aglogac'(y | z, s)}

1/ (nat) + Aa
LU (y | 2, 8) + Av logall (s | w)}

L/ (nvt) + Av

As it can be noted in[I3] if we take n = ¢, the update schedule coincides with ECG which requires
the memory of the moving-average of full history, rather if we take n = 1, the update schedule
becomes fully memoryless and requires no memory of any past events other than the last period’s
opponent strategy.

ag" (s | z,y) o exp {
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I Experiment Details

Baselines and Models. For the fair comparision following[31]], we use the same public 7B and 13B
parameter models from the LLaMA family[62]] and perform 16-bit inference for all our experiments.
Since we have a multi-round optimization game and in order to distinguish consensus/ zero-sum
games, we define ours as a verifier rather than a verifier. Across the experiments, all the approaches
and orthogonal techniques involved:

* Generative Ranking (G): The baseline[9} [62]] ranks every candidate y by Py (y | «, correct)
and picks the top candidate. This is the standard approach used in past work. Due to implemen-
tation differences and non-public resources, we report the existing scores in [31]].

* verifying Ranking (D): Following(31], this approach reweighs every query-candidate pair (x, y)

by 7r€,1 ) (correct | x, y). Typically, this would surpass the performance of ordinary individuals,
who might neglect to notice the ambiguity errors. And outstrip the generators that might trust
the unreliable decoding.

¢ Mutual Information Ranking (MI): The mutual-information based baseline reweights every
candidate y by Pum(y | @, correct) - Pov(correct | z,y) [39].

¢ Self-Contrastive Decoding (SCD): The contrastive-based method [31, 42] utilizes the
contrastive-based generator wg ) to reweight every candidate y by WS ) (correct | x,y). This
method achieves a contrasting effect by comparing negative samples instead of employing a
verifier (in BDG)/ verifier (in ECG).

* Equilibrium Consensus Verifier (ECG): This approach is based on verifier 7y, [31]. It
reweighs every query-candidate pair (x,y) by 73 (correct | x,y). This method, involving
comprehensive policies and updates, serves as our main benchmark.

* Bayesian Decoding Game (BDG): This approach utilizes our Bayesian Decoding Game-based
verifier 7{,. This approach reweighs every query-candidate pair (z, y) by 7}, (correct | z, y).

Orthogonal Techniques. Furthermore, BDG can combine chain-of-thought (CoT) [66] and few-shots
setting [66] as orthogonal extra gains.

¢ Chain-of-Thought (CoT): CoT [66] prompting enables language models to generate interme-
diate reasoning steps, improving performance on complex tasks. By providing exemplars of
reasoning chains, the model is guided to produce more coherent and accurate responses.

* Few-Shot: Few-shot setting [66] involves providing the model with a small number of example
input-output pairs within the prompt. This technique helps the model adapt to the task at hand
without additional fine-tuning, improving its ability to generalize from limited data.

Hyperparameters. We set 1p, Ap and ng, Ag with 0.1 compared to ECG. Experiments are run
5000 times with early stopping based on equilibrium convergence. BDG can usually converge by 500
iterations or less. The hyperparameters can be larger according to the tasks and initial model ability.

Extra Metrics. Following [42], we have

 Diversity. This metric aggregates n-gram repetition rates:

DIV — ﬁ unique n-grams(Zcont)
o L% total n-grams(2con) ’

Models that score low for diversity are prone to repetition, while models that score high for
diversity are lexically diverse.

* MAUVE. MAUVE [53]] measures the similarity between generated text and gold reference text.

* Coherence. [39] approximates coherence by cosine similarity between the sentence embeddings
of prompt xp.. and generated continuation Teon:

EMB (2 pre) - EMB(Zcont)
[EMB (e || - [TEMB(@con) ||’
where EMB () represents the pre-trained SimCSE embedding [24].

* Human Evaluation. To further evaluate the quality of the generated text, we consider two critical
aspects: correctness and confidence in reliability. More details can be found in the next section.

COH(xcont; zpre) =

28



J Searching & Convergence Behavior Supplementary

Question:

Which of these events during a storm at sea {can, can not } add oxygen from the atmosphere to ocean water? A.high winds B. lightning C. pressure change D. temperature change

C: Mixing Wind (A): Directly mixes oxygen into water:
C: Pressure Change

s solubility

C: High Winds (A): Cooler water holds more oxygen.

C: Wind (A): Wind-driven waves increase oxygen diffusion.

C: High Winds (A): Storm winds exchange water and oxygen.

affecting oxygen.

—e~ G_Ranking Candidate 1

V_Ranking Candidate 5

(a) MCQA with Inconsistent & Ambiguous Decoding

: Wind (A): Distribute

(b) Searching via BAYESIAN DECODING GAME

(c) Searching via EQUILIBRIUM CONSENSUS GAME

: Lightning (B): No real impact on oxygen levels.

I
I
“x- V_Ranking Candidate 3 1I: Temperature Rise (D): Warmer water holds less oxygen.
I
I

: Cloud Cover (#): Irrelevant to oxygen levels.

Accuracy (model)

—+— G Ranking Candidate 6

0.72-

I
S
o
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(d) Model Precision between BDG and ECG

Figure 8: BDG’s game design quickly reaches equilibrium and consensus between the generator
and verifier, typically within 100 epochs. In contrast, ECG requires significantly more epochs
(3000 in this case) and exhibits continuous fluctuations (as shown in the lower right) before achieving
consensus. (Zoom in for details.)

We first compare searching behaviors of BDG with the most closely related method, the ECG [31]], in

the multiple-choice question answering (MCQA) task [18]. Fig[§|provides a visual case study. BDG
demonstrates a swift and consistent convergence in (b).

Conversely, the ECG, shown in (c), exhibits prolonged and inconsistent searching behavior. Despite
continuous shifts in candidate selections, ECG fails to achieve stable convergence with persistent
disagreement between the generator and verifier. (d) and Tab[5] highlights the enhanced and fast
convergence properties of the BDG over the ECG.
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K Human Evaluation

Setting. In this experiment, participants were tasked with evaluating the correctness of ten answers
to a high-school level multiple-choice mathematics problem generated by a Large Language Model
(LLM). Participants were instructed to classify each answer as correct, incorrect, or ambiguous. The
experiment was conducted in two stages:

In the first stage, participants were given two minutes to classify as many answers as possible, and
their results were recorded. In the second stage, participants were allowed to allocate their time freely
to complete the remaining classifications, and they were asked to record the time upon completion of
their classifications. Below is the questionnaire we utilized for the experiment.

Each participant was randomly assigned three distinct problems, and the corresponding solutions
were classified under three conditions: without any hints, with a BDG hint, and with an ECG hint.
The hints provided were rankings of the answers generated by the respective models (BDG and
ECG). The assignment of different problems across the three conditions was designed to prevent
memorization and to control for potential confounding effects related to the content of the specific
problem. Problems were drawn from a pool of questions with similar difficulty levels, allowing for
consistent observation of treatment effects across varying problem sets.

Samples. To better illustrate the experiment setting details, we provided the questionnaire interface,
the instructions, and two cases set below.

Please read the instructions

2 Minutes (Mandatory) Unlimited Time
#Question | Type Actual Time Actual Tim
U I Ut e
Correct Incorrect Ambiguous (Seconds) Correct | Incorrect Ambiguous (Seconds)
#1 w/o Sol No.( Sol No.(s) Sol No.(s) Seconds Sol No.( Sol No.(s' Sol No.(s) Seconds
#2 BDG Sol No.(| | Sol No.(s) Sol No.(s) Seconds Sol No.(| | Sol No.(s'| | Sol No.(s)
#3 ECG Sol No.(| | Sol No.(s) Sol No.(s) Seconds Sol No.(| | Sol No.(s'| | Sol No.(s) Seconds

Submit Questionnaire
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Instructions For task 1, you will judge the correctness of each solution under a mandatory

2-minute limit, and for the ones that you are unsure, label them as ambiguous and
record the result on the answer sheet provided. If you did not finish in 2 minutes,
then record your incomplete result at the 2-minute cutoff and continue your task
until finished, also remember to record your completion time.

For task 2, 3, we will provide a reference (ranking of the solutions to assist
and accelerate your correctness judgement, however, always stick to your own
judgement if there exists a divergence. All other procedures are the same as task 1.

Question #

Random se-  On a Cartesian coordinate plane, points (1, 2) and (7, 4) are opposite vertices of a

lected square. What is the area of the square?

Choices A.20 B. 34 C. 40 D. v40

Task 1 Candidates

0. "To find the area of the square, we multiply the length of the diagonal, which is
V40, by itself. This gives us 40, so the answer is C. 40."

1. "The distance between the points (1, 2) and (7,4) is v/40. This is the diagonal of
the square, so the area could either be 20 or 40. The answer might be A. 20."

2. "The diagonal of the square is +/40, and the area must be equal to this value. The
answer is D. v/40."

3. "First, calculate the diagonal between the points (1,2) and (7,4), which gives v/40.

2

Since this is the diagonal of the square, the area is (@) = 20. Therefore, the
answer is A. 20."

4. "The area of the square is found by calculating the distance between the points. The
diagonal is v/40, so the area is likely 1/40. The answer is D. 1/40."

5. "First, find the distance between (1,2) and (7, 4) using the distance formula: d =
V/(7T—=1)2 + (4 — 2)2 = \/40. This distance is the diagonal of the square. The
area of the square is then % = 20. Therefore, the correct answer is A. 20."

6. "Using the distance formula, the diagonal of the square is v/40. Therefore, the area
of the square is 20. The answer is A. 20."

7. "First, calculate the distance between the points (1, 2) and (7,4), which gives the
diagonal of the square. The distance formula gives d = /(7 — 1)2 + (4 — 2)2 =
V/40. Since the diagonal of the square is v/40, the area is (v/40)?/2 = 20. There-
fore, the answer is A. 20."

8. "Using the distance formula, the diagonal of the square is found to be v/40. The
area of the square is 20, so the answer is A. 20."

9. "Calculate the diagonal of the square using the distance formula: d = +/40. Since
the diagonal is 1/40, the area of the square is simply 40. Therefore, the answer is C.
40."

Task 2 BDG Guidance [Will be hidden during evaluation]

0.

Consistent  "First, find the distance between (1, 2) and (7, 4) using the distance formula: d =

V/(7T—=1)2 + (4 — 2)2 = \/40. This distance is the diagonal of the square. The

(V40)
2

2
area of the square is then = 20. Therefore, the correct answer is A. 20."
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1. "First, calculate the diagonal between the points (1,2) and (7, 4), which gives /40
2

Since this is the diagonal of the square, the area is W = 20. Therefore, the
answer is A. 20."

2. "Using the distance formula, the diagonal of the square is 1/40. Therefore, the area
of the square is 20. The answer is A. 20."

3. "Using the distance formula, the diagonal of the square is found to be 1/40. The
area of the square is 20, so the answer is A. 20."

4. "The distance between the points (1,2) and (7, 4) is +/40. This is the diagonal of
the square, so the area could either be 20 or 40. The answer might be A. 20."

5. "First, calculate the distance between the points (1, 2) and (7, 4), which gives the
diagonal of the square. The distance formula gives d = /(7 — 1)2 + (4 — 2)2 =
V/40. Since the diagonal of the square is v/40, the area is (v/40)?/2 = 20. There-
fore, the answer is A. 20."

6. "The diagonal of the square is 1/40, and the area must be equal to this value. The
answer is D. 1/40."

7. "The area of the square is found by calculating the distance between the points. The
diagonal is /40, so the area is likely 1/40. The answer is D. 1/40."

8. "Calculate the diagonal of the square using the distance formula: d = 1/40. Since
the diagonal is v/40, the area of the square is simply 40. Therefore, the answer is C.
40."

0.

Inconsistent "To find the area of the square, we multiply the length of the diagonal, which is
V40, by itself. This gives us 40, so the answer is C. 40."

Task 3 ECG Guidance [Will be hidden during evaluation]

0.

Consistent  "First, find the distance between (1, 2) and (7, 4) using the distance formula: d =
V(7= 1)2 + (4 — 2)2 = \/40. This distance is the diagonal of the square. The
area of the square is then @ = 20. Therefore, the correct answer is A. 20."

1. "Using the distance formula, the diagonal of the square is v/40. Therefore, the area
of the square is 20. The answer is A. 20."

2. "First, calculate the diagonal between the points (1,2) and (7,4), which gives v/4
Since this is the diagonal of the square, the area is (\/g) = 20. Therefore, the
answer is A. 20."

3. "The distance between the points (1, 2) and (7,4) is v/40. This is the diagonal of
the square, so the area could either be 20 or 40. The answer might be A. 20."

4. "Using the distance formula, the diagonal of the square is found to be v/40. The
area of the square is 20, so the answer is A. 20."

5. "Calculate the diagonal of the square using the distance formula: d = +/40. Since
the diagonal is v/40, the area of the square is simply 40. Therefore, the answer is C.
40."

6. "First, calculate the distance between the points (1,2) and (7, 4), which gives the
diagonal of the square. The distance formula gives d = /(7 — 1)2 + (4 — 2)2 =
v/40. Since the diagonal of the square is /40, the area is (1/40)?/2 = 20. There-
fore, the answer is A. 20."

7. "The diagonal of the square is +/40, and the area must be equal to this value. The

answer is D. v/40."
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8. "To find the area of the square, we multiply the length of the diagonal, which is
1/40, by itself. This gives us 40, so the answer is C. 40."

0.

Inconsistent  "The area of the square is found by calculating the distance between the points. The
diagonal is v/40, so the area is likely 1/40. The answer is D. 1/40."

Question #

Random se- The standard tip in a restaurant is 15% of the bill before tax. Many people in

lected California find the tip by doubling the sales tax, which is 8.25%. By how many
cents does this exceed the standard tip on a bill of $60 before tax?

Choices A.90 B. 80 C.70 D. 60

Task 1 Candidates

0. "The tax is doubled to 16.5%, and the standard tip is 15%. The difference is around
70 cents for a $60 bill, so the answer is C. 70.

1. "To find the tip, we double the sales tax of 8.25%, which gives us 16.5%. The
standard tip is 15%, and the difference on a $60 bill is 60 x (16.5% — 15%) = 90
cents. Therefore, the answer is A. 90."

2. "Doubling the sales tax of 8.25% gives 16.5%. The difference between the standard
tip and this new tip is around 60 cents for a $60 bill. Therefore, the answer is D.
60."

3. "Doubling the tax gives a tip of 16.5%, and the difference from the standard 15%
tip is 90 cents. Therefore, the answer is A. 90."

4. "The standard tip is 15% of 60, which is 60 x 0.15 = 9 dollars. Doubling the sales
tax of 8.25% gives 16.5%, and the tip based on this is 60 x 0.165 = 9.90 dollars.
The difference is 9.90 — 9.00 = 90 cents. Therefore, the correct answer is A. 90."

5. "Doubling the sales tax gives 16.5%, and the standard tip is 15%. This difference
gives 60 x 0.5% = 30 cents. Therefore, the answer is A. 90."

6. "The standard tip is 15%, or 9, and doubling the sales tax gives a tip of 16.5%, or
9.90. The difference is 90 cents. The correct answer is A. 90."

7. "The difference between doubling the sales tax and using the standard tip is 90
cents for a 60 bill, but it could also be 80 cents depending on rounding. It might be
A.90 or B. 80."

8. "The standard tip is 15%, and doubling the tax gives a different percentage. The
difference could be either 60 or 90 cents. The answer might be D. 60."

9. "Doubling the sales tax gives a tip rate of 16.5%, while the standard tip is 15%.
The difference for a 60$ bill is 90 cents. So the answer is A. 90."

Task 2 BDG Guidance [Will be hidden during evaluation]

0.

Consistent  "The standard tip is 15% of 60, which is 60 x 0.15 = 9 dollars. Doubling the sales
tax of 8.25% gives 16.5%, and the tip based on this is 60 x 0.165 = 9.90 dollars.
The difference is 9.90 — 9.00 = 90 cents. Therefore, the correct answer is A. 90."

1. "The standard tip is 15%, or 9, and doubling the sales tax gives a tip of 16.5%, or

9.90. The difference is 90 cents. The correct answer is A. 90."
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Inconsistent

"To find the tip, we double the sales tax of 8.25%, which gives us 16.5%. The
standard tip is 15%, and the difference on a $60 bill is 60 x (16.5% — 15%) = 90
cents. Therefore, the answer is A. 90."

"Doubling the tax gives a tip of 16.5%, and the difference from the standard 15%
tip is 90 cents. Therefore, the answer is A. 90."

"Doubling the sales tax gives a tip rate of 16.5%, while the standard tip is 15%.
The difference for a 60$ bill is 90 cents. So the answer is A. 90."

"The difference between doubling the sales tax and using the standard tip is 90
cents for a 60 bill, but it could also be 80 cents depending on rounding. It might be
A. 90 or B. 80."

"Doubling the sales tax of 8.25% gives 16.5%. The difference between the standard
tip and this new tip is around 60 cents for a $60 bill. Therefore, the answer is D.
60."

"Doubling the sales tax gives 16.5%, and the standard tip is 15%. This difference
gives 60 x 0.5% = 30 cents. Therefore, the answer is A. 90."

"The tax is doubled to 16.5%, and the standard tip is 15%. The difference is around
70 cents for a $60 bill, so the answer is C. 70.
9.

"The standard tip is 15%, and doubling the tax gives a different percentage. The
difference could be either 60 or 90 cents. The answer might be D. 60."

Task 3
0.

Consistent

9.

Inconsistent

ECG Guidance [Will be hidden during evaluation]

"The standard tip is 15%, or 9, and doubling the sales tax gives a tip of 16.5%, or
9.90. The difference is 90 cents. The correct answer is A. 90."

"The standard tip is 15% of 60, which is 60 x 0.15 = 9 dollars. Doubling the sales
tax of 8.25% gives 16.5%, and the tip based on this is 60 x 0.165 = 9.90 dollars.
The difference is 9.90 — 9.00 = 90 cents. Therefore, the correct answer is A. 90."

"To find the tip, we double the sales tax of 8.25%, which gives us 16.5%. The
standard tip is 15%, and the difference on a $60 bill is 60 x (16.5% — 15%) = 90
cents. Therefore, the answer is A. 90."

"Doubling the tax gives a tip of 16.5%, and the difference from the standard 15%
tip is 90 cents. Therefore, the answer is A. 90."

"Doubling the sales tax gives a tip rate of 16.5%, while the standard tip is 15%.
The difference for a 60$ bill is 90 cents. So the answer is A. 90."

"The difference between doubling the sales tax and using the standard tip is 90
cents for a 60 bill, but it could also be 80 cents depending on rounding. It might be
A. 90 or B. 80."

"Doubling the sales tax gives 16.5%, and the standard tip is 15%. This difference
gives 60 x 0.5% = 30 cents. Therefore, the answer is A. 90."

"The tax is doubled to 16.5%, and the standard tip is 15%. The difference is around
70 cents for a $60 bill, so the answer is C. 70.

"The standard tip is 15%, and doubling the tax gives a different percentage. The
difference could be either 60 or 90 cents. The answer might be D. 60."

"Doubling the sales tax of 8.25% gives 16.5%. The difference between the standard
tip and this new tip is around 60 cents for a $60 bill. Therefore, the answer is D.
60."
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Results. To differentiate between expert and non-expert participants, a threshold of 150 seconds was
set based on empirical observations of participant behavior. This threshold was corroborated by a
scatterplot that visually demonstrated the partitioning between experts and non-experts, supporting
the appropriateness of the selected cut-off time for classification performance. From the 183 samples
we collected, we have come to conclusions:

Firstly, human evaluation on these LLM-generated solutions have instrinsic unreliability and am-
biguity, especially for non-expert participants; under the 2-minute time constraint, there were 28
participants who scored an accuracy of 50% or below, even without time constraint, there were 10
participants in total whose accuracies were 60% or below.

Secondly, with the hint of BDG, we observed that the participants in both the expert and the non-
expert groups outperformed the participants without the hint or the ECG hint; more importantly, with
the hint of BDG, the performance of the non-expert participants improved significantly with respect
to the expert participants, whereas the ECG hint did not achieve this.

Thirdly, across problems, samples with BDG hint achieved the highest accuracies for 7/10 problems
and fastest completion also for 7/10 problems. This result showcases the robustness of BDG hint also
within the same problems.

Lastly, the BCG hint has also helped non-expert participants spot ambiguous solutions more
accurately compared to non-expert participamts with the ECG hint or without the hint.
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Generations.

Question.

Suppose the graph of y = f(z) includes the points (1, 5), (2, 3), and (3, 1). Based only on
this information, there are two points that must be on the graph of y = f(f(z)). If we call
those points (a, b) and (¢, d), what is ab + ¢d?

BDG.

"Given the points (1,5),(2,3), and (3,1) on the graph of y = f(x), we compute
f(f(2) = f(3) =1and f(f(3)) = f(1) = 5. So the points (2,1) and (3,5) are on the
graph of y = f(f(«x)). Therefore,ab+cd=2x14+3x5=17."

ECG.
"From f(z), we see that f(f(2)) = 1 and f(f(3)) = 5. Therefore, ab + c¢d = 17. The
answer is 17"

Question.

Positive integers x and y have a product of 56 and z < y. Seven times the reciprocal of the
smaller integer plus 14 times the reciprocal of the larger integer equals 4. What is the value
of z?

BDG.
"Let the integers be x and y. Since z - y = 56 and x < y, try small values. Testing x = 2
and y = 28 satisfies 7 - % + 14 - i — 4. Therefore, x = 2, so the answer is 2."

ECG.
"Since x - y = 56, try small values of x like 2. This satisfies the equation, so the answer is 2."

Question.

Six positive integers are written on the faces of a cube. Each vertex is labeled with the
product of the three numbers on the faces adjacent to the vertex. If the sum of the num-
bers on the vertices is equal to 1001, then what is the sum of the numbers written on the faces?

BDG.

“The numbers on the faces of the cube contribute to the product at each vertex. Given that the
sum of the vertex products is 1001, and knowing the cube’s geometry, we deduce that the
sum of the numbers on the faces is 31.”

ECG.
"Using the fact that the sum of the vertex products is 1001, and knowing there are six faces,
we calculate that the sum of the face numbers is 31. So the answer is 31."
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state our paper’s main contributions: intro-
ducing a novel game-theoretic approach (Bayesian Decoding Game) that enhances consistency
and reliability during LLM decoding. The claims about performance improvements (e.g., 78.1
LLaMA13B vs 76.6 PaLM540B) are supported by our experimental results in Section 3.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in
the paper.

* The abstract and/or introduction should clearly state the claims made, including the contri-
butions made in the paper and important assumptions and limitations. A No or NA answer
to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations in Section 4 (Discussion and limitations), noting that our
approach requires explicit specification of correctness consistency branches during the game
process, and that this alignment is primarily intended to match human intent with model outputs.
We also acknowledge potential for further improvement by adding multi-metrics and multiple
agents to achieve game-based deliberation.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and

how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address

problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]
Justification: The paper provides complete theoretical foundations and proofs for all theoretical
claims. Theorems 1, 2, and Proposition 1 are stated with clear assumptions and are accom-
panied by rigorous proofs in Appendix sections A.3 (App_thm1), A.4 (App_thm3), and A.5
(App_propl).
Guidelines:

* The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 3 provides detailed experimental setups, datasets used (MMLU, ARC-Easy,
ARC-Challenge, RACE-High, etc.), model specifications (LLaMA-7B/13B), and implementa-
tion details. Additionally, we include a detailed reproducibility statement in Appendix Section 1
with pseudocode implementation (Algorithm 1) of the Bayesian Decoding Game.

Guidelines:

* The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good way
to accomplish this, but reproducibility can also be provided via detailed instructions for
how to replicate the results, access to a hosted model (e.g., in the case of a large language
model), releasing of a model checkpoint, or other means that are appropriate to the research
performed.

While NeurIPS does not require releasing code, the conference does require all submissions

to provide some reasonable avenue for reproducibility, which may depend on the nature of

the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide model-agnostic pseudocode implementation in Algorithm 1 (Appendix
Section 1) and detailed instructions for reproducing our results. The benchmarks we used
(MMLU, ARC, RACE, etc.) are publicly available datasets, and we used open-source LLaMA
models for our experiments. Complete implementation details are provided in Appendix Sections
land 7.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

e The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).
* Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparame-
ters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Section 3 and Appendix Section 7 provide comprehensive details of our experi-
mental settings, including hyperparameters (np, Ap, 1g, Ag set to 0.1), model specifications
(LLaMA 7B and 13B with 16-bit inference), datasets used, and evaluation metrics. We also
specify hardware configurations (NVIDIA A6000 and A100 GPUs) and runtime information.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

e The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Our experiments report statistical significance through comprehensive evaluations
across multiple datasets and models. For our human evaluation (Section 3.1 and Appendix
Section 9), we collected 183 samples with clear statistical differences between conditions.
We ran our game-theoretic experiments 5000 times with early stopping based on equilibrium
convergence to ensure robustness of results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

e Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CL, if the hypothesis of Normality
of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: In the Reproducibility Statement (Appendix Section 1), we specify that experiments
were conducted on NVIDIA A6000 and A100 GPUs, with runtimes ranging from 0.5 to 6
hours depending on model size, task, and experimental settings. We also note that BDG
typically converges within 500 iterations or less, providing a clear indication of computational
requirements.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our research fully conforms to the NeurIPS Code of Ethics. We have used publicly
available models and datasets, appropriately credited prior work, and we discuss potential ethical
risks and societal impact in Appendix Section 2, including considerations about potential for
misuse in disinformation scenarios.

Guidelines:
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¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

 The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impacts in Appendix Section 2 (Potential Ethics Risks and
Societal Impact). Positive impacts include improved reliability and consistency of LLM outputs,
which enhances trustworthiness. We also acknowledge potential negative impacts such as more
convincing disinformation if the techniques are misused, as illustrated in Figure 9.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA|

Justification: Our paper introduces a decoding methodology rather than releasing new models
or datasets. We utilize existing publicly available models (LLaMA) and benchmark datasets.
Our method aims to improve reliability and reduce misinformation, serving as a safeguard itself
rather than creating new risks that require additional protections.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We properly credit all existing assets used in our research. We cite the original
papers for LLaMA, deepseek models and all benchmark datasets. All models and datasets used
are publicly available resources with appropriate licenses for research purposes.

Guidelines:

* The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets| has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The primary new asset introduced in our paper is the Bayesian Decoding Game
(BDG) framework. This is thoroughly documented through formal definitions, pseudocode (Al-
gorithm 1 in Appendix Section 1), and detailed explanations of the game-theoretic mechanisms.
We provide comprehensive implementation details that allow for reproduction of our approach.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset
is used.

e At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [Yes]

Justification: Our paper includes a user study with 183 participants. Appendix Section 9
(Human Evaluation) provides the complete experimental setup, including instructions given to
participants, example questionnaires, and screenshots of the interface used. We report detailed
analysis of the results including methodology for expert/non-expert classification.

Guidelines:
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15.

16.

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [Yes]

Justification: Our human evaluation study involved minimal risk to participants as they were
only evaluating mathematical solutions. The study was conducted in accordance with our
institution’s ethical guidelines for human subject research, with appropriate informed consent
from all participants. The task involved no collection of personal or sensitive information.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Our research focuses directly on improving LLM decoding methods, and we
use LLaMA models (7B and 13B) as the foundation for our experiments. Section 3 clearly
describes how these models were utilized in our Bayesian Decoding Game framework, including
prompting methods, model configurations, and implementation details.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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