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Abstract

The remarkable performance of transformer models in both linguistic and real-
world reasoning tasks coupled with their ubiquitous use has prompted much re-
search on their alignment with brain activations. However, there remain some unan-
swered questions: what aspects of these models lead to representational alignment-
the input modality or the training objective? Moreover, is the alignment limited to
modality-specialized brain regions, or can representations align with brain regions
involved in higher cognitive functions? To address this, we analyze the representa-
tions of different transformer architectures, including text-based and vision-based
language models, and compare them with neural representations across multiple
brain regions obtained during a visual processing task. Our findings reveal that
both training data modality and training objective are important in determining
alignment, and that models align with neural representations within and beyond
the modality-specific regions. Additionally, the training modality and objectives
seem to have an impact on alignment quality as we progress through the layers,
suggesting that multimodal data along with a predictive processing objective may
confer superior representational capabilities compared to other training objectives.

1 Introduction

The recent introduction of the transformer architecture [1], combined with a predictive processing
training objective, has led to the rise of models that have achieved unprecedented performance in the
domain of natural language processing. Nowadays, larger variants of these language models, known
as large language models (LLMs) or multimodal language models (MLMs), have been shown to
have superior language understanding and generation capabilities [2, 3], structured understanding of
language [4–7], and significant performance in broader cognitive domain tasks like general reasoning
[8–12] and planning [13, 14]. This has also led to a proliferation of research with transformers within
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the neuroconnectionist research programme [15], focusing on alignment of their representations
with brain activations [16–19], and there has been an increasing interest in several questions about
their relation to human cognitive processes and how these models process and represent information
compared to the human brain.

When it comes to humans, there has always been evidence of predictive processing playing an
important role during language comprehension [20–22]. Predictive processing transformers today
have shown superior capabilities in language processing - popular text-trained models like Llama3-8B
[23] have shown robust language generation capabilities while those further trained on code like
CodeLlama-7B [24] have also been shown to develop even advanced reasoning capabilities [25].
Moreover, the embeddings of transformer-based LMs have been shown to be robust at reflecting
human judgements across language and vision inputs [26, 27]. This has led to the consideration of
such transformer-based LMs as possible models of human language processing. However, while
there is some research on determining pressures which impact such model alignment capabilities
[28–30], there has been little work that specifically focuses on transformers and delineating design
choices in them that improve alignment. Previous research has investigated the role of different
architectures, task objectives and training diets on the alignment of biological and artificial systems
[31, 32]. However, most of these studies have predominantly focused on visual processing and
image-based tasks [33, 34], with relatively few exploring the multi-modal capabilities of artificial
neural network models. On a related note, research has also shown that the human brain is highly
modular: for example, linguistic and non-linguistic tasks are clearly separated from one another in
the brain [35–38]. Recent work on the interface of LLMs and human language processing has also
emphasized the need to separate language and general cognition [39, 40]. How valid is this domain
specificity in the case of model representations?

These considerations lead us to our two central questions:

• Do input modality and training objective impact the representational alignment of transform-
ers with the human brain?

• Can task or domain-specific representations from models align to brain regions with higher
cognitive functions beyond modality-specialized regions?

To answer these, we consider the domain of visual processing tasks and compare representations
from various deep generative models with brain activations across different regions. The stimuli and
functional Magnetic Resonance Imaging (fMRI) data are taken from the BOLD Moments Dataset
(BMD) [41], which contains fMRI data from 10 subjects viewing short natural videos. To study
the impacts of training data modalities and objectives, we use six different types of models in our
research: a convolutional neural network baseline model and five transformer architectures with
varying input modalities and training objectives. Specifically, we use an image model (ResNet-50),
a video model (ViViTB), a language model (Llama3-8B), a language model which was trained
on programming languages (CodeLlama-7B), an image-language model (BLIP-L), and a video-
language model (LLaVA-OV-7B). The code-trained language model was chosen because of the recent
finding on its different behaviour on reasoning tasks compared to its natural text-based counterpart,
Llama-3-8B-Instruct [11, 25]. We extract the models’ hidden representations of the stimuli from
their early, middle, and last layers, and apply representational similarity analysis (RSA) across 20
different human brain regions of interest (ROIs). Additionally, we apply searchlight RSA [42] to map
where the model best reflects the local neural activation patterns.

Our results indicate that a combination of multimodal data and generalized predictive processing
i.e. next-word prediction training objective is critical in improving the alignment with neural
representations, the influence growing more pronounced as we hierarchically ascend model layers.
This alignment also manifests for higher-level regions, highlighting the broad scope of representational
convergence. This observation indicates that predictive processing, combined with multimodal data,
may endow models with a more sophisticated and nuanced representational alignment capacity when
compared to other training paradigms. Such results have considerable implications for research
surrounding the cognitive capabilities of models and their ability to emulate human cognition.
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Figure 1: (A) Definitions of regions of interest (ROIs). Subject 1 was used for the visualization.
(B) A schematic diagram of the comprehensive workflow for the analysis. For the visualization,
LLaVA-OV-7B was used for model RDMs and V1v from Subject 1 was used for the fMRI RDM.

2 Methods

2.1 Stimuli

The stimuli used in our study consists of 102 short videos from the BOLD Moments Dataset (BMD)
[41]. The videos presented to participants did not contain audio information or captions. In the
scanner, subjects are instructed to fixate at the central fixation cross. Each video has a duration of 3
seconds and a frame rate between 15 and 30 frames per second, ensuring a diverse range of temporal
resolutions. This test dataset is a carefully selected subset from the larger Memento10k dataset [43],
which itself is derived from the extensive Moments in Time dataset [44] and its extended Multi-
Moments in Time dataset [45]. The Memento10k dataset includes a broad spectrum of real-world
activities and scenes, providing a rich context for evaluating vision-based models.

2.2 fMRI representations

BMD comprises data from 10 healthy subjects, with an average age of 27.01 years (SD = 3.96). Each
subject participated in five fMRI sessions, including anatomical scans, functional localizer scans,
and visual task fMRI sessions. During the main task, subjects viewed each video from the test set
10 times. They were instructed to maintain fixation on a central point throughout each video. Each
video lasted 3 seconds and was followed by a 1-second interval.

We utilize 15 early and ventral visual ROIs defined from the localizer experiments conducted for
each subject. These ROIs include early or mid-visual areas (V1v, V1d, V2v, V2d, V3v, V3d, hV4),
which are critical for processing basic visual features. Additionally, body-selective regions (EBA),
object-selective regions (LOC), face-selective regions (FFA, OFA, STS), and scene-selective regions
(PPA, RSC, TOS) were included to capture specialized visual processing. The number of voxels for
each ROI and each subject was capped at 1000, following the procedure described in the BMD paper,
where the top 1000 ROIs were limited by masking each subject’s FWE corrected t-contrast map with
the corresponding binarized t-contrast probability map [41]. This approach allows for a detailed
investigation into how different visual areas respond to the diverse stimuli presented in the videos.

Additionally, 3 dorsal visual stream areas defined from anatomical landmarks in BMD were adopted,
including V3ab, IPS0, and IPS1-2-3 defined with a maximum probability map [46]. The middle
temporal visual area (MT) was also extracted [47], as a part of the visual motion processing pathway
[48, 49]. The language area (inferior frontal gyrus, inferior frontal gyrus orbital, middle frontal
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Table 1: Detailed overview of model specifications

Model Architecture Modality Training objective Number of
parameters

Used layers
(early, middle, last)

ResNet-50 Convolutional
Neural Network Image Classification 25M 1, 2, 4

ViViT-B Transformer Image Classification 89M 3, 5, 12
Llama3-8B Transformer Natural Language Predictive Processing 8B 8, 15, 32
CodeLlama-7B Transformer Natural Language, Code Predictive Processing 7B 8, 15, 32
BLIP-L Transformer Image, Natural Language Image Captioning 470M 6, 11, 24
LLaVA-OV-7B Transformer Video, Natural Language Predictive Processing 7B 7, 13, 28

gyrus, posterior temporal region and anterior temporal region) was extracted for each individual with
a probabilistic atlas, LanA [50]. In conclusion, 20 ROIs were included in the current study. The
visualization of all 20 ROIs is shown in Figure 1A.

2.3 Model representations

To measure the impact of model design choices (input modality and training objective), we consider
a suite of six models, including a baseline model: ResNet-50 (convolutional neural net for image
classification) [51], ViViT-B (video-vision transformer for classification) [52], Llama3-8B (a typical
autoregressive language model) [23], CodeLlama-7B (LLAMA-variant further trained on code)
[24], BLIP-L (a vision language model) [53], and LLaVa-OneVison-7B (a video language model)
[54]. Refer to Table 1 for a more detailed overview of their architecture and training objectives.
We consider 2 models with multimodal input i.e. image+language pretraining and 3 models with
predictive processing i.e. next-word prediction objective where only LLaVa-OneVison-7B combines
both i.e. it is a multimodal model with predictive processing objective.

For the text-based models (Llama-3-8B-Instruct and CodeLlama-7B), we use the caption data
provided in the BMD. From a set of five given captions for each stimulus, we conducted a review of
captions and chose the longest caption to ensure maximal information about the stimuli is preserved in
the caption. For the image-based models (ResNet-50, ViViT-B, BLIP-L), we first extract 32 frames
uniformly distributed across the duration of each video and then average the model representations
across frames. For the video-based models (ViViT-B and LLaVA-OV-7B), we also input 32 frames
uniformly distributed across the duration of each video.

For each model, we extracted three sets of representations while processing each stimulus: an early
layer, an intermediate layer and the last layer. For the early layers, we extracted features from
layers corresponding to a quarter of the total number of hidden state outputs for each model. The
intermediate layers were extracted from the midpoint based on the number of hidden layers for each
model, while the last layers were the last of the hidden layers in each model. The exact numbers
of extracted layers are indicated in Table 1. For ResNet-50, the layers used in our analysis can be
extracted by accessing each Sequential (PyTorch) layer, which is the block part of the ResNet
model, and for all the other models, the layers can be extracted by accessing hidden_states
(huggingface).

2.4 Representational dissimilarity matrices (RDM)

After extracting neural and model representations for the 102 video stimuli, we create RDMs to
quantify how the stimuli were represented in each brain area and model. The RDMs enable the
comparison of representation across systems. The dissimilarity between two representations Xi and
Xj can be expressed as:

D(Xi, Xj) = 1− cov(Xi, Xj)

σ(Xi)σ(Xj)
(1)

where cov(Xi, Xj) denotes the covariance between the two representations, with σ(Xi) being the
standard deviation of Xi. This formula denotes a 1− Pearson distance between the representations
of video stimuli i and j.
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The RDM is a symmetric nn matrix R where Rij reflects the dissimilarity between the representations
of stimulus i and stimulus j, resulting in a 102 by 102 matrix in the current study. Mathematically,
the RDM is given by:

Rij = D(Xi, Xj) ∀i, j ∈ {1, 2, . . . , n} (2)

For the ROI-based analysis, we calculate RDMs for each subject and each ROI. For the whole brain
searchlight analysis, RDMs are extracted within a sphere of radius 4 voxels centered at each voxel
across the whole brain, measuring the local neural representation pattern.

2.5 Representational similarity analysis (RSA)

Representational Similarity Analysis (RSA) provides a common framework to quantitatively compare
representational geometries across different modalities, such as computational models and neuroimag-
ing data [42]. This approach has been particularly valuable in studying how both artificial neural
network models and the human brain process complex, naturalistic stimuli like spoken or written
language, images, and videos [55–57].

To assess the similarity of neural and model representations, we calculate the (Spearman′s ρ)
between RDMs:

ρ =
cov(rank(vec(RA)), rank(vec(RB)))

σ(rank(vec(RA)))σ(rank(vec(RB)))
(3)

ρ = Spearman(vec(RA), vec(RB)) (4)

We correlate neural RDMs with the RDMs of the early, middle and late layers of models to measure
how well model representations capture brain responses to stimuli.

We compute the upper noise ceiling as subject-to-group RDM correlation and the lower noise ceiling
as leave-one-out RDM correlation per ROI or searchlight[58]. For multivariate reliability, the RSA
values are normalized by the upper noise ceiling for both analyses for each subject, as described by:

ρnorm
i =

ρi
ρupper
i

(5)

Afterwards, we average the normalized correlations across the 10 subjects at each ROI or searchlight.
The final corrected RSA value ρcorrectedi is given by:

ρcorrected
i =

ρnorm
i

N
(6)

To statistically assess the searchlight RSA results, we follow Lahner et al. [41] and compute a
one-sample two-sided t-test at each searchlight testing whether correlations differed from 0. The
resulting p-values are FDR-corrected across searchlights (assuming positive correlation, q=0.05).
For the ROI-based RSA, a one-way ANOVA was performed at each ROI level using noise-normalized
correlation for all 6 models (Bonferroni corrected with n=20 ROIs, p<0.05) and a Tukey’s Honestly
Significant Difference (HSD) test was performed as a post-hoc test for significant ROIs (FEWR
=0.05). A schematic diagram of the RSA procedure is shown in Figure 1B.

3 Results

3.1 ROI-based RSA

We compare the similarity of model representations extracted from different layers to fMRI activations
for corresponding stimuli across different brain regions, as shown in Figure 2.

For the representations in the early layers, we see that:
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• Most transformer architectures perform better than the baseline ResNet-50, with ViViT-B
showing highest alignment for the early visual regions (V1v, V1d, V2v, V2d) while
LLaVA-OV-7B was more aligned across other ROIs. This could indicate that for higher-level
brain regions, multiple input modalities lead to better alignment.

• The BLIP-L model shows near-comparable performance to LLaVA-OV-7B in the early visual
ROIs, with the performance gap increasing in other brain regions. This suggests that over

Figure 2: ROI-based RSA results. Noise-normalized Spearman’s correlation coefficient values for
(A) the early layer of each model, (B) the middle layer of each model, and (C) the last layer of each
model. Error bars indicate the ± standard error. Noise normalization is done by using the upper
bound of the noise ceiling for each ROI. Noise ceilings are shown for each ROI (lower bound: gray
line; upper bound: black line). A one-way ANOVA test compared the noise-normalized correlation
between all 6 models for each ROI (Bonferroni corrected, n = 20, p<0.05). If significant, a Tukey’s
HSD test identified pairwise significance (FWER=0.05; significant pairs marked by dual paired color
bars on top of each ROI plot).
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and above input modality, the training objective also impacts performance, with improved
alignment for predictive processing models.

• Text-based LMs (Llama-3-8B-Instruct and CodeLlama-7B) perform the worst in early
and mid-level visual regions but show improvement in higher-level visual areas and dorsal,
MT, Lang regions. This suggests that predictive processing leads to broader cognitive
alignment but multiple input modalities tend to further improve performance (as seen by the
better alignment of LLaVA-OV-7B).

• The CodeLlama-7B model mostly lags behind its natural language counterpart,
Llama-3-8B-Instruct, suggesting that training with code, as opposed to only natural
language, might lead to lower brain alignment even though their reasoning performance
improves [24, 25]

For the mid-layer representations, we see that:

• The middle layer of the baseline ResNet-50 achieves higher brain alignment compared to
its early layer representations. The alignment of middle layer transformer representations
is approximately similar to their early layers, with ViViT-B best modelling early visual
regions (V1v, V1d, V2v, V2d, and V3d), and LLaVA-OV-7B showing high similarity to
brain activations in other ROIs.

• For BLIP-L, the alignment trend is similar to that seen in its early layer, although the
middle layer performs better in early visual ROIs. However, LLaVA-OV-7B still outperforms
BLIP-L, supporting our conclusion that a predictive processing objective leads to better
alignment.

• For the text-based LMs, the middle layer results are similar to the early layers, with
Llama-3-8B-Instruct still outperforming CodeLlama-7B.

For the last layer representations of the model, we see some noteworthy patterns of alteration in
alignment measures:

• The performance of ResNet-50 is better compared to most other transformers in the early
visual areas (which replicates some earlier findings [32]) but LLaVA-OV-7B still remains the
best-performing model across all ROIs. Surprisingly, however, the alignment for ViViT-B
and BLIP-L drops for early visual ROIs. This could indicate the importance of a predictive
processing objective for retaining representational nuances across model layers.

• The performance of text-based LMs also remains similar or shows slight improvements
across all ROIs, yetLLaVA-OV-7B still outperforms the text-based models. This highlights
the superiority of multimodal models even within the predictive processing model class.

Moreover, we find that the representations from all our 6 models are similarly well-aligned not only
to modality-specific regions (early visual areas or the language network), but also to regions involved
in higher cognitive functions like IPSO or IPS1-2-3. This further strengthens the view that model
representations also capture information in regions beyond low-level sensory processing areas.

3.2 Searchlight RSA

The whole-brain searchlight analysis is designed to provide a more detailed understanding of "where"
in the human brain specific local response patterns exhibit similarity to the way the model encodes and
represents the videos. By systematically evaluating neural activity across the entire brain, this method
enables the identification of precise regions that align with the model’s representational structure. The
findings from the ROI-based (Region of Interest) analysis, which focused on predefined brain areas,
were further validated and strengthened by the searchlight approach, offering a more comprehensive,
data-driven confirmation of the model-brain alignment across broader cortical regions, as shown in
Figure 3.

For the representations in the early layers, we see that:

• Image-based models ViViT-B and RestNet-50 exhibit diverse alignment across different
brain regions while ViViT-B shows better alignment for early to middle visual areas.
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Figure 3: Searchlight RSA results. Noise-normalized Spearman’s correlation coefficient values for
(A) the early layer of each model, (B) the middle layer of each model, and (C) the last layer of each
model. From left to right, the columns show non-language, language-only, and multimodal models.
Noise normalization was done by using the upper bound of the noise ceiling at each searchlight. FDR
correction (q=0.05) was performed across searchlights.

• For video+text based model LLaVA-OV-7B, the alignment performance is the best among all
six models. Though this model does not reflect the activation pattern of early visual areas,
it aligns well with brain regions for middle to high-level visual processing and cognitive
control functions.

This shows that while transformer architectures with predictive processing are more brain-aligned,
enhancement with visual input modalities can further improve the alignment of representations.
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In case of the middle layer representations, the trends seems to indicate that training with image
data, image-based model ViViT-B and image+text-based model BLIP-L show stronger alignment
compared to the early layer. Meanwhile, they exhibit strong alignment with superior parietal areas,
which are related to higher cognitive functions such as attention modulation and multimodal sensory
integration.

For the last layer representations of models, the trends are as follows:

• Similar to ROI-based analysis, the alignment for image-based model ViViT-B and
image+text-based model BLIP-L drops for all the voxels that their the middle layer re-
flect, especially for early visual ROIs.

• Baseline image-based model RestNet-50 gained stronger alignment overall compared to
the middle layer, especially the early visual ROIs and abstract information selective ROIs.

• The video-text based model LLaVA-OV-7B still performed the best in brain alignment,
remaining the strong mapping to the brain areas that reflects by middle layer.

Similar to the ROI-based analysis, the searchlight analysis reveals that the transformer architecture
yields the highest alignments when combined with a next-word prediction objective and multimodal
training data.

4 Discussion

The findings of this study offer valuable insights into the factors that shape the alignment of
transformer-based models with neural activity in the human brain. Our results emphasize the
significance of architectural design, training strategies, and task modalities in influencing the repre-
sentational overlap between artificial models and biological systems.

Impact of Training Data and Multimodal Learning While transformers with predictive processing
objectives (Llama-3-8B-Instruct, CodeLlama-7B and LLaVA-OV-7B) demonstrate strong rep-
resentational alignment with human brain regions, our findings suggest that the training data also
plays a critical role in improving this alignment. The CodeLlama-7B model mostly lags behind
its natural language counterpart, Llama-3-8B-Instruct, suggesting that training with code, as
opposed to only natural language, might narrow model’s ability to capture natural language patterns
and features as effectively. Additionally, models trained on multiple input modalities, such as both
vision and language, tend to exhibit stronger and more generalized alignment with brain activity
(LLaVA-OV-7B). This multimodal training likely enables models to capture richer, more integrated
representations that better reflect the multifaceted nature of human cognition, where various sensory
and cognitive inputs are processed simultaneously.

The human brain continuously integrates information from different sources—visual, auditory,
linguistic, and more—during perception and decision-making. By training transformers on both
vision and language, for example, the models are able to capture complex interactions between these
modalities, resulting in a more holistic and cognitively aligned representation that resonate more with
how the brain processes diverse inputs [59]. This is particularly evident in non-linguistic brain regions
where models trained solely on language show weaker alignment, whereas multimodal-trained models
achieve a more robust alignment across diverse cognitive networks. This suggests that incorporating
multimodal data into training protocols enhances representational alignment capabilities.

Impact of Training Objective The training objective seems to play a crucial role in determining
brain alignment. Transformer-based models like ViViT-B and BLIP-L show worsening alignment
with early visual areas as we pass through model layers, which can be attributed to their alternate
training objectives such as classification or image captioning. On the other hand, the models with next-
word prediction objectives such as Llama-3-8B-Instruct, CodeLlama-7B and LLaVA-OV-7B all
improve and retain alignment even at the last layer representations. This suggests that predictive
processing objectives might better reflect cognitive mechanisms in the brain [60, 61], also evidenced
by studies of the human visual system’s higher-level areas providing predictive signals into lower
regions to "explain away" things [62–65]. These results could also count as supporting evidence of
the human visual system as a predictive machine. Moreover, the increasing alignment observed in
higher layers of the models may indicate that more abstract, high-level representations in the brain
and models converge when predictive objectives are used.
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These findings highlight the potential of predictive processing frameworks not only to improve
the performance of artificial models but also to enhance their ability to simulate human cognitive
processes. The success of these models in aligning with human brain activity may encourage further
research into training paradigms that prioritize prediction as a core objective.

Broad-scope Cognitive Alignment Our findings demonstrate that the representations from all six
models not only maintain alignment trends with modality-specific regions (such as early visual areas
and the language network) but also extend to regions associated with higher-order cognitive functions,
including IPSO, IPS1-2-3, and superior parietal areas, which aligns with previous research [66]. This
supports the notion that model representations are capable of aligning with brain regions beyond
low-level sensory processing, offering insights into more complex neural dynamics.

Moreover, this broad-scope alignment suggests that the models are not confined to superficial sensory
features but are capable of capturing abstract cognitive processes, suggesting that they might share an
abstract representation space beyond respective modalities.

Conclusion Our study raises critical questions about the nature of representational capabilities in
transformer LMs- particularly as a function of their training data and objectives. The results of this
study have broader implications for both neuroscience and artificial intelligence research. In the field
of AI, the findings provide valuable insights into how architectural and training choices impact a
model’s ability to mimic human cognitive processes. Our results suggest that the combination of
multimodal training and predictive processing objectives may be particularly effective in developing
models that align with human neural patterns, opening new possibilities for creating more cognitively
aligned artificial systems. From a neuroscientific perspective, transformer architectures may offer
new opportunities to explore how the brain processes information across various domains. Their
ability to align with low to high-level cognitive brain regions suggests that these models can be useful
tools for studying the neural basis of cognition more broadly.

5 Limitations

Despite the promising findings, our study has a few limitations that must be considered when
interpreting the results. First, the analysis primarily focuses on visual processing and language
comprehension tasks, limiting the generalisability of our results to other cognitive domains. Cognitive
processes such as memory, attention, and abstract reasoning are not directly explored, leaving
open the question of how well transformer-based models align with brain regions involved in these
tasks. Future studies should incorporate a broader range of cognitive tasks to determine whether the
representational alignment observed here extends to other domains of cognition.

Secondly, our study only tests a selection of transformer models. To validate our findings and
ensure the robustness of representational alignment, future research should include a wider range of
models to assess how generalizable our results are and whether certain model architectures or training
paradigms consistently produce stronger alignment with neural activity across multiple cognitive
domains. This approach would provide a deeper understanding of which specific model features
contribute most to effective alignment with the human brain.

Finally, while we demonstrate an alignment of models with brain regions, it is important to recognize
that alignment does not necessarily imply equivalence in cognitive mechanisms. The models we
analyzed are optimized for prediction and generation in artificial tasks, and their internal representa-
tions may not map directly onto biological processes in a straightforward way. Thus, further work is
needed to establish a deeper understanding of how these models function as proxies for brain activity.
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