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Abstract

k-Clustering in R? (e.g., k-median and k-means)
is a fundamental machine learning problem.
While near-linear time approximation algorithms
were known in the classical setting for a dataset
with cardinality n, it remains open to find
sublinear-time quantum algorithms. We give
quantum algorithms that find coresets for k-
clustering in RY with O(v/nkd®/?) query com-
plexity. Our coreset reduces the input size from n
to poly (ke ~1d), so that existing c-approximation
algorithms for clustering can run on top of it
and yield (1 4 ¢)a-approximation. This even-
tually yields a quadratic speedup for various k-
clustering approximation algorithms. We com-
plement our algorithm with a nearly matching
lower bound, that any quantum algorithm must
make Q(v/nk) queries in order to achieve even
O(1)-approximation for k-clustering.

1. Introduction

Clustering is a fundamental machine learning task that has
been extensively studied in areas including computer science
and operations research. A typical clustering problem is k-
median clustering in R?. In k-median clustering, we are
given a set of data points D C R? and an integer parameter
k, and the goal is to find a set C' C R4 of k points, called the
center set, such that the following objective is minimized:

cost(D, C) := Z dist(z, C), (1)

x€D
here dist(z,y) := ||z — yl|2, dist(z, C) := mig dist(z, ¢).
ce
In the classical setting, k-median clustering is shown to be
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NP-hard (Megiddo & Supowit, 1984) even in the planar case
(i.e., Euclidean R?), and polynomial time approximation
algorithms were the focus of study. Furthermore, even allow-
ing O(1)-approximation, a fundamental barrier is still that
the algorithm must make Q(nk) accesses to the distances
between the n input points (Mettu & Plaxton, 2004).

In this paper, we study quantum algorithm and complex-
ity for k-median clustering (and more generally, (k,z)-
clustering as in Definition 2.1). This is motivated by quan-
tum algorithms for various related data analysis problems,
such as classification (Kapoor et al., 2016; Li et al., 2019;
2021), nearest neighbor search (Wiebe et al., 2015), support
vector machine (Rebentrost et al., 2014), etc. Many of these
quantum algorithms are originated from the Grover algo-
rithm (Grover, 1996), which can find an item in a data set of
cardinality n in time O(y/n), a quadratic quantum speedup
compared to the classical counterpart. Hence, a natural ques-
tion is whether quantum algorithms can break the aforemen-
tioned classical 2(nk) lower bound for k-median cluster-
ing, with a practical goal of achieving complexity O(v/nk),
while still achieving O(1) or even (1 + ¢)-approximation.

Coresets To this end, we consider constructing core-
sets (Har-Peled & Mazumdar, 2004; Feldman & Langberg,
2011) by quantum algorithms. The coreset is a powerful
technique for dealing with clustering problems. Roughly
speaking, an e-coreset is a tiny proxy of the potentially
huge data set, such that the clustering cost on any center
set is preserved within ¢ relative error. For k-median, an
e-coreset of size poly(ke~!) has been known to exist (see
e.g., Sohler & Woodruff, 2018; Huang & Vishnoi, 2020;
Braverman et al., 2021; Cohen-Addad et al., 2021; Cohen-
Addad et al., 2022; Schwiegelshohn et al., 2022), which is
independent of both the dimension d and size n of the data
set. Once such a coreset is constructed, one can approximate
k-means efficiently by plugging in existing approximation
algorithms (so that the input size is reduced to the size of
the coreset which is only poly(ke~1)). In addition, coresets
can also be applied to clustering algorithms in sublinear
settings such as streaming (Har-Peled & Mazumdar, 2004),
distributed computing (Balcan et al., 2013), and dynamic
algorithms (Henzinger & Kale, 2020).



Near-Optimal Quantum Coreset Construction Algorithms for Clustering

Contributions We propose the first quantum algorithm for

constructing coresets for k-median that runs in O (\/ nk)

time,! which breaks the fundamental linear barrier of classi-
cal algorithms.

Theorem 1.1 (Informal version of Theorem 3.1). There
exists an quantum algorithm that given ¢ > 0 and
an n-point data set D C RY, returns an e-coreset of
size O(kdpolylog(n)/sQ) for k-median over D with
success probability at least 2/3, with query complexity
0 (\/%dS/Q/E) and additional poly (kdlogn/e) process-
ing time.

Our coreset construction also yields coresets of a similar
size for the related k-median clustering problem (and more
generally, (k, z)-clustering, see Definition 2.1), using the
same order of query and processing time (see Theorem 3.1).
The size bound of our coreset stated in Theorem 1.1 may not
be optimal, but since it already has size poly(ke~1d), one
can trivially apply the state-of-the-art classical coreset con-
struction algorithm on top of our coreset to obtain improved
bounds. For instance, we can obtain coresets for k-means of
size O (ke*) using Cohen-Addad et al. (2022), and an al-
ternative size bound of O (k'-°c~2) using Schwiegelshohn
et al. (2022). These require the same order of query and
processing time as in Theorem 1.1.

In addition, by a similar argument, our coreset readily im-
plies efficient approximation algorithms for clustering prob-
lems. In particular, one constructs an e-coreset S as in The-
orem 1.1 and applies an existing a-approximate algorithm
with input S, then it yields an O((1 + £)«)-approximation
to the original problem. The query complexity of the entire
process remains the same as in Theorem 1.1, and it only
incurs additional T'(poly (ke ~! log n)) processing time, pro-
vided that the approximation algorithm runs in 7'(n) time
for an n-point dataset. This particularly implies a quan-
tum PTAS (for fixed d) for k-median and k-means using

0 (\/nkd3/2/£) queries, and poly(k) - f(d, ) processing
time for some function f of d and ¢, by applying Cohen-
Addad et al. (2021).

Our quantum algorithms (and lower bounds) for clustering
are summarized in Table 1.

Techniques The general idea of our algorithm is to quan-
tize and combine two existing algorithms, the approximate
algorithm by (Thorup, 2005) and a recent seminal coreset
construction algorithm by Cohen-Addad et al. (2021).

In a high level, we start with computing a bicriteria solution
which uses slightly more than % points to achieve O(1)-
approximation to OPT. This step is based on (Thorup,

'In this paper, we use O to omit poly-logarithmic terms in O.

2005). Then given this solution, we partition the dataset D
into groups, perform a sampling procedure in each group,
and re-weight the sampled points to form the coreset, fol-
lowing the idea in (Cohen-Addad et al., 2021).

For the bicriteria approximation, we provide a quantum
implementation for the algorithm by Thorup (2005) in Sec-
tion 3.1 to obtain a solution that has O(k poly logn) points
with cost being O(1) multiple of OPT. A key step in this
algorithm is to query for the nearest neighbor of each data
point € D in a given point set with size O(k). This step
is straightforward in the classical setting with cost O(nk)
by calculating the exact nearest neighbor and store the re-

sults. However, to achieve the O (\/ nk) complexity in the

quantum setting, we need improvements on nearest neigh-
bor search. We make use of a well-known approximate
nearest neighbor search technique called locality sensitive
hashing (LSH), and the version that we use gives 2(1 + ¢)-
approximate nearest neighbor using NP°(1/¢) preprocess-
ing time and O(d) - poly(1/e) query time for N points in
R (Indyk & Motwani, 1998). In Section 3.2, we also use
our quantum implementation of LSH (Lemma 3.4) to con-
struct a unitary that encodes the clusters induced by the
approximate solution, i.e., maps each x € D to a corre-
sponding center.

After we obtain a bicriteria approximation A in the previ-
ous step, we adapt the algorithm in (Cohen-Addad et al.,
2021) to build the coreset, where the dataset D is parti-
tioned into O(z2/e2) groups with respect to A. In this
partition procedure, a key step is to calculate cost(C;, A) =
> wec, dist”(z, A) for each cluster C; induced by A. While
this seems simple in the classical setting where one directly
computes the cost of each data point and summing up over
each cluster in O(nk) time, this task is nontrivial in quan-
tum since we aim for sublinear complexity. To design a
sublinear quantum algorithm that approximately computes
the cost of all clusters simultaneously, we propose a new
subroutine called multidimensional quantum approximate
summation (Theorem 4.2). Specifically, given an oracle
O : i) 10)|0) — |i) |7(2)) | f(4)), where T: [n] — [m]is a
partition and f: [n] — Rx¢ is a bounded function, Theo-
rem 4.2 shows that using in total 0 (\ /nm/e) queries to

O one can obtain e-estimation of }__,_ f(i) for each
j € [m]. This algorithm may be of independent interest.

To complement our algorithm results, we also prove
quantum lower bounds for approximate k-means
clustering. We consider three settings in which
an e-coreset, an c-optimal set of centers, or an e-
estimate of the optimal clustering cost are outputted,

and we prove () (\/%5*1/2> ,Q (\/nk5*1/6) and
Q (m + eV 2) lower bounds, respectively. These
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Table 1. Classical and quantum complexity bounds for clustering in R? (omitting dependence in d). Note that an O(1)-coreset for
k-median (resp. k-means) implies an O(1)-approximate solution for k-median (resp. k-means).

Reference Type

Problem Time Complexity

Braverman et al. (2017)  Classical upper bound

Theorem 3.1 Quantum algorithm
Theorem 3.1 Quantum algorithm
Theorem 5.2 Quantum lower bound
Theorem 5.2 Quantum lower bound

e-coreset for k-median 0]
e-coreset for k-median 0]
e-coreset for k-means 0]
O(1)-approximate k-median
O(1)-approximate k-means

(n + poly(k))
(V'nk/e)
(Vnk/e)
Q(Vnk)
Q(Vnk)

quantum lower bounds confirm that our quantum algorithms
for clustering problems are near-optimal in n and k, up
to a logarithmic factor. In general, we start with proving
the quantum lower bounds when & = 1 by reducing from
the approximate quantum counting problem (Nayak & Wu,
1999). We then obtain the general bounds with v/k factors
by applying composition theorems (Theorem D.1) in a
refined manner. We speculate that the gap between different
settings might be intrinsic, which is also discussed in a
recent paper (Charikar & Waingarten, 2022).

Related work In general, quantum algorithms for ma-
chine learning are of general interest (Biamonte et al., 2017;
Schuld & Petruccione, 2018; Dunjko & Briegel, 2018). We
compare our results to existing literature in quantum ma-
chine learning as follows.

Aimeur et al. (2007) conducted an early study on quantum
algorithms for clustering, including divisive clustering, k-
median clustering, and neighborhood graph construction.

Their k-median algorithm has complexity O (nS/ 2/ \/E) ,
which is at least n and slower than our quantum algorithm.

Lloyd et al. (2013) gave a quantum algorithm for cluster as-
signment and cluster finding with complexity poly (lognd).
However, their quantum algorithm requires the input data to
be sparse with efficient access to nonzero elements, i.e., each
of xy,...,x, has poly(log d) nonzero elements and we can
access these coordinates in poly(log d) time. In addition,
their algorithm outputs quantum states instead of classical
vectors. More caveats are listed in Aaronson (2015).

The most relevant result is Kerenidis et al. (2019), which
gave an quantum algorithm named g-means for k-means
clustering. Q-means has complexity O(k2dn?5e=3 +
k2-5n2e=3) per iteration for well-clusterable datasets, where
7 is a scaling factor for input data such that 1 < ||z;||3 <7
for all ¢ € [n]. For general datasets the complexity is larger
and depends on condition number parameters. Q-means can
be extended to spectral clustering (Kerenidis & Landman,
2021). As a comparison, our quantum algorithm does not
require the well-clusterable assumption (nor condition num-
bers related to this) and can be regarded as a direct speedup

of common classical algorithms for k-means. In addition,
our quantum algorithm only has poly(logn) dependence,
and the dependence on & and 1/« is also better.

There are also heuristic quantum machine learning ap-
proaches for clustering (Otterbach et al., 2017; Poggiali
et al., 2022) and other problems in data analysis (Schuld
et al., 2017; Farhi & Neven, 2018; Kerenidis & Luongo,
2018; Havlicek et al., 2019). These results do not have the-
oretical guarantees at the moment, and we look forward to
their further developments on heuristic performances and
provable guarantees. In addition, Chia et al. (2022) pro-
posed a quantum-inspired classical algorithm for 1-mean
clustering with sampling access to input data.

Open questions Our work leaves several natural open
questions for future investigation:

* Can we give fast quantum coreset construction algo-
rithms for other related clustering problems with com-

plexity o} ( \/nk) ? Potential problems include fair clus-

tering (Chierichetti et al., 2017), capacitated cluster-
ing (Cohen-Addad & Li, 2019; Braverman et al., 2022),
k-center clustering (Agarwal & Procopiuc, 2002), etc.

» Can we give fast quantum coreset construction algorithms
for clustering problems in more general metric spaces?
Note that Cohen-Addad et al. (2021) gives the result for
various metric space, such as doubling metrics, graphs,
and general discrete metric spaces, while still achieving
O(nkz) time in the classical setting. However, to achieve
this similar coreset size bound using time O(v/nk) in the
quantum settmg seems nontrivial; for instance, one cannot
make use of the LSH technique that we use to speed up
the approximate nearest neighbor search.

2. Preliminaries
2.1. Notations

We give the notations and definitions used in the following.
In this paper, we focus on the (k, z)-clustering problem in
an Euclidean space:
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Definition 2.1 ((k, z)-Clustering). Given a dataset D C R<,
z > 1 and integer k > 1, the (k, z)-clustering problem is to
find a set C C R< with size &, minimizing the cost function

cost(D,C) := > (dist(z,C))* .

x€D

Here dist(z, y) := ||z — y||2, dist(x, C) := miél dist(z, ¢).
ce

For z = 1 it is also known as the k-median problem, and
for z = 2 it is also known as the k-means problem. Any
set C' C RY with size k can be seen as a solution. Given
a solution C, a point ¢ € C' is a center. We can map
each data point x € D to a certain ¢ € C, and the set
{z € D : zis mapped to c} is a cluster. Let OPT be the
cost of the optimal solution. We assume the distance is
rescaled so that the minimum intra-point distance is 1, and
we assume the diameter of the point set is poly(n). Hence,
OPT = poly(n).

An important related concept is the coreset:

Definition 2.2 (Coreset). Given a data set D C R 2 >1
and integer k£ > 1, a weighted set S with weight function
w: S — Ry is called an e-coreset if

VC C RL|C| <k, cost(S,C) € (1+¢) - cost(D,C)
where cost(S,C) = > g w(s) - dist”(s, C).
As a special case, we call S unweighted if w(s) = 1Vs € S.
In this paper, we refer to an e-estimation for a number p by
pif [p —p| < ep. Weuse [n] for {1,...,n}.
2.2. Basics of Quantum Computing

The basic unit of a classical computer is a bit, and in quan-
tum computing it is a qubit. Mathematically, a system of m
qubits forms an M -dimensional Hilbert space for M = 2.
Any quantum state |¢) in this space can be written as

M-1 M-1
6) = > aili), where Y Ja;|*=1. (2

i=0 i=0
Here {|0),...,|M — 1)} forms an orthonormal basis in the

Hilbert space called as the computational basis, and «; € C
is called as the amplitude of |i). Intuitively, the quantum
state |¢) can be regarded as a classical state 7, and the quan-
tum state |¢) in (2) is a superposition of classical states.
The operations in quantum computing are unitaries matri-
ces following the principles of linear algebra. Specifically,
a unitary acting on an M -dimensional Hilbert space can be
formulated as follows:

Uyt 1i)[0) — |3) | £(3)), Vi € {0,..., M — 1},

Note that due to linearity, U works not only for the basis

vectors {|i)}2 ", but also for any quantum state in this

Hilbert space. For example, by applying Uy to |¢) we
obtain the following quantum state

M-1 g, M-l
[¢) = Z a; i) % Z o [f(2)) -
i=0 i=0

This allows us to perform calculations “in parallel” and
achieve the quantum speedup.

Quantum access to the input data is also unitary and can be
encoded as a quantum oracle. We state the definitions of
the probability oracle and the binary oracle as follows:

Definition 2.3 (Probability Oracle). Let p: [M] — R>( be
a probability distribution. We say O, is a probability oracle

for p if
Op: 10) = > Vp(i) i) )

JjelM]
where |¢;) are arbitrary {»-normalized vectors.

Definition 2.4 (Binary Oracle). Let D = {z1,...,2,} be
a subset of R%. We say Op is a binary oracle for D if

Op: i) |0) — |3) |x;), Vi € [n].

The definition of the binary oracle also fits for any vector
w = (wi,...,wy) € RY. Binary oracle is a common
input model in quantum algorithms and we also call the
binary oracle of D (or w) as the quantum query to D (or w).
Besides, for two point sets S C D C RY, we say Og is the
membership query to S if

Os: |z)|0) = |x) [I(x € 5)), Ve € D
where I (z € S) is the indicator for whether x € S.

In a quantum algorithm, we can also write information to
a quantum-readable classical-writable classical memory
(QRAM) and make it encoded as an oracle (Giovannetti
et al., 2008). We refer query complexity as the number of
queries to the input oracle and the QRAM. Time complexity
is referred as the total processing time, including all the use
of queries, quantum gates, and classical operations.

2.3. Quantum Speedup

Here, we introduce basic problems which can be sped-up
by quantum computing. Those tools are rudimentary to our
quantum algorithms as well as others in machine learning.

Quantum Sampling In our quantum algorithms, we the
following quantum sampling algorithm:

Lemma 2.5 (Rephrased from Theorem 1 of Hamoudi 2022).
There is a quantum algorithm such that: given two inte-
gers 1 < m < n, areal 6 > 0, and a non-zero vector
w € RY, with a probability at least 1 — §, the algorithm
outputs a sample set S of size m such that each element
i € [n] is sampled with probability proportional to w; using
O(y/nmlog(1/0)) quantum queries to w in expectation.
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Quantum Counting and Search In quantum computing,
counting the number of points satisfying a specific property
can be solved with quadratic speedup:

Lemma 2.6 (Theorem 15 of Brassard et al. 2002). There
is a quantum algorithm such that given a real § > 0 and
two sets S C D C RY, |S| = m, |D| = n, it outputs an
e-estimation m for m with probability at least 1 — § us-
ing O(e=1\/n/mlog(1/6)) queries to D and membership

queries to S.

Furthermore, quantum speedup can also be achieved with
outputting all such points, known as repeated Grover search:

Lemma 2.7 (Claim 2 of Apers & de Wolf 2020). There
is a quantum algorithm such that given a real 6 > 0 and
two sets S C D C RY, |S| = m, |D| = n, it finds S with
probability at least 1 — & using O(/nm log(1/8)) queries
to D and membership queries to S.

Quantum Sum Estimation Beyond counting and search,
quadratic quantum speedup can also be achieved for esti-
mating the sum of a set of numbers:

Lemma 2.8 (Rephrased from Lemma 6 of Li et al. 2019).
Consider D = {z1,...,x,} C RY, and denote x =

Zilil x; as the sum of all the elements in D. There is
a quantum algorithm such that given § > 0, it outputs T as
an e-estimation for x with probability at least 1 — §, using

O(y/nlog(1/§)/e) queries to D.

3. Coreset Construction

This section presents a quantum algorithm for coreset con-
struction in O(v/nk) time. This algorithm combines and
quantizes two existing classical algorithms, the bicriteria
approximation algorithm of Thorup (2005) and the coreset
construction algorithm (based on an approximate solution)
of Cohen-Addad et al. (2021). This paper focuses on the
(k, z)-clustering problem (Definition 2.1) over a size-n data
set D = {z1,...,7,} C R% and assumes the access to
oracle Op: |i) |0) — |é) |«;) Vi € [n]. The main result for
coreset construction is as follows.

Theorem 3.1. There exists a quantum algorithm such
that given data set D C RY, positive real ¢ <
1/20(2), z > 1, and integer k > 1, it re-
turns an e-coreset for (k, z)-clustering over D of
size O (2°®) kd polylog(n) max (¢=2,7%)) with success
probability at least 2/3 using:

« 0 (20(Z)\/nkdmax (e71, E*Z/Q)) queries to Op,

« 0 (20(2)\/ nkd?/? max (71, 5‘2/2)) queries to QRAM,

* poly (kdlogn/e*) additional processing time.

Remark 3.2. When d > Q(logn/e?), one can apply the
Johnson-Lindenstrauss transform (Johnson & Lindenstrauss,
1984) as a preprocessing step to obtain the following alter-
native bounds.

* O (29®k polylog(n) max (e~4,e7272)) coreset size,

e (20(2)\/nk max (5_275_Z/2_1)) queries to Op,

« 0 (QO(Z)\/nkdmaX (e74, 8_Z/2_3)) queries to QRAM,

* poly (klogn/e*)+O (dlogn/<?) additional processing
time.

These bounds have tight asymptotic dependence in d.

The quantum algorithm contains two parts. First, Section 3.1
presents an algorithm to compute a bicriteria approximate
solution A, which is an approximate solution with size
slightly larger than k. Then, based on this A, Section 3.2
presents an algorithm for coreset construction. Combining
the two algorithms directly yields Theorem 3.1.

For clustering problem it is a basic subroutine to find the
nearest neighbor of each data point € D in a given set
A C R? since the optimization objective is the cost func-
tion cost(D, A) = >, dist*(z, A) forany A C R% It
always holds that |A| = k polylog(n). This can be easily
implemented in the classical setting, since the nearest neigh-
bor of all the z € D can be found with O(nk) time and all
the information can be stored with O(n) space. However,
this approach cannot be easily adapted to yield the O(nk)
complexity in the quantum setting. In particular, the step
of exactly computing the nearest center can require (k)
time. Hence, this paper uses a mapping that maps each point
x € D to an approximately nearest neighbor in A instead.
This paper takes the advantage of an existing classical re-
sult, which is based on a widely adopted technique, Locality
Sensitive Hashing (LSH).

Lemma 3.3 (Approximate Nearest Neighbor Search,
Rephrased from Theorem 2.10 and Theorem 3.17 of In-
dyk & Motwani 1998). There exists an algorithm such
that given two parameters &' > 0, ¢ € (0,1/2), for
any set A C R4, |A| = m, it constructs a data struc-
ture using m©10s(1/)/€%) log(1/¢") space and preprocess-
ing time, such that for any query x € RY, with proba-
bility at least 1 — &' it answers a € A which satisfies
dist(w,a) < 2(1+¢) dist(z, A) using e ~2d polylog(m/d’)
query time.

For a quantum version, there exists an algorithm that per-
forms the preprocessing classical and stores the data struc-
ture in QRAM (Giovannetti et al., 2008), and then answers
queries in a quantum manner based on the stored infor-
mation. This yields a quantum algorithm with the same
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query time since any classical operation can be simulated
by constant quantum operations. Let e = ¢/2 — 1. Setting
4§’ = §/n and using the union bound yields the following
lemma.

Lemma 3.4 (Quantum Approximate Nearest Neighbor
Search). There exists an algorithm such that given two pa-
rameters § > 0, ¢, € [5/2,3), forany A C R%, |A| = m,
it constructs an oracle

Oz [i)[0) = |8} [7(2)) , Vi € [n]

using poly(mlog(n/d)) classical preprocessing time and
ORAM space. With success probability at least 1 — §,
7: [n] = [m] is a mapping such that

dist(z, a,(;)) < cr dist(z;, A) Vi € [n].

Each query to O, uses dpolylog(mn/d) queries to QRAM.

Remark 3.5. By the same method, one can construct the ora-
cle to a mapping that maps any ¢ € [n] to the corresponding
center a,(;) € A instead of the index 7(i), with the same
complexity.

3.1. Bicriteria Approximation

For a (k, z)-clustering problem, its bicriteria approximate
solution is defined as follows:

Definition 3.6. Assume that OPT is the optimal cost for
the (k, z)-clustering problem. An («, 3)-bicriteria approx-
imate solution is a point set A C R? such that |A| < ok,
cost(D, A) < BOPT.

This section presents a quantum algorithm that finds a bi-
criteria solution with O(dv/nk) query complexity, as stated
in Lemma 3.7 below. This algorithm is a quantization of a
classical algorithm by Thorup (2005).

Lemma 3.7. Algorithm 1 outputs an (O(log® n), 20())-
bicriteria approximate solution A with probability at least
5/6, using O(v/nk) calls to Op and its inverse, O(dv/nk)
queries to a QRAM, and poly(klogn) additional process-
ing time.

Ter1: D — Agqq in Algorithm 1 Line 7 is a mapping such
that for some constant ¢

dist(z, 7e41(x)) < ¢ dist(x, Apqq).

It holds that |A;y1| = O(kpolylogn) for any ¢t. Using
Lemma 3.4, for any ¢, € [5/2, 3), an oracle

Orppyi @) [0) = [) [7())

Tt4+1 °

can be constructed using poly(klog(n)) classical prepro-
cessing time and QRAM space, and each query to O, ,
uses d polylog(kn) queries to QRAM and constant query
to Op.

Algorithm 1 Bicriteria Approximation

1: input: k&, z, n, oracle Op
output: (O(log” n), 2°(*))-bicriteria approximation A
initialize t < 0, Dy < D, Ag < 0, 79 < n
repeat
draw a uniform sample S; of size 13k[logn| over
Dy using Lemma 2.5. A1 < S U Ay
6:  draw a sample s; uniformly at random over D, using
Lemma 2.5
7. constructamap Ti+1: D — Aiyg
dt+1 «— diSt(St, Tt+1(5t))
Dt+1 — Dt \ {IZ' eD: diSt(iE,TH_l(IL')) < dt+1}
8:  make an 1/2-estimation 711 for 7,41 = |Dyy1| us-
ing Lemma 2.6
90 t+t+1
10: until 7, < 39k[logn] ort > 3[logn]
11: find all points in D; using Lemma 2.7, A + D; U A,
12: repeat all the steps above for three times and union all
the A

Proof of Lemma 3.7. Algorithm 1 is a quantum implemen-
tation of Algorithm D of Thorup (2005), which constructs
a set of size O(klog® n/e) that contains a factor 2 + ¢ ap-
proximation to k-median problem for ¢ € (0,1/2) with
probability at least 1/2. Algorithm 1 has small difference
from the classical algorithm but it does not influence the
correctness; a detailed proof is given in Appendix A.

In the classical setting, to identify the set D, one can list all
the points in it or in the dataset D make those points marked.
In the quantum setting, to identify D; is to construct the
unitary

Up,: |z)]0) = |z)|I(z € Dy)), V€D,

where I(z € D) is the indicator for whether 2 € D;. This
unitary can be constructed iteratively:

Up,,: |z)[0)[0) |0)
2O | | (2 € DY) 7y (2)) [0)
o |2) [I(x € D)) [resa () [1(x € Dysn))

OTt+1 ’ODt
> [) |0) [0} |I(z € D¢41)) -

For Line 5-6, Algorithm 1 applies Lemma 2.5 with unitary
Up, and m = 13k[logn]+1, which uses O(v/nk) calls for
Op,, Op, and their inverses. This algorithm uses O(y/n)
for Line 8 and O(nk:) for Line 11 queries to Op,, Op, and
their inverses. All the steps above are repeated for no more
than O(logn) times, and it can be concluded that in total
the algorithm uses O(dv/nk) queries for a QRAM, O(v/nk)
queries for Op and its inverse, and additional poly (k log n)
processing time.
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We further note that the failure probability of our quantum
algorithm gives at most a poly-logarithmic factor. In Al-
gorithm 1, each subroutine in use suffers only a log(1/4)
factor to reach a success probability at least 1 — ¢ and each
of them is applied no more than poly(nk) times, so setting
the failure probability as § = O(1/ poly(nk)) for each sub-
routine and the union bound ensures that all the applications
to quantum subroutines success with high probability. This
cause only a polylog(nk) factor and it is absorbed by the O
notation. O

3.2. Coreset Construction

We present a quantum algorithm for constructing a coreset
based on a bicriteria approximate solution. The construction
is a quantum implementation of Cohen-Addad et al. (2021).
Algorithm 2 shows a sketch of the construction.

Algorithm 2 requires an access to an («, 3)-bicriteria approx-
imation A, which means an oracle O 4: |i) [0) — [i)|a;)
Vi € [m] foraset A = {a1,...,a,m} C R:L, m < ak,
cost(D, A) < BOPT. Based on A, using Lemma 3.4, one
can construct an oracle
O;: |s) |0y — |s)|i), Vs € [n]

where dist(xs, a;) < ¢, dist(xs, A) Vs € [n] for some con-
stant ¢,. This oracle encodes a mapping 7: [n] — [m)]
which maps each z; € D to an approximately nearest
neighbor a; € A as its center. The map 7 together with
A can be seen as a special solution for clustering. Let
costr (D', A) := " . p dist®(x, a,(5)) be the cost of this
solution and let C; := {z € D | 7(z) = i} as the i-th
cluster induced by 7 and A for any ¢ € [m)].

Lemma 3.8. Let
t=0 (2O<Z> -m - (d + log(n)) - max (72, E*Z)>

in Algorithm 2. For a positive real ¢ < 1/(4cZ),
Algorithm 2 outputs an O(c%fe)-coreset of size
O (2°®)mdlog(n) max (e72,67%))  with probability
at least 5/6, using O <2O(Z)ch/nmd max (5_1,5_z/2))
queries to O, Op, O 4, their inverses, and QRAM. Besides

it uses poly(mdlogn/e*) additional classical processing
time.

The details of Algorithm 2 are described as follows. This
algorithm consists of two phases. During the first phase the
algorithm partitions the dataset D into groups. This consists
of two steps. The first step of the first phase is to partition
each cluster into rings, with each ring containing the points
with the same distance from the center up to factor 2. For
each C;, let

Ri,j = {l‘ e C; | QjACi < COStT(aﬁ,A) < 2j+1Aci}.

Algorithm 2 Coreset Construction

1: input: ¢, €, oracle Op, O4, O,

2: output: O(cZSe)-coreset Q2 with weight function w
/I phase 1: partitioning the dataset into groups

3: compute Ap, = cost,(C;, A)/|C;| for each i € [m)]
by using O, and Theorem 4.2, store in QRAM

4: construct the ring unitary Ugr

5: compute cost,(R; ;, A) and cost, (R, A) for each pair
1, j by using Ugr and Theorem 4.2, store in QRAM

6: construct the group unitary Ug
/I phase 2: sensitivity sampling and reweighting

7: compute cost, (G, A) for each pair of j and b using
Uq and Theorem 4.2, store in QRAM

8: foreachi € [m], compute |R; 1|+ |C; N (Uj£1Gj min)]
by Theorem 4.4, and assign the value to w(a;)

9: for each well-structured group G, draw a size-t
i.i.d. sample €2 such that each x € C; N G is selected in
each round with the same probability

cost(Cy, A)

Prlz] = > m\Ze )
tla] |C;| cost- (G, A)

using Lemma 2.5 and reweight w(z) = 1/(¢ Pr[x]) for
each sampled point =

10: for each outer group G, draw a size-t i.i.d. sample €2
such that each each x € G is selected in each round
with probability

_ costr(z,A)
Prla] = cost, (G, A)

using Lemma 2.5 and reweight w(z) = 1/(t Pr[z]) for
each sampled point =
11: let  be the union of all the above samples and A

Let R = Uj<_2:10g(z/¢)I%,; be the inner ring and
Ri; 0 = Ujs2:10g(z/¢) be the outer ring. Besides, let
R[ = U:'llRi,I’ RO = UﬁlRi,o, and

R, :=U" R;; Vj, —2zlog(z/e) < j < 2zlog(z/e).

The ring unitary Uy, is defined as

Ur: [s)10)[0) = [s) [} |7) Vs € [n]

where x5 € R; j for each s € [n]. For j < —2zlog(z/¢),
Ur uses a same special notation for such j and in this paper
it is denoted as ;7 = I. The special notation can be any
preselected value out of [—2z log(z/¢), 2z 1og(z/¢)]. And
it is the same for j = O. Up is a unitary which answers the
corresponding ring R; ; for each query z, € D.

The second step is to gather the rings into groups such that
the rings with equal cost up to factor 2 are gathered together
and prepared to be handled together in the second phase.
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For each j € {[—2zlog(z/e)],...,|22log(z/e)| + 1} U
{I,0}, let
Gjp = Uier, , Ri j,

where I; 5 is the largest set such that for any 7 € I,

(i)z _costr (R, A)

t-(R; ;,A) €
costr (R; 5, A) P -

. [21) 2b+1].
And let Gj min := Up<oG» be the union of the cheapest
groups, and G'j max = Up>z1og(42/2)G,p be the union of
the most expensive ones. The same notation as j = I and
j = Oisused for b = min and b = max. The group unitary
Ug is defined as

Ug: [5)]0)10) = |s)[5) [b) Vs € [n],
where z; € G, for any s € [n]. Ug answers the corre-
sponding group G/ ;, for each query z, € D.

In the second phase the dataset seen as the union of three
different kinds of points and these three parts are handle
separately. The first kind contains the union of inner rings
Ry and the cheapest groups Gj min Vj; The second kind
is all the well-structured groups G with —2zlog(z/e) <
j <2zlog(z/e) and b =1,..., max; And the third kind is
all the outer groups Go withb =1,..., max.

In quantum computing, it is costly to compute the exact
sum such as cost(C;, A) and cost, (R; j, A). Hence, Al-
gorithm 2 uses e-estimations instead of corresponding exact
values, but for convenience they are simply written as they
are exact. It turns out that O(e)-estimations are enough for
constructing an O(g)-coreset.

Proof of Lemma 3.8. The proof is shown in Appendix B.
O

Remark 3.9. We note that in Line 3 (and similarly, Line 5
and 7), computing A, for all the m clusters in O(y/nm)
time is feasible in quantum computing. We can compute
{cost(C;, A)}, and {|C;|} 7, separately, and then cal-
culate the division in a classical method, so we only state
for the calculation of all the cost. (C;, A). We can construct
the following unitary U by one query to O, and its inverse.

U: |s)]0)]0) — |s)|7(s)) |dist*(zs, A)) Vs € [n]

Note that cost(Cj, A) = >, (), dist”(zs, A). Accord-
ing to Theorem 4.2, calculating these values requests only

O(y/nm) time. More details about Theorem 4.2 is shown
in Section 4.

Let m = O(klogn), B = 200, ¢ = ¢//200*) ‘and ¢, =
5/2 in Lemma 3.8. Note that O 4 is obtained by storing
A in QRAM, and one query to O, uses dpolylog(mn)
queries to QRAM by Lemma 3.4. Combining Lemma 3.7
and Lemma 3.8 directly yields Theorem 3.1.

4. Multidimensional Approximate Summation

A crucial subroutine of Algorithm 2 is to compute the sum-
mation of the cost(z, A) over all the points z in each part
for a given partition (Line 3, 5, and 7). This gives rise to
such a problem:

Definition 4.1 (Multidimensional Approximate Summa-
tion). Given two integers 1 < m < n, a real parameter
€ > 0, a partition 7: [n] — [m], and a function f: [n] —
R>. The multidimensional approximate summation prob-
lem is to find e-estimation for each s; := »°_)_; f(i),

J € [m].

This paper proposes multidimensional quantum approximate
summation to solve this problem. We believe this technique
can have wide applications in designing quantum algorithms
for machine learning and other relevant problems.

Theorem 4.2 (Multidimensional Quantum Approximate
Summation). Assume that there exists access to an ora-
cle O 3)]0)|0) — [i) |7(¢)) | f(4)) Vi € [n] and assume
that f has an upper bound M. For ¢ € (0,1/3), § > 0,
there exists a quantum algorithm that solves the multidimen-
sional approximate summation problem with probability at

least 1 — 6, using O (\/nm/e log(1/9) log M) queries to
0,,0 ((\/nm/s +m/e)log(n/d)log M) gate complex-

ity, and additional O(mlog M) classical processing time.

f(4) is a binary number of length [log M]. By first comput-
ing the summation of each digit and then summing up the
results together, the multidimensional approximate summa-
tion problem can be reduced to the following problem:

Definition 4.3 (Multidimensional Counting). Given two
integers 1 < m < n, areal parameter € > 0, and a partition
7: [n] = [m]. For each j € [m], denote D; := {i € [n] :
7(i) = j} as the j-th part and n; := | D;| for the size. The
multidimensional counting problem is to find e-estimation
n; for each nj, j € [m].

For this problem, this section proposes multidimensional
quantum counting to solve it.

Theorem 4.4 (Multidimensional Quantum Counting). As-
sume that there exists access to an oracle O : |i)|0) —
i) |7(7)) Vi € [n]. Fore € (0,1/3), 6 > 0, Algorithm 3
solves the multidimensional counting problem with proba-

bility at least 1 — 6, using O (\/nm/s 10g(1/6)) queries

t0 O, and additional O ((\/nm/&t +m/e) log(n/é)) gate
complexity. The query complexity is optimal up to a loga-
rithm factor.

Denote p; := n;/n. Note that by one call for O, one can
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construct the unitary

0y 10) = > vl ;Zm BEES

i€D;

Consider p = (p1, - . ., pm) as an m-dimensional probabil-
ity distribution, the above unitary can be seen as a probabil-
ity oracle to p. The following method is used to estimate
the distribution:

Lemma 4.5 (Multidimensional Amplitude Estimation,
Rephrased from Theorem 5 and Lemma 7 of van Apel-
doorn 2021). There is a quantum algorithm which has the
Sollowing properties: given precision ¢ € (0,1/3), error
probability § > 0, a quantum probability oracle O, on q
qubits for an m-dimensional probability distribution p, a
number set S C [m], and a constant p,,; > Y, g p; as the
maximal total probability on S, it outputs p € R™ such that

IDi —pi| <e VielS

with probability > 1 — 6 using O (¢ log(m/§)/pmi€) calls
to O,, and membership queries to S. The gate complexity is
O ((q(m + Dmt/€) + /Pmt/E) log(l/é)) using a QRAM.

A naive method is to set p,,;+ = 1 and apply Lemma 4.5
directly. However, it requests an € very small to ensure
the size estimation of the small parts sufficiently precise,
which leads to gratuitous overprecise estimation for the
large parts and results in the waste of time. Algorithm 3
performs a trick to obtain the estimations hierarchically:
in each iteration it sets a certain precision (Line 6), and
saves only the estimation values large enough to ensure the
accuracy and leaves the small parts to be estimated more
precisely next time (Line 8-10).

The proof of Theorem 4.4 and Theorem 4.2 is deferred to
Appendix C.

Remark 4.6. Note that our Algorithm 3 for multidimen-
sional quantum computing is optimal up to a logarithmic
factor due to Theorem 5.1.

5. Lower Bound

To complement our quantum algorithms, we also prove the
following quantum lower bounds. First, we have:

Theorem 5.1 (Quantum Lower Bound for Multidimensional
Counting). Every quantum algorithm that solves the multi-
dimensional counting problem (Definition 4.3) w.p. at least

% uses at least ) (\/ nk5_1/2) queries to O.

The proof of Theorem 5.1 is deferred to Appendix D.2.
For the clustering problems, we establish the following
lower bounds under different settings (proofs deferred to
Appendix D.3).

Algorithm 3 Multidimensional Quantum Counting

1: input: n,m, O, € (0,4),0 >0
2: output: {f1, -+, Ny}, s.t. |0 — nj| <en; Vj € [m]

3: initialize P + [m], Q < [n], 1 < n, ppmy < 1

4: construct the oracle O, in (3)

5: repeat

6: foreach j € P, estimate {p;} as {p;} by applying
Lemma 4.5 with ¢ = [logn|, precision 327’;‘; maxi-
mal total probability p,,:, error probability O(&)

7. forj € Pdo

8: if p; > 52 then

9: ﬁj<—nﬁj,P<—P—{j}

10: end if

11:  end for

122 Q<+« {i€[n]:7(¢) € P}

13:  make an 1/2-estimation 71 for |Q| using Lemma 2.6

14 ppe 22

15: until 7 < m/e

16: find all the items in () using Lemma 2.7, count the
remaining parts classically.

Theorem 5.2 (Quantum Lower Bounds for k-means and
k-median). Assume that ¢ is sufficiently small. Con-
sider the Euclidean k-means/median problem on data set
D = {z1,...,2z,} C R% Assume a quantum oracle
Oy i, by == |i,b ® x;). Then, every quantum algorithm out-
puts the followings with probability 2 /3 must have quantum
query complexity lower bounds for the following problems:

* An e-coreset: §) (\/nk5’1/2> for k-means and k-median
(Theorem D.7);

* An c-estimation to the value of the objective function:
Q (\/ nk + \/ﬁa_l/2> for k-means and k-median (Theo-
rem D.§8);

* A center set C such that cost(C) < (1 + ¢) cost (C*)
where C* is the optimal solution: ) (\/ nka_l/ﬁ) for

k-means; ) (\/ nk€_1/3) for k-median (Theorem D.9).
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A. Further Proof Details for Bicriteria Approximation

This section gives a rigorous proof of the correctness of the bicriteria approximate algorithm (Lemma 3.7), that the output of
Algorithm 1 (the set A) is an (O(log2 n), 20(2))-bicriteria approximate solution with probability at least 5/6. This proof
follows Thorup (2005).

First, the loop (Line 4-10) stops for ¢ < 3[logn| with high probability. In each iteration, assume all the points = € D, are
sorted dist(x, 7¢(z)) from small to large. The sample s; is drawn from D, uniformly at random (Line 6) and all the points x
preceding s; are deleted from D, (Line 7), so with probability at least 1/2 it holds that | Dy 1| < |D;|/2. If there’s still
7+ > 39k [logn] after 3[log n] iterations, it holds that |D;| > 27;/3 > 26k[logn] > 1. Hence the event | Dy 1| < |Dy|/2
happens in no more than [log n] iterations, which is only 2/3 of the expectation. The probability that such an event happens
is at most exp (—(1.5logn)(1/3)?/2) = exp (—(logn)/12) < n= 012,

In the following, it is supposed that the loop (Line 4-10) stops for t < 3[logn]. In this situation, it holds that
|A| < 13Kk[logn] - 3[logn] + 2 - 39[logn] = O(klog®n).

For every x € Dy, let ¢, be the corresponding center in the optimal solution. x is called “happy point” and this is denoted as
Happy (z) if there exists ¢ € A1 such that dist(c, ¢, ) < dist(z, ¢, ). Otherwise z is called “angry point” and this event is
denoted as Angry(x). For a certain = € D, suppose that there are ¢ points in D, corresponding to ¢, in the optimal solution
and as close to ¢, as x. Since in A1 there are 13k[logn| points sampled from D, uniformly at random, the probability
that = remains to be angry is no more that the probability that all the ¢ points haven’t be selected, that is,

Pr[Angry(z)] < (1 — L)lgkﬂog"] < exp (—q13kﬂog 7ﬂ>
| Dy | D

The expectation of the number of the angry points in D; corresponding to c,, is at most

io ( 13k[1 1) </+OC ( L 13k 1)d < 1D
S o .l ogn exp | ——=— ogn] |dr < ————.
g=1 b |Di| © ~ Ja=o P | Dy s ~ 13k[logn]

Since there are k centers in the optimal solution, the fraction of angry points in | D;| is 1/(13[logn]).

For any happy point 2 € Dy, there exists ¢ € A;41 such that dist(c, ¢,;) < dist(z, ¢, ). Hence, it holds that
dist(z, A) < dist(z, Apy1) < dist(z, ¢) < dist(z, ¢;) + dist(cg, ¢) < 2dist(z, ;).

For the angry points, sort all the points € D; from small to large by the key dist(x, 7441 (x)). Let each angry point grabs
the first ungrabbed happy point and assume that s; is an ungrabbed happy point. For any unhappy point x € Dy, there is a
happy point y € D, preceding s; in the sequence grabbed by z, since otherwise s; is unhappy or grabbed and there comes a
contradiction. Let Gy be

Giiq :={x € Dy : dist(x, 741 (x)) < dist(se, Te1(8¢)) }-

It can be concluded that for any unhappy point z € Gy, there exists a unique happy point y € Gyy1 such that
dist(z, 7¢+1(x)) < dist(y, 741 (y)). Hence,

> dist® (@, 41 (2)) < > dist® (@, 711 (2)).

x€G41,Angry(x) x€G+1,Happy(x)
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For all the points in G 1, it holds that

cost(Gry1, A Z dist®(x, A) Z dist®(x, A1)
z€Gyt1 wEGt+1

= Z dlStZ (l’, At+1) + Z dlStZ (.’L’, At+1)
2€G41,Angry(z) x€G11,Happy(x)

< > dist® (@, 41 () + > dist® (@, Agy1)
2€G41,Angry(x) x€G11,Happy(x)

< Z dist® (z, 741 () + Z dist®(z, A1)
2€G¢41,Happy(x) 2€G41,Happy (z)

< 2¢% > dist®(z, Agy1(2))

x€G141,Happy ()

< 0(2%¢%) Z dist®(z, ¢;)

z€G141,Happy ()

0(2%¢z) > dist*(z,ca).

r€G 141

The probability that s; is ungrabbed happy point is the fraction of ungrabbed happy points in D, which is 2/(13[log n]).
The probability that all the s; in the 3[log n] iterations are ungrabbed and happy is at least 1 — m -3[logn] =17/13.
Due to the definition of G; and Dy, UG contains all the points deleted during the loop (Line 4-10). Besides, Since all the
remaining points are added into A, they do not contribute to the cost. With a probability 7/13 — n=%12 > 1/2, it holds that

cost(D, A) Z dist®(z, A)
zeD

—ZZdlst x,A) + Z dist®(z, A)

’EQUth
< 0O(2%¢) ZZd (x,cz) +0
t Gy

< O(2°¢*) OPT.

In Line 12, Algorithm 1 repeats the processing in Line 3-11 for three times and union all the set A to boost the success
probability to 5/6. As a consequence, with probability at least 5/6, the output A is an (O(klog? n), O(2%¢Z))-bicriteria
approximate solution. The proof of our complexity claim has been given in Section 3.1.

B. Further Proof Details for Coreset Construction Based on Biapproximate Solution

This section gives a detailed proof of Lemma 3.8. We restate this lemma as below.

Lemma B.1. Let 3
t=0 (20(2) -m - (d +log(n)) - max (¢ 2, &:*Z))

in Algorithm 2.  For a positive real ¢ < 1/(4cZ), Algorithm 2 outputs an O(cZPe)-coreset of size
O (29I mdlog(n) max (~2,e~%)) with probability at least 5/6, using 0 (20(2)07\/ nmdmax (71, E‘Z/Q)) queries to
Or, Op, Oy, their inverses, and QRAM. Besides it uses poly(mdlogn/c*) additional classical processing time.

This section first provides the detailed quantum implementation and the analysis of complexity in Appendix B.1, and then
gives a proof that the output of Algorithm 2 (set €2) is an O(cZ 3¢)-coreset with probability at least 5/6 in Appendix B.2.

B.1. Quantum Implementation and Complexity

This section shows the quantum implementation details with the complexity.
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Proof for complexity. For Line 3, the algorithm estimates |C;| and cost, (C;, A) first. Constructing the oracle
o, )
U: [5)]0)10)[0)[0) == [s)[i) |0} [0) |0)
Op.,0 .
=25 Us) i) [as) las) [0)

= [8) 0) |2s) [aq) |dist® (s, ai))

0,'.0p" . L
———==[s) [i) [0) [0) |dist* (s, a;))

and applying Theorem 4.2 yields the needed values cost(C;, A) Vi € [m]. Since dist® (x5, a;) < cost, (D, A) < ¢Z OPT,
the calculation uses no more than O(z log(c,)+/nm/¢) queries to U and additional time, under a fair assumption that
OPT = poly(n). The same technique works for |C;|. Then the algorithm computes A, in a classical manner. The
implementation of Line 5, Line 7, and Line 8 is similar. These calculation uses in total no more than O(z log(c, )v/nm/e)
queries to Ug, Ug, O-, Op, and O 4. Besides it uses poly (mzlog(1/¢)) classical processing time.

The construction of the ring unitary Ug in Line 4 is
Ur: |s)[0) [0} ]0) [0) [0)
75 1) |4 [0) 10) [0) |0)
220008 15V 1) [ Ac,) ) |as) 0)
= 15) ) [Ae,) L) las) 1)

0,",05",0" . .
=== |s) |d) |0) |0) |0) |5)

where j = |log (dist®(zs, a;)/Ac;)], and Oa: |i) |0) — |i) |Ag,) Vi € [m] is constructed by storing A¢, in QRAM in
Line 3. One query to Ug needs constant queries to Op, O 4, O, and QRAM. The same technique works for the construction
of Ug and the complexity is also the same up to a constant factor.

For Line 9, the algorithm first construct the below unitary U for each well-sturctured G.

U: [s)]0)10) |0} [0) |0} [0)

P05 98 1 [s)17) [B) 1i) [Ac,) [T € G)) [ps)

02, 070G 10 10)10)[0) 10) 10) [ps)

where I(zs € G) is the indicator for whether 2, € G and p; = I(zs € G)Ag, is proportional to Przs]. Then one
application to Lemma 2.5 yields the sample €2 using O(v/nt) queries to the above unitary U. Reweighting can be completed
in a classical manner since U is of small size. For Line 10 the algorithm uses the same technique. The sampling process
in total needs O(v/nt) queries to Ug, O 4, O, and QRAM. It uses additional poly (mlogn) + O(t) - d polylog(mn) for
computing the weight classically.

Let t = O(2°¢).m(d+log(n)) -max(¢72,¢7%)) and sum up all the time cost.  Algorithm 2 uses
0] (20(2)(:7 vVnmdmax (71, 5’Z/2)) queries to O, Op, O4 and QRAM, and poly(mdlogn/*) additional classical
processing time.

Similar to Algorithm 1, each subroutine used in Algorithm 2 suffers only a log(1/0) factor to reach success probability at
least 1 — ¢ and each subroutine is applied no more than poly(nmz) times, so it is enough to set the failure probability as

§ = O(1/ poly(nmz)) for each subroutine. This cause only a polylog(nmz) factor on time consume and it is adsorbed by
the O notation. O

B.2. Correctness

This section gives a rigorous proof that set €2, the output of Algorithm 2, is an O(cZ S¢)-coreset with probability at least 5/6.
This proof follows the idea of Cohen-Addad et al. (2021).

The dataset D can be seen as a partition of the following three kinds of points:
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* the union of the inner rings R;, the cheapest groups G min With j € [zlog(4e/z), zlog(4z/¢)] and Go min
* the well-structured groups G, with j € [zlog(e/4z), z1log(4z/e)] and b = 1,. .., max

* the outer rings Go, withb = 1,... , max.

Algorithm 2 deals with this three kinds of points separately and so does the following proof. The following proof shows that,
lete <1/(4cZ) and

t=0 (2O(Z) -m - (d + log(n)) - max (€2, E_Z))
in Algorithm 2, this algorithm has the following three properties, which are stated formally and proved later.
* Lemma B.4 Let B := R; U G min be the set of the first kind of points. For any S € (Rd)m it holds that

| cost(B, S) — cost(A, S)| < 8 (cost(D, S) + cost- (D, A)).

* Lemma B.7 It holds with probability at least 1/12 that for any well-structured group G = G ;, and the corresponding
sample = Q; 4, and for any S € (R%)™,

| cost(G, S) — cost(£2, )] = O(cZe) (cost(G, S) + cost(G, A)) .

* Lemma B.12 It holds with probability at least 1/12 that, for any outer group G = Go 5, and the corresponding sample
Q0.p, and for any S € (R%)™,

2cie
— < T .
| cost(G, S) — cost(€2,9)| < Tog(/5) (cost(D, S) + cost(D, A))

Note that there are only O(zlog(z/¢)) outer groups Go ;. Combining the three properties directly yields the proof for
correctness.

Proof for correctness.
| cost(D,S) — cost(2, S)| < O(cZe) (cost(D, S) + cost(D, A)) < O(cZ Be) cost(D, S).

Therefore, the output of Algorithm 2 Q = AU Q;, U Qo 5 is an O(cZ Be)-coreset. O

The two lemmas introduced as follows are important tools for the proof.

Lemma B.2 (Triangle Inequality of Powers). Let a, b, and c be three arbitrary sets of points R%. For any z € 7., and any
€ > 0, it holds that

1+¢
€

z—1
dist®(a,b) < (14 ¢)*~ dist*(a, c) + < ) dist® (b, ¢)

2z +¢
€

z—1
| dist®(a, S) — dist®(b, S)| < ed*(a, S) + ( ) dist®(a, b).

Lemma B.3 (Rephrased from Definition 1 and Lemma 17 of Cohen-Addad et al. 2021). There is a set C of size n - (2/ £)0(d)
such that, for any solution S € (R%)™ there exists S € C™ which ensures that for any point x € D with either
cost(z, S) < (8z/¢)% cost(x, A) or cost(x, S) < (8z/¢) cost(x, A), it holds that

| cost(z, S) — cost(z, S)| < e (cost(z, S) + cost,(x, A)).

Such a set C is called an A-approximate centroid set for (m, z)-clustering on data set D.
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Proof of Lemma B.3. Forany x € R% and r > 0, let B(z,r) := {y € R? | dist(x,y) < r} be the ball around z with radius
r. Note that Euclidean space R? has doubling dimension O(d), which means in this metric space any ball of radius 2r can
be covered by 29(?) balls of radius r. For any V' C R%, a y-net of V is a set of points X C V such that for any v € V there
exists z € Xsuch that dist(x,v) < v and for any =,y € X it holds that dist(z,y) > 7. In R%, a point set V' C R¢ with
diameter D has a y-net with size 20(4108(P/7)) (Gupta et al., 2003).

Let data points 21, ..., z,, be in order with non-descreasing value of dist(z, a,(,)). Let N; be an ¢ - dist(z, a,(,))/(42)-
net of B (zi,10z dist(x4, ar(x,)) /) \ Uj<iB (2,102 dist(z;, ar(s,))/€). Let sy € R? be a point such that s ¢
B (x;,10z dist(x;, ar(z,))/€) Vi € [n]. Let N := Ug,epN; U {s}.

The size of N is bound by n - (z/¢)?(@

z ) O(d)

IN| < n-200@losz/e)) — . (,
e

N is an A-approximated centroid set. For any solution S € (R%)™, let S € N™ be constructed by the following method.
For each point s € S, let i be the smallest index such that s € B (xl, 10z dist(w, ar (s, )/5) The corresponding N; is
non-empty because otherwise there exists x; such that j < i and s € B(z;, 10z dist(x;, a,(,,))/€), and thus 7 is not the

smallest index. Let 5 be the closest point to s in /V;. If such an index 7 does not exist, let § = s¢. Let S be the set of all the 5.
S has the property defined in Lemma B.3.

Let © € D satisfies cost(z,S) < (10z/e)? cost,(z, A). Let s be the nearest neighbor of x in S and consider the
corresponding index 7 and 5. It holds that dist(x, a,(5)) > dist(z;, a,(y,)) since s € B (m 10z dist(z, aT(I))/s). By the
definition of § it holds that dist(s, 5) < e dist(z;, a,(,,))/(42) < (¢/4z) dist,(z, A). As a consequence,

cost(z, S) < cost(x,5) < (1+¢)cost(p,s) + (1 + z/e)* L cost(s, 3)

< co
< (1+¢)cost(z, S) + € cost,(z, A).

On the other hand, let z € D satisfies cost(z, S) < (10z/¢)? cost,(x, A). Let 3 be the nearest neighbor of = in S and
consider the corresponding s and index i. If the index of « is smaller than ¢ it can be implied that § ¢ N, because of the
definition of N; and § € B (z, 10z dist(z, a,(y))/¢). As a consequence, dist(x, a(y)) > dist(;, ar(,)). It holds that

cost(x, S) < cost(x,s) < (1 +¢)cost(z,8) + (14 2z/2)* ! cost(s, §)
< (1 +¢)cost(z, S) + € cost, (z, A).
For any « € D with cost(z, S) < (8z/¢)* cost(x, A), it holds that
cost(x, ) < (14 ¢) cost(z, S) + & cost, (z, A) < (10z/¢)* cost,(z, A).
Thus cost(z, S) < (1 + ¢) cost(z, ) + & cost, (, A). Hence
| cost(z, S) — cost(z, §)| < e (cost(z, S) + costr(x, A)).

The same inequality holds for any = € D with cost(z.5) < (8z/¢)* cost, (z, A). O

The first kind of points Let B := R; U G min U G, be the set of the first kind of points. There holds the following
lemma:

| cost(B, S) — cost(A, S)| < 8 (cost(D, S) + cost- (D, A)).

We use the following two lemmas to prove Lemma B.4:

Lemma B.5. For any solution S, |S| < m, anyi € [m], and e < 1/2,

| cost(Rr(C;), S) — |R(Cy)| - cost(a;, S)| < ecost(Rr(C;), S) + 2e cost, (C;, A).
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Lemma B.6. For any solution S,

S| < m and any cheapest group G,

m

| cost(G, S) = Y " |Ci N G|cost(a;, S)| < e cost(R;, §) + £ cost, (R;, A)

i=1

if G = Gjmin for some j # O. And if G = GO, thereis
| cost(G, S) — Z |Ci NG| cost(ag, S)| < ecost(D,S) + ecost. (D, A).

i=1
Proof of Lemma B.5. Fix i. Using Lemma B.2, it holds that
2
| cost(x, S) — cost(a;, S)| = | dist®(z, S) — dist®(as, )| < edist®(z,S) + (1 + —Z)Z*1 dist®(a;, x).
€

For any « € R;(C;) and € < 1/2, there is
€ cost(Cy, A) < o, COStr (Ci, A)

)y Ot £ < 9 O T )
G-alC] = RG]

(14 22/)* tdist®(as, ) < (1 4+ 22/e)* ! cost, (x, A) < ( 5 1
z

)ZAC'i <e

Combining the two inequalities above and summing the result over all the points in R; yields

| cost(R;(C5), S) — |Rr(Cy)| - cost(as, S)| < Z | cost(z, .S) — cost(a;, S)|
z€R(Cy)
< ecost(Rr(Cy), S) + 2e cost, (C;, A).

O
Proof of Lemma B.6. Using Lemma B.2, it holds that
2% z—1
| cost(z, S) — cost(ar (), S)| = | dist®(z, S) — dist*(a,(z), S)| < edist®(z, S) + (1 + 6) dist®(ar (), ).
The sum over G tells
| cost(G, S) — Z |C; NG| cost(a;, S)| = | Z cost(zx, S) — Z cost(ar(z), S|
i=1 zeG zeG
2z
< .,z it VoAl N K-
<> (s dist™ (2, ) + (1 + =)* 7" dist (ar(x),x))
e
3z z—1
< ecost(G, S) + (?) cost, (G, A).
If G = G min for some j, it holds that cost, (G, A) < (g/4z) - cost,(R;,A). Else G = G, and cost, (G, A) <
(e/42)* - cost-(Ro, A) < (e/4z)% - cost, (D, A). In both cases the lemma holds. O

Combining Lemma B.5 and Lemma B.6 straightforwardly gives Lemma B.4. As is talked about in Section 3.2, due to
the particularity of quantum computing, it is costly to compute the exact value |R; 7| + |C; N (Uj21G;jmin)|- What the
algorithm uses is e-estimations 7; such that

|7 = (IRr(Ci)] +1Ci N (Ujg 11,0y Gjmin) | + [Cs N GR1l) < e(IR1(Co)l + Ci N (Usg (1,01 Gmin)| + [Ci 0 GR)

for any i € [m).
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Proof of Lemma B.4.
| cost(B, S) — cost(A, S)|

=| cost(B, S) — ZTZ cost(a;, S
=[(1+¢)cost(B,S) Fecost(B,S) — (1 te) Z (|Rr(C3)| + |Ci N (U;Gmin)| + 1C: N G| cost(as, S)|
=1

<(1+4e¢) (ZKCOS‘L(RI(CQ) S) — |R;(C;)] cost(ay, )|)+Z(|Cost(C'ﬂG,S)ZC’iﬁG|cost(ai,S)|)>

=1 G 1=1
+ ecost(B, S)

<(l+¢)e Z (cost(R(C;), S) + 2cost, (Cy, A)) + Z(cost(Rj, S) + cost-(Rj, A))) + cost(D, S) + cost, (D, A)
i=1 j

+ ecost(B, S)
<(1+¢€)e(3cost(D, S) + 4 costr (D, A)) + cost(D, S)
<8¢ (cost(D, S) + cost. (D, A)) .

Well-structured groups For well-structured groups, the following lemma holds:

Lemma B.7. Let ~
t=0 <2O(z) -m - (d + log(n)) - max (€2, 5*Z)>

in Algorithm 2 Line 9. For ¢ < 1/(4cZ), it holds with probability at least 1/12 that for any well-structured group G = G
and the corresponding sample Q. = Q; , and for any S € (RY)™,

| cost(G, S) — cost(£2,8)| = O(cZe) (cost(G, S) + cost(G, A)).

Fix a well-structured group G and for convenience, in the following for any set C' C R? we write G N C simply as C. Due
to the definition of G, for every cluster C;, the following properties hold:

» Va,y € C;, cost-(x, A) < 2cost,(y, A),

* cost, (G, A)/(2m) < cost,(C;, A),

o Vo € Cy, cost, (C;, A)/(2]C;]) < costr(z, A) < (2cost-(Cy, A))/|Cy.

Recall that €2 is an i.i.d sample of size ¢ and in each round a point z € C; N G is sampled with probability

cost,(C;, A)

Prfz] = S\ )
el = (e Teosto (G A)

and for any x € €,

C;|cost- (G, A

|| cost(C;, A)
To be precisely, the values such as |C;| and cost, (C;, A) are e-estimations in practice, instead of the exact values shown
above. The method to deal with such problems is the same as in the proof of Lemma B.4. For convenience we do not repeat
similar proof and use the exact values directly.

It can be seen that given a sample large enough, |C;| can be well approximated for every i € [m] (Lemma B.8). The proof
of Lemma B.8 is given later.
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Lemma B.8. Define event & to be for any i € [m],

Z |C;] cost- (G, A)

——= = (1% il
Qcost, (G, A) ~ L EEIC

zeC;NQ
With probability at least 1 — 2m - exp (—(2t)/(6m)), event € holds.

For any solution .5, let
I s:={x € G |2 cost,(x,A) < cost(z, S) < 2" cost, (z,A)},
and let these {I; s} be divided into three parts: tiny ranges, with [ < log(¢/2); interesting ranges, with log(¢/2) <
I < zlog(4z/¢); and huge ranges, with [ > zlog(4z/¢). For the three types of I; g, there exist the following lemmas,
respectively:
Lemma B.9. Let liiny s := Ui<iog(e/2)11,5. For any solution S, it holds that
max (cost(Lyiny,s,S), cost(lyiny,s N, S)) < ecost, (G, A).
Lemma B.10. Condition on event £, it holds that
| cost(C;, S) — cost(C; N, S)| < O(e) cost(Cy, S)
for any solution S, and any cluster C; such that there exists a huge range I; g with I} g N C; # @.

Lemma B.11. Let Lg := {C; | Vz € C;, cost(x, S) < (4z/e)? cost(x, A)}. Let C be an A-approximate centroid set of
sizen - (2/€)9D as defined in Lemma B.3. With probability
: 2 -z
1— exp <m log(n) + O(mdlog(z/e)) — 20G1082) . w : t>
log?(1/2)
and together with event &, it holds that for any solution S € C™

|cost(Lg, S) — cost(Ls N, S)| < e(cost, (G, A) + cost(G, S)).
Using Lemma B.10 and Lemma B.11, Lemma B.7 can be proved.

Proof of Lemma B.7. Let G be an arbitrary well-structured group. Let S be an arbitrary solution and let S € C* approximate
S. Denote

Hs :={x € G|3Ji,xr € Ciand Il > zlog(8z/¢),C; N I; s # &}
Hg:={z € G|Ji,z € C;and 3| > zlog(4z/¢c),C; N1, 5 # T} \ Hs.

And denote Lg as in Lemma B.11. It holds that Hg, Hg, and L g form a partition of G. On the one hand, HsUHzULg = G.
On the other hand, HgN Hyjiges = @, HgNLg = @,and LgNHg = @ since Vo € Lg cost(x, 5‘) < (4z/e)? cost, (x, A),
thus cost(x, S) < (1 4 €) cost(z, S) + & cost, (x, A) < (82/¢) cost,(x, A).

By this partition and the property of S, it holds that
| cost(G, S) — cost (£, 5)]

=] Z cost(zx, S) — Z w(x) cost(z, S)| + | Z cost(x, S) — Z w(zx) cost(z, )]

r€Hg z€HgN z€G\Hg z€(G\Hg)NQ
<| Y cost(z,§) = > w(@)cost(x, S)[+] Y cost(x,S)— Y w(x)cost(z, )
z€Hs TEHsNQ z€G\Hs z€(G\Hs)NQ

+ ¢ (cost(G, S) + cost, (G, A) + cost(£2, S) + cost, (2, A))
<] Z cost(z, S) — Z w(z) cost(x, S)| + € (cost(G, S) + cost (G, A) + cost(, S) + cost- (2, A))

r€EHg rzeHsNQ
+ Z cost(x, S) — Z w(z) cost(z, S)| + | Z cost(zx, ) — Z w(zx) cost(z, )|
(I)ELS xELSﬁQ wEHs :cEHgﬁQ

<O(g) (cost(G, S) + cost, (G, A) + cost (2, .S) + cost(£2, A))
<O(cZe) (cost(G, S) + cost(G, A) + cost(§, S) + cost(2, A)).
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The last inequality uses Lemma B.10 and Lemma B.11.
Assume that ¢ < 1/(4¢Z). Let S = A, it holds that
cost(Q2, A) < cost(G, A) + | cost(G, A) — cost(2, A)| < O(1) cost(G, A).
Similarly,
cost (2, 5) < cost(G, S) + | cost(G, S) — cost (€2, .5)] < O(1) (cost(G, S) + cost(G, A)) .
Hence it can be concluded that
| cost(G, S) — cost(£2, )| = O(cZe) (cost(G, S) + cost(G, A))

Using the union bound over event £ and the probability of Lemma B.11 for all the well-structured groups G, the probability
is

1 — 2%log?(z/e) (exp (m log(n) 4+ O(mdlog(z/e)) — 20(~=los2) . %2’52) . t) —2m - exp (—(EQt)/(6m))> .

log™(1/¢)
The probability can be bound by 1/12 by setting the value of ¢ as
t=0 (QO(Z) -m - (d +log(n)) - max (5_2,5_Z)> .

O

The proofs of Lemma B.8, Lemma B.9, Lemma B.10, and Lemma B.11 are shown as below, respectively. Lemma B.8 is
used in the proof of Lemma B.10 and Lemma B.11, and Lemma B.9 is used in the proof of Lemma B.11.

Proof of Lemma B.8. Fix i € [m]. Define P;(x) as the indicator of point z € § being drawn from C;, i.e., P;(z) = 1 if
x € C; N, and otherwise P; = 0. The expectation of P;(x) has the following property:

|| cost(C;, A) |Q|
Q| Pr| uf R L e A
l;' | Prlz Z|C’|cost (G, A)
By Chernoff bounds, it holds that
|Z Pi(z (2))| > eE(Pi(z))] < 26 E(Pi(@)/3 < 9o=(121)/(6m)
€N

The union bound over all the clusters derives that, with probability at least 1 — 2m - exp (—(g2t)/(6m)), for any cluster C;
there is

|| cost(C;, A)
: (1 L e A L R
C:nQf = (1£e) x; |C;| cost- (G, A)

which implies

|Ci| cost- (G, A)
3o Gt G A s
veoh || cost(C;, A)

Proof of Lemma B.9.
cost(Iiiny,s,S) = Z cost(x, S) < |Itiny,s|%costT(x,A) < ecost (G, A)

€ ltiny,s

cost(Itiny,s N2, S) = Z w(x) cost(z, S)

J)Elnnyysﬂﬂ

: A
>, it o)
€ Itiny,sNQ COStT( (2] )

|Ci|cost- (G, A) e 2cost,(Cs, A)
|| cost(Cy, A) 2 |Ci]
< ecost, (G, A).

IA

[1sNQ
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O

Proof of Lemma B.10. For any x € C; N €Y, cost(x, S) is bound. Let y € I; ¢ N C; with I; s being a huge range. For any
x € C;, there is

cost(z,y) < (dist(z, A) + dist(y, A))* < 3% cost,(y, A) < 3zol—zlog(4z/¢) cost,(y, A) < (f) cost(y, S).
z

Using Lemma B.2, there is

21 z—1
cost(y, S) < (1 + Qiz) cost(x, S) + (1 + 2;) cost(x,y)

< (14 ¢)cost(z,S) + € cost(y, S)

which implies cost(z, .S) > (1 — 2¢) cost(y, S) and cost(y, S) < (1 + 3¢) cost(z, S) if e < 1/3. Similarly cost(z, S) <
(14 2¢) cost(y, S) and cost(y, S) > (1 — 3¢) cost(z, S).

|Ci| cost- (G, A)

cost(C; NQ, S) = Z 1] cost(C;, A)

zeC;NQ

|Ci| cost- (G, A)
=142 = cost
(1£2) 3, Q] cost, (G, A) <8-S
xeC;NQ

= (1£2¢)(1 £¢€)|Ci] cost(y, S)
=(142e)(1%¢e) Y cost(y, S)

zeC;
= (1£2e)(1 £e)(1 £ 3¢) cost(C;, S)
= (1£ O(¢g)) cost(Cy, S).

cost(z, S)

The third equation holds because of event £. O

Proof of Lemma B.11. Letx; g := arg min,ec, cost(z, S) and w, g = (cost(z, S) — cost(z; g, 5)) / cost,(x; 5, A). Let
E g := ZC’ieLs ZIEC’iﬂILSﬂQ w(x) costr (5, A)wy s and F} g 1= ZcieLs Zmeciﬁll,snﬂ w(x) cost(z;,s,5).

wy, s is bound. For fixed 7, [ and S consider arbitrary x € C; N I; 5. By the definition of x; g it is straightforward to see
cost(z, S) > cost(z;,s,S), and thus w, g > 0. Besides, because the property of well-structured group there are

cost(z;.5,5) < cost(x,S) < 27! cost, (x, A) < 2172 cost, (5,5, A)

and
cost(z, z;.5) < 27 (cost(x, A) + cost(z;,g, A)) < 3-2° ! cost, (2.5, A).

Using Lemma B.2, for any o < 1,
SRV Z\z-1
cost(x,S) < (14 —)*7" cost(z;,s5,5) + (1 + =)*" " cost(z, z;.5)
z o
which after rearranging implies
22,4
cost(x, S) — cost(x;,s, S) < 2accost(x; g, S) + (—)* " cost(z, z;,5)
o
2
< 2% (2amax(1, 241) + (Z2)*71) cost, (w45, A)
o
Let o = 27%/# (ignoring constants that depend on z), the inequality yields that
cost(x, S) — cost(z; 5,5) < 20(1082)ol1=1/2) cost (2, g, A).
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Therefore, w, g € [0,20(*1082)l(1=1/2)]

E; s can be expressed differently:

Es= Z Z w(x) costr (.5, A)wy g )
C;€Lg zeCiﬂILSﬁQ

= Z Z w(z)(cost(x, S) — cost(zi.g,5)) Q)
C,eLgs xECiﬂIl,sﬁQ

= ) w(x)cost(x,S) - Fis. (6)

wefl’sﬁLsﬁQ
The expectation of E; g is as follows:

E[E; 5] Z || Pr[z]w(z) cost(z, S) — E[F} s]

r€l; sNLs

Z || cost (C;, A) |C;| cost, (G, A)
|Ci] cost- (G, A) || cost(Cy, A)

:EGII,YSPILS

= cost(l; s N Lg,S) — E[F 5]

cost(z, S) — E[F} g]

Intuitively, by Bernstein’s inequality the random variable E; g is concentrated around its expectation. Let €2; be the point
sampled from the 4-th round of importance sampling (Line 9 in Algorithm 2), and let X; = w(€2;) cost, (2, (q,),s, A)wa, s
when §2; € I; s N and X; = 0 otherwise. It holds that E; g = 22:1 X;. X; and its variance are bounded.

Var[X;] < E[X?] = Z Pr(z] (w(z) costT(:ch(x),S,A)wgg’s)2

x€l; sNLg

cost, (C;, A C;| cost- (G, A ot iena )2
S et (feostir ) et 09200

rz€l;, sNLs

_ C;| cost- (G, A)
22[(1 1/2)20(2 log z) | ’ 2 A
Z |22 cost, (C;, A) costr(x, )

IA

r€l;,sNLs

Z 92l(1-1/2)90(zlog 2) COStnggg’ 4) costr(x, A)

IN

r€l;, sNLs

which implies
QO(Z log z) cost, (G, A) cost- (G, A)
Var[X;] < o |
90(zlog z)9l(1-2/2) cost, (G, A) cost(fl,s, S)
2 ’

z=1

z>2

Besides, X; has upper bound.

|Ci] cost, (G, A)
X, < PO T )
' = Q| cost, (C;, A)

< 2l(172/z)20(z log z

COStT(J;?A)Ql(l*l/Z)QO(z log 2)

ycostr (G, A)
9]

By Bernstein’s inequality,

PI"HEZ,S — E[EI,SH <

5 min(e?, e%)t
~ zlogz/e '

. 3 < —
(COStT(G7 A) + COSt(Il,Sa S))] — eXp < 20(2 1ng) 10g2(1/5)
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Denote Fig := > 1<z log(4z /<) F} 5. Condition on event £, the value of Fs and its expectation are as follows:

E[Fs]= Y, > > 19| Pra]w(x) cost(xs, s, S)

I<zlog(4z/e) Ci€Ls z€C;NIi s

> [Cilcost(zi s, S);

Ci€Ls

Z Z w(x) cost(z;,s,S)

C;,€Ls zeC;NQ

[ tr aA
_ Z cost(z; s, S) Z |Gi] cost- (G, A)

C,€ELg zeC;NN |Q| COStT (Cw A)

=(1+¢e) Y |Cicost(zis,S).

Ci€Ls

Fs

Hence F's = (1 + ¢)E[Fs], and E[Fs] < cost(Lg, S) < cost(G, S).

Taking an union bound over the concentration for all possible S € C* and all [ such that log(¢/2) < I < zlog(4z/¢),
it holds with probability 1 — exp (klog(|C|) — 29(zlog 2) - min(e?,£%) - ¢t - log"*(1/)) that, for every S € C* and
log(e/2) <1 < zlog(4z/e),

|Ers —E[E; 5] < (cost (G, A) + cost(I}.5,5)) |.

zlog(z/¢)

Conditioning on the above event together with event &£, It holds that

|cost(Lg,S) — cost(Lg N, S)| = | Z cost(zx, S) — Z w(x) cost(z, )]

x€Lg rze€LgsNQ
<| Y cost(x,S) —E[Fs]+ Fs — Y w(x)cost(x,S)| + [E[Fs] — F|
x€Lg x€LsNQ
< > 1> cost(x, ) —ElFsl+Fs— Y. w(@)cost(x,S)|
I<log(e/2) z€l; sNLs ze€l; sNLsNQ
zlog(4z/¢)
+ > Y cost(@, ) —E[F s+ Fs— Y, w(x)cost(z,S)
I=log(e/2) z€l;,sNLs z€l; sNLsNQ
+ [E[Fs] — Fs|.
The tiny ranges can be bound as follows since Fi s <> ., o w(x)cost(z,S) and E[F} 5] < >_ . _ cost(z,S):

Z | Z cost(z,S) —E[F; g] + Fi.s — Z w(zx) cost(z, )]

I<log(e/2) =€l sNLs z€l;, sNLsNQ

< Z Z cost(z,S) + E[F; s] + Fi.s + Z w(zx) cost(z, S)

I<log(e/2) \z€l;,sNLs xz€l; sNLsNQ

<2 Z cost(x, S) + Z w(zx) cost(z, S)

€l s I;,sNQ
<4e cost, (G, A).
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Plugging this result into the previous inequality, it holds that

|cost(Lg,S) — cost(Ls N, .S)|
zlog(4z/¢)
<decost,(G,A)+ > |Es—E[Eys]| + [E[Fs] — Fs|
l=log(e/2)

<4e cost, (G, A) + (zlog(4z/e) —log(e/2)) - (cost- (G, A) 4 cost(Lg, S)) + € cost(G, S)

zlog(z/e€)
<O(g)(cost, (G, A) 4 cost(G, 9)).

Outer groups For outer groups, the following lemma holds:
Lemma B.12. Let

t=0 (20(2) -m - (d+logn) - 12)
5

in Algorithm 2 Line 10. It holds with probability at least 1/12 that, for any group of outer rings G = Gbo and the
corresponding sample Q, and for any S € (R)™,

cie
_ <27 .
| cost(G, S) — cost(£2,59)| < 2zlog(z/s) (cost(D, S) + cost(D, A))

Proof. Fix an arbitrary .S. Partition the points in G into two parts and denote

Gelose,s = {x € G | cost(x, S) < 4% cost(z, A)}
Ghar,s := {x € G | cost(z, S) > 4% cost,(z, A)}.

Bernstein’s inequality works for the close part. Let €2; be the ¢-th sampled point and let
cost, (G, A)

X; = { |9 cost (2, A)

O» Qz ¢ Gclose,S

) COSt(Qi, S), Qz S Gclose,s

Let Eglose,s 1= 2521 X;. The variance of X; has the property

' 2 cost, (G, A) ? costy (z, A)
Var[X;] <E[X]] = ) (|Q|costT(x,A) cost(@,9) | st (G A)

zE€G close, s
cost- (G, A) Z cost(z, S)

—_— t
|£2)2 cost, (z, A) cost(z, 5)

TE€G close, s
z

4
o cost, (G, S) cost(@G, S).

IN

X; has a upper bound
€oste (G A) ot 9)) < - cost (G, A).

X; < max <
1€

2€G 1oe,s || cOSt, (T, A)

Bernstein’s inequality yields that

Pr{| Eetose.s — E[Fetose.s]| < (cost-(D, A) + cost(D, §))] < exp (_QO(Z) N

& #)2 .t
zlog(z/¢) zlog(z/¢)
Similar technique about A-approximate centroid set yields that for any .S and any G,

cce

| cost(Gelose,s, S) — cost(Gelose,s N2, 5)| < m (cost(D, A) + cost(D, S))
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with probability at least
2
1 —exp <m logn + O(md) log(z— log(z/¢)) — 20(2)52t) .
€

The proof for the far part is as follows. Denote event &, to be: for any cluster C,

Z w(x) costr(z, A) = (1 £ &) cost (C NG, A).
zeCNGNQ

Event €4, happens with probability at least 1 — m exp(t/m). Let Ec = 25:1 X, where

_Jw(z)cost, (2, 4), L eCNG
"o, u¢CnG

with ; being the i-th sampled point. Calculation shows that Var[X;] < E[X?2] < 2mcost2(C NG, A)/t? and X; <
2mcost,(C NG, A)/t, and the Bernstein’s inequality implies the success probability.

Fix a cluster C; such that C; N Gty # @ and let a; be the center. Let x; be a point such that z; € C; N Grar, s,
which implies dist(x;, S) > 4dist(x;,a;). Let Celose := {x € C; | costr(z, A) < (z/e)*(cost(Cy, A)/|C;|)}. Due
to Markov’s inequality, |Ceiose| > (1 — €/2)|C;|. Note that G is an outer group and for any = € G it holds that
costr(x, A) > (z/e)** - (cost(C;, A)/|C;]). By the definition of Gy, s and Lemma B.2 it can be derived that
t-(Cy, A
cost(a;, S) > (dist(z;, S) — dist(x;, a;))* > 3% costr (x;, A) > 32(2/5)22C08|é|)

cost(a;, S) < (14 ¢)cost(x, S) + (1 + 2z/e)* ! cost(z, a;)
, cost(Cy, A)

|Cil

IN

(1+¢)cost(z, S) + (3z/e)* " (z/e)
< (1 +¢)cost(x, S) + € cost,(a;, S)
where z is an arbitrary point in Cyose. Combining the lower bound of the size of Cy)ose, this implies
]_ —
cost(C}, S) > cost(Caiose,s)|Celosel - 1—_1_2 -cost(ag, S) > 3*(z/e)* ! cost,(C;, A).

Due to Markov’s inequality the size of G'N C; is bound by (¢/2)?|C;| since G is an outer group. Combining with the above
inequalities, it holds that

cost(Grar,s N C;, S) = Z cost(x, S)
2E€Gtar,sNC;

< Z (1+¢)cost(a;, S) + (1 + 22/6)'271 costr (Grar,s N Cy, A)

2€Gtar,sNC;

14+¢e\° /e\2 32\ F1\ 7 sen 21
< £ (O 3z 1\" re ] o
= <1 —5) (z) cost(Ci, S) + < - ) <3> (z) cost(Grar,s N Ci, S)

By simplifying the inequality and summing over all the clusters C}, it is implied that

ost(Grar.5,5) < ——— cost(D, S).
CS(fa,S )_21 (/E)CS( )
Condition on gfar, calculation shows that
t G ar OQ,S < t D7S .
COS ( far,S ) 21 (Z/E) COS ( )

The combination of the results about the close part and the far part tells that
| cost(G, S) — cost(GNQ,S)]
<| cost(Gelose,s, S) — cost(Gelose,s N, S)| + | cost(Grar,s, )| + | cost(Grar,s N, 5)]
2cze

,W(TZ/E)(CO%(D7 S) + cost(D, A)).
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To make the above inequality holds with probability at least 1/12, it is sufficient to set

~ 1
tzO(QO(Z)-m~(d+1ogn)~52).

C. Proof of Multidimensional Quantum Counting

This section provides a detailed proof of Theorem 4.4 and Theorem 4.2.

Theorem 4.4 is restated as follows:

Theorem C.1. Given two integers 1 < m < n, two parameters ¢ € (0,1/3), and a partition 7: [n] — [m]. For each
j € [m], denote D; := {i € [n]: 7(i) = j} as the j-th part and n; := |D;| for the size. Assume that we have an oracle
O:: |90y — i) |7(j)) Vi € [n]. Fore € (0,1/3), 6 > 0, Algorithm 3 outputs nv; such that |i; — n;| < en; for every

j§ € [m] with probability at least 1— 5, using O (\/nm/a log(1/§)) queries to O, O ((\/nm/fs +m/e)log(n/d)log M)

gate complexity, and additional O(mlog M) classical processing time. The query complexity is optimal up to a logarithm
factor.

Proof. We establish the correctness and complexity bound separately.

Correctness The “maximal total probability Dm¢ and precision 32”5 in Line 6 satisfies Lemma 4.5. Denote the exact

cardinality of @ in Line 13 as n/, |72 — n’ | < gn'. For the maximal total probability, we have 3 ;o pj = > cs &= %, <
2n

20 — 4 +. And for the precision, 215 < s <e<1/3.

> 3nm — nm

For each j € M, n; has been estimated. For those n; estimated after the while loop stops, we find all the members belonging
to the corresponding subset and count classically in Line 16, which gives an exact cardinality.

2ne
— 3nm’

For those n] estimated in the while loop, |p; — —| = |p; — pj
|7 — n;| < 2eii;. Since € € (0,1/3), |fi; — n;| < eny; as required.

. ~ = ~ n. 2~
Since p; > -, |p; — ~£| < zepy, thus

Complexity In each iteration, the estimation process for {p;};jcp in Line 6 uses O(,/Prm¢/ 225 ) = O(%) = 0(¥2™)
2ne )

applications of U, and membership queries for P, and O(m + py,:/ o) = O(%) gate complexity, since 7 < m/e
(Line 15) at this time. The estimation for the cardinality of () needs O(\/n /m/e) membership queries to P according to
Lemma 2.6. The classical process in Line 7-11 and Line 16 needs at most O(m) time. Since we can make all elements
in P sorted in O(m log(m)) time to keep an O(log(m)) query complexity for the membership query to P, the total query
complexity per iteration is O(\/i ), with additional O( ) processing time.

The loop (Line 5-15) has at most O(log n) iterations. Denote 7y = n and 72 obtained in Line 13 at the ¢-th iteration as
ng. At the (¢ + 1) th iteration, for anyj € P there is pj < ”;n thus p; < p; + 20 < ”;n. We can calculate that

3nm — 3n
fpr < Smjy, =32 2 jepPi < Tyt maxjeppj < L As a result, after O(log n) iterations there must be 7 < m/e.

Finding all the items remaining in () (Line 16) requ1res O(
™).

There are at most O(logn) iterations and each iteration fails with probability at most O( —). Therefore, the success
probability is at least 1 — 4. O

™) queries to O, and membership queries to P since

|P| < m/e here. The overall query complexity is O(

Theorem 4.2 is restated as follows:

Theorem C.2 (Multidimensional Quantum Approximate Summation). Given two integers 1 < m < n, a real param-
eter ¢ > 0, a partition T: [n| — [m|, and a function f: [n] — Rx>o. Assume that there exists access to an oracle
Or: |1)|0) |0) — |2) |7(4)) | f(3)) Vi € [n] and assume that f has an upper bound M. For ¢ € (0,1/3), 6 > 0, there exists
a quantum algorithm that finds e-estimation for each s; := ZT(i:j) f(2), j € [m] with probability at least 1 — §, using

O («/nm/e log(1/4) log M) queries to O.. and additional O ((\/nm/e +m/e)log(n/d) log M) gate complexity.
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Proof. Write f(i) as a binary number fo(4) f1(¢) ... fi(¢), | = [log M]. Foreacht =0 : [, let O; be
Oz [i)[0) = [} [7()I(fe(i) = 1)),

where I(f:(i) = 1) is the indicator for whether f;(i) = 1. O; can be constructed by constant queries to O, and its inverse:

i) 10 10} 0) 125 [y [7(6)) £ 10) = [a) [r(8)) 10 [ ICF(0) 7 13} [0) [0) [7(6) I (£uli) = 1)

Applying Theorem C.1 with oracle O; and §' = §/I, Algorithm 3 outputs 53 forj =1:m, §§ is an e-estimation

for st = > r(i)—j J¢(1) using 0 (\/nm/s log(l/é)) calls for O; and additional O ((\/nm/s +m/e) 10g(nl/5)> gate

complexity. Let §; = Zi:o 2'3t.

IN

1 l
3; — 54| < 22t|§§ —si| < 522%? £s;.
t=0 t=0
Therefore, §; is an e-estimation of s;, Vj € [m]. The total complexity is O (\/nm/ elog(1/0)log M ) queries to O,
0 ((\ /nm/e +m/e)log(n/d)log M ) gate complexity, and additional O(m log M) classical processing time. O

D. Proofs of Quantum Lower Bounds
D.1. Auxiliary Lemmas

In the proofs of our quantum lower bounds, we use the following tools.

Theorem D.1 (The Perfect Composition Theorem, Hgyer et al. 2007, Lee et al. 2011, Kimmel 2013, and Reichardt 2014).
For the alphabet set X, T, functions [ : D1 — K and g : Do — T with Dy CT" Dy C 5™, let f ¢ g = f(g™). The
bounded-error quantum query complexity Q) satisfies

Q(f eg) =0(Q(f) - Q(9)):

Corollary D.2 (A Direct Sum Theorem). For the alphabet set 3, functions g : D — {0, 1} with D C X™, the bounded-error
quantum query complexity Q) satisfies

Q(g") = 6(nQ(g))-

Proof. Plug f = id in Theorem D.1. Then, we only need to prove that Q(f) = ©(n). This can be seen, e.g., by reducing to
PARITY, which is defined and proved to have Q(PARITY) = n/2 in Beals et al. (2001). O

Definition D.3. We define the following problems:

* Decisional Quantum Counting: fr ;. : S — {0,1} where S C {0,1}",1 # I is a partial Boolean function defined
as
0 if | X| =1
fn’,l,l’(anwlw-~>xn’71) = 1 lf‘Xl :l/ (7)
not defined  otherwise

where | X| = Z:igl x;. The notation ffl]f)l y 1 S* — {0,1}" represents the repeated direct product of f, i.e.
k
fr(ﬂ,)l,l' (W, 2@, 2 ®) = (fagp (D), farap (@), faraw (29)).

» Approximate Bits Finding: Approx, C {0, 1}* x {0,1}* is a relation problem where for input bits x1, . . ., 2%, output
bits ¢y, . .., cx are correct iff the hamming distance between x and c is less than ¢y - k for some absolute constant
0 < gp < 1 to be determined in the proof of Theorem D.9.

* The operator o composites a relation and a function in the natural way, resulting in a relation problem on S* x {0, 1}*.

Theorem D.4 (Theorem 1.3 of Nayak & Wu 1999). Any bounded-error quantum algorithm that computes f,: 11/, given
the input as an oracle, must make ) <\/n’/A + /(W — m)/A), where A := |l —U'| and m € {I,I'} s.t. [m —n'/2| is

maximized.
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D.2. Proof of Theorem 5.1

Now, we give the proof of Theorem 5.1, which is restated below:
Theorem D.5 (Quantum Lower Bound for Multidimensional Counting). Every quantum algorithm that solves the multidi-
mensional counting problem (Definition 4.3) w.p. at least % uses at least §2 (\/ nke=1/ 2) queries to O.

Proof. Let T = |0.1e7!]. Assume M is even. We reduce from the problem f:}{i 77111 By Theorem D.4

and Corollary D.2, Q) (f;"/m TT+1) = Q (\/nmg—1/2). The reduction applies by defining 7; = 2a 4+ z; + 1 for
i =am/2+ bwhere 1 <b < m/2, calling the quantum multidimensional counter to get n1, na, . . ., N, and outputting
no—T,ng—T,...,0p —T. O]

D.3. Proof of Theorem 5.2

Now, we prove Theorem 5.2, which is restated below:

Theorem D.6 (Quantum Lower Bounds for k-means and k-median). Assume that € is sufficiently small. Consider the
Euclidean k-means/median problem on data set D = {x, ..., x,} C R Assume a quantum oracle O, |i,b) := |i,b ® x;).
Then, every quantum algorithm outputs the followings with probability 2/3 must have quantum query complexity lower
bounds for the following problems:

e An e-coreset: () (\/ nke~t/ 2) for k-means and k-median (Theorem D.7);
* An e-estimation to the value of the objective function: ) (\/ nk + \/56_1/2) for k-means and k-median (Theorem D.8);

* A center set C such that cost(C) < (1 4+ €) cost (C*) where C* is the optimal solution: Q (\/ nk5’1/6> Sfor k-means;
Q (\/ nk{—:fl/‘{j) for k-median (Theorem D.9).

We prove these different settings separately as follows.

D.3.1. CORESET OUTPUT
Theorem D.7. Assume that € is sufficiently small. Consider the Euclidean (k, z)-clustering problem on data set D =
{x1,...,2,} C RL An oracle O, |i,b) := |i,b® ;) is accessible. Then, every quantum algorithm that outputs an

g-coreset w.p. at least % uses at least ) (\/ nksfl/z) queries to O.

Proof. We reduce from the multidimensional counting problem. The instance is 1-dimensional. Let B = n!%°. The
reduction is simply defining x; = 7; - B. After getting an e-coreset from the (m, z)-clustering solver, we are able to query
an e-estimate of cost, (D, C;) where C; = {B,2B,...,i- B + 1,mB}, which equals to | D;|, completing the proof. ]

D.3.2. OBJECTIVE FUNCTION ESTIMATION

Theorem D.8. Assume that € is sufficiently small. Consider the Euclidean (k, z)-clustering problem on data set D =
{x1,...,2,} C RL Anoracle O, |i,b) := |i,b® x;) is accessible. Then, every quantum algorithm that outputs a real

number A € (1 4 €) ming- cost(C*) w.p. at least 2 uses at least §) (\/ nk + \/55*1/2> queries to Oy.

Proof. Our proof has two parts: Q(v/nk) and Q(y/ne~1/2).

First, we prove that the complexity is 2(v/nk). We can assume that & = o(n). We reduce from the problem f,, 1 11, which
has lower bound Q(v/nk) by Theorem D.4. The instance is one-dimensional. We set 2, = 0 if z; = 0 and }, = i if z; = 1.
Then, we estimate the (k, z)-clustering objective function. In the O-case, the objective function value must be 0 (we have k
centers for k points s.t. x; = 1); in the 1-case, the objective function value is greater than 0. Thus, an c-approximation is
able to distinguish two cases, completing this part.
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Second, we prove that the complexity is Q(y/ne~1/2), even for k = 1. Let T = 0.1~ ']. We may assume ¢~ = o(n).

We reduce from the f,, 77+1. The instance is one-dimensional. The reduction is simply setting z} = ;. Let a = Z?:l ;.

We need to distinguish two cases: « = T and a = T + 1. The objective function is f(x) = a|z|* + (n — a)|1 — z|*.
a(n—a)

Assume z > 1. By calculus, we can see min, f(z) = (/oD rat DT Thus, to prove that an e-estimation can
n—a = at/(F=

distinguish two cases, we must prove that,

T(n—T) (T+1)(n-T-1)

— <(1—¢) —-
((n _ T)l/(z—l) + Tl/(z—l)) ((TL T — 1)1/(z—1) + (T + 1)1/(z—1))
Because T' = o(n), B8 ~ (1 —e)ZEE > 1 for sufficiently small €. As for z = 1, f(z) = a so the above argument is also
valid. O

D.3.3. CENTER SET OUTPUT

Theorem D.9. Assume that € is sufficiently small. Consider the Euclidean (k,z)-clustering problem on data set
D = {z1,...,2,} C R Anoracle O, |i,b) := |i,b® x;) is accessible where the second register saves the binary
representation of a real number and can have any polynomial number of qubits. Then, every quantum algorithm that
outputs the optimal centers C = {cj ..., ¢y} such that cost(C) < (14 ) ming~ cost(C*) w.p. at least 2 uses at least

Q (min (n, mg_1/3z>) queries to Oy.

Proof. For convenience, we assume that n is a multiple of k& and focus on the z = 2 case (the proof for the z # 2 case is
similar). We only need to prove when 8%/3 = o(k). Let T = [(16e9c) /3| — 1 where ¢ is to be defined. We will reduce

an instance of the 2k-means problem from the problem P = Approx; o :%Tj 41

Intuitively, solving the problem P need to solve k independent cases of a quantum counting problem (distinguishing [ 1s
from I’ 1s), but only need to be correct on a constant fraction of instances. We prove that the quantum algorithm must cost &
times the queries of the £ = 1 case, which can be lower bounded by Theorem D.4.

Now we describe the reduction. The hard instance is consist of & unit balls far apart and each unit ball has 7" or 7" + 1 unit
vectors and n — T or n — T' + 1 origins on it. Let .4 be an optimal algorithm for the 2k-means problem. The input of the
problem P is z € S*¥ where S = {x € {0,1}*/* : | X| =T or T +1}. Letx = x5 ... x,. We map each z; to a point
in R for d = 100log k/e%. Let B = n'® andi = ak + bfor0 < a < k,1 < b < n/k. Define v; = (i - B,0,...,0). If
x; = 0, we map it to the point vo,; if x; = 1, we draw t; < {2, 3, ..., d} uniformly and randomly. Then we set the point as
Vaa+1 + €, where {e1,ea,...,eq} is the standard basis of R<?. Note that by the union bound and the Birthday Paradox,
{t;} are distinct in each group of size n/k w.h.p. We condition on this from now on. Since the reduction is classical, simple,
and local, we can implement the oracle for the 2k-means problem directly. Finally, we call .A on the above instance and

output (round(t(||ca — v1||2)), - . ., round(¢(||ca; — v2i—1]|2)), - - . , round(¢(||c2n — van—1l|2))), Where:
s t(x) = ﬁ [% — min(max(x, \/1}7“), %) is a normalizing mapping;
0 z<141
round(z) = { 1 2> g .

By easy adjustments (we can assume that there is a point in each of 2k balls centering at v; with radius B/5 because
otherwise the cost is larger than B/10, which is very large; then, we can move each center to its nearest point on the unit
ball centered at v;), we can assume without loss of generality that the solutions outputted by the 2k-means solver have the
following properties:

1. C2q—1 = V2q—2 for 1 S a S k;
2. |le2a, vaa—1ll2 < 1.
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Then, the cost of the clustering can be seen as the sum of costs of k£ independent 1-mean problems and each of the problem
has size T or T + 1. It is well known that, in the 1-mean problem of size n, cost(c) = cost(c*) + n|c — ¢*||*> where
c* = Tittatd Ty g the optimal center. We decompose 2, = V21 + ga. Let T, = {ey, s w; = 1, (a — 1)k < i < ak}.
(Recall that |T,| = T or T + 1.) Define g} = IT—l‘ > cer, & Then, the clustering is e-optimal if and only if

k
1 .
ZITlllga gal? <e- Z2| T > dist(a,y)? (8)
a=1 4l ztyeT,
k k
* 2
= Z|Ta|<||ga||—||gau> <&y (T —1) )
= a=1

k 1 2
= T- Z(llgal \/ﬁ <e k- (T-1) (10)
k - 2
— Z<|ga|| > <e-k. (11

a=1

Note that ¢ ( > gives f, /i 7,741 in the i-th block of size n/k, justifying the inner function of the problem P.

Tl

— (1 ! )Z ot () <o (12)
VT vT11) &\ A ©

a=1

k 2
1 €0
= ar. T+12QZ_1< (lgall) — <|Ta|>> <m'k (13)
k 1 2
€0
— ;( (lgall) = <\/W>> <5k (14)

Intuitively, the k-means solver needs to solve k independent cases of f,, /x 771 Where the right answers are ¢ (|Ta|’1/ 2).
t(llgall) € [0,1] are a fractional guess in [0, 1]¥ of {0, 1}*. For convenience, we round the output. A simple lemma is
required to bound the error of rounding:

Lemma D.10. Given z1,x2,...,2x € [0,1] and y1,y2, ..., yx € {0,1}, we have that

k k
Z 1r0und i)FYi S 4 )2
=1 =1
Proof. One has:
k
Z(xv y7>
i=1
= Z (z: —yi)* + Z (zi —yi)?
round(z;)#y; round(z;)=y;
1
> > L m
t(@i)#yi

Back to the proof of Theorem D.9. Plugging x; = t(||g.||) and y; = ¢ < \/IlTil) in the above lemma, we have that the

hamming distance between the output of our solver for P and f (k) is less than g¢k, so it is indeed a solver for the

n/k,T,T+1
relation problem P.
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Now it is sufficiently to prove the lower bound for the problem P. Consider another problem defined simply as P’ =
k .
fT(l/LT)TH. Applying Corollary D.2, we have that Q (P’) = kQ(f/x,r,741)- By Theorem D.4, Q(f,/k7,74+1) =

© (W) Hence, Q (P') = © (\/7%6’1/6).

Thus, there exists a constant Cp > 0 such that every quantum algorithm that solves P’ w.p. at least % uses at least
Cov/nke=1/% queries. Let A query the oracle for ¢ times. We construct an algorithm A’ (z) for P’ from A: A’ calls

¢ < A(x) and then uses the Grover search (Lemma 2.7) to find the set S = {i € [k] : fi’;)k_T 741(®)i # c¢i} and then
flips the bits of ¢ in S and output ¢. By the definition of P/, |S| < gy - k. And fi’;)kT 741 ()i can be computed by

5/ nT/k +n/k < 2/nT/k queries by the Grover search too. Thus, finding S costs 2(5v/eq - k- k4o - k)y/nT/k <

1006(5)/6\/ nke~1/6 queries. We then have ¢ + 1006(5)/6\/ nke=1/% > Cyv/nke=1/6. Now set gg = (1580)6/5 and solve the

inequality, we get t > 0.9Cyv/nke /6, completing the proof. O
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